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ABSTRACT

Quantitative precipitation estimation (QPE) with polarimetric radar measurements suffers from different

sources of uncertainty. The variational approach appears to be a promising way to optimize the radar QPE

statistically. In this study a variational approach is developed to quantitatively estimate the rainfall rate (R)

from the differential phase (FDP). A spline filter is utilized in the optimization procedures to eliminate the

impact of the random errors in FDP, which can be a major source of error in the specific differential phase

(KDP)-based QPE. In addition, R estimated from the horizontal reflectivity factor (ZH) is used in the a priori

with the error covariance matrix statistically determined. The approach is evaluated by an idealized case and

multiple real rainfall cases observed by an operational S-band polarimetric radar in southern China. The

comparative results demonstrate that with a proper range filter, the proposed variational radar QPE with

the a priori included agrees well with the rain gauge measurements and proves to have better performance

than the other three approaches, that is, the proposed variational approach without the a priori included,

the variational approach proposed by Hogan, and the conventional power-law estimator-based approach.

1. Introduction

In combination with the conventional reflectivity factor

(ZH), polarimetric measurements, including the differential

reflectivity (ZDR), the differential phase/specific differential

phase shift (FDP/KDP), and the copolar correlation co-

efficient (rhv), provide information to improve the accuracy

of radarquantitativeprecipitationestimation (QPE).Various

QPE algorithms mostly in power-law form have been pro-

posed toestimate rainfall rate (R) fromthepolarimetric radar

measurements, for example, R(ZH), R(ZH,ZDR),

R(KDP), R(KDP,ZDR), and R(AH) (Brandes et al. 2002;

Bringi and Chandrasekar 2001; Marshall and Palmer 1948;

Ryzhkov et al. 2005a, 2014, 2005b; Seliga and Bringi 1976).

Different rainfall estimators showdifferent errorpatterns that

are related to the precipitation microphysics and the quality

of polarimetric radar data (Lee 2006). The radar data quality

can be attributed to various reasons, including radar

miscalibration, power attenuation, nonmeteorological

target contamination, hail contamination, and random

error (Berne and Krajewski 2013; Cifelli et al. 2011). To

improve the accuracy of the rainfall estimation, differentQPE

algorithms are combined according to their error patterns or

the precipitation classification, which are known as synthetic

algorithms (Chen et al. 2017; Cifelli et al. 2011; Giangrande

and Ryzhkov 2008; Ryzhkov et al. 2005b).

Among the polarimetric radar variables, FDP, which is

defined as the difference in the propagation phase shift of

the horizontal and vertical polarized signals, and KDP,

which is the range derivative ofFDP, are immune to radar

miscalibration, attenuation, partial beam blockage, and

contamination of solid-phase hydrometeors. QPE with

KDP is less affected by raindrop size distribution (DSD)

variability than QPE using a ZH–R relation, since KDP is

approximately the 4.2nd moment of DSDs (Huang et al.

2017) that is closer to the 3.67th moment of DSD (related

to rain rate) than the 6th moment (ZH for Rayleigh

scattering). Unlike ZH or ZDR, KDP is not a direct radar

measurement, so a straightforward way is to estimateKDP
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from FDP before using it in QPE. A lot of methods have

been proposed for FDP processing and KDP estimation in

the literature (Hubbert and Bringi 1995; Hubbert et al.

1993; Wang and Chandrasekar 2009). Random error and

backscattering phase in the observed FDP could result in

negative KDP estimates that do not match the physical

truth for rain measurements. To mitigate the impact of

the abnormalKDP values onQPE,Ryzhkov et al. (2005a)

proposed to include the sign of KDP in the estimator

[R5 ajKDPj
bsign(KDP)]. However, including the sign

could occasionally lead to negative accumulated rainfall.

Recently, the linear programming method has been ap-

plied to KDP estimation of rainfall (Giangrande et al.

2013, hereafter G13). Nonnegative KDP constraints are

imposed in the algorithms to reduce the impact of FDP

errors and eventually lead to better QPE performance.

An alternative way for QPE with FDP is to use a

forward approach (Rodgers 2000). In this method, R is

regarded as a state variable, and a forward model is built

to predict FDP values from R. Generally, optimum R

estimates can be obtained when the difference between

the predicted and the measured FDP is minimized. This

method directly connects R with FDP measurements, so

the two-step error propagation fromFDP toKDP and then

from KDP to R is avoided. Additional constraints, such as

the nonnegativity of R and the self-consistency of polari-

metric variables, can be incorporated into the algorithm.

The essential idea of this method is to optimally retrieve

R under the constraints posed by all the available in-

formation. The variational analysis is a common way to

achieve this goal (Hogan 2007, hereafter H07). H07

proposed a variational QPE approach based on the Z–R

relation. The coefficient in the Z–R relation is adjusted

according toZDR andFDPmeasurements. In addition, the

forward operator is built from idealized DSDs (gamma

distribution with fixed m) in his work.

Based on the R–KDP relation derived from the real

DSDmeasurements, we develop aQPEapproachwith the

variational approach acting as the optimization framework

in this work. Section 2 gives the description of the varia-

tionalQPEapproach.An idealized case is utilized to verify

the algorithm in section 3. In section 4 the radar mea-

surements of multiple precipitation cases in southern

China are utilized to quantitatively evaluate the algo-

rithm’s performance. Conclusions are given in section 5.

2. Description of the proposed variational QPE

framework

a. DSD dataset used to construct the variational QPE

approach

As the variational QPE approach is designed for

S-band polarimetric radars, and the evaluation is on the

basis of the data collected by a polarimetric radar and

rain gauges in southern China, we use the DSD data

collected in the same region to find the statistical re-

lations. A two-dimensional video disdrometer (2DVD),

which is a highly accurate instrument for measuring

precipitation particles (Schönhuber et al. 2007), de-

ployed in Guangdong Province, China, collected DSD

data fromMay to July in 2016 and 2017. The location of

the 2DVD is shown in Fig. 1. To build the connection

between the polarimetric variables (ZH, ZDR, and KDP)

and the rainfall rate, we calculate them from the DSD

data following the formulas given by Cao et al. (2012).

The scattering amplitudes are estimated with the

T-matrix method (Mishchenko et al. 2000). The tem-

perature is assumed to be 208C; the wavelength is

10.4 cm. The statistical terminal velocity relation and the

raindrop axis ratio relation are assumed to be the same

as those given by Brandes et al. (2002).

b. The basic variational analysis

To estimate precipitation, the state vector x for an

n-gate ray in a radar scan is defined as follows:

x5 [R(1),R(2), . . . ,R(n)]T, (1)

where R(i) is rainfall rate at the ith range gate and the

superscript T means transpose. The FDP measurements

can be denoted in vector form as follows:

y5 [F
DP

(1),F
DP

(2), . . . ,F
DP

(n)]T, (2)

where y is called the observation vector andFDP(i) is the

FDP measurement at the ith range gate. The system

FIG. 1. The topography around Guangzhou S-POL (black tri-

angle). The elevation of the terrain is indicated (shading). The

2DVD (black dot) is used to derive the statistical property of the

precipitation in this region.
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phase and the folding in FDP measurements should be

preprocessedbeforehand.ByassumingGaussian-distributed

FDP errors, the cost function J of the variational anal-

ysis, which is sum of the cost functions for the a priori

(Jb) and the observations (JFDP
), can be defined as

J5 J
b
1 J

FDP
,

J
b
(x)5

1

2
(x2 x

b
)TB21(x2 x

b
) ,

J
FDP

(x)5
1

2
dyTR21

FDP
dy , (3)

where xb and B are called the a priori and the corre-

sponding error covariance matrix, respectively, which will

be elaborated in section 2d; dy is the innovation vector; and

RFDP
is the error covariance matrix of FDP measurements

(Kalnay 2003), which is usually determined by radar signal

processing. In this study themeasurement errors ofFDP are

assumed to be independent at different range gates. As a

consequence, the diagonal entries of RFDP
are set to the

standard deviation of theFDP estimation errors and the off-

diagonal elements are set to zero. The innovation vector

dy, defined as dy5H(x)2 y, is the difference between y

and the vector of propagation differential phase (fDP)

predicted from the rainfall rate x, and H(�) is called the

forward operator mapping the state variables to the mea-

surements (Rodgers 2000). In this study the fitted power-

law relation between R and KDP—that is, KDP 5 aRb

(a 5 5.767 3 1023, b 5 1.274), which corresponds to

R5 57:132K0:785
DP shown in Fig. 2—is utilized to convert x

to the KDP vector. Then, the predicted fDP at jth range

gate can be obtained with the accumulation, as follows:

f
DP

( j)5 2dr�
j21

i51

K
DP

(i) ,

5 2adr�
j21

i51

R(i)b ,

(4)

where KDP(i) is the predicted KDP at the ith range gate

and dr is the range gate resolution.

The statistically optimum R for all the range gates is

the state vector x when Eq. (3) is minimized. In fact, the

forward operator is not linear (b 6¼ 1); the minimization

is actually a nonlinear optimization problem as a con-

sequence. A common method for simplifying the opti-

mization is to linearize the forward operator, converting

Eq. (3) to a quadratic function, and then to minimize the

cost function iteratively. This method is usually applied

on the data assimilation of numerical weather prediction

(Kalnay 2003). The estimate of the state vector at the

iteration (k2 1) is denoted as xk21. Then, the innovation

vector at the kth iteration can be linearized as

dy5H(x)2 y

’H � (x2 x
k21

)1H(x
k21

)2 y ,
(5)

where H is the Jacobian matrix containing the partial

derivative of the predicted observation H(xk21) with

respect to each element of xk21, expressed as

›f
DP

( j)

›R(i)
5

�

0 j# i

2abdrR(i)b21
j. i

(6)
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FIG. 2. The statistical QPE relations R(KDP) for S-band radars

obtained from the regression of the observations (gray dots).
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whereR(i) is the elements of xk21;H is a lower triangular

matrix; and the entries of its main diagonal are also zero.

The linearized cost function and the corresponding

gradient at the kth iteration are given by

J
k
5

1

2
(x

k
2 x

b
)TB21(x

k
2 x

b
)

1
1

2
[H � (x

k
2 x

k21
)1H(x

k21
)2 y]TR21

FDP

3[H � (x
k
2 x

k21
)1H(x

k21
)2 y] , (8)

and

g(x
k
)5=

xk
J
k

5B
21(x

k
2 x

b
)

1H
T
R

21
FDP

[H � (x
k
2 x

k21
)1H(x

k21
)2 y] ,

(9)

where g(xk) is the gradient of Jk with respect to xk, and =

represents the gradient. With the cost function, the corre-

sponding gradient, and the constraints for the state variables

(nonnegative rainfall rate), the problem can be iteratively

solved using the constrained optimization algorithms (Sun and

Yuan 2006), in which the Hessian of the cost function is ap-

proximately estimated automatically (Byrd et al. 1995). The

optimization starts fromafirst guess, that is,x0 5 xg,which can

be a statistical state, the a priori, or the solution of the previous

rayof the radar scan. Inour study the apriori is utilized, that is,

xg 5 xb. Once the linearized cost function is minimized, the

solution is utilized as the guess for the next iteration. Once the

solution is converged satisfactorily, it is the statistically opti-

mum estimate. A x2 convergence test can be used here.

c. Range smoothing with the cubic B spline

The smoothing filter plays an important role in the

variational approach. The forward model [see Eq. (4)]

has a cumulative-sum form, and the state variable in a

single range gate provides less information than the

random errors. The rainfall rate will be overfitted to the

errors if no additional constraint is introduced. Fortu-

nately, the precipitation in nature measured by radars

tends to be spatially continuous, which can be ensured by a

smoothing mechanism in the variational analysis. Com-

monly, there are three ways to smooth the state vector in

the minimization procedures of the cost function. The first

is to introduce a smoothing filter for the state vector; the

second is to add a penalty term, which is commonly amean

square of a Laplacian of the state vector or any other term

with a similar function, to the cost function to impose ad-

ditional smoothing constraints of the state vector; the third

way is to use a nondiagonal a priori covariance matrix B

(H07; Maesaka et al. 2012).

In our study the cubic basis spline (B-spline) similar to

that used by H07 is adopted. A low-resolution state

vector, denoted as x̂5 [x(1), x(2), . . . , x(m)]T, is in-

troduced. It is converted to the rainfall-rate estimates at

the radar range gates (x) with an n3m matrix W con-

sisting of the weights of the cubic B-spline,

x5Wx̂ . (10)

MatrixW is essentially an interpolation operator, and

it constructs the high-resolution x from the interpolation

of x̂. The smoothness of x is mainly controlled by the

smoothing factor c (m’ n/c). The details of matrix W

can be found in the appendix of H07’s study. With the

matrix W included, the cost function and the corre-

sponding gradient become

J
k
5

1

2
(Wx̂

k
2 x

b
)TB21(Wx̂

k
2 x

b
)

1
1

2
[H � (Wx̂

k
2Wx̂

k21
)1H(Wx̂

k21
)2 y]TR21

FDP

� [H � (Wx̂
k
2Wx̂

k21
)1H(Wx̂

k21
)2 y] ,

(11)

and

g(x̂
k
)5=

x̂k
J
k

5W
T
B

21(Wx̂
k
2 x

b
)

1W
T
H

T
R

21
FDP

[H � (Wx̂
k
2Wx̂

k21
)1H(Wx̂

k21
)2 y] .

(12)

Now the variable to be optimized is x̂, and once con-

vergence is achieved, Wx̂ is the estimated rainfall rates

at the radar range gates. And the intermediate vari-

ables—for example, fDP and KDP—can be estimated

from rainfall rates using the forward operator.

d. The a priori and the error covariance matrix

The a priori and the error covariance matrix are the

information we know before the estimation and its

uncertainty. If we use no additional information for

QPE, then the diagonal entries of the a priori error co-

variance can be set to infinity. As a consequence only

FDP is used in the variational analysis. In such a case, the

approach is similar to the conventional R(KDP) method

with the additional physical constraints included (G13;

Huang et al. 2017). As we know, when the rainfall is

light, the useful information provided by FDP mea-

surements is contaminated by the errors in FDP. In the
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synthetic rainfall algorithms (Bringi et al. 2011, 2009;

Cifelli et al. 2011), theZH orR(ZH) is used as the threshold

conditions for selecting the QPE algorithms. For example,

R(ZH) is usually used for light rain because the rainfall

estimated from ZDR or KDP has a relatively large error.

Inspired by this idea, we incorporate R(ZH) from the sta-

tistical Z–R relation into the variational analysis as the a

priori term to provide more useful information in the

variational analysis. Note that this is different from the

conventional a priori term that usually uses a fixed value

estimated from the climatic statistics, but we still call it

the a priori because the adopted statistical Z–R relation

can represent the mean characteristics of the DSDs in the

regime. The a priori error covariancematrixB is utilized to

characterize the error properties of the a priori. The di-

agonal entries of B (denoted as sR,ap) describe the statis-

tical standard deviation of the error of the a priori at each

range gate, which consists of two parts, that is, the impact

of the DSD variability and the measurement error of ZH

(Lee 2006), and the off-diagonal part is the joint variability

of the a priori at the range gates.

The main focus in this study is the QPE of the S-band

polarimetric radars in southern China. In our study the

statistical relation Rap 5 0:0752Z0:598
h (see Fig. 3a) is

utilized as the a priori for both the idealized experiment

and the real cases. Meanwhile, the error covariance is

also calculated statistically using the dataset elaborated

on in section 2a. The sR,ap is attributed to the DSD

variability and the measurement errors of ZH. The un-

certainty resulting from the DSD variability (sR,DSD/R)

can be derived as a function of rainfall rate, as shown by

the dashed–dotted line in Fig. 3b. The uncertainty

caused by the measurement noise (sR,m/R) for the

power-law relation is related to the measurement error

of ZH (Bringi and Chandrasekar 2001), and is given as

s
R,m

R
5 0:598

�s
Zh

Z
h

�

, (13)

where sZh
represents the standard deviation of the lin-

earized horizontal reflectivity factor (Zh 5 100:1ZH). If

the error of the measurement noise of ZH is about 1 dB,

then sR,m/R is about 14% for our ZH–R relation, and

total uncertainty (sR,t/R) is the collective effect of

sR,DSD/R and sR,m/R (Lee 2006), which yields

s
R,t
/R5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(s
R,DSD

/R)2 1 (s
R,m

/R)2
q

. (14)

We denote the uncertainty (sR,t/R) as a function of the

rainfall rate f(R). Thus, in the variational analysis, the di-

agonal entries of the a priori error covariance matrix B is

estimated from the a priori, using sR,ap 5Rap 3 f (Rap).

Since theZHmeasurements are independent at the different

range gates, the off-diagonal parts of the a priori error co-

variance are set to zero. The sR,ap is set to 2mmh21 if the

estimatedvalue is less. In real applications, hail probablyexists

at the range gates where ZH values are greater than 53dBZ.

Then, the corresponding sR,ap values are set to infinity.

For radars of short wavelength, such as C or X band,

the backscattering phase in FDP measurements and

propagation path attenuation are major obstacles for

variational QPE. In this situation both FDP and ZH

provide less useful information. Then, the attenuation

correction ofZH is necessary for the a priori (Carey et al.

2000), and the attenuation effect should also be included

in the error covariance, which is left for future research.

FIG. 3. (a) The statisticalR–ZH relation (black solid line) for S-band radars regressed from the observations (gray

dots). (b) The normalized standard deviation inR for theZH–R relation caused byDSD variability (sR,DSD/R; black

dashed–dotted line) and measurement noise (sR,m/R; black dashed line). The total error (sR,t/R; black solid line),

which is a combination of sR,DSD/R and sR,m/R.
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In this study we focus on QPE of the operational S-band

radar in southern China.

3. Verification with an idealized case

a. Experiment design

In a sense the temporal evolution of rain properties is

similar to the spatial variability, since the weather sys-

tems are moving. Thus, we simulate a range profile of

radar measurements to test our QPE method based on

the 2DVD observations. A rainfall event passed over

the 2DVD site from 0830 to 1100 UTC 28 June 2016, in

which the maximum 1-min rainfall rate exceeded

100mmh21. Since the 2DVD has a small sampling vol-

ume, the short-term rain properties can be significantly

different from the climatic statistics as a result of the

internal microscale variability of precipitation systems.

Thus, a Bayesian method similar to that developed by

Cao et al. (2010) is employed so that the simulation is

closer to the statistics. First, the series of synthetic ZH

and ZDR are calculated from the 2DVD data based on

the scattering amplitudes used earlier. DSD parameters

N0, m, and L are calculated from the synthetic ZH and

ZDR series using the Bayesian method based on the m–L

relation derived from the 2-yr summertime DSD

observations (m520:015 10L2
1 1:033L2 2:042). The

range resolution of the profiles is assumed to be 250m.

Considering that the storm moved more than 250m in

1min and our goal is to create simulated truth to test the

retrieval method, the DSD parameters N0, m, and L are

interpolated and filtered with the five-gate moving me-

dian and mean filters to make the storm scale more re-

alistic. Then, the range profiles ofR,ZH, andKDP can be

calculated from N0, m, and L with the assumption of the

gamma distribution. The FDP range profile is obtained

from the integral of KDP following Eq. (4). To simulate

the observations, unbiased Gaussian random errors

should be added to ZH and FDP. The attenuation effect

and the backscattering phase are neglected for this

S-band experiment. Figure 4 shows an example of the

simulated ZH and FDP observations. The standard de-

viations of simulated errors in ZH and FDP are 1dB and

28, respectively. The range profiles of the intrinsic R,

R(ZH), and R(KDP) are shown in Fig. 4c. The heavy

precipitation center is located about 38 km away from

the radar. The rainfall rates estimated from ZH andKDP

are not exactly samewith the intrinsicR because ofDSD

variability. As a consequence, the uncertainty in the

forward operator is included in the idealized case.

FIG. 4. The range profiles of the polarimetric variables and the rainfall rate used in the

idealized case. (a) The intrinsic fDP (red line) and the simulated FDP (blue line) measure-

ments, and the intrinsicKDP (green line). (b) The intrinsicZH (red line) and the simulatedZH

(blue line) measurements. (c) The intrinsic rainfall rate (red line), and the rainfall rates es-

timated from the statistical R–KDP relation (green line) and the ZH–R relation (blue line).
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In later subsections three tests are conducted

to show the performance of the variational QPE

approach. First, estimates of R using a different

smoothing factor are intercompared so that a proper

smoothing factor is decided for the idealized case and

also the real application. Then, the performance of the

variational QPE approach is compared with that of

G13’s method. At last, the impact of the a priori sta-

tistics on the R estimates is investigated. To quan-

titatively evaluate the estimation, the correlation

coefficient (CC), the root-mean-square error (RMSE),

and the normalized absolute error (NE) are utilized,

which are defined as

CC5

�
N

i51

(R
s,i
2R

s
)(R

e,i
2R

e
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
N

i51

(R
s,i
2R

s
)

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
N

i51

(R
e,i
2R

e
)

s (15)

RMSE5

"

1

N
�
N

i51

(R
s,i
2R

e,i
)2
#1

2

(16)

NE5

1

N
�
N

i51

jR
s,i
2R

e,i
j

R
s

. (17)

Here, Rs,i is the standard rainfall rate at the ith range

gate, which represents the intrinsic values; Re,i is the

rainfall-rate estimate at the ith range gate; Rs and Re are

the corresponding expected values; andN represents the

total number of range gates.

b. Impact of the smoothing filter

As stated earlier, the smoothness of the estimates is

decided by c. A larger smoothing factor results in

smoother estimates, but it will also suppress the physical

variation of the precipitation. A proper smoothing filter,

which keeps the continuity of the rainfall while retaining

as much detail as possible, is one of the keys to high-

performance QPE. To find a proper smoothing factor, we

use a statistical method. Based on the random-generated

Gaussian measurement errors, 1000 range profiles of the

simulated ZH and FDP are generated from the simulated

rainfall-rate series. The standard deviations of the simu-

latedZH andFDP errors in each range profile are assumed

to be equal to 1dB and 28, respectively. In the variational

analysis, the FDP errors used in Eq. (11) are assumed

equal to 28, with no error correlation assumed. The di-

agonal entries of the a priori error covariance matrix are

set close to infinity (1020mm2h22), so the a priori provides

almost no information here. The impact of the a priori will

FIG. 5. The statistics of the (a) CCs, (b) RMSEs, and (c) NEs corresponding to the 1000

range profiles ofR estimated with the variational approach using different smoothing factors.

The mean (black solid line), the 95th percentile (red dashed line), and the 5th percentile

(green dashed–dotted line) of the statistical variables are marked.
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be studied in section 3d. The smoothing factor c (m’ n/c)

is changed from 5 to 22. Then, the statistics of the CCs,

RMSEs, and NEs corresponding to the 1000 estimated

range profiles of R are utilized to represent the perfor-

mance of the variational approach using a specific

smoothing factor, as shown in Fig. 5.

With a smaller smoothing factor (less than 10), the mean

CC is relatively lower and the meanRMSE/NE is relatively

higher because of the impact of the residual low-frequency

part of the random errors. When the smoothing factor in-

creases, the impact of the random errors is weakened, the

mean CC gets higher, and the mean RMSE/NE becomes

lower at first, and then the mean CC decreases and the

mean RMSE/NE increases again because of the excessive

smoothing of the physical variation of rain. The perfor-

mance of the variational approach achieves the best result

when the weakening of the random errors and the

smoothing of the physical variation generally balance each

other. Overall, by using the smoothing factor between

11 and 15, the mean CC obtains the highest level and the

mean RMSE/NE reaches the lowest level, indicating a

satisfactory performance. To reduce the effects of the

random errors while keeping the physical variation as

much as possible, the smoothing factor is set to 11 in

this study.

c. Comparisons with KDP estimates based on linear

programming

The variational QPE approach is known as an optimi-

zation using the forward model based on FDP measure-

ments. In contrast, the conventional QPE involves the

inverse method, which estimates KDP from FDP first and

then calculatesR using theR–KDP relations.G13 proposed

to incorporate the nonnegativity constraint when esti-

mating KDP from FDP based on the linear program-

ming, which proves to perform well. To investigate the

FIG. 6. (a)–(d) The statistical comparisons of theR estimates andKDP estimates using the variational approach, and

G13’smethodbasedon 1000 rangeprofiles ofZH andFDPwith randomerrors. Noapriori information is utilized in the

variational estimation here. (a) Estimates ofKDP based on the variational approach, (b)KDP estimates based onG13’s

method, (c) R estimates based on the variational approach, and (d) R estimates based on G13’s method. The median

values of the estimates are indicated (blue solid lines). The regions between the 5th and 95th percentiles are marked

(gray shading). The intrinsicR andKDP are indicated (red solid lines). (e) The comparison of the standard errors in the

R estimates using the variational approach (red solid line) and G13’s method (blue solid line).
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performance of the variational QPE approach, we

compare its statistical results with those based on

G13’s method.

The comparisons are shown in Fig. 6, which is also

based on 1000 range profiles ofZH andFDPwith random

errors. The configuration of the variational QPE ap-

proach is the same as that used in section 3b, except that we

use 11 as the smoothing factor (m’ n/11) here. For G13’s

linear programmingmethod, a nine-point derivative filter is

utilized, which proves to be the best configuration for the

idealized case (the procedure is not shown). Overall, un-

certainty exists in the optimized fDP, the optimized KDP,

and the estimatedR from both algorithms as a result of the

random errors in the simulated observations. The opti-

mized fDP is highly consistent with the intrinsic value, with

the mean CC close to 1, the mean RMSE less than 0.308,

and the mean NE less than 0.01 for both methods (not

shown). For the KDP estimation, both methods give satis-

factory results, with the mean values of CC greater than

0.96 and relatively low mean RMSE/NE. The median

values of the KDP estimates (denoted with the blue solid

line) are generally close to the intrinsic values (denoted

with the red solid line) as shown in Figs. 6a and 6b. For the

R estimation, a little bit of inaccuracy exists because of the

uncertainty in the forward operator (the R–KDP relation).

From the statistical perspective, the results from the vari-

ational approach are slightly better than those from G13’s

method. The median values from the variational approach

also coincide better with the intrinsic values. Note that

there is a slight underestimation in R and KDP from G13’s

method at the most severe part of the echo (intrinsic R

greater than 100mmh21). This is because the derivative

filter used is a bit too large. With a longer derivative filter,

the underestimation becomes more evident. The un-

certainty in the R estimates (sR) caused by the random

errors is generally comparable for the twomethods.Within

the range of 0; 15km,where the intrinsicR values are low,

the variance in the R estimates is relatively small because

of the nonnegative bounds utilized. This is one of the

advantages of the variational QPE approach.

When the a priori statistics provide no information,

the performance of the variational QPE approach is

comparable with G13’s method, generally. Neverthe-

less, the advantage of the variational QPE approach is

its flexibility. Additional information can be incor-

porated through the a priori or the upper and lower

FIG. 7. (a) An example of the a priori (black solid line) utilized in the optimization and its

corresponding errors (error bars). The intrinsicR is shown (red solid line as a reference). (b)As

in Fig. 6c, but for the R estimates with the a priori used in the variational approach. (c) The

comparison of the errors (standard deviations) in the R estimates with the a priori used in the

variational approach (red solid line), the R estimates with no a priori used in the variational

approach (red dashed line), and theR estimates based onG13’s method (blue dashed line). The

mean standard deviation of the errors of the a priori is also shown (black solid line).
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constraints easily. The impact of the a priori on the R

estimation will be shown in section 2d.

d. Impact of the a priori

As shown in Fig. 7a, the a priori estimated from the

simulated ZH in Fig. 4 shows some deviation from

the intrinsic R because of both the DSD variability and

the random noise. The corresponding error bars de-

note the uncertainty sR,ap. With incorporating the in-

formation of ZH into the variational analysis as the a

priori, the statistical performance of the estimated R is

shown in Figs. 7b and 7c. Compared to the results where

the a priori provides no information (see Fig. 6), the

mean CC increases and both the mean RMSE and NE

decrease. Another significant improvement is that the

uncertainty (sR) of the R estimation decreases (gray

shading in Fig. 7b; red line in Fig. 7c). Although there is

significant uncertainty in RZH
, we can obtain more con-

fident R estimates with the combination of the a priori

and the measurements (FDP). The accuracy of the R

estimation is obviously better and its uncertainty (sR) is

less than the estimation based onG13’smethod. There is

also a shortcoming in the R estimates. Because of the

sensitivity of the Z–R relation to the DSD properties,

the R(ZH) tends to underestimate the rainfall rate. This

effect is also included in the variational analysis. How-

ever, the underestimation of the results of the varia-

tional analysis is not significant and is acceptable when

we take the decease of the uncertainty (sR) of the R

estimation into consideration. We will investigate how

the inclusion of the a priori affects the QPE perfor-

mance in real cases in section 4.

4. Verification with the data of an S-band

polarimetric radar

a. Data and the quality control

InGuangdong Province, an S-band polarimetric radar

(called Guangzhou S-POL) is deployed at the city of

Guangzhou. This radar is part of the Chinese opera-

tional radar network, whosemain configuration is shown

in Table 1. Guangzhou S-POL was a Doppler weather

radar built several years ago, and it has been upgraded

with polarimetric capability since 2016. InMay and June

2016, about seven precipitation events occur within the

coverage of Guangzhou S-POL. In this section QPE

based on the aforementioned variational approach is

verified using these events.

Guangzhou, one of China’s most developed cities,

is still undergoing rapid development, so the topo-

graphic condition around the radar site changes every

year. The radar observations suffer from ground clutter

contamination resulting from the tall buildings, the

TV towers, and so on. Ground clutter contamination

needs to be taken into consideration in QPE. Algo-

rithms such as ground clutter detection and mitigation

techniques are usually employed in radar digital signal

processing (DSP) to mitigate the impact of ground

clutter (Doviak and Zrnić 1993; Zhang 2016). Never-

theless, its impact on the radar measurements can sel-

dom be fully eliminated, especially when the power of

the ground clutter is dominant or the radial velocity of

precipitation is close to zero. For polarimetric radars,

the ground clutter mitigation can make the signals of

the horizontal and the vertical channels incoherent/

unbalanced. Thus, the accuracy of ZDR, FDP, and rhv
measurements, which are defined as the power ratio,

the phase difference, and the correlation of the hori-

zontal and the vertical signals, respectively, will proba-

bly decrease when the echo is contaminated by ground

clutter. As we know, FDP is based on the propagation

effect of electromagnetic wave. Besides, ZDR is signifi-

cantly affected by ground clutter, especially when the

signal of the weather echoes is weaker than the clutter.

QPE with the variational approach using FDP and ZH

proposed in this paper is considered to be less affected

by the clutter than QPE with the algorithms with

ZDR used.

TABLE 1. Settings and parameters of Guangzhou S-POL and its

observations.

Parameters Guangzhou S-POL

Transmitter 2.885GHz (klystron)

PRF 322–1282

Pulse width 1.57ms

Peak power 700 kW

Receiver Simultaneous horizontal/vertical

Noise figure ,3 dB

Dynamic range 95 dB

Antenna feeder Paraboloid, center feed

Antenna gain 44.7 dB

Antenna aperture 8.5m

Beamwidth 0.958

Polarimetricmode Simultaneous horizontal and vertical

transmit and receive

Scanning mode PPI: 08–3608, rotating speed: 118–168 s21,

time for volume coverage patterns

(VCP): ;6min

Elevations 0.5, 1.5, 2.4, 3.3, 4.3, 6.0, 9.9, 14.6, 19.5

Precision

Range resolution 0.25 km

Radar variables ZH, ZDR, FDP, rhv, SNR, vr, sv

ZH precision 1.0 dB

ZDR precision 0.2 dB

FDP precision 2.08

vr precision 1.0m s21
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Before being used in QPE, the quality of the data

from Guangzhou S-POL is carefully controlled via the

following four steps. As documented by Chen et al.

(2014), the internal calibration system of Guangzhou

S-POL using internally generated test signals and rou-

tine maintenance guarantee the ZH precision to be

within 1 dB.

1) Echoes with rhv less than 0.85 are identified as potential

nonmeteorological echoes. If the areas of the nonme-

teorological echoes embedded inside themeteorological

echoes are small with the number of clustered gates less

than 20, they are marked back to precipitation. Some

nonmeteorological echoes can have large rhv greater

than 0.85 as a result of the randommeasurement errors.

Similarly, if the echo area has fewer than 20 clustered

gates, they are removed utilizing a de-speckle filter.

2) Term ZDR is calibrated using light rain observations.

The averaged intrinsic ZDR value of the light drizzle

echo with ZH between 10; 20dBZ is assumed to be

very close to 0 dB (Giangrande and Ryzhkov 2005).

The difference of the averaged value of the observed

ZDR and the intrinsic value of the light rain region is

considered as the ZDR bias.

3) The systemFDP is estimated from the statistics of the

FDP values of the meteorological echo close to the

radar site.

4) For meteorological echoes, if the difference of the

FDP values at two neighboring range gates is greater

than 358, then the FDP measurements at these two

gates are considered to be contaminated by clutter

and removed. After the unfolding, the data at these

gates are refilled by linearly interpolating the FDP

measurements at the surrounding gates.

A plane position indication (PPI) image of radar data

on 10 May 2016 at the elevation angle of 1.58 is shown

in Fig. 8. The echoes to the north of the radar site

characterized with low rhv are probably from non-

precipitation scatterers. In our processing, only

the precipitation echoes are retained (see Fig. 8d).

The precipitation echoes contaminated by ground

FIG. 8. The PPI images of a precipitation event collected by Guangzhou S-POL at 0030 UTC 10May 2016 at the

elevation angle of 1.58. (a)ZH (dBZ), (b) rhv, (c)ZH after the removal of nonprecipitation echoes, and (d) the mask

utilized to separate the precipitation and nonprecipitation echoes.
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clutter near the radar site are also processed with the

clutter mitigation algorithms in the DSP. It causes in-

consistency in the signals from the horizontal and ver-

tical channels. The corresponding rhv values decrease

and the reliability of the radar measurements also de-

creases. Besides, the large backscattering phase from

hail will also bring in uncertainty. Thus, the removal and

the refill of the FDP measurements contaminated by

ground clutter or hail (see step 4) will ameliorate the

rain measurements.

After quality control, the errors of ZH, ZDR, and FDP

are assumed to be equal to 1 dB, 0.2 dB, and 2.08, re-

spectively, according to the configuration of the radar

(Table 1). The rainfall rates for the radar scans are op-

timized based on the variational approach withR(ZH) as

the a priori. The results for the same radar scan shown in

Fig. 8 are shown in Fig. 9. The main precipitation core

(southeast of the radar site) is characterized with large

ZH and a sharp radial increase in FDP. The optimized

rainfall rates (Fig. 9b) of this region are over 150mmh21.

The intermediate variablesfDP andKDP are also shown.

The optimized fDP values (Fig. 9c) are consistent with

the unfolded FDP measurements (Fig. 9a). Most of the

random errors are removed and the fDP values are also

consistent in the azimuthal direction. The optimized

KDP values (Fig. 9d) of the main precipitation core are

over 38km21. There is no negative value in KDP, which

indicates that the optimization in our study follows the

physical constraints. This is an evident advantage of this

method as compared with the conventional least squares

fit based KDP estimation and QPE (Huang et al. 2017).

Besides the proposed variational approach with

R(ZH) included as the a priori (notated with VWAP),

the rainfall rates for the radar scans are also estimated

with three other approaches. To show the impact of the a

priori, the results for the variational approach with no

additional information used in a priori (notated with

VWOAP) are utilized as references. The variational

approach proposed by H07 (notated with VH07) is also

employed to show the impact of different forward op-

erators. In VH07, the forward operator is based on the

gamma distribution with a fixed m5 3, and the statistical

FIG. 9. The retrieval results for the radar scan shown in Fig. 8. (a) The unfolded FDP after the removal of the

system phase, and (b) the optimized R from the proposed variational approach. (c) The optimized fDP and (d) the

optimized KDP are shown.
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terminal velocity relation is the same as that used by

Brandes et al. (2002). And last, the power-law estimator

R5 57:132jKDPj
0:785sign(KDP) based on the least squares

fitted KDP (notated with RKDP) is also included. The

configuration of the least squares fitting is the same as that

used in Huang et al. (2017) except that the fitting window

for a gate with ZH below 40 dBZ Z is set to 9km. The

notation sign(�) means the sign of KDP is included in the

rainfall-rate calculation as proposed byRyzhkov andZrnić

(1996). In later subsections, the QPEs based on these

four different approaches are compared against the rain

gauge observations to show their performance. The

radar-estimated rainfall rates above the gauge sites are

extracted and temporally integrated into the accumulated

rainfall amounts (ARs) of different temporal resolutions,

which facilitate the quantitative comparisons. Tomitigate

the impact of the ground clutters and the partial beam

blockage on the radar QPEs, the scans at the 1.58 eleva-

tion are utilized. On the other hand, there are more than

600 rain gauges within a distance of 75km from the radar

site. To make a convincing and objective comparison, the

quality of the gauge data is controlled in advance using a

method of speckle filtering (Lee et al. 1999). The spatial

continuity of the accumulated rainfall amounts is checked

and the outliers are probably from the unreliable gauge

sites. These sites are excluded from the QPE evaluation.

b. QPEs in one case

First, a precipitation event on 9–10May 2016 is selected

for the QPE evaluation. The event caused the maximum

accumulated rainfall, over 150mm, in southern China.

The rain gauges’ derived total ARs of the whole event

(ARgauge) are shown in Fig. 10. The relative differences

between the ARs based on VWAP (ARVWAP) and

ARgauge, defined as (ARVWAP 2ARgauge)/ARgauge, are

also included. The heavy rainfall band extended from

northwest to southeast with the core located near the

radar site. There is a slight underestimation in the radar-

derived total ARs near the radar site (within the range of

20km) and a slight overestimation outside the range of

30km from the radar. The biases of the radar-derived

ARs and the rain gauge–based ARs are caused by the

mismatch of the sampling volumes, the vertical micro-

physical structure change or horizontal propagationwhen

rain falls from the radar sampling volumes to the ground,

the interstorm DSD variability, the quality of the radar

data and the rain gauge data, the uncertainty in the QPE

algorithms, and so on. Overall, the underestimation or

overestimation of the total ARs is relatively slight.

The radar hourly rainfall estimates for all the gauge

sites denoted in Fig. 10 on the basis of the four ap-

proaches are intercompared, as shown in Fig. 11.

The performances of the different approaches vary.

Generally, VWAP has the best performance among the

four approaches. It shows a high correlation coefficient

(CC5 0.94) and relative low errors (RMSE5 3.38mm,

NE 5 0.34). When no information is provided as the a

priori, VWOAP still shows satisfactory performance.

The correlation coefficient decreases slightly (CC5 0.92)

and the errors slightly increase (RMSE 5 3.66mm,

NE 5 0.44), which demonstrates the positive effect of

the inclusion of R(ZH) as the a priori. For VH07, all

three kinds of radar measurements (ZH, ZDR, and FDP)

are utilized, while the performance of the rainfall esti-

mation is roughly comparable with VWOAP, in which

only FDP measurements are used for QPE. For the

conventional RKDP method, even after the temporal

accumulation, negative rainfall estimates may exist,

which may introduce extra uncertainty (Huang et al.

2017). As a consequence, RKDP has the worst perfor-

mance in the hourly rainfall estimation.

Figure 12 shows the comparisons of the ARs derived

from the four approaches and the rain gauge observa-

tions at each gauge site. Generally, the site-by-site com-

parisons show that the hourly ARs estimated with VWAP

are in good agreement with those observed by the rain

gauges, with the averaged CC being 0.95 and the averaged

NE being 0.45. VH07 is also satisfactory in this situation,

but it is not as good as VWAP. The results for RKDP not

surprisingly show the worst performance. Especially at

FIG. 10. The difference in the total accumulated rainfall estimated

from the rain gauges and the radar-derived total accumulated rainfall

(the elevation angle of 1.58) based on the proposed variational ap-

proach from the precipitation event from 0000 UTC 9 May to 1200

UTC 10 May 2016. The places where the rain gauges were deployed

(circles). The size of the circles denotes the total accumulated rainfall

from the rain gauges, and the relative difference (shading). The radar

site position (black triangle) is marked.
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the gauge sites with lighter ARs (see Fig. 10), the results

for RKDP have low CCs and high NEs.

c. QPEs in all seven events

To illustrate the case dependence of different QPE

approaches, the CCs, RMSEs, and NEs for the hourly

rainfall comparisons for all seven rainfall events are

shown in Table 2. The QPE accuracies vary in different

rainfall events, probably because of the DSD variability

and different durations. However, VWAP generally has

the best performance in all the events andRKDPhas the

worst performance. VWOAP and VH07 have compa-

rable performance according to Table 2. The radar QPE

in the event at 0400 ; 0900 UTC 7 June exhibits the

worst accuracy compared with the other events, mainly

because of the short duration (about 5 h) and the smaller

sampling number (about 500).

Figure 13 shows the comparison between the radar-

derived hourly rainfall amounts from all the cases

compared and those observed by gauges. Similar con-

clusions can be drawn from the comparison. The total

sampling number is more than 40 000, which guarantees

the objectivity of the evaluation. For VWAP and

VWOAP, the hourly rainfall amounts are generally

symmetrically distributed along the identity line. But for

VH07 and RKDP, the results are not as good as the

results for VWAP and VWOAP. The hourly rainfall

amounts estimated based on VWAP coincide best with

the gauge-based results, with CC being 0.92, RMSE

being 2.52mm, and NE being 0.42. For VWOAP, the

FIG. 11. Scatterplot of the hourly rainfalls observed by all the rain gauges (shown in Fig. 10) vs the hourly rainfall

estimates from the PPI scans at the elevation angle of 1.58 based on (a) VWAP, (b) VWOAP, (c) VH07, and

(d) RKDP.
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results get a little bit worse than the results for VWAP.

The difference mainly exists when the gauge-derived

hourly rainfall amounts are less than 10mm. The results

based on VH07 are comparable with VWOAP, with

similar values of CC, RMSE, and NE. The conventional

power-law estimator-based QPE (RKDP) exhibits the

worst performance. The CC is only 0.83, RMSE is about

4.1mm, and NE is very large (1.02). The negative hourly

rainfall amounts for RKDP mainly occur when the

precipitation is light. From the gauge observation, most

of the hourly rainfall amounts are less than 10mm. Thus,

negative KDP values estimated from the least squares

fitting method have a very large impact on QPE.

The QPE evaluations are also separated into two

groups as shown in Table 3. The evaluation for the

gauge-derived hourly rainfall amounts less than 10mm

represents the result for light rain. VWAP still shows the

best performance with the highest CC and the lowest

RMSE/NE. Meanwhile, the performance of VWOAP

worsens as a result of the lack of information from ZH

measurements. For light rain, the useful information in

FDP is mainly outweighed by measurement errors.

Nevertheless, the variational analysis still results in

better QPE than the conventional RKDP, since the least

squares fitting method has no capability to constrain

KDP within the physical limits. For VH07, the perfor-

mance is between VWAP and VWOAP. The evaluation

for the gauge-derived hourly rainfall amounts greater

than 10mm is for heavy rain. VWOAP and RKDP now

have similar performance, mainly because the least

FIG. 12. Hourly rainfall comparisons at the rain gauge sites for (a) VWAP, (b) VWOAP, (c) VH07, and

(d) RKDP. The places where the rain gauges were deployed (circles). The size of the circles represents the cor-

relation coefficient between the time series of the radar-derivedARs and the time series of the gauge-derived ARs,

and the the normalized error between them (shading).
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squares fittedKDP gets more accurate as the rainfall gets

heavier. The results based onVWAP are still better than

VWOAP, which means the ZH measurements still pos-

itively contribute to QPE. VH07 now has the worst

performance, mainly because it is not tuned for southern

China and its forward operator cannot capture the DSD

characteristics of these rainfall events well.

5. Conclusions and discussion

In this study a variational QPE approach based on

FDP measurements is proposed. With the physical con-

straints utilized in the variational approach, erroneous

negative rainfall-rate and KDP estimates (which is an

evident disadvantage for the conventional least squares

fitting–based KDP estimation and QPE) no longer exist.

The introduction of the range smoothing filter is essen-

tially a utilization of the continuity of the precipitation

system and the spatial coherence of the rainfall rate,

which makes the rainfall-rate estimates suffer less from

the random errors in FDP measurements. However,

oversmoothing will oversuppress the physical variation in

the rainfall rates. The best smoothing factor is determined

through the comparison experiments. TheQPE is further

improved via incorporating the rainfall rates estimated

from ZH into the variational analysis as the a priori in-

formation. The weighting of the information from the

FDP measurements and the a priori is decided by their

statistical errors. This has been demonstrated via an

idealized case in section 3. With the a priori utilized, the

results from the variational approach outperform those

from the linear programming method.

FourQPE approaches are applied to the observations of

Guangzhou S-POL in May and June 2016 to show the

performance of our proposed variational approach. Gen-

erally, the VWAP results are the best rainfall estimates

because of the integrated utilization of ZH and FDP mea-

surements. VH07 is on the basis of the Z–R relation and

the gamma distribution with a fixed m. It has better

performance than VWOAP when the rainfall is light

[RA(gauge) , 10 mm] and more information is avail-

able from the measurements (ZH, ZDR, and FDP). How-

ever, even when only FDP measurements are used in

VWOAP, QPE results are still better than VH07 when the

rainfall is heavier [RA(gauge). 10mm], probably because

of the inaccurate forward operator of VH07. The QPE re-

sults based on the conventional RKDPdo not coincide well

with the gauge-based results, especially when the rainfall

is light. Unphysical negative rainfall amounts can result

from the negative least squares–fitted KDP values. For

heavier rainfall, RKDP shows comparable perfor-

mance to VWOAP, but it is still not as good as VWAP.

According to the case-by-case evaluation (Table 2),

QPEperformance based onVWAPandVWOAPvaries

mainly because of the uncertainties in the statistical

R–KDP relation and the ZH–R relation. Different

weather systems usually have different DSD character-

istics and cannot be accurately characterized with fixed

relations. Of course, if the microphysics of the weather

system is very different from the climatic statistics and

the statistical R–KDP and ZH–R relations are not ap-

propriate for characterization of the system, then the

performance of the variational approachwill be very poor.

Nevertheless, the advantage of the forward operator in

TABLE 2. Case-by-case comparisons of the hourly rainfall amounts estimated based on four approaches and those derived from the

rain gauges.

VWAP VWOAP VH07 RKDP VWAP VWOAP VH07 RKDP

Time 0000 UTC 9 May ; 1200 UTC 10 May 19 May 1700 UTC ; 0300 UTC 21 May

CC 0.94 0.92 0.91 0.90 0.91 0.87 0.88 0.75

RMSE 3.38 3.66 3.75 4.64 2.08 2.5 2.53 4.08

NE 0.34 0.44 0.38 0.70 0.45 0.61 0.56 1.27

Time 0000 UTC 27 May ; 1200 UTC 28 May 0300 UTC 4 Jun ; 1100 UTC 4 Jun

CC 0.94 0.89 0.9 0.77 0.91 0.90 0.87 0.84

RMSE 1.60 2.09 2.15 3.41 3.80 4.01 4.22 5.60

NE 0.43 0.64 0.64 1.52 0.55 0.54 0.64 0.95

Time 1800 UTC 4 Jun ; 1300 UTC 5 Jun 0400 UTC 7 Jun ; 0900 UTC 7 Jun

CC 0.92 0.88 0.83 0.82 0.86 0.81 0.84 0.79

RMSE 2.12 2.42 2.87 3.58 3.86 4.57 3.45 5.54

NE 0.41 0.47 0.53 0.80 0.65 0.91 0.58 1.36

Time 2000 UTC 27 Jun ; 1100 UTC 28 Jun

CC 0.88 0.84 0.87 0.80

RMSE 3.16 3.64 3.23 4.61

NE 0.38 0.53 0.48 0.86
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the proposed approach is that KDP is approximately the

4.2nd moment of DSD, and the R–KDP relation should

not change very significantly from the climatic statistics.

The inclusion of ZDR may help to reduce the impact of

DSD uncertainty in the calculation of the a priori.

However, the measurement errors of ZDR may de-

teriorate the accuracy of the a priori. The 0.2-dB error in

ZDR can result in about 20% error in rainfall-rate esti-

mates (Lee 2006). The accuracy of ZDR measurement

is affected by the radar hardware, the surrounding

environment, attenuation, and many other factors. Yet,

the calibration ofZDR is not an easy task. It is not easy to

ensure the accuracy ofZDR and to characterize the error

of the a priori if ZDR is included. We use only R(ZH) as

the a priori, and the uncertainties resulting from DSD

variability and measurement errors are also considered

as in the a priori error covariance matrix. Comparative

studies in section 4 have demonstrated that the combi-

nation of the forward operator and the a priori helps to

improve radar QPE. The variational approach should

FIG. 13. Integrated comparisons of the hourly rainfalls derived from the gauges vs the hourly rainfall estimates from the

PPI scans at the elevation angleof 1.58 basedon (a)VWAP, (b)VWOAP, (c)VH07, and (d)RKDP for all seven cases listed

in Table 2. The probability densities of the samples (shading), for which the category sizes of the rainfall are 1mm.

TABLE 3. Comparisons of the hourly rainfall amounts based on four approaches and those derived from the rain gauges for all seven cases

listed in Table 2 under two different conditions, i.e., RA(gauge) # 10mm and RA(gauge) . 10mm.

VWAP VWOAP VH07 RKDP VWAP VWOAP VH07 RKDP

Condition RA(gauge) # 10mm RA(gauge) . 10mm

CC 0.77 0.64 0.74 0.51 0.81 0.79 0.75 0.79

RMSE 1.67 2.10 2.02 3.70 7.18 7.62 8.12 7.74

NE 0.66 0.91 0.86 2.07 0.25 0.27 0.28 0.27

JUNE 2018 HUANG ET AL . 1269

Unauthenticated | Downloaded 08/27/22 06:35 AM UTC



result in satisfactory QPE unless the DSD properties of

the events are extremely different from the climatic

statistics, which will also be a problem in other QPE

approaches.

As we know, all kinds of radar QPE approaches suffer

from two sources of uncertainties and errors, that is, the

uncertainties of estimation models and the measure-

ment errors. Usually, the combination of polarimetric

variables can result in better estimation models, while

QPE may be affected more by the measurement errors.

Composing different rainfall estimators according to the

rain type classification (e.g., separation of stratiform and

convective precipitation or identification of coalescence-

dominant precipitation) and the error analysis is a

promising way to minimize the impact of uncertainties

and errors (Porcacchia et al. 2017; Steiner et al. 1995). It

will be included in the current variational QPE frame-

work and discussed in future work.
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