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Rolling textures of low-carbon steel predicted by full constraints and relaxed constraints
Taylor models, as well by a self-consistent model, are quantitatively compared to experi-
mental results. It appears that none of these models really performs well, the best results
being obtained by the Pancake model. A new model (“Lamel model”)is then proposed asa
further development of the Pancake model. It treats a stack of two lamella-shaped grains
atatime. The new model is described in detail, after which the results obtained for rolling of
low-carbon steel are discussed. The prediction of the overall texture now is quantitatively
correct. However, the y-fibre components are better predicted than the a-fibre ones. Finally
itis concluded that further work is necessary, as the same kind of success is not guaranteed
for other cases, such as rolling of f.c.c. materials.

Keywords: Rolling texture; Steel; Polycrystal plasticity; Taylor model;
Relaxed constraints model; Deformation banding

1. INTRODUCTION

It is well known that the crystallographic texture of a sheet material
is modified by cold rolling. The final textures depend on the details of
the rolling process as well as on the initial texture. Models which
would be capable to predict these changes quantitatively would be of
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considerable interest:

— Cold rolled sheets are often annealed to produce car body sheets. The
annealing texture which is formed in this product is an important
property. It depends on the texture and the microstructure of the cold
rolled sheets. Details such as orientation-dependent dislocation
densities or local strain heterogeneity play an important role. They
cannot be measured easily, but a good model prediction might pro-
vide information on them, which would be helpful for the research
effort spent on the understanding of annealing textures.

— The need is growing to incorporate deformation texture models in
finite element (FE) software for the simulation of forming processes.
Several FE software packages already take texture-based anisotropy
into account. Some of them even try to simulate the texture evolution
during the deformation. But a deformation texture prediction soft-
ware which is quantitatively reliable does not really exist at present, so
a research effort is necessary in this field.

The present paper describes contribution to this field. The work
described is limited to low-carbon steel, and to rolling at room tem-
perature as deformation process; but other materials and other processes
will be studied in future work.

2. VALIDATION STRATEGY

The objective of the present work is to describe a new model which is
supposed to make better quantitative predictions of the deformation
texture. Hence a quantitative validation procedure is vital. Its principles
will already be described at this stage of the paper. It consists in using the
models to be tested for a particular rolling operation carried out on a
sample of which the initial texture has been measured as well as the final
texture and preferably also one or several intermediary textures.
Orientation distribution functions (ODFs) are the only genuine quan-
titative representations of crystallographic textures, so the comparisons
will be based on them. As an example, Fig. 1 shows the {110} and {100}
pole figures and Fig. 2 the ODF of the initial texture (hot rolling texture).
The ODF is made according to the Bunge (1982) convention on the
basis of 4 incomplete pole figures measured by X-ray diffraction
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FIGURE 1 {110} and {100} pole figures of a hot rolled steel sheet.

({110}, {200}, {211} and {310}). A ghost correction procedure has been
applied in order to obtain a strictly non-negative texture function (Van
Houtte, 1991; 1992).

The starting material of this example has been rolled at room tem-
perature. The thickness has been reduced by 70% (from 3 to 0.9 mm).
This means that the true (longitudinal) strain was 1.2, and the corre-
sponding von Mises equivalent strain 1.39. The final texture is shown by
Figs. 3 and 4. At first sight, not much change has taken place when
compared with the hot rolling texture (Figs. 1 and 2). From a qualitative
point of view, both textures have the same features:' they are mainly
characterised by an a-fibre and a y-fibre. The a-fibre is a set of orienta-
tions described by {hkl}(110); a longitudinal section of the fibre can be
seen in a p, = 45° section (see Figs. 2, 4 and 5) at ¢; =0° and & between
0° and 90°. The ~y-fibre is described by {111} (uvw); alongitudinal section
of it can also be seen in a ¢, = 45° section (see Figs. 2,4 and 5) at & = 55°
and ¢, between 0° and 90°. This range consists of three equivalent seg-
ments, as shown by Fig. 5. Table I gives the meaning of the symbols used
in the figure.

In order to see the difference between the textures, it is necessary to
compare them quantitatively. This requires a plot such as Fig. 6, which

"Not all hot rolling textures of steel resemble cold rolling textures, see for example
Vanderschueren et al. (1994).
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FIGURE 2 ODF of a hot rolled steel sheet.

shows the evolution of the maximum intensity along the skeleton line of
the ~-fibre. Only one of the 3 equivalent ranges is shown. It should be
noted that the maximal intensities along the fibre texture are not found
at the exact position of the ideal v-fibre. There are always deviations of a
few degrees. For this reason, the intensity which Fig. 6 shows for a given
value of ¢, is not the intensity at the ideal position ¢, =45° and ® = 55°,
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FIGURE 3 {110} and {100}pole figures of a cold rolled steel sheet.

but the maximal intensity found in a plane section of the fibre along a
plane perpendicular to it (¢ = constant plane).

The difference between the hot rolling and the cold rolling texture is
made even clearer by Fig. 7, which for both textures shows the r-value
(ratio between the transverse strain to the thickness strain in a tensile
test) as a function of the angle to the rolling direction. The r-value has
been calculated from the texture by means of the Taylor theory using
{110}(111) and {112}{111) slip systems (see for example Schouwenaers
et al., 1994).

The same techniques will be used to compare the differences between
the model predictions and the experimental results. But this requires a
word about the textures which are involved in these simulations. We
have computed the ODF of the initial texture (Figs. 1 and 2). It is a
continuous function. However, most models operate on a texture
represented by a set of discrete crystallite orientations (each with their
own volume fraction), not on a continuous ODF. So a discretisation
procedure has to be performed before a deformation texture prediction
can be carried out. The “statistical” method described by Toth et al.
(1991) has been chosen for this in the present work because it has
been proven mathematically that this method leads to a “statistically
unbiased” set of discrete orientations. In practice this means that the
expected value (in the statistical sense) of a texture-dependent physical
quantity such as a Taylor factor is equal whether it is calculated from
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FIGURE 4 ODF of a cold rolled steel sheet.

the continuous ODF or from the discrete set of orientations derived
from it. This property is an absolute necessity in a work like this, since
the r-values obtained from the simulated textures must be compared to
the r-values obtained from the experimental texture. This comparison
would be meaningless if the discrete set of orientations was biased in a
statistical sense.
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FIGURE 5 ;=45° section of Euler space showing the a- and v-fibre of steel sheet
textures. Table I shows the meaning of the symbols. It is seen that the orientations
E and F have 2 equivalent representations in the ¢,==45° section, with the result
that the relevant range of the 4-fibre is represented 3 times in the section (EF, FE
and EF).

TABLE I Ideal orientations shown in Fig. 5

Symbol Conventional name Miller indices
C Cube (1roo)oo1)
H Rotated cube (100){011]
G Goss (110)[001]
i BCC Taylor (11118)[4411]
I (211)[011]
E (111
F (111)012]
L (110)[110]

At the end of a simulation, the result which still consists of a set of
discrete orientations needs to be converted into a continuous texture
function in order to be able to perform comparisons as shown by Fig. 6.
The procedure is the following. Suppose the number of discrete orienta-
tions is #.

First, the C-coefficients of the following Gaussian distribution are
generated for each of the n crystallite orientations:

fo(g) = acexp [— (%ﬂ (1)

in which 1 is the angular distance between the crystallite orientation at
the centre of the distribution (one of the n orientations) and the orienta-
tion g (g = a set of Euler angles). The formulas for the C-coefficients
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FIGURE 6 Evolution of the maximum intensity along the ~-fibre for the hot and
cold rolling textures.

have been given by Bunge (1982). The value 7° is used for . aris a factor
which is adjusted in order to normalise f5(g).

Secondly, a continuous ODF is generated by making a linear com-
bination of the C-coefficients of these n Gauss distributions, using the
same weighting factors as those assigned to the n discrete orientations.
The resulting ODF must then be normalised. The choice of 7° for v is
somewhat arbitrary, but for series expansion degrees of /,,,, =22 or 32,
it offers a reasonable compromise between angular resolution (the
lower 1, the better the resolution) and the suppression of undesired
negative oscillations in the recalculated ODF. The meaning of /a4 is
given by Bunge (1982). It is, however, a problem that the intensities of
the ODF so obtained depend on the value of ¢, whereas the intensities
of the ODF of the experimental textures (which must be compared to the
simulated ODFs) are of course independent of it. In principle one could
adjust the 1, of the simulated textures to obtain a better quantitative
agreement between simulated and measured textures (although such
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FIGURE 7 r-values in function of the angle to the rolling direction, as calculated
from the hot rolling and the cold rolling steel texture.

adjusting was not done in the present work). So it would not be wise
to attribute too much importance to the absolute value of the peak
heights of the texture when comparing experimental and simulated
ODFs; rather should one compare the profiles of the intensity dis-
tributions (as given, for example, by Fig. 6) which should show the same
tendencies. For isolated peaks, one could also compare the weight of
the peak (integral of the ODF in the range of the peak). However, for
textures which are rather sharp, as is usually the case for deformation
textures, the intensities of both the experimental ODF and the ones
recalculated from the resuits of the simulation are limited by the power
of resolution of the series expansion method. As a result and in spite
of the foregoing discussion, their maximal intensities may be almost
equal if the simulated and measured textures are almost equal.

A final principle used in the present work is that a deformation
prediction made by a new model is never to be compared to an experi-
mental result without also looking at the results of other models. Such a
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procedure is the only one which ensures a serious assessment of the
progress that a new model really represents. At the very least, one should
include the results of the “Full Constraints Taylor—Bishop—Hill
model”, treated here as the “reference deformation texture prediction
model”, in the comparison.

3. PREVIOUS RESULTS

3.1. Short Description of some Older Models

A vast literature exist about modelling the plastic deformation of
polycrystalline materials and predicting deformation textures. For a
more complete list of references, we refer to a review paper (Aernoudt
et al., 1993); an interesting discussion of the validity of various models
has been given by Leffers et al. (1988).

In most of these models, two elements can be discerned: a sub-model
for the microscopic scale (microscopic model ), and one for the transition
from microscopic to macroscopic scale.

The microscopic model is basically the same for all the models which
are of interest in the present work. It provides a relationship between, on
the one hand, the strain rate and the rate of rigid body rotation (both
combined in the velocity gradient tensor) of some microscopic volume
element within a crystallite, and on the other hand, the slip rates, lattice
rotation rates and deviatoric stress in that volume. The relationship is
based on the laws of crystal plasticity in one form or another. Usually
there is a kinematical relationship, which merely expresses the fact, that
the microscopic velocity gradient /; is the combined result of all slip
processes which are simultaneously active. The following equation is
obtained (Aernoudt et al., 1993):

N
ly=Qy+ ) bint (2)
s=1

in which Q;j is the rate of rotation of the crystal lattice; 5, is the slip
rate on slip system s; N is the total number of slip systems (f.c.c.: 12,
ie. {111}(110); b.c.c.: 24, i.e. {110}{112}(110)); & is the unit vector
in slip direction and #; is the unit vector normal to the slip plane of slip
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system s. Qij vanishes from Eq. (2) if the symmetric part is taken as

N
dy = _3(bin; + i) (3)
s=1
in which dj;is the symmetrical part of /;;. Note that elastic strain rates are
neglected, and that it is assumed that the volume does not change (i.e.
di1+ das + d33 =0). Asaresult, Eq. (3) isaset of 5 independent equations
(Aernoudt et al., 1993). In general it is not known which slip systems are
active before the equation is solved. This means that all 4, must be
considered to be unknowns. Since there are more unknowns than
equations, the solution of the equation will not be unique. In general,
there will be a large number of different sets of 5 non-zero 4;-values
which all are solutions.” It is then clear that an additional assumption or
procedure is needed in order to restrict the number of solutions. There
are several variants of it. Taylor (1938) himself assumed that, of all
possible solutions, the best is the one for which the internally dissipated
frictional work is minimal:

N
=" 74| = Min 4)
s=1

in which 7¢ is the critical resolved shear stress on slip system s. This
variant of the microscopic model can be solved by means of linear
programming (see for example Van Houtte, 1988). In the simplest case,
the solution will be the set of 5 non-zero 4,-values which makes W*
minimal. However, there are also more complicated cases, for which we
refer to the specialised literature (Aernoudt et al., 1993; Leffers et al.,
1988; Van Houtte, 1988; Gil Sevillano et al., 1980).

Once the slip rates have been found, the kinematical equation (2) is
used in order to find £, the rate of rotation of the crystal lattice.

The 5 non-zero 4;-values also identify the active slip systems. The
generalised Schmid law can then be written for them as

ZZ YB3 -+ binf)o; = sign(3)7e ()

2 In addition to this, all positive linear combinations of the sets of 5 non-zero 4, which are
found, are also valid solutions.
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Note that the left-hand side of this equation is the expression for the
resolved shear stress 7;. Equation (5) represents a set of 5 linear equa-
tions from which the 5 independent components of the deviatoric stress
o} can be obtained.’

For the micro—macro transition, Taylor (1938) proposed to assume
that the strain rate of all the crystallites of a polycrystalline material
should be the same. This assumption is achieved by a more general
assumption, which avoids the formation of holes and overlaps between
the grains, and according to which the velocity gradients of all /;
microscopic volume elements should be the same and equal to the
macroscopic velocity gradient, which in the case of rolling is given by:

10 0
[Li=10 0 0 |¢ (6)
00 -1

(at least for the centre plane of the rolling process). ¢ is a scalar
parameter which represents the macroscopic strain rate, and of which
the value can be arbitrarily chosen in the present context.

Such a model for which /;=L; is called the Taylor—Bishop-Hill
model or also, the “Full Constraints (FC) Model” in contrast to the
“Relaxed Constraints Models” (see below). It has been widely discussed
in literature (see for example (Taylor, 1938; Aernoudt et al., 1993;
Leffers et al., 1988; Van Houtte, 1988; Gil Sevillano et al., 1980)). For
cubic metals, it is renowned to give good qualitative predictions of
deformation textures in many (not all) cases. Some results will also be
presented in the present paper.

Many authors (see for example Van Houtte, 1982; Kocks and
Chandra, 1982; Honeff and Mecking, 1981) have proposed models
which do not strictly enforce the condition /;= L, but “relax” it for
particular values of ij. Such models are called ““Relaxed Constraints
(RC) models”. An example is the “Lath” model for rolling. It is
supposed to be appropriate for elongated grains (Fig. 8). All

*In Eq. (5), the expression sign (+;)7° can also be replaced by 7° if the positive and the
negative sense of each slip system are treated as separate slip systems. The slip rate on each
active “slip system” must always be positive if this method is used. Each of the
“generalised” slip systems may then have its own critical shear stress 7¢ (positive values, to
be used in Eqs. (4) and (5)), and they can be chosen differently for forward and backward
slip on a given “physical” slip system.
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FIGURE 8 Schematic representation of a flat, elongated grain. In the case of roll-
ing, x; would be the rolling direction, and x; the rolling plane normal. In the Lath
version of the relaxed constraints model, the shear /;3 would be “relaxed”.

components of thelocal velocity gradient tensor /;;must be equal to those
of the macroscopic velocity gradient tensor given by Eq. (6), except the
component /;3. The model must be made in such way that it yields the
value of /13 for which the work needed for the plastic deformation of
the grain considered is minimal. This is achieved in the following way:

— the value of /;3 considered as unknown. Because of this, the value of

dy =210 @
is also unknown in advance (although /3 is still prescribed);

— as a result, the equation for dj3 in the set given by Eq. (3) has to be
dropped. The remaining 4 equations can then be solved in combi-
nation with Eq. (4). The solution now takes the aspect of 4 non-zero
slip rates instead of 5. Once these slip rates are found, the equation for
dy3 in the set of Eq. (3) can be used to calculate d, 3, after which /;3 can
be solved from Eq. (7).

It has been shown by Van Houtte (1982) that the solutions for the slip
rates found by this theory are the same as those found by a “mixed
boundary conditions” type of Bishop—Hill theory which would assume
that o/, is zero and that d;; is not imposed (Kocks and Chandra, 1982).
Various justifications have been proposed for these theories, all of which
in one way or the other express the idea that in the case of flat, elongated
grains, the interactions between neighbouring grains are incapable of
building the necessary stress level which would be needed for a fuil
enforcement of the macroscopic strain upon the considered grain (Van
Houtte, 1982; Kocks and Chandra, 1982; Honeff and Mecking, 1981).



122 P. VAN HOUTTE et al.

The Pancake model for rolling is another version of the RC theory,
which is more frequently used than the Lath version. Not only the shear
I3 (Fig. 8), but also the shear /5 is relaxed. According to this theory,
3 slip systems will be activated in each grain. The corresponding “mixed
boundary conditions” Bishop—Hill theory is the one for which both ¢/,
and 0%, are zero.

Whatever justification is used for an RC theory, the choice of the /;-
components to be relaxed remains arbitrary and would, for each partic-
ular application, depend on a subjective judgement of the nature of the
microscopic stress/strain distribution. It is therefore logical, to try to
find a theory which would make this choice automatically. Such theory
might be called “generalised RC model’”, such as the theory proposed by
Van Houtte and Rabet (1997). However, their theory belongs in fact to
the class of “self consistent models” which treat each grain in turn as if it
were an ellipsoidal inclusion embedded in a matrix of which the plas-
tic properties (tangent moduli) are the same as those of the entire
polycrystal. The main difference between the “generalised RC model”
and the older visco-plastic self-consistent model proposed by Molinari
et al. (1987) is that the former uses a different method to estimate the
reaction stresses built up by the matrix against grain relaxations. The
former model probably overestimates these reactions stresses, whereas
the latter underestimates them, especially for materials with a small
strain rate sensitivity exponent (Van Houtte, 1995).* For more details
about self-consistent models in general, we refer to the specialised
literature (e.g. Van Houtte and Rabet, 1997; Molinari et al., 1987).

3.2. Results of the Older Models

The cold rolling textures shown by Figs. 3 and 4 have been simulated
using the FC Taylor-Bishop—Hill model, two variants of the RC model
(Lath and Pancake) and the Generalised Relaxed Constraints model as
an example of a self-consistent model. The procedures described in
Section 2 “Validation Strategy” have been used. The hot rolling texture

“This comment refers to the reaction stresses that a hypothetical matrix with average
plastic properties would have against a grain. These reaction stresses are different from
those in which a particular grain in a polycrystal would experience from its neighbours,
because the latter do not have the average plastic properties of the polyctystal.
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FIGURE 9 Evolution of the maximum intensity along the ~y-fibre for the experimen-
tal cold rolling texture and for the results of the Full Constraints model (FC), the
Lath and Pancake versions of the Relaxed Constraints models, and the Generalised
Relaxed Constraints model.

shown by Figs. 1 and 2 has been discretised into 400 crystallite orien-
tations and then used as initial texture. The resulting ODFs and pole
figures have been published elsewhere (Van Houtte, 1997). Qualita-
tively, all these simulated textures present the main features of BCC
rolling textures as described in Section 2, although some pole figures
look rather distorted because of angular shifts of the positions of the
skeleton lines of the y-fibre. A quantitative comparison can be made by
means of the intensity distribution along the fibre (Fig. 9). This figure is
similar to Fig. 6 described in Section 2. Figure 10 compares the r-values
as calculated from the texture by means of the FC Taylor theory.
Inspection of Fig. 9 reveals that

(i) the result of the FC Taylor—-Bishop—Hill theory (still regarded as
the “reference model”) does not capture the main tendency of the
evolution of the maximum intensity along the ~-fibre of the
experimental cold rolling texture, namely a decrease from 11.3 at E
(¢1=060°) to 7 at F (¢; =90°). Instead, the maximum intensity
begins at 13.3 at E and slightly increases until a value of 14.3 at F;

(ii) the Lath model (RC) predicts an even more increasing tendency
than the FC model;

(iii) the result of the Generalised RC model does not differ much from
the result of the FC model. Only at E, the intensity is significantly
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FIGURE 10 r-values in function of the angle to the rolling direction, as calculated
from the experimental cold rolling steel texture and from the textures simulated by the
various models (see the subtitle of Fig. 9).

higher (16 instead of 13.3). A decreasing tendency is observed
between ¢; = 60° and 65° only; from ¢; = 60° until 90°, the tendency
is slightly increasing, as for the FC model,

(iv) only the result of the Pancake model (RC) shows a decreasing
tendency, which however is exaggerated as compared to the
experimental result.

Inspection of Fig. 10 confirms that the best results are obtained by the
Pancake version of the RC model, although this model is much less
complex than the Generalised Relaxed Constraints model. This result
will be used as the basis of the reasoning underlying the development of a
new model in the next section.

4. THE LAMEL MODEL

4.1. Introduction

In Section 3.2, it was found that the comparatively simple Pancake
model makes better predictions of the rolling texture of a low-carbon
steel than the Generalised Relaxed Constraints model, although the
theoretical basis of the latter model seems much sounder (see Section
3.1). From a theoretical point of view, inspection of Fig. 9 suggests that
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— the FCmodel cannot reproduce the experimentally observed decrease
of intensity observed between E and F along the v-fibre;

— completely relaxing the component /5 as is done in the Lath model
(see Section 3.1 and Fig. 8) does not help;

— a limited relaxation of both /;5 and /55 as is done in the Generalised
Relaxed Constraints Method (a self-consistent method) does not help
much either, although such limited relaxation seems scientifically
much more sound than a completely free relaxation;

— a completely free relaxation of both /;3 and ks as is done by the
Pancake model, does reproduce the decrease of intensity, but over-
estimates it.

All this suggests that one could get good agreement between the
experimental texture and the model predictions by “fine-tuning” the
Generalised Relaxed Constraints model. Obviously, it does not
give enough freedom to /13 and A3, so perhaps better results would be
obtained if the reaction stresses built up by the matrix against grain
relaxations was artificially reduced. Maybe so, but this is not satisfying
from a scientific point of view. Indeed, in the present version of the
Generalised Relaxed Constraints model, the reactions stresses are cal-
culated on the basis of sound micromechanical assumptions. This
physical basis would be lost if the reaction stresses were artificially
reduced. In future work the present authors may perhaps use this
method anyway. But in the present work, it is preferred to improve
agreement between simulated and experimental results by proposing a
different model, which may look primitive as compared to a “fine-
tuned”” Generalised Relaxed Constraints model, but which is based on
precisely defined physical assumptions.

In the stage of designing the new model, the objective set for was to
give more freedom to /3 and /3 than the Generalised Relaxed Con-
straints model does, but not the unlimited freedom given by the Pancake
model. As explained above, a better agreement between the observed
and simulated intensity distribution of the texture can then be expected.
The main question was: is it possible to imagine a heterogeneous
deformation pattern at grain level, which is physically acceptable and
which at the same time would achieve the objective described above. The
present authors believe that the lamel model which will be described
below is such model.
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4.2. Description of the Model

The microstructure of a polycrystalline material is modelled as if it
were a lamellar structure consisting of nicely stacked elongated grains
(Fig. 11). Initially, the crystallite orientation of each of the grains shown
in Fig. 11 is an orientation taken at random using the ODF f{g) of the
material as probability distribution function. Now, instead of treating
the grains one by one, as would be done by the FC Taylor theory, stacks
of two grains each are considered, such as “grain 1 and ““grain 2” shown
by Fig. 11.

The Taylor assumption of homogenous strain is now applied to each
of these stacks as a whole, and not to the individual grains of which it
consists. It means that the velocities (displacements per unit time) of the
points A, B, E, F shown in Fig. 11 must be the same as they would have
according to a FC Taylor model. However, this is not required for
the points C and D: the components v; and v, of their velocities (i.e., the
components parallel to the interface plane between grain 1 and grain 2)
are left free, whereas the components v5 (normal to the interface plane)
must keep the same value as in the FC Taylor theory.

Figure 12 then illustrates how the shape of the grains then would have
evolved after an increment of time At: due to an horizontal shift A; of
the points C and D relative to the points A/E and B/F, respectively,
opposite shears —AvY and A~k will develop in grain 1 and grain 2,
respectively:

Ay = Ai/h (8)
x
A B
c Grain 1 D
QGrain2
E F

xf

FIGURE 11 Geometrical model used by the Lamel model for the microstructure for
a single-phase polycrystalline material. In case of rolling, the figure represents a longi-
tudinal section. For the examples treated in the present paper, the axes xf and x§ of
the lamellae reference system coincide with the rolling direction and the rolling plane
normal, respectively.
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FIGURE 12 Shape of the grains 1 and 2 after a time A¢, if ¥} is non-zero.

(see Fig. 12). The superscript L refers to the “Lamel” model. This shear is
an additional shear as compared to the shear which would be imposed by
the FC Taylor theory (i.e., the component 13 of the macroscopic shear,
which is zero in case of a perfect plane strain deformation, but might be
different from zero when redundant shear rates exist, such as close to the
surface in rolling). In a similar way, shears —A~%; and A~} can also
develop in grains 1 and 2, respectively.

The Lamel model in its present form will compute the shear rates "y{g
and 3; and take them into account for the calculation of the plastic work
and the lattice rotation in the two grains (see below). However, it will not
use them to compute Av}; and A~} from the length of a time increment
At and use them to modify the geometrical model by changing the shapes
of grains 1 and 2 by new shapes as shown in Fig. 12 after each simulated
time increment. This was judged too complicated. Instead, Fig. 11 is
supposed to remain an adequate geometrical model for the micro-
structure for all successive deformation increments to be simulated.

The shear rates ¥ and 4% will be calculated on the basis of the
principle of minimum plastic work applied to a set of two grains taken
together. For the rest, the Taylor equation (3) is applied to each of the
two crystallites. This makes a total of 10 geometrical constraints, how-
ever with 2 additional degrees of freedom (§5; and 43;). As a result, the
minimum number of active slip systems is 8 for the two crystallites
together, or 4 on average per crystallite.

It is clear that the shifts A; and A,, which are implied by this model,
will cause misfits between each stack of two grains and its environment.
These misfits will create stress and strain localisations which in a real
material would tend to reduce the shear rates and ¥} and +3;. This effect
is not explicitly taken into account by the model. As a result, one may
expect that the lamel model would overestimate ¥ and 4.
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In general, the counteracting effect of the misfit strains has the same
nature as in a Pancake RC model, or in the Generalised Relaxed Con-
straints model. There are, of course, differences:

— the effects due to misfit strains are much larger in case of the Pancake
RC model. Suppose indeed that we would apply such model to grain 1
and grain 2 of Fig. 11. Let us assume that the velocities of points A and
B, and E and F would be those that would be expected in a FC Taylor
model. The velocities of C and D would then be different for grain 1
and for grain 2 (as each grain can have its own “relaxed” shear rates
ARC and 48XC). As a result, the misfit strains would include an “infinite
shear” at the interface between the two grains, in other words, grain
boundary sliding. Since this takes place along a large surface as
compared to the surfaces AE and BF, the plastic work associated to it
would be probably considerably higher than the plastic work asso-
ciated with the misfits shown at AC’E and BD’F in Fig. 12. The
resulting effect counteracting Y5C and 45 would consequently
also be much higher than in the case of the lamel model. Since the
Pancake RC model does not take the counteracting effect into
account, it is expected to overestimate the absolute values of YR
and YR much more than the Lamel model would overestimate 4k,
and 7%;.

— The Generalised Relaxed Constraints model also liberates ¥8¢ and
4RXC. But in contrast to the Pancake model, it does take the counter-

acting effect of the misfit strains into account. As explained above,

this effect is rather strong, and so the Generalised Relaxed Con-
straints model reduces 7RC and 7XC too much. One may wonder why
the Lamel model would not do so as well. Indeed, it can very well be
that in the Lamel model, 413 and 4%; are very small or even zero,
because values for them which would reduce the plastic work in
grain 1 might very well increase the plastic work in grain 2 or vice
versa. However, the Lamel model would on the opposite recognise
certain energetically favourable configurations, for example when
grains 1 and 2 would happen to have such crystallite orientations that
the same values of ¥} and +2; would reduce the plastic work in both
grain 1 and grain 2. In contrast to this, the Generalised Relaxed

Constraints would not be able to recognise these favourable config-

urations, since it looks only at one grain at a time.
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4.3. Mathematical Treatment of a Stack of Two Grains

The Einstein summation convention will be used in this section, unless
otherwise stated. The kinematical equations (2) and (3) still hold for
grain 1 as well as for grain 2, but not the condition /;;= L. The latter is
replaced by:

If = Ly~ RSy ©)

The superscript G is a variable which can take the values 1 and 2, and
which indicates Grain 1 or Grain 2. The superscript L is not a variable
and refers to the Lamel model. r takes the values 1 and 2:

[0 0 17

[Rly] 0 0 0 and Rly Rly, (10)
0 0 0

0 00
[Ré,.j]= 0 0 1| and Rz,] R;,.j. (11)
0 0 0

The +k, and 4% which were used in Section 4.2 are equal to 4+ and 4%,
respectively. Note that it is assumed here that a reference system is used
of which the axes x{ and x are parallel to the lamella planes (see Figs. 11
and 12). We will call this reference system the lamella reference system.
For the application to rolling of a b.c.c. material with elongated grains,
which will be discussed in the present work, it is also the sample reference
system. However, future applications may be worked out for which the
lamella reference system and the sample reference system may be dif-
ferent from each other.
The symmetrical part of Eq. (9) is:

dle = D’J Nrtf)’r (12)

in which the N,?j are the symmetrical parts of the an

rlj =35 (jo + Rgz) (13)
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Eq. (3) may be used again if a superscript G is added, because each
grain has its own slip rates 4¢. Besides, the multipliers of 4 in Eq. (3)
also depend on G, since the two grains have a different lattice
orientation. Let us calculate these multipliers in the crystal reference
system (for the meaning of s, b and #n, see the comment after Eq. (2)):

MG =1 (b&n’ + bn*)  (no summation over s). (14)
The superscript C is not a variable; it refers to the crystal reference
system. There is no need to use a superscript G (to distinguish between
grain 1 and grain 2) because as long as the two grains belong to the
same phase, the values of M are the same for both grains. However,
after transforming these M-coefficients to the lamella reference system,
they will have different values for grain 1 and for grain 2, and we will

have to use the superscript G again. Equation (3) will now become
(using also Eqs. (12) and (13)):

ways N,Ufy, = Dy (no summation over G), (15)

s runs from 1 to N (the number of slip systems). There is an equation
for each grain (G 1 or 2) and for each value of ij. In total this makes 12
equations, of which only 10 are independent because of the assumption
of incompressibility.> There are 2N +2 unknown 49 and 4. Since
N =12 for f.c.c. metals and 24 for b.c.c. metals, there will usually be
multiple solutions. An additional criterion such as Eq. (4) will be used
to restrict the choice of solutions. This additional criterion will state
that the virtual frictional work dissipated in grains 1 and 2 taken
together must be minimal:

W12 = 75915¢| + 7F|3F| = Min (16)

°C is the critical resolved shear stress on slip system s in grain G. tlisa
possible frictional resistance against the relaxation 4%; in the basic ver-
sion of the Lamel model, it is zero. Note that in the present analysis, it
was assumed that the volumes of grain 1 and grain 2 are equal. A
generalisation for grains with different volumes can easily be made.

* The equation for ij =33 could for example be dropped for each of the two grains.
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The minimisation problem consisting of finding the values of 7¢ and
4L which minimise WI*Q (Eq. (16)) while satisfying the 10 independent
equations (15) can be solved by means of linear programming tech-
niques, in a similar way as the FC Taylor theory (Van Houtte, 1988). In
that case, it is convenient to write the 10 independent equations of
Eq. (15) in matrix form. The coefficient matrix of these equations then
has the following general structure:

rij]

In a sub-matrix such as [M}ij], s stands for the column-index and ij
(after contraction to a single index) for the row index. The column
matrix with the unknowns consists of the set ! first, then the set 47
and finally the two relaxations L.

Even while minimising Wl’"z(Eq. (16)), multiple solutions are found
for q'lsG. The code which currently has been developed only looks for one
solution. The values of 4& which are part of this solution are then
introduced in Eq. (9) in order to find l,.JG- for grain 1 as well as for grain 2.
In other words, the Lamel-routine which solves Eqgs. (15) while mini-
mizing Wl*’z(Eq. (16)) is only used to calculate the grain relaxations. As a
result, the shape change of each of the two grains is then known. This
shape change is then passed on to an existing routine for solving the FC
Taylor theory, which treats grain 1 and grain 2 separately and has the
task of finding the slip rates and lattice rotations. It does not use the
values of the slip rates already found by the Lamel-routine, but calcu-
lates them again; this time making a particular choice among all possible
solutions. This FC Taylor routine is based on an exponential expression
for the single crystal yield locus (Eq. (18)) given by Van Houtte and
Rabet (1997).

In a similar way as for the FC Taylor theory (Van Houtte, 1988), the
“simplex multipliers” obtained after applying the linear programming
technique to Egs. (15) and (16) can be identified with the deviatoric
stresses in the two grains. This can be illustrated in the following way.
A typical solution of the linear programming problem would assign a
non-zero value to 10 of the 2N + 2 unknowns ¢ and L. The other
ones are set to zero. Let 4} for example be such a non-zero solution.
According to linear programming techniques, a set of 10 simplex
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multipliers 7, (the index p corresponds to the rows of matrix 4, Eq. (17))
exists which are such that the sum of the products 7,4, is equal to the
corresponding factor in the functional to be optimised (Eq. (16)). This
factor is sign(4})75’. It is seen in Eq. (17) that the coefficients 4,4 are
zero for rows corresponding to grain 2. As a result, the sum of the
products m,A4,4 only contains terms related to grain 1, and can be
written as follows (using non-contracted indices):

mh ML, = sign(3})rs!. (18)

Similar expressions exist for all active slip systems, as well for grain 1
as for grain 2. If the n are identified with the deviatoric stresses o, in
the grain G, then the expressions (18) merely state, that for an active slip
system, the resolved shear stress must be equal to the critical resolved
shear stress in the grain.

However, 2 of the 10 non-zero values in the solutions may belong to
the set of relaxations L. They then come in the place of ordinary slip
rates 7, either of grain 1 or of grain 2. As a result, a grain may have 5, 4
or 3 active slip systems, depending on the solution. Let us assume that
a solution is found in which 4} is non-zero. The simplex multiplier
property leads to the following condition (identifying the simplex mul-
tipliers with the deviatoric stresses):

o N}, + off Ny, = sign(31)7) (19)

The values of N}, and N}; have been given above (Egs. (10), (11) and
(13)). Elaborating Eq. (19) then leads to:

oy — oy = sign(i})7y (20)

Asalready mentioned above, 7L is zero for the basic version of the Lamel
model. Equation (20) then simply means, that if 4% alias 4* is relaxed,
03 must be the same in both grains. It means that as far as this shear
stress is concerned, relaxation implies the establishment of stress equi-
librium at the boundary between grain 1 and grain 2.

In a similar way, 0%, must be the same in both grains when +}; alias 4+
is relaxed.
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4.4. Simulation of a Deformation Texture
4.4.1. Discretisation of the Initial Texture

For each stack, the orientations of grain 1 and grain 2 should be taken
(separately) at random in such way that the probability that a certain
crystallite orientation g chosen is equal to f{g), the ODF of the initial
texture. Care should be taken that the “sample symmetry” as defined
by Bunge (1982) is not implemented in this ODF The reason is
that crystallite orientations such as (321)[436], (321)[436),
(321)[43 6] and (321)[4 3 6] (an example for cubic material) must each
have a chance to be generated from the ODF. In case of orthorhombic
sample symmetry (rolled or rolled and annealed material), these cry-
stallite orientations are equivalent with respect to the sample symmetry,
because they can be derived from each other by 180° rotations around
the sample symmetry axes x;, x, or x3. But they are physically different
orientations, and each of them should have a chance to be generated
during the discretisation process. If one uses ODF and discretisation
software in which the orthorhombic sample symmetry is implemented,
then most probably of the series given above, only (32 1)[4 3 6] will have
a chance to be generated,6 not the other ones.

Why this is important can be illustrated by means of the following
example. Suppose that (32 1)[4 3 6] happens to be chosen as the lattice
orientation of grain 1 and (321)[43 6] for grain 2. So by accident, the
crystallite lattice of grain 2 is the mirror image of that of grain 1 with
respect to the rolling plane. Figure 12 shows that if a relaxation shear of
the type A~ takes place in grain 2, then an opposite relaxation — Ak
takes place in grain 1. If the shear Ayl causes a diminution of the
plastic work in grain 2, then the opposite shear —~A+L; will cause the
same diminution of the plastic work in grain 1. The reason for this is that
the lattices of both grains are each other’s mirror image with respect to
C'D’ (Fig. 12). Due to this synergetic effect, the model will be driven to
strongly promote this kind of relaxation. However, if the discretisation
software has replaced the orientation of grain 2 by (32 1)[4 3 6] because
of “symmetric equivalence”, then both grains will have the same
orientation. Any reduction of plastic work caused by a possible Avk; in

¢ Because it is the only one of the four which has Euler angles which fall all three in the range
from 0° to 90°, the conventional range for ODF with orthorhombic sample symmetry.
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grain 2 will be compensated by an increase of plastic work caused by
—A~L; in grain 1, and it is very likely that the Lamel model would not
generate any relaxation at all, although in fact, a strong relaxation
should be produced. In fact, the model would hardly ever recognise
configurations of grain 1 and grain 2 which strongly promote relaxation.
The following procedure has been followed by the present authors:

(i) in case the C-coefficients of the initial texture have a built-in
orthorhombic sample symmetry, they are converted to a set without
this symmetry using the program ROTTEX from the MTM-FHM
package (Van Houtte, 1992);

(ii) the program CALCODF from MTM-FHM package was then used
to generate the ODF on a grid in Euler space with a 0—360° range for
1, and 0—90° ranges for ¢, and ® (cubic material).

(iii) the “statistical discretisation method” described by Toth and Van
Houtte (1992) was then used to generate a set of 2000 or 5000
crystallite orientations in totally random order. It was seen to it that
all crystallite orientations generated had the same volume fraction,
which can easily be achieved by the “statistical method”.

(iv) these were then subdivided in 1000 or 2500 pairs representing the
orientations of grain 1 and grain 2 in the stacks to be processed by
the Lamel model.

4.4.2. Evolution of the Lamel Orientation

The longitudinal direction of the lamella (Fig. 11) is the axis x{ of the
“lamella reference system’ (see Section 4.3), whereas xg is normal to the
plane of the lamellae. Most equations given in Section 4.3 were expressed
in this lamella reference system. For the example of cold rolling of a
b.c.c. metal, which is worked out in the present paper, it is assumed that
the grains are elongated in the rolling direction, and the “lamella
system” is identical with the sample system. However, there may be
applications for which a distinction must be made between the lamella
system and the sample reference system. In such cases, a description of
the orientation of the lamella system with respect to the sample reference
system would be needed, as well as a mathematical model for the evo-
lution of this orientation. Many approaches can be imagined for this.
In the current version of the software for the “Lamel model”. the
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following model is implemented:

(i) the grains, or other microstructural features which one wants to
treat as “lamella”, are described by ellipsoids. For an equiaxed
material, these may be spheres. It is assumed that in the polycrystal,
all such ellipsoids have the same shape and the same orientation.
The axis x{ of the “lamella reference system” is then is defined as the
longest symmetry axis of the ellipsoid, whereas the axis xg is the
shortest.

(i) the orientations of the axes x¢ with respect to the sample system is
described by Euler angles; the half-lengths of these axes are called ¢;.

(iii) at need, this description by Euler angles is converted in a repre-
sentation by means of a tensor C, which stands for the coefficients of
an analytical equation describing the ellipsoid:

)C,'C,'jx]' =1. (21)

This equation is expressed in the sample reference system. C; is a
symmetrical matrix. Its eigenvectors are parallel to the axes x¢, and
its eigenvalues are equal to 1/,/¢;. This representation will be used
to calculate the evolution of the orientation of the lamella system;

(iv) the shape change (and the rotation) of the ellipsoid representing a
lamella is obtained from the deformation history by means of the
usual formulas of continuum mechanics. The deformation history is
described by a prescribed macroscopic velocity gradient L, which
will in general be time-dependent.

For reasons of convenience, Eq. (21) is re-written in matrix form:

T [CIlx] = [1]. (22)

Consider a time increment Az (which, during the simulation of a large
strain, corresponds to a strain increment). Let Fj; be the deformation
gradient describing the total change of the ellipsoid during this incre-
ment. This means that:

[¥] = [Fllx] (23)

in which x; are co-ordinates of point on the ellipsoid before the time
increment, and y; after. This relation can easily be inverted. This allows
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for an expression of Eq. (22) in terms of y;

T IFTCF ) = [1] (24)
or
ICy =[] (25)
with
(€] = [F']Y[CIF). (26)

The two latter equations show that C:-j represents the new shape
(including orientation) of the ellipsoid after the time step and
corresponding strain increment. The orientation of the new axes x¢
and the new lengths are obtained by calculating the eigenvectors and
eigenvalues of Cj;. In practice, F;; must be obtained from Ly(#). This
can be done as follows. Textbooks for continuum mechanics give the

following classical formula relating them:
[L] = [F][F~"). (27)
This can be re-written as:
[F] = [LIF]. (28)

Since L;;is known as a function of time, this equation can be integrated
to obtain Fj; at the end of a time interval At.” In the current version of
the Lamel software, the integration is done explicitly, which means that
Ly is kept constant during the time interval At

4.4.3. Organisation of a Simulation

In the present software, the calculation is organised per time increment
(which is equivalent as per strain increment). The calculation of the
lattice rotations must be completed for all stacks of two grains before
the simulation of the next time increment is initiated. It is possible to vary

7 Note that in the present context, its initial value at the beginning of the time interval is the
unit tensor &j;.
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the prescribed macroscopic velocity gradient tensor L for each time
increment. The time increments which have been chosen in the present
work correspond to an elongation in rolling direction of 2.5%. It is
possible to create files with the current texture after each time increment.
Such files have been used to generate the ODF of the simulated defor-
mation textures according to the procedure explained in Section 2.

4.5. First Results

The cold rolling textures shown by Figs. 3 and 4 have been reproduced
using the Lamel model. The procedures described in Section 2,
“Validation Strategy”, have been used. The hot rolling texture shown by
Figs. 1 and 2 has been discretised into 2000 crystallite orientations, of
which 1000 stacks of 2 grains have been taken. These were used as
“initial stacks” by the Lamel model. Forty-eight deformation steps of a
true strain of 2.5% each have been simulated. This corresponds to a
thickness reduction of 70%. Figures 13 and 14 show the pole figures
({110} and {100}) and the ODF, respectively. Visually, these figures
compare well to the experimental results shown by Figs. 3 and 4.
However, a quantitative comparison is necessary. It is made by means of
the intensity distribution along the fibre (Fig. 15). This figure is similar
to Figs. 6 and 9 described in the previous sections. Figure 16 compares

.8 1.0 1.3 1.6 20 8 10 13 20

1.6
2.5 3.2 4.0 5.0 6.4 25 3.2 4.0 5.0 6.4

FIGURE 13 {110} and {100} pole figures of a cold rolling texture of a b.c.c.
material according to the Lamel model. The initial texture is represented by Figs. 1
and 2. A thickness reduction of 70% (true strain: 1.2) has been simulated.
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FIGURE 14 ODF of a cold rolling texture of a b.c.c. material according to the
Lamel model. The initial texture is represented by Figs. 1 and 2. A thickness reduction
of 70% (true strain: 1.2) has been simulated.
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FIGURE 15 Evolution of the maximum intensity along the ~-fibre for the experi-
mental cold rolling texture and for the results of the Lamel model.
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FIGURE 16 r-values in function of the angle to the rolling direction, as calculated
from the experimental cold rolling steel texture and from the textures simulated by the
Lamel model.

the r-values as calculated from the texture by means of the FC Taylor
theory, and can be compared to Fig. 10, which shows the results of the
older models.

Inspection of Fig. 15 reveals a result which is better than expected: not
only the relative evolution of the values of the ODF along the ~-fibre is
well predicted, but the level as well. At one end (¢, =60°), the Lamel
model prediction is 13% lower than the experimental value, and at
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w2 =90°, the two values differ less than 0.5%. This result is much better
than any of the results of the older models (Fig. 9).% The r-values cal-
culated from the texture predicted by the Lamel model are for all
practical purposes identical to those obtained from the experimental
texture (Fig. 16), which means that they are slightly better as those from

.80 100 130 160 200 250 320 4.00 500 6.40
0 90 0 90

Te B
Rae Kk

PHI1= 26 PHits 30
A%

PHI= 80 PHI2=

FIGURE 17 ODF of another hot rolled steel, used as initial texture for a second
case study.

81t is recalled here, that none of the older models referred to in Fig. 9 used adjustable
parameters.
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the Pancake model, and much better as those from the other older
models (Fig. 10).

This first result looked very promising, but it could have been an
exceptional case. Therefore it was decided to perform more tests. One of
them was already completed at the moment of the preparation of the
present paper and will also be reported. Itis again a case of cold rolling of
steel, but this time starting from a totally different texture (Fig. 17).
Compared to the previous initial texture (Fig. 2), this one is much
weaker and has a y-fibre which is stronger than the a-fibre instead of the
other way around.
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FIGURE 18
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FIGURE 18 Evolution of volume fractions of rolling texture components as a func-
tion of thickness reduction. Initial texture: see Fig. 17. Results of experimental rolling
texture and the predictions by the FC, Lath (RC), Pancake (RC) and Lamel model.
(a) Legend; (b) (11 1)[112] (the experimental curve is completely covered by the
curve for the Lamel model); (c); (11 D[011]; (d); Q1 1){011] (e); (100)[01 1]
(the curve for the Pancake model is completely covered by the curve for the Lamel
model). Note that the first two components belong to the ~-fibre, and the two last to
the a-fibre.

Figure 18 shows the results in terms of volume fractions, calculated by
convoluting the ODF with appropriate Gauss distributions (Van Houtte,
1992). Results are given for 50%, 70%, 83% and 90% thickness re-
duction. Again, the Lamel model clearly outperforms the other models
for volume fractions of texture components belonging to the ~-fibre.
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The results are less convincing for texture components belonging to the
a-fibre. The Lamel model tends to overestimate the volume fraction,
whereas the FC and Lath model perform better.

5. DISCUSSION

The Lamel models has some similarities with the “Deformation
Banding” model published by Lee et al. (1993; 1995) and the “Grain
Subdivision” model proposed by Leffers (1994). In these models, which
were intended to model the plastic deformation and the deformation
texture development of f.c.c. metals, each grain is subdivided in two
families of lamellar bands (deformation bands). There are 2n bands in
each grain, n being a number equal to or larger than 1. Bands of the two
families are alternating. In a geometrical way, a pair of such bands (one of
each family) is identical to a stack of two grains as shown in Fig. 12, and
also has free shears of equal amplitude but opposite signs in the two
bands. The differences with the Lamel model are that grain 1 and grain 2
of the latter do not necessarily represent bands inside a grain (although
the model could be used in such way, see below), and that a different
choice is made for the orientation of the boundary plane between the
lamellae (lamella reference system). In the “Grain Subdivision model”
(Leffers, 1995), the lamellae are parallel (or nearly parallel) to the
transverse direction as is the case for the Lamel model as applied in the
present paper, but the angle between the lamellae and the rolling direction
is not zero. As far as the present authors can judge, the kinematic
equations of the “Grain Subdivision model” (Leffers, 1995) are
essentially equivalent to those of the Lamel model. According to the
“Deformation Banding” model (Leeetal., 1993;1995), thelamella planes
are normal to the transverse direction, so their orientation is totally
different than in the “Grain subdivision model” or in the Lamel model.
Moreover, the “Deformation Banding” model uses the classical Pancake
model as a starting basis. So /43 and L3 (using the axis conventions of the
present paper) arerelaxed first. Next, alternating free shears of the type /;»
are allowed in the bands. In their mathematical treatment, the authors try
to take energetic effects due to latent hardening, misorientation between
deformation bands and the accommodation of the misfits into account.
Only misfits which are expected at the end of their deformation bands are
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considered. Their accommodation is treated as an elastic problem.
However, they do not bother about the strain misfits inherent to the
pancake model. A problem with the two “banding” models (Lee et al.,
1993; 1995; Leffers, 1994) seems to be, that when the two bands have
exactly the same crystallite orientation, the energetic advantage that a
relaxation shear may have in the bands of family 1 is exactly compensated
by an energetic disadvantage in family 2, at least when using a first-order
analysis. The problem could be resolved by considering a slight
misorientation between the two families. An additional model which
could explain/predict such misorientations would be helpful. However,
a complete discussion of this aspect would be beyond the scope of the
present paper. To the best knowledge of the present authors, neither the
“Grain Subdivision model” (Leffers, 1994) nor the “Deformation
Banding” model (Lee et al., 1993; 1995) has been used for quantitative
texture predictions of the rolling texture of b.c.c. metals.

The success of the Lamel model as depicted above should be put into
perspective. First note that so far, the validation has only been done for
the case of cold rolling of low-carbon steel (as a representative of b.c.c.
metals). It cannot be taken for granted that a similar success would be
achieved for other cases, such as other deformation modes applied to
steel, or any deformation mode applied to f.c.c. or h.c.p. metals. It is
planned to test these cases too, using validation procedures as described
in Section 2, but this will take some time.

Secondly, it should be noted that although excellent results have been
obtained for the components of the y-fibre, the same cannot be said for
those belonging of the a-fibre. The success for the v-fibre is amazing: not
only the relative intensities and volume fraction have been well predicted
quantitatively, but also the absolute level of the volume fraction. The
first aspect could be achieved if the model merely gives a good prediction
of the rotations of grains belonging to the ~-fibre. The second aspect
really means that the evolution of relative weight of the ~-fibre with
respect to all other texture components is also well predicted; this
involves a good simulation of rotation rates of grains flowing in or out of
the v-fibre. In view of this latter aspect, it is surprising that the model
clearly overestimates the volume fractions of the a-fibre (Fig. 18(d) and
(e)). Perhaps it is the spread around the ideal fibre axis which is larger in
the real material than in the simulated results. This could be explained
if the grain orientations of the a-fibre would be subject to a larger
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randomisation effect due to local strain heterogeneities as compared to
the grains of the ~-fibre. It is true that the latter are the “hard” orien-
tations, whereas some of the a-orientations are rather soft, and can
therefore be expected to be forced to accommodate strain misfits caused
by strain relaxations of the hard grains. This aspect might be studied
experimentally by means of a scanning electron microscope equipped
with an EBSD-attachment.

The surprising quality of the r-value predictions (Fig. 16) seems to
indicate that as regard to mechanical properties, the influence of the ~y-
fibre is dominating, so that errors on the volume fractions of the a-fibre
do not matter much.

On the whole, one may wonder which aspect of the local stress and
strain distributions it is, which is so well captured by the Lamel model
that it leads to deformation texture predictions which even have a good
quantitative agreement. In Section 4.2, it was argued that the accom-
modation of the misfit strains between neighbouring grains caused by
the Lamel model would be easier than would be the case for the Pancake
model or even the Generalised Relaxed Constraints model. This argu-
ment does not really convincingly explain the success of the model.
Maybe the real reason is that the model satisfies stress equilibrium (as
regard to the shear stress components o’j; and ¢5,) at the boundaries
between grain 1 and grain 2, i.e. the grain boundary with the largest
surface of pancake-shaped grains. Indeed, this result was found during
the mathematical analysis of the Lamel model, see Eq. (20) and the
comments in Section 4.3. Note that the Pancake model also achieves this
kind of stress equilibrium by requiring that ¢}; and o), are zero in all
grains. This is probably a too strong condition; the Lamel model only
requires that these shear stress components must be equal at both sides
of the grain boundary.

The problem of the accommodation of the strain misfit remains.
Figure 12 shows a stack of two grains in which some relaxation took
place as assumed by the Lamel model. Assume that this stack as a whole
would be an inclusion in a homogeneous matrix. Then the accom-
modation of the misfit strain would require a heterogeneous deforma-
tion pattern in the matrix around the stack which has as net result that
some material is transferred from the region around D' to the region
around C’ (Fig. 12). This would still require an important additional
plastic work, although (for the same relaxation shear) less than for other
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models such as Pancake or Generalised RC. It is more likely that in the
microstructure, some patterns of heterogeneous deformation exist
which link up sites such as C’ and D’ in different stacks of two grains in
different planes which are in each other’s vicinity, and might allow for
misfit accommodation at rather short range. Such patterns may have a
wavy aspect, or might look like short, diffuse shear bands.

A further problem of interpretation is the identification of the “stacks
of two grains” as depicted in Fig. 11 with some features of the micro-
structure. It was taken for granted in this paper that “grain 1 and
“grain 2” are flat, elongated grains; but perhaps it would be better to
identify them with microbands, deformation bands or even slip bands
with in a grain. Clarification of this point will also require experimental
investigations of deformed microstructures. If it turns out to be true
that one must identify grain 1 and grain 2 with deformation bands
within the same grain, then the texture predictions for the a-fibre
would be different. Indeed, as the a-fibre forms a minority, it is very
unlikely that in the present simulation scheme, for both grain 1 and
grain 2 an orientation of the a-fibre would be taken. In the simulation
scheme, a grain of the a-fibre will most of the time find itself in presence
with one of the ~-fibre, which will probably enforce its relaxation since
it has the ‘“harder” orientation. On the other hand, in a “deformation
banding” model, an a-orientation would be coupled with another
one,” which would almost certainly would lead to a different simulation
result.

A last comment is devoted to the model itself. The present Lamel
model works with stacks of two grains which have two degrees of free-
dom, i.e. 1 degree of freedom per grain on average (instead of 2 in the
Pancake model). Of course one could imagine a model which would
work with stacks of three or more grains. It can easily be seen, that the
more grains one takes, the higher the ratio between the number of
degrees of freedom to the number of grains becomes; this ratio will tend
to 2 (as in the Pancake model) if the number of grains tends to infinity.
Predictions of such models will hence be intermediary between those of
the Pancake model and those of the Lamel model.

? Initially, they would almost have the same orientation, since separated by a low-angle
boundary.
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Other models have been proposed in which the orientation of the
boundary between grain 1 and grain 2 is left free (whereas in the Lamel
model, it is prescribed by the user). It would be interesting to compare
the results of the two types of models.

6. CONCLUSIONS

It was found, that reliable quantitative predictions of the intensity and
volume fraction of the -fibre texture components of the rolling textures
of low-carbon steel are possible by means of the Lamel model. r-Values
derived from the predicted textures are almost identical to those derived
from the experimental textures, in spite of the fact that a-fibre texture
components are overestimated by the new model.

At present, there is no proof that the same quality of prediction will be
achieved in other cases, such as the rolling textures of f.c.c. metals. Such
tests need to be done in future work. It will also be attempted to assess the
physical assumptions made by the Lamel model as regard to microscopic
strain heterogeneity. This work will be done by investigating rolled
samples by means of scanning electron microscope equipped with an
EBSD attachment. The interpretation of the results in terms of the
Lamel model will be greatly facilitated by the fact that the latter model is
based on simple physical assumptions which do not involve the fine
tuning of adjustable parameters.
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