
17 Apr 2004 16:19 AR AR212-PC55-12.tex AR212-PC55-12.sgm LaTeX2e(2002/01/18)P1: FHD
10.1146/annurev.physchem.55.091602.094402

Annu. Rev. Phys. Chem. 2004. 55:333–61
doi: 10.1146/annurev.physchem.55.091602.094402

Copyright c© 2004 by Annual Reviews. All rights reserved
First published online as a Review in Advance on February 6, 2004

QUANTITATIVE PREDICTION OF

CRYSTAL-NUCLEATION RATES FOR SPHERICAL

COLLOIDS: A Computational Approach

Stefan Auer1 and Daan Frenkel2
1Department of Chemistry, Cambridge University, Lensfield Road, Cambridge,
CB2 1EW, United Kingdom; email: sa372@cam.ac.uk
2FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam,
The Netherlands; email: D.Frenkel@amolf.nl

Key Words crystallization rates, Monte Carlo, umbrella sampling, classical
nucleation theory, nucleation barrier, kinetic prefactor

■ Abstract This review discusses the recent progress that has been made in the
application of computer simulations to study crystal nucleation in colloidal systems. We
discuss the concept and the numerical methods that allow for a quantitative prediction
of crystal-nucleation rates. The computed nucleation rates are predicted from first
principles and can be directly compared with experiments. These techniques have
been applied to study crystal nucleation in hard-sphere colloids, polydisperse hard-
sphere colloids, weakly charged or slightly soft colloids, and hard-sphere colloids that
are confined between two-plane hard walls.

1. INTRODUCTION

Heating a block of ice results in melting it. Cooling the resulting water freezes
it again. At a given pressure, water and ice can coexist at only one temperature.
The water-ice coexistence temperature at ambient pressure is of such importance
for everyday life that it serves as the zero-point of the widely used temperature
scale invented by the Swedish physicist Celsius. Closer inspection of the melting
and freezing transition shows that this transition is not quite symmetric. Ice heated
above 0◦C always melts, whereas cooling it below 0◦C does not always result in
immediate freezing. In fact, water and most other liquids can be cooled significantly
below their freezing temperature and kept there without crystallizing (1, 2). This
phenomena is known as supercooling. A supercooled liquid can be triggered into
freezing by adding a little bit of the corresponding solid. A single snowflake in a
glass of supercooled water will induce freezing of water that touches it and grow
rapidly into a big chunk of ice. Other disturbances, such as dust or even shocks, can
trigger the freezing of supercooled liquids as well. It thus seems difficult for the
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freezing process to begin spontaneously, but once initiated, it perpetuates easily.
The spontaneous formation of a piece of solid ice is an example of nucleation.

The fact that a liquid can be supercooled is best understood qualitatively in the
framework of classical nucleation theory (CNT) (see, e.g., Reference 3). According
to CNT, the free energy of a spherical nucleus that forms in a supersaturated solution
contains two terms. The first term accounts for the fact that the solid phase is more
stable than the liquid phase. This term is negative and proportional to the volume
of the nucleus. The second term is a surface term. It describes the free energy
needed to create a solid/liquid interface. This term is positive and proportional to
the surface area of the nucleus. The Gibbs free energy of a spherical nucleus of
radiusRhas the following form:

1G = 4

3
π R3ρs1µ + 4π R2γ, (1)

whereρs is the number density of the bulk solid,1µ the difference in chemical
potential between the solid and the liquid, andγ is the solid/liquid-surface free-
energy density. The function1G has a maximum atR = 2γ /(ρs|1µ|), and the
corresponding height of the nucleation barrier is given by

1G∗ = 16π

3

γ 3

(ρs|1µ|)2
. (2)

For small nuclei, the surface term dominates and the free energy increases. Only if
this nucleus exceeds a critical size does its free energy decrease, and the crystallite
can grow spontaneously. The probability for the formation of a critical nucleus
depends exponentially on its free energy of formation:

Pc ∝ exp(−1G∗/kBT). (3)

The crystal-nucleation rate is given by the product ofPc and a kinetic factor0 that
describes the rate at which a critical nucleus grows. The CNT expression for the
nucleation rate per unit volume is

I = 0 exp

[
− 16π

3kBT

γ 3

(ρs|1µ|)2

]
, (4)

where 0 = Zρl f +
c . Here, ρl is the number density of the liquid,Z =√|1µ|/6πkBT nc is the Zeldovich factor, andf +

c is the attachment rate of par-
ticles to the critical cluster that containsnc particles. The Zeldovich factor arises
from the fact that not all particles that are at the top of the nucleation barrier crystal-
lize: Some will recross the barrier and melt again. The attachment rate of particles
to the critical nucleus can be estimated by multiplying the number of monomers
available at the surface of the nucleus (which is proportional ton2/3

c ) to the typical
transition rate at which these particles become part of the nucleus. This transition
rate is proportional toDS/λ

2, whereDS is a self-diffusion coefficient andλ is a
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typical distance over which diffusion takes place:

f +
c = 24DSnc

2/3

λ2
. (5)

The above expression for the nucleation rate is the one most commonly used to
analyze crystal-nucleation rate experiments. The problem with the CNT approach
is that, in most cases, neitherλ nor γ are accurately known. More often than
not, both parameters are obtained by fitting the CNT expression to experimental
nucleation data. In fact, the situation is even more confusing as a clear microscopic
definition of the “jump distance”λ is lacking, while there is considerable ambiguity
in the choice of the correct microscopic expression for the surface free-energy
densityγ .

To illustrate the problems associated with the fitting of CNT to experimental
data, we consider an example from recent experiments on crystallization in hard-
sphere colloids. Palberg (4) fitted the data from Harland & van Megen (5) and
obtainedγ = 0.5kBT/σ 2 andλ = 17dNN, whereas for the data from Heymann
et al. (6), he foundγ = 0.54kBT/σ 2 andλ = 2.8dNN, whereσ is the particle
diameter anddNN is the nearest neighbor distance. The estimates for the sur-
face free energy are rather low when compared with numerical estimates (7), and
the values of the effective jump lengthλ seem rather large (a factor 10 to 100 times
larger than the mean free path in the liquid). However, as the experimental results
could be fitted with Equation 4, there was little reason to doubt the values of the
fit parameters obtained from experiment.

Because experiments to determine absolute crystal-nucleation rates are noto-
riously difficult, there is a clear need for a first principle prediction of a crystal-
nucleation rate.

In this review, we discuss some of the recent progress that has been made in the
application of computer simulation to gain a better understanding of the kinetics
of colloidal crystallization. As is explained below, simulation techniques have
now progressed to the point where—for the first time—it is possible to compute
absolute crystal nucleation rates under conditions that correspond to those used
in experiments. Moreover, we are able to study in detail the nucleation pathway.
The simulations described in this review focus on colloidal crystallization. The
reasons for this choice is twofold: First, the interactions between spherical colloids
are thought to be well known. And second, colloidal crystallization can be studied
experimentally using real-space imaging techniques. In other words, these are
ideal systems to confront experiment and simulation. Interestingly, the simulations
suggest that our understanding of such colloidal systems is far from complete.

2. METHOD

Simulating the crystallization process is a computational challenge, precisely be-
cause crystal nucleation is an activated process. This implies that the formation of
small crystal nuclei in a supersaturated liquid is infrequent, but when it happens,
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the process is quite fast, i.e., it proceeds on a timescale that can be followed in
a molecular simulation. For instance, experimentally measured nucleation rates
are typically on the order ofO(101) to O(106) nuclei per cm3 per sec. We can
estimate the number of time steps needed in a molecular dynamics (MD) simu-
lation to observe one nucleation event. In a large-scale computer simulation, it is
feasible to study the dynamics ofO(106) particles, but the number of particles in
a typical simulation is some two to three orders of magnitude less. For an atomic
liquid, the volume of a simulation box containing one million particles is of order
O(10−15) cm3. If one million nuclei form per second in one cubic centimeter, then
it will take, on average, 109 seconds for a nucleus to form in a system of one mil-
lion particles. Because the typical time step in an MD simulation is on the order of
femtoseconds, this implies that it would take some 1024 MD time steps to observe
a single nucleation event under experimental conditions.

This example illustrates why it is difficult to compute nucleation rates using
conventional MD simulations. One way around this problem is to simulate a system
at a much higher supersaturation, where the free-energy barrier for the formation of
crystal nuclei is sufficiently low to allow the system to crystallize spontaneously on
a timescale that is accessible in an MD simulation. The problem with this approach
is that, at such extreme supersaturations, crystallization may proceed differently
than at moderate supersaturations. For example, at high supersaturations, many
crystal nuclei may form simultaneously and may interact in an early stage of their
development. It then becomes difficult to compare the computed crystallization
rates with predictions based on CNT.

To study crystal nucleation at moderate supersaturation, we exploit the fact that
the crystallization rate is determined by the product of a static term, namely the
probability of the formation of a critical nucleusPc, and a kinetic factor0 that
describes the rate at which such nuclei grow. We use umbrella sampling to compute
Pc and kinetic Monte Carlo simulations to compute0. The computed nucleation
rates can be directly compared with experimental data.

In the following, we briefly summarize the numerical techniques needed to
compute a nucleation rate based on Reference 8. First we discuss the calculation
of the cluster size distribution. Then we turn to the calculation of the kinetic
prefactor.

2.1. Calculation of the Cluster Size Distribution

The probability that a crystal nucleus of sizen will form can be approximated by
P(n) = Nn/N, whereNn is the number of crystal nuclei of sizen in a system con-
tainingN particles (8–10). The approximation becomes better asNn/N becomes
smaller, i.e., when the spontaneous formation of clusters is rare. Knowledge of the
ratio Nn/N allows us to define the Gibbs free energy1G(n) for the formation of
a nucleus of sizen:

Nn

N
= exp[−1G(n)/kBT ]. (6)
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Before we can calculateNn in a Monte Carlo simulation, we need to have a
numerical technique that enables us to distinguish between particles in a liquid
environment and those in a solid one. To this end, we use local bond-order analysis
introduced by Steinhardt et al. (11) and applied to study nucleation by Frenkel and
coworkers (8, 12, 13). The advantage of this analysis is that it is sensitive only to the
overall degree of crystallinity in the system, but independent of any specific crystal
structure. This requirement is important as otherwise we would apply an external
biasing potential that could force the system to crystallize in a specific structure. A
second advantage is that these bond-order parameters can be constructed so as to be
independent of the reference frame. In particular, the local bond-order parameter
that we use and assign to each particle is suitable to distinguish between crystal
structures that have a sixfold symmetry (i.e., the bcc, fcc, and hcp structures) and
the liquid. It has the following form:

q6(i ) =
(

4π

13

6∑
m=−6

|q6m(i )|2
)1/2

(7)

with

q6m(i ) = 1

Nb(i )

Nb(i )∑
j =1

Y6m(r̂ i j ). (8)

Here, the sum goes over all neighboring particlesNb(i ) of particle i. Neighbors
are usually defined as all particles that are within a given radiusrq around a
particle.Y6m(r̂ i j ) is the m-component of the spherical harmonics evaluated for
the normalized direction vectorr̂ i j between the neighbors. The local bond-order
parameters are sensitive to the degree of orientational correlations of the vectors
that join neighboring particles. In simple liquids, we expect that there are no
preferred orientations around a particle and therefore the correlations decay rapidly.
In contrast, for a particle with a solid-like environment the vectors are correlated.
Thus we expect to obtain a separation of the distribution function for the liquid and
the solid by calculating the correlation function of the vectorsq6 of neighboring
particlesi andj:

q6(i ) · q6( j ) =
6∑

m=−6

q6m(i ) · q∗
6m( j ), (9)

where the asterisk indicates the complex conjugate. We now define two neighboring
particlesi andj as being connected if the dot product exceeds a certain threshold.
In general, this criterion is insufficient to draw a sharp distinction between liquid
and solid particles. We therefore apply a second crystallinity criterion based on
the number of “connections” that a particle has with its neighbors.

This analysis provides us with an unambiguous local criterion to identify solid-
like particles. Finally, we need to have a criterion for identifying clusters. The
criterion we applied is that if two solid-like particles are less than a certain threshold
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distance apart, then they belong to the same cluster. We note that, whereas the
absolute number of particles in the cluster depends somewhat on the choice of
the threshold values, the height of the computed free-energy barriers is fairly
insensitive to the precise criterion that is used.

Using this local bond-order analysis, we can sample the equilibrium distribution
function for the probabilityP(n) in a Monte Carlo simulation. In all cases, we
performed Monte Carlo simulations in the isobaric-isothermal (N PT) ensemble.
In this ensemble, the average of a microscopic quantityA is given by

〈A〉N PT =
∫

dV
∫

dr N A(r N) exp[−β(U (r N) + PV)]∫
dV

∫
dr N exp[−β(U (r N) + PV)]

, (10)

whereU (r N) is the potential energy of the system with particle positionsr N, β =
1/kBT is the reciprocal of the thermal energy,N the number of particles, andP
the applied pressure. Because the formation of crystal nuclei containing more than
ten particles is very rare, we sampled the formation of such clusters using biased
sampling (14). The method is based on the idea that the ensemble average can be
rewritten as follows:

〈A〉N PT = 〈A/W(r N)〉W

〈W(r N)−1〉W
, (11)

where we have introduced an as-yet-unspecified weighting functionW(r N) =
exp[−βω(r N)], whereω(r N) is the biasing potential. The subscript〈. . .〉W indi-
cates an ensemble average according to the biased distribution function
exp[−β(U (r N) + PV)]W(r N). By specifying the weighting functionW, we can
force the system to sample in the relevant regions of phase space.

Because the formation of large nuclei is rare, the probability that two large clus-
ters will exist simultaneously in the system is extremely small. As a consequence,
we can choose a bias potential that controls just the size of the largest cluster in
the system. Somewhat arbitrarily, we chose the bias potential to be a harmonic
function of the size of the largest cluster:

ω[n(r N)] = 1

2
kn[n(r N) − n0]2. (12)

The constantkn determines the range of cluster sizes sampled in one simulation.
The parametern0 determines the center of the “window.” In principle, we should
be able to design a biasing function that makes it possible to sample all cluster
sizes in a single simulation. However, such a “smart” simulation would take much
longer to equilibrate (15). This is why we split the simulation into a number of
smaller simulations that are restricted to narrow, but overlapping, windows of
different cluster sizes. The implementation of the biasing potential in the Monte
Carlo simulation is straightforward. Because the computation of cluster sizes is
relatively time consuming, we do not compute the size of the largest cluster after
every Monte Carlo move. Rather, we carry out a fixed number of Monte Carlo
moves per particle without bias. We then calculate the final cluster size and accept
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or reject the whole sequence of trial moves on the basis of the change in the biasing
potential: exp[−β1ω], where1ω is the difference in the biasing potential after
and before the trajectory. To facilitate the (very slow) stacking rearrangements of
the clusters, we implemented the parallel tempering scheme of Geyer & Thompson
(16). The idea is to run all the simulations in the different windows in parallel and
allow them to exchange clusters between adjacent windows. The actual change
between windowsi, j is accepted according to exp[−β(wn − wo)], wherewo =
ki /2(ni − n0,i )2 + kj /2(nj − n0, j )2 is the energy of the biasing potential before
andwn = ki /2(nj − n0,i )2 + kj /2(ni − n0, j )2 after the change. In practice, what
is exchanged between processors are the minima of the bias potential rather than
the configurations. This requires virtually no communication between different
computer nodes. The Gibbs free energies of the systems in the different windows
are determined up to a constant1Gi (n)/kBT + bi , where the subscripti indicates
the number of the window. To determine the constantbi , we fitted all the free-
energy estimates in the different windows to one polynomial inn. This can be
done by a linear least-squares fit, where we minimize

χ =
nmax∑
n=1

 nw∑
i =1

wi (n)

[
1Gi (n) −

kmax∑
k=1

aknk − bi

]2
 . (13)

Here,wi (n) = 1/σ 2
1Gi (n) is the statistical weight determined by the varianceσ 2

1Gi (n)
of the free-energy measurement, andnw is the total number of windows used in
the simulation. The total number of cluster sizes considered is denoted bynmax

andkmax fixes the order of the polynomial fit.

2.2. Kinetic Prefactor

In atomistic simulations, the kinetic prefactor is usually calculated using the
Bennett-Chandler scheme (17). This scheme was originally devised to study ac-
tivated processes in simple molecular systems. In such systems, barrier crossings
are often almost ballistic, i.e., a system that crosses the top of the free-energy
barrier in the forward direction will, with high probability, continue to form the re-
action products. However, in systems where the motion over the barrier is strongly
damped (e.g., owing to viscous friction), the motion over the free-energy barrier
is diffusive: The probability that a system that crosses the top of the barrier in the
forward direction will end up on the product side, is barely larger than 50%.

When the barrier crossing is relatively diffusive, it is attractive to use a mod-
ification proposed by Ruiz-Montero et al. (18). The principle of both methods is
to generate a large number of independent configurations at the top of the barrier.
These configurations are then used as the starting point for an unbiased trajectory
in which one determines if the nucleus grows and the system crystallizes, or if the
nucleus shrinks. From the number of nuclei that grow and shrink one can extract
the kinetic factor. However, to get a reasonable estimate, one has to simulate a
rather large number of trajectories, on the order of 100.
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Here, we consider barrier-crossing phenomena that are, effectively, purely dif-
fusive. In this case, we can compute the kinetic prefactor directly using the ex-
pression0 = Zρl f +

nc
. After a barrier calculation at number densityρl , the only

unknown quantity isf +
nc

. To computef +
nc

, we assume that the critical cluster grows
and shrinks via the diffusive attachment of single particles. We can then define an
effective diffusion constant for the change in critical cluster size:

Datt
nc

= 1

2

〈1n2
c(t)〉
t

, (14)

where1n2
nc

(t) = [nc(t) − nc(t = 0)]2 is the mean square change in the number
of particles in the critical cluster. Because the slope of this change is related to the
corresponding attachment rates via〈1n2

c(t)〉/t = ( f +
nc

+ f −
nc

)/2, and at the top of
the barrier, the forward and backward rates are equal (f +

nc
= f −

nc
), we get

f +
nc

= 1

2

〈1n2
c(t)〉
t

. (15)

This is a general expression for the calculation of the kinetic factor for diffusive
barrier crossing. Using an MD simulation, one only needs to measure the change
in size of the critical cluster as a function of time. The only restriction is that during
the measurement the critical nucleus needs to fluctuate around its critical value. To
apply this method for the calculation of the attachment rate in a colloidal suspen-
sion, we need to have a simulation technique that generates trajectories following
Brownian dynamics, and hydrodynamic interaction also needs to be considered.
Trajectories following Brownian dynamics can be generated using a kinetic Monte
Carlo scheme proposed by Chichocki & Hinsen (19). To correct for the effect of
hydrodynamic interactions that are known to be important at high-volume frac-
tions, we used an approach proposed by Medina-Noyola (20). We replaced the
free-diffusion coefficientD0 by the short-time self-diffusion coefficientDS

S. We
therefore have to multiply our result by a factorα = DS

S/D0. For hard spheres, sev-
eral (rather similar) functional forms for this factor have been proposed (21–24).
Here, we used the phenomenological expression (1− φ/0.64)1.17 (25) at high-
volume fractionφ. To test our approach, we computed the long-time self-diffusion
coefficient of a dense colloidal suspension of hard spheres. The present method
reproduces the experimental data to within the statistical error (8).

3. HARD-SPHERE COLLOIDS

A collection of hard identical spheres is the simplest possible model system that
undergoes a first-order phase transition. For low-packing fractions, the particles
are in a liquid state, but when the packing fractions exceed a value of 49.4%,
an ordered solid state becomes more stable. This was first shown in computer
simulations by Hoover & Ree (26) in 1968. The experimental realization of
a colloidal suspension that closely mimics the phase behavior of hard spheres
followed approximately 20 years later and was a milestone in soft-matter physics
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(27, 28). More recently, the phase-transition kinetics of hard-sphere colloids has
been studied extensively in experiments (5, 29, 30). However, as mentioned in the
introduction, the interpretation of the data with CNT was rather indirect.

Using the simulation techniques described above, we can compute the rate of
crystal nucleation for hard-sphere colloids by a direct calculation of the nucleation
barrier and the kinetic prefactor (8, 31). We first performed Monte Carlo simula-
tions in the isobaric-isothermal ensembleNPT to compute the crystal-nucleation
barrier at three different pressures,β Pσ 3 = 15, 16, and 17. The corresponding
bulk volume fractions of the liquid areφ = 0.5207, 0.5277, and 0.5343. The
resulting nucleation barriers are shown in Figure 1. As expected, with increasing
volume fraction, the crystal-nucleation barrier decreases. Our simulation results for
the crystal-nucleation barrier can be compared directly to the predictions from CNT
for the nucleation barrier (Equation 1). For the hard-sphere system, the chemical
potential difference can be calculated accurately using phenomenological equa-
tions of state for the liquid and the solid (32). Because the solid-liquid interfacial
free-energyγ of a small crystal nucleus in a supersaturated liquid is not known a
priori we use its corresponding value for a flat interface at coexistence. This value
has been calculated in a recent simulation (7) for three different crystal planes.
Here we useγav = 0.61kBT/σ 2, which is the average of the three crystal planes.
The results for the barrier height based on CNT in order of increasing density are
1G∗/kBT = 27, 15.7, and 10.2. These values are approximately 30–50% lower
than our numerical estimate. This discrepancy might be due to the fact that for
a small nucleus in a supersaturated liquid the interfacial free energy is different
from that of a flat interface at coexistence. For this reason, we also usedγ as a
fit parameter to our results. UsingR = (3n/(4πρS))1/3, we fitted Equation 1 to
our data. The result can be seen as the solid line in Figure 1. The functional form
of the nucleation barrier seems to be described well by CNT, but the values for
the fit parameterγeff(P = 15) = 0.71kBT/σ 2, γeff(P = 16) = 0.737kBT/σ 2,
andγeff(P = 17) = 0.751kBT/σ 2 are higher than the coexistence value and they
increase with volume fraction. If we assume that this dependence is linear, then
our simulation results extrapolate to a value ofγeff(P = 11.7) = 0.64kBT/σ 2 at
coexistence—a value that is very close toγav. For a discussion of the dependence
of the surface free-energy density on supersaturation, see Reference 33.

Our results for the surface free-energy density can also be compared with the
values extracted from experiments. Palberg (4) fitted the data from Harland & van
Megen (5) and obtainedγ = 0.5kBT/σ 2, and for the data from Heymann et al.
(6), he foundγ = 0.54kBT/σ 2. These values are significantly lower than the
numerical estimates.

In the crystal-nucleation experiments, the colloids had a size polydispersity
of approximately 5%. We therefore repeated our simulations for a suspension
with 5% polydispersity. We found that both systems have the same nucleation
barrier at the same1µ (34). Therefore, polydispersity alone cannot account for
the difference between the barrier heights derived from experiment and those
derived from simulation.
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Figure 1 Calculated free-energy barrier for homogeneous crystal nucleation of hard-
sphere colloids. The results are shown for three values of the volume fraction. The
drawn curves are fits to the CNT expression (Equation 1). For the identification of
solid-like particles, we used the techniques described in the text (see Section 3). The
cutoff for the local environment was set torq = 1.4σ , the threshold for the dot product
q6q6 = 20, and the threshold for the number of connections was set to 6. If two solid-
like particles are less than 2σ apart, whereσ is the diameter of a particle, then they are
counted as belonging to the same cluster. The total simulation was split up into a number
of smaller simulations that were restricted to a sequence of narrow, but overlapping,
windows ofnvalues. The minimum of the bias potential was placed in steps of tens, i.e.,
n0 = 10, 20, 30, etc. In addition, we applied the parallel tempering scheme of Geyer
& Thompson (16) to exchange clusters between adjacent windows. All simulations
were carried out at constant pressure and with the total number of particles (solid
plus liquid) fixed. For every window, the simulations took at least 1× 106 MC moves
per particle, excluding equilibration. To eliminate noticeable finite-sized effects, we
simulated systems containing 3375 hard spheres. We also used a combined Verlet and
Cell list to speed up the simulations.
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TABLE 1 Summary of the simulation results for the calculation of the nucleation rate
for monodisperse hard-sphere colloids.

φ ∆G∗ nc f +
c /D0 Log10[ I

∗] λ ∆µ

0.5207 43.0 260 189 −19.3 0.31 0.34

0.5277 27.8 130 43 −13.5 0.46 0.44

0.5342 18.5 75 66 −9.14 0.27 0.54

Here,φ is the volume fraction of the liquid phase.1G∗ is the measured free energy to form a cluster of critical
sizenc. f +

c /D0 is the attachment rate of particles to the critical cluster divided by the free-diffusion coefficient.
I ∗ = I σ 5/D0 is the reduced nucleation rate, andλ is the estimated typical jump distance from the calculation of
the attachment rate.1µ is the difference in chemical potential between the two phases.

Subsequently, we performed kinetic Monte Carlo simulations to compute the
kinetic prefactor and, thereby, the absolute crystal nucleation rate. The results of
our calculations of the attachment rate for the monodisperse hard-sphere system are
summarized in Table 1. Because experimentally determined values for the kinetic
factor often differ by orders of magnitude from those predicted by CNT, it is also im-
portant to compare our computed kinetic prefactor with the one predicted by CNT.
We found that the Zeldovich factor that follows from our numerical calculations is
almost identical to the CNT prediction. This is not surprising, as CNT provides a
good fit to the numerical data for the shape of the barrier. The remaining quantity
to compare is the reduced attachment ratef +

c /D0. If we assume that in Equation 5
DS = DL

S, whereDL
S is the long-time self-diffusion constant, and if we treatλ as a

fit parameter to reproduce our calculated attachment rates, then we get values forλ

in the range 0.27–0.46σ (see Table 1). This jump distance—in the case of colloids
it might be better to call it a diffusion distance— is comparable to the interparticle
spacing in a dense suspension, which seems reasonable. In contrast, experimental
estimates forλ tend to be unrealistically large:λ = 2.8–17σ (4). The identification
DS = DL

S is justified by the fact that the timeλ2/DL
S corresponds to long-time

diffusion.
Using simulation results, we can compute steady-state nucleation rates that can

be compared directly (i.e., without any adjustable parameters) to experiment. In
Figure 2, we show our numerical predictions for the nucleation rate of a monodis-
perse suspension and a suspension with 5% polydispersity. These results can be
compared directly to the experiments on suspensions with the same polydispersity.
In Reference 30, the polydiversity is approximately 2.5%. As shown in Figure 2,
the simulations predict a much stronger dependence of the nucleation rates on
density than is observed in the experiments. This discrepancy between the simu-
lations and experiment is unexpected and significant because hard-sphere colloids
are among the best-studied experimental realizations of a simple liquid. We know
the structural and thermodynamic properties of hard-sphere suspensions quite ac-
curately, and more significantly, these properties tend to be well reproduced by
the ideal hard-sphere model. Hence, large discrepancies between experiment and
simulation cannot be easily dismissed as due to uncertainties in the parameters that
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Figure 2 Reduced nucleation rates (I ∗ = I σ 5/D0) as a function of the volume
fraction of the metastable liquid. The simulation data for monodisperse colloids are
indicated by the*–* , the drawn curve joining the simulation points is meant as a
guide to the eye. In the same figure, we show the experimental results of Refer-
ence 29 (¦), Reference 5 (e and •), Reference 38 (M), and Reference 30 (H).
We also performed simulations on model systems that have the same polydispersity
(5%) as the experimental systems. These simulation results are denoted by the filled
squares.

characterize the colloidal suspension. Rather, we must first envision the possibility
that either our theoretical description of crystallization is inadequate or that what
is measured is not really the steady-state, homogeneous nucleation rate. In fact,
the latter suggestion is not altogether unreasonable, as light-scattering cannot be
used to see the very early stages of crystal nucleation. Second, the experiments
are extremely sensitive to any residual ordering in the solution that may have sur-
vived the preparation of the experimental system. Third, at high supersaturations,
the concentration of crystal nuclei rapidly becomes sufficiently large such that
the interaction between different crystal nuclei may no longer be ignored (35). In
that case, the steady-state nucleation expressions that we employ are no longer
applicable. Dixit & Zukoski (36) developed a purely kinetic model to predict
nucleation rates that yields good quantitative agreement with the experimental
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data. Volkov et al. (37) recently reported molecular dynamic simulations of hard-
sphere crystallization at large supersaturations. In this regime, the simulations
are in good agreement with experiment. In fact, in the simulations by Volkov
et al. (37), the simulation data were analyzed in the same way as the experi-
ments (namely, by studying the time evolution of the first Bragg peak of the static
structure).

A unique feature of the simulations is that they allow us to study in detail
the structure of small crystal nuclei. This is interesting given that Ostwald (39)
had already described the role of metastable phases in crystal nucleation when
he formulated his famous step rule in 1897. This rule states that the phase that
nucleates does not need to be the one that is thermodynamically most stable. In
recent years, there have been several attempts to provide a microscopic explana-
tion for Ostwald’s observation (40–43). Alexander & McTague (40) argue, on the
basis of Landau theory, that if the differences in the liquid and solid densities were
not too great, then the phase that was nucleated from the liquid would be bcc re-
gardless of the structure of the stable (lowest free-energy) phase. Klein & Leyvraz
(41, 42) showed that for deeply quenched systems with long-range interactions,
the critical droplet can have a bcc symmetry, but not a bcc crystalline structure.
Simulations by ten Wolde et al. (13) showed that the situation can be even more
subtle, at least for a Lennard-Jones system: The core of a stable Lennard-Jones
cluster formed a stable fcc structure, whereas the surface of the nucleus showed
indications of a bcc structure. Thermodynamically, the formation of metastable
phases might be explained by differences in interfacial free energies. The for-
mation of a bcc-liquid interface might cost less energy than that of a fcc-liquid
interface. For hard spheres, it is known that the fcc phase is the stable structure,
but the free-energy difference between the fcc and the hcp structure is very small
(<10−3kBT) (44, 45). This means that thermal fluctuations of the order ofkBT
could transform a cluster of 1000 particles from fcc to hcp or just cause stacking
faults. The fcc and the hcp structures differ only in the stacking of close-packed
hexagonal crystal planes. For the fcc structure, the stacking is ABC, whereas for
the hcp structure, the stacking is AB. If the interfacial free energies of a crystal
fcc-liquid, hcp-liquid, or an rhcp-liquid interface are different, then this picture
could completely change. Here, rhcp refers to a random stacking of the close-
packed hexagonal crystal planes. Whether small crystal nuclei are more like fcc or
hcp is not clear. Experiments by Pusey et al. (46) and Haddon et al. (47) indicate
that the fcc structure is favored. However, microgravity experiments by Zhu et al.
(48) showed that, initially, small crystal nuclei have an rhcp structure. A snapshot
of the cross section of a simulated critical nucleus is shown in Figure 3. From a
direct inspection of the nuclei, we found that the structure of the nuclei is rhcp.
To carry out the stacking analysis, the nuclei needed to have a size of at least 150
particles, otherwise the number of layers is too small to distinguish in a meaningful
way between different stackings. To study the structure of even smaller nuclei, we
performed a local bond-order analysis. This analysis also suggests that the rhcp
structure is dominant. This was also found in more recent simulations by O’Malley
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& Snook (49). Surprisingly, these simulations also showed evidence for multiply
twinned nuclei with a decahedral morphology.

4. EFFECT OF POLYDISPERSITY

In practice, the colloidal particles used in the experiments have a distribution of
particle radii (referred to as polydispersity) that is rarely less than 2–3% of the
average radius. To compare our measured nucleation rates with experiments, we
studied the effect of a small polydispersity (up to 5%) (as described in the preceding
sections). For polydispersities up to 5%, we found no effect of polydispersity on
the height of the nucleation barrier. However, experiments on hard-sphere colloids
indicate that crystallization is suppressed if the polydispersity exceeds 12% (50).
This suppression of crystallization is usually attributed to the fact that in polydis-
perse suspensions the freezing point is shifted to higher densities where the system
tends to become glassy. In a glass, the kinetic prefactor0 is expected to be very
small, but the nucleation barrier should continue to decrease with increasing su-
persaturation. To test this, we studied the behavior of the crystal-nucleation barrier
for polydispersities up to 10% (34). We performed Monte Carlo simulations in a
constant-pressure, semigrand-canonical ensemble (as described in Reference 51).
In these simulations, we computed the crystal-nucleation barrier and the structure
of the critical nucleus as a function of both polydispersity and supersaturation. As
with monodisperse suspensions (31), we found that all critical nuclei had a ran-
domly stacked close-packed structure. During crystallization, size-fractionation
occurs (51, 52): The particles that make up the critical nucleus are, on average,
larger than those in the metastable liquid. We found that1G∗, the height of the
nucleation barrier, at fixed|1µ| does not depend on the polydispersity for polydis-
persities≤5% (see Figure 4). However, as the polydispersity is increased beyond
5%,1G∗ increases rapidly. This implies that the probability that a critical nucleus
forms is suppressed in polydisperse suspensions. It follows from Equation 2 [or
actually from its polydisperse equivalent (see Reference 8)] that at constant|1µ|,
the variation of1G∗ with polydispersity is due to an increase of the interfacial
free-energyγ . The increase ofγ with polydispersity runs counter to Turnbull’s
suggestion that the interfacial free energy should be proportional to1H , the latent
heat of fusion (3). For the systems that we studied,1H crosses zero at a poly-
dispersity of 9% (53), where the liquid becomes denser than the coexisting solid
(51). Yet,γ clearly remains nonzero.

Surprisingly, the variation of1G∗ with |1µ| is nonmonotonic. As|1µ| is
increased, the nucleation barrier goes through a minimum (Figure 4). This non-
monotonic behavior of1G∗ is due to the increase ofγ with |1µ|. To illus-
trate this, let us approximate the|1µ| dependence ofγ by γ ≈ γ0(1+ a|1µ|).
Ignoring the slight|1µ| dependence of the solid density, it then follows from
Equation 2 that1G∗ must go through a minimum when|1µ| = 2/a. The
nucleation theorem (54–56) suggests that the minimum in1G∗ is due to the
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Figure 4 Computed dependence of the free-energy barrier for crystal nucleation of
polydisperse suspensions of hard, colloidal spheres. The free energy is expressed in
terms ofkBT , wherekB is Boltzmann’s constant andT is the absolute temperature.
|1µ| (also in units ofkBT) is the absolute difference between the chemical potential
of the liquid and the solid. It is a measure of the degree of supersaturation. The curves
are fits that have been drawn as a guide to the eye. In Table 2 we have collected the data
on the relation between|1µ| and the volume fractionφ of the liquid for the different
systems that we studied, to facilitate comparison with experiment.

inversion of the densities of the polydisperse fluid and the crystal nucleus. In
CNT it is usually assumed thatγ is constant. A linear variation ofγ with |1µ|
has been observed in inorganic glasses (3), but there the constanta is negative
and hence there is no minimum in1G∗. In other systems (57, 58), nonmono-
tonic behavior of1G∗ is induced by a hidden phase transition in the metastable
phase.

The minimum value of1G∗ increases rapidly with polydispersity. Using kinetic
Monte Carlo simulations, we can estimate the value of the kinetic prefactor (19).
We find that, over the range of supersaturations studied, the kinetic prefactors vary
by, at most, one order of magnitude (53). This means that the variation in the rate
of nucleation is dominated by the behavior of1G∗. We estimate that, for colloidal
particles with a radius≥500 nm, homogeneous nucleation will be effectively
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TABLE 2 Supersaturation and volume fraction of polydisperse colloids.

0% 5% 8.5% 9.5% 10%

∆µ φ ∆µ φ ∆µ φ ∆µ φ ∆µ φ

0.339 0.5207 0.310 0.5344 0.385 0.5614 0.397 0.5697 0.382 0.5717

0.439 0.5277 0.349 0.5377 0.451 0.5673 0.465 0.5746 0.419 0.5738

0.538 0.5342 0.395 0.5414 0.512 0.5726 0.509 0.5782 0.455 0.5775

0.448 0.5456 0.728 0.5864 0.565 0.5808 0.587 0.5878

0.544 0.5528 0.833 0.5948 0.575 0.5828 0.959 0.6239

1.088 0.6145 0.616 0.5859

1.260 0.6212 1.125 0.6239

1µ is the supersaturation, andφ is the volume fraction of the colloidal fluid. For a calculation of1µ in polydisperse systems
(see Reference 8). The polydispersity ranges from 0% (left) to 10% (right). The polydispersities quoted in this table and in
the figures, are those of the metastable liquid.

suppressed (less than one nucleus per cm3 per day) when the polydispersity exceeds
10%. This finding has important implications for the morphology of polycrystalline
colloidal materials. Using a simplified version of the analysis proposed by Shi
et al. (57) to estimate the size of crystallites in a polycrystalline sample, it is easy
to derive that the average crystallite size at the end of a nucleation experiment
should scale as exp(1G∗/4kBT). Our observation of a minimum in1G∗ thus
implies the existence of a minimum in the typical crystallite size. This should be
experimentally observable.

We can only compute1G∗ if spontaneous nucleation does not occur in the
course of a simulation. In practice, this implies that we can not study barriers
lower than 15kBT . As a result, we cannot test whether1G∗ in systems with a low
polydispersity (less than 8.5%) also has a minimum. If we assume that we can
extrapolate the increase ofγ with |1µ| to large supersaturations at lower poly-
dispersities, then we predict that a minimum in1G∗ should occur even in nearly
monodisperse systems. Again, this should be experimentally observable because
we should see the formation of larger crystallites if the solution is compressed
rapidly through the region where1G∗ is small.

There are two ways to interpret the experimental finding that crystallization
is not observed in suspensions with a polydispersity>12%: Either crystals do
not form, or they are too small to be observed. Our simulations support the first
interpretation. Using the approach by Shi and colleagues (57), we can estimate the
maximum number of crystallites per unit volume. For a suspension of colloids with
a 500-nm radius, we expect to see less than one crystallite per cubic centimeter,
once1G∗ > 32kBT . In other words, under those conditions, the colloidal glass
is truly amorphous.

Our predictions concerning the structure and free energy of colloidal crystal
nuclei can be tested experimentally. Recently, the technique of confocal scanning
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laser microscopy was applied by Gasser et al. (59) to study the structure and
size of critical crystal nuclei in dense colloidal suspensions. This technique is
perfectly suited to test our predictions. Our prediction concerning the minimum
in 1G∗ is even easier to verify. By visual inspection, one can verify whether
the crystallites that nucleate in strongly supersaturated solutions are larger than
those that form at lower supersaturations. More than a decade ago, Pusey & van
Megen (28) published beautiful images of the morphology of polycrystalline hard-
sphere colloids. [Similar morphologies have recently been observed in a study of
colloidal crystallization in microgravity (Z.D. Cheng, W.B. Russel & P. M. Chaikin,
unpublished data)]. Pusey & van Megen (28) observed an increase of the crystallite
size at large supersaturations. However, they attributed this effect to heterogeneous
nucleation. Hence, a direct test of our prediction is still lacking.

5. WEAKLY CHARGED COLLOIDS

Experiments on colloidal crystallization consistently show that it is much easier to
crystallize charged colloids than uncharged “hard-sphere” colloids. Clearly, long-
ranged repulsion has a large effect on the crystal-nucleation rate. This may even
be true for colloidal suspensions of particles that are only weakly charged. Using
simulations, it is possible to study in detail how repulsive interparticle forces affect
the crystal-nucleation process (60).

We modeled the interaction between the charged colloids with a repulsive hard-
core Yukawa potential:

U (r ) =
{∞ for r < σ

βε
exp(−κ(r/σ−1))

r/σ for r > σ.
(16)

Here,κ is the inverse-screening length in units of the hard-sphere diameterσ and
βε is the value of the Yukawa repulsion at contact.β is a measure of the inverse
temperature (β = 1/kBT), wherekB is the Boltzmann constant.

The hard-core Yukawa potential phase behavior has been mapped in detail by
numerical simulation (61). The computed phase diagram of Azhar et al. (61) shows
a fluid-solid (bcc/fcc) and a solid-solid (bcc/fcc) coexistence line, and the diagram
exhibits two fluid (bcc/fcc) triple points. The main difference between the phase
diagram of the hard-core Yukawa model and that of the pure (i.e., point-particle)
Yukawa potential (62) is the presence of the second triple point. This triple point sets
a lower limit for the strength of the Yukawa interaction for which a bcc phase exists.

Only a few nucleation experiments on charged colloidal suspensions have been
reported. Some of these were based on light-scattering studies (63, 64). More
recently, Gasser et al. (59) reported a confocal microscopy study of homogeneous
crystal nucleation in slightly charged hard-sphere colloids. Recent light-scattering
experiments of crystallization in more highly charged colloids has been reported
by Schöpe & Palberg (65) and Wette et al. (66).
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Figure 5 Calculated barrier heights of the hard-core Yukawa system with
κ = 5 andβε = 2, 6, 8, 20 plotted as a function of supersaturation1µ of
the liquid phase to the stable fcc phase.

We performed a computer-simulation study of crystal nucleation in a hard-
core Yukawa system varying both the amplitude of the Yukawa repulsion and the
magnitude of the screening length. First, we computed the nucleation barrier at
fixed κ = 5 for four different values of the amplitude of the Yukawa repulsion:
βε = 2, 6, 8, and 20 (the results are shown in Figure 5). We found that the charge
has a strong direct effect on the nucleation barrier by loweringγ . This effect
is strongest when only a weak charge is added. Furthermore, we found that the
functional dependence of the barrier height as a function of supersaturation does
not change significantly for different charges. This is in contrast to the experiment
where only a slight dependence of the nucleation rate on supersaturation was
observed. In addition, we found that at the same volume fraction the nucleation
barrier is much lower for weakly charged spheres than it is for hard spheres. This is
partly because the fluid-solid coexistence of the charged spheres occurred at lower
volume fractions, which implies a higher supersaturation. We also computed the
height of the crystallization barrier forκ = 10, 5, and 3.333 at a fixed contact
value,βε = 8. The effect of the range of the repulsive potential on the nucleation
barrier was qualitatively similar.

Using the techniques described above, we computed the kinetic prefactors. We
found that the kinetic prefactors did not vary strongly with either supersaturation or
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interaction potential. Therefore, the behavior of the nucleation rate is reflected by
that of the barrier height. It is interesting to compare the computed crystallization
rates with the results of the confocal microscopy experiments of Gasser et al. (59).
To do this, we need to know the potential parameters that best characterize the
experimental system they used. Because the suspensions studied by Gasser et al.
froze at a volume fractionφ = 0.38, we know it is clear that the colloidal particles
used in those experiments were slightly charged. It is therefore natural to describe
them by a Yukawa model with a freezing point atφ = 0.38. However, this condition
is not sufficient to fix the values of bothκ andε. For instance, ifκ = 5, then the
observed freezing density can be reproduced by choosingβε ∼ 7. Conversely, if
βε = 8, then there are two values ofκ that will reproduce the observed freezing
density (κ ∼ 20 andκ ∼ 6) (61). In Figure 6, we show a comparison of the reduced
nucleation rates reported by Gasser et al. (59) with the simulation results for those
κ-βε combinations that yield a freezing point nearφ = 0.38. The figure shows that
differentκ-βε combinations yield very different nucleation rates. However, slopes
of the different curves are all similar. Thus the main effect of varyingκ andε is to
shift the nucleation curves horizontally. Comparison of the computed nucleation
rates with the experimental data yields two observations: First, the experimental
rates tend to be much higher than the computed rates [Gasser et al. (59) found
−6.9 ≤ log[I ∗] ≤ −6.5 for volume fractions between 45% and 53%]. Second,
and more important, the experiments suggest that the nucleation rate barely varies

Figure 6 Comparison between the experimentally measured nucleation rates (59) and
the simulation data. The nucleation rates are expressed in reduced unitsI ∗ = I σ 5/D0,
whereσ is the hard-core diameter andD0 is the self-diffusion coefficient at infinite
dilution. In the plot, we added only the data sets that match the freezing density of the
experimental system.
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with volume fraction. We were unable to reproduce this behavior with any of the
Yukawa models that we studied.

This discrepancy between experiment and simulation suggests that the experi-
mental system is not well described by a Yukawa model with density-independent
κ andε. Conversely, it is likely that the effective potential parameters of weakly
charged colloids, in the absence of added salt, depend strongly on concentration.
Recent experiments by Sch¨ope (67) clearly illustrated this effect: With increas-
ing concentration, the effective potential of charged polystyrene spheres in dilute
aqueous solution became increasingly hard-sphere-like. If the same phenomenon
occurs in more concentrated suspensions (59), then experimental results of the
nucleation rates at different densities should be compared with the numerical pre-
dictions that correspond to different effective Yukawa potentials. Figure 6 shows
that the variation of the nucleation rate with density can be strongly reduced (and
may even become nonmonotonic) if, as we expect,ε andκ decrease with den-
sity. However, whether this effect is large enough to account for the apparent
discrepancy between experiment and simulation is not clear. A truly quantitative
comparison between simulation and experiment requires better knowledge of the
density dependence of the effective interaction between slightly charged colloidal
spheres.

The repulsive Yukawa system offers a unique opportunity to study the ef-
fect of metastable crystal phases on the pathway for crystal nucleation. To study
the effect of metastable intermediates on crystallization, we analyzed the struc-
ture of the precritical nucleus in different regions of the phase diagram. The pres-
sure range region where the bcc phase is stable is rather narrow. For these pressures,
the supersaturation of the fluid phase is small; therefore, the nucleation barrier is
very high. As a consequence, we can only study the formation of precritical nuclei
in the fcc regime. To study the structure of the precritical nuclei, we used the local
bond-order analysis proposed by ten Wolde et al. (13). In their analysis, the local
bond-order signature of a nucleus is decomposed into the signatures of the different
bulk structures (liquid, fcc, and bcc) using a linear least-squares fit. The value of
the resulting coefficients{ fliq, ffcc, and ffcc} are a measure of the structure of the
nucleus. Our simulations showed that the precritical nuclei always have a strong
bcc signature. Only for larger postcritical nuclei well within the fcc regime did
we find a mixture of bcc and fcc signatures. In this sense, our simulations unam-
biguously support the prediction that nucleation into bcc nuclei is always uniquely
favored, even when the fcc phase is closer in free energy to the fluid phase.

Figure 7 shows the results of our cluster analysis for two distinct nuclei of
size n = 100 andn = 200. The picture shows the variation of the structural
signature corresponding to the distance from the center of the mass of the nucleus.
The results shown in this figure are valid forκ = 10 andβε = 8. These results
correspond to the points in the phase diagram where the preference for the fcc
structure is strongest. The core of the cluster of sizen = 100 has a clear bcc
signature, whereas the fcc phase does not seem to play a role. However, for the
larger nuclei (n = 200), the core of the nuclei becomes fcc-like, whereas the
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Figure 7 Structure analysis of two independent crystal nuclei of sizen = 100 and
200 from the simulations with parametersβε = 8 andκ = 10. The figure shows
the results for the fit parameters of the local bond-order analysis as a function of the
distance from the center of the mass of the nuclei. The core of the cluster of size
n = 100 has a clear bcc signature, where the cluster of sizen = 200 shows a clear fcc
structure.

bcc phase seems to disappear. Here, the cluster transformation happened before
it could reach critical size. This phase transition in the precritical nucleus allows
us to quantify what value of the bcc-fluid interfacial free energy is needed to
compensate for the difference in the chemical potential of the two bulk structures.
From our free-energy calculations,µbcc − µ f cc = 0.082(±0.01)kBT . We used
the CNT expression for the barrier height to estimate the fcc-liquid interfacial free
energy:γ f cc = 0.45kBT/σ 2. The transformation from bcc to fcc nuclei occurred
for n ≈ 100. At that point, the gain in bulk free energy is 100× 0.082= 8.2kBT .
This free-energy gain must be compensated by the increase in surface free energy
as the crystallite transforms from bcc to fcc. To estimate this surface free energy,
we need to know the radius of the crystal nucleus forn = 100. If we assume that
the nucleus is spherical and that the solid is effectively incompressible, we arrive at
the estimateγbcc = 0.38kBT/σ 2. We found such a precritical transformation from
bcc to fcc forβε = 2 with κ = 5, and forβε = 8 with κ = 10 and 3.33333. In all
other cases (βε = 6, 8, 20 with κ = 5), even the critical nuclei had a strong bcc
signature.
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6. PHSA-COATED PMMA PARTICLES

Our findings for the weakly charged colloids suggest that even a slight “softness”
of the intermolecular potential has important consequences for the crystallization
behavior. This effect can be relevant for experimental hard-sphere colloids, as these
particles are, in fact, slightly soft. A particularly popular experimental hard-sphere
colloid consists of a polymethylmethacrylate (PMMA) core coated with a thin
layer of poly-12-hydroxystearic (PHSA). Because of the coating, the particles are
slightly soft. We studied the effect that such a softness has on the phase behavior
and the crystallization kinetics of these particles (68). In our simulations, we used
an interaction potential extracted from the surface force measurements of that
system (69, 70). This potential is characterized by two parameters, the thickness
and the density of the PHSA layer. We found that the freezing density measured in
the experiments corresponded to a layer thickness that is approximately twice as
large as the thickness measured in the surface force experiment. This discrepancy
may be attributed to a slight charge on the particles. On the basis of a comparison
between the experimental and numerical results, we estimated that only a very
small charge (less than one electron per sphere) was needed to account for the
discrepancy. More recent experiments by Bryant et al. (71) indicated that the
polymer layer thickness is even smaller, which suggests that the charge may even be
higher. Depending on the nature of the suspension, PHSA-coated PMMA particles
also exhibit long-range forces (72).

For the crystallization kinetics, we found that the nucleation rate is increased by
two orders of magnitudes at constant1µ. This cannot account for the discrepancy
between the nucleation rates observed in experiments and simulations.

7. WALL-INDUCED CRYSTALLIZATION

Thus far, we have focused on the homogeneous nucleation in colloidal suspensions.
However, in the real world, crystallization is usually initiated by heterogeneous
nucleation. If ice could only form through homogeneous nucleation, the freezing
of water would be a rare phenomenon in countries with moderate climates.

To study the effect of an external surface on the crystallization process, we
studied the behavior of monodisperse hard-sphere colloids near a plane hard wall
(73). Depending on the nature of the surface, this behavior may have different
effects on the freezing transition. One possibility is that the crystal phase “wets”
the surface: Here, one or more crystalline layers form at the surface before the
bulk freezing transition. Alternatively, the crystal may partially wet the wall, in
which case crystal nucleation from a supersaturated solution takes place at the
wall, rather than in the bulk.

The effect of a structured surface on the crystallization of hard-sphere colloids
has been extensively studied in experiments (74–77). These experiments indicate
that crystallization on a template is induced at densities below freezing. Computer
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simulations by Heni & L¨owen (78) of hard spheres in contact with a patterned
substrate support this finding. These simulations indicate that surface freezing
already sets in 29% below the coexistence pressure. Furthermore, the effect of a
surface on crystallization has also been studied in mixtures of binary hard spheres
(79, 80) as well as colloid polymer (81–83). In both systems, surface crystallization
took place before bulk fluid-solid coexistence. In the systems studied in References
79–83, depletion forces favored the accumulation of the larger component on the
wall, and this facilitated surface crystallization (84).

For pure hard-sphere systems confined by flat walls, it is not a priori clear
if bulk freezing is preceded by surface crystallization. Yet, we are not aware of
any systematic experimental studies of surface crystallization in pure hard-sphere
systems. Courtemanche & van Swol (85) reported a numerical study of a (rather
small) one-component hard-sphere system, confined between two plane hard walls.
These simulations suggested that surface crystallization occurred at a pressure
some 3% below the coexistence value.

Before we present the simulation results, we briefly discuss the effect that a
wall has on crystal nucleation in the context of CNT. Turnbull (86) extended
CNT to heterogeneous nucleation of a crystal that forms on a plane substrate. The
difference between this and the homogeneous case is that now two interfaces are
present. The Gibbs free energy of a crystal containingn particles is given by

1G(n) = n1µ + Aws(γws − γwl ) + Alsγls, (17)

where the subscriptsw, l , ands refer to the wall, the liquid, and the solid, re-
spectively. In this formulation, the contribution to1G(n) attributable to the line
tension is neglected. The dependence of the interfacial free energy on the surface
orientation is also ignored. Depending on the values for the interfacial free-energy
densities, we distinguished the three different cases mentioned above. For the
hard-sphere system, we can speculate what scenario should apply, as all relevant
surface free energies have been estimated numerically (7, 87), at least at coexis-
tence. These numbers suggest that the{110} plane will not attach to the wall. In
contrast, the{100} planes are expected to partially wet the wall. For the{111}
plane, the situation is not as clear. The values for the surface tensions are such that
the{111} plane is expected to be at, or very close to, complete wetting.

To explore the pathway for wall-induced crystallization, we performed Monte
Carlo simulations in the constant normal-pressure (N P⊥T) ensemble. The simplest
way to detect prefreezing is to measure the density profile of the particles between
the two walls. If crystallization at the wall had taken place, it would have caused a
pronounced dip between the first and second peak in the density profile. No such
behavior was observed, even at pressures well above the coexistence pressure
P∗

coex = 11.57 (the pressure is expressed in units of the particle diameterσ and
the thermal energykBT : P∗ = Pσ 3/kBT .) (Below, we omit the asterisk.) The
situation changed when the excess pressure was increased to1P = P − Pcoex =
0.63. The liquid started to crystallize. These results indicated that supersaturation
is needed to induce crystallization. Yet, the degree of supersaturation needed to
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induce nucleation is very small compared with that typical for bulk systems. In
fact, in simulations of homogeneous systems of comparable size, the rate of crystal
nucleation during a simulation of similar length is negligible up to excess pressures
that are an order of magnitude larger [1P ≈ 5.4 (φ ≈ 0.53)]. To identify the early
stages of crystal nucleation, we used a local bond-order analysis (31) to distinguish
between particles with a liquid-like and those with a solid-like local environment.
Only a few small crystalline clusters can be identified. These clusters form and
break up spontaneously. Under the same conditions, not a single solid-like cluster
formed in the bulk of the fluid.

A more quantitative measure of the effect of the surface on crystal nucleation
was obtained from a direct calculation of the crystal-nucleation barrier. The results
for the free-energy barrier calculated at a pressure1P = 0.53 is shown in Figure 8.
At this pressure, the estimated barrier height is1G∗ = 16kBT at a critical cluster
sizenc = 150.

We can compare this estimate with a prediction for the barrier height in a homo-
geneous system. For the hard-sphere colloids discussed above, given the correct
value for the interfacial free energy, CNT describes the barrier height quite well

Figure 8 Calculated nucleation barrier1G(n) of a crystal nucleus formed at the wall
as a function of its sizen ( filled dots). In the figure, we show two fits to the nucleation
barrier: The dashed curve assumes the published values for the surface free energies
and uses a curvature-independent line tension. To obtain the drawn curve, we usedγwl

as a fit parameter, and we assumed that the line tension was curvature-dependent. If we
had used the CNT expression (Equation 17), there would not be a nucleation barrier at
this supersaturation.
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(31). But we also found that the interfacial free energy depends on density. Because
the present system is close to coexistence, we used its average coexistence value
γav = 0.61kBT/σ 2 (7). We then obtained1G∗

C N T = 1334kBT at a critical cluster
size ofnc = 52, 000. The overall reduction of the nucleation barrier attributed to
the plane wall was approximately two orders of magnitude, resulting in a huge
[O(10570)] increase in the nucleation rate. The computed nucleation rate per unit
area was∼10−9 (in units D0/σ

4). The implication for experiments is that crys-
tallization of suspensions of hard-sphere colloids can proceed heterogeneously
whenever a sufficiently flat surface is available. Yet, somewhat surprisingly, no
systematic experimental observations of surface-induced freezing in hard-sphere
colloids exist to our knowledge, even though most bulk crystallization studies are
performed in containers with effectively flat walls.

When we compared the computed nucleation barrier with the predictions of
CNT (Equation 17) we found that this expression seriously underestimated
the height of the nucleation barrier. In fact, CNT predicts that, at an excess pressure
1P = 0.53, where1µ = −0.05kBT (32), the barrier to nucleation is negligible
compared withkBT . To resolve this discrepancy, we are forced to take into ac-
count the line tensionτLine of the crystal nuclei on the wall. If we attempt to fit our
numerical data to Equation 17 including a term attributable to line tension, we can
reproduce a nucleation barrier with the same height as that found in the simulations,
but the shape of the simulated barrier is reproduced rather poorly (see Figure 8). A
much better fit can be obtained by allowingγwl to vary within the bounds set by the
large estimated error in the computed value: 1.99(±0.18)kBT/σ 2. In addition, we
have to allow for a curvature correction of the line tension:τLine = τ∞+c/R. This fit
yieldsτ∞ = 0.43kBT/σ ,c = 1.1kBT , andγwl = 2.016kBT/σ 2. With this value of
γwl , the condition for complete wetting is satisfiedγws+γsl−γwl = −0.02kBT/σ 2.
This agrees with the conclusion of Reference 85. However, the statistical inaccu-
racy in this estimate is appreciable. We can obtain a rough estimate ofτ∞ by
assuming that the contribution to the free energy attributable to line tension is
really nothing but the surface free energy of the lateral surface of a cylinder of
height 1σ . Assuming that the lateral surface free-energy density is equal to approx-
imatelyγ

(110)
ls , our estimate forτ∞ is τ∞ ≈ 0.64kBT/σ , which is within 50% of

the numerical result. An estimate of the curvature correction toτLine would be even
cruder.

From the simulations we can also determine the orientation and shape of the
incipient crystal nucleus. Figure 9 shows a snapshot of a critical nucleus containing
150 particles. The figure also clearly shows that the{111}plane attaches to the wall.
The critical nucleus is quite flat. Clearly, small nuclei prefer to spread on the surface
rather than to grow into the bulk. This is in agreement with the CNT predictions
made where the{111} face completely or nearly completely wets the wall. The
fact that the range of metastability becomes very narrow provides a powerful tool
for determining the freezing density in experiments. Using confocal microscopy,
detecting the formation of crystallites on a flat surface should be possible. Pro-
vided the interaction of the particles with the wall is the same as the interparticle
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Figure 9 Sideview of the snapshot of a crystal nucleus of size
n = 150.

potential, such crystallites will be observed first under conditions where the bulk
density differs less than 1% from its value at coexistence. Our simulations suggest
that prefreezing first occurs at a pressure that is approximately 2% below the coex-
istence pressure, but, as explained above, this estimate is subject to a large statistical
uncertainty.

8. CONCLUDING REMARKS

Computer simulations of crystal nucleation play a dual role. On the one hand,
they can be used as a direct test of existing nucleation theories, and on the other
hand, they can be compared directly with experiments (provided we have a good
model for the experimental system). The fact that both types of comparisons lead to
discrepancies is interesting. The discrepancies suggest that the existing nucleation
theories may need to be improved, and they indicate that there is something wrong
with our interpretation of nucleation experiments. There may be a problem with
our model or with our assumptions about the experimental conditions of steady-
state homogeneous nucleation. Of course, there also may be problems with our
numerical approach. We consider the latter possibility here. As we discussed above,
there is a certain degree of arbitrariness in the choice of the order parameter that
measures crystallinity. Therefore, the reported size of the crystal nuclei should
be taken with caution. However, as long as the real size of the nucleus is related
linearly to the computed size, the height of the nucleation barrier is not affected by
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a different choice of order parameter. Any estimate of the surface free energy that is
based on this height is, therefore, also insensitive to the choice of order parameter.
However, if we use the complete shape of the nucleation barrier to compute the
surface free energy, then we may find that the results depend on the choice of order
parameter. In fact, this is not surprising, as the surface free energy of a spherical
object necessarily depends on our choice of the location of the surface (e.g., surface
of tension or equimolar surface). Finally, the nucleation rate should not depend at
all on our choice of order parameter: This is a true, physical observable that cannot
depend on the scheme that we use to compute it.

The classical theory of nucleation is, in essence, a macroscopic theory. However,
at the microscopic level, such a description is not adequate. All observable quan-
tities should be expressed as functions of material properties that are, themselves,
unambiguously observable.
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Figure 3 Snapshot of a cross section of a critical nucleus of a hard-sphere crystal at
a liquid volume fraction φ = 0.5207. The figure shows a three-layer-thick slice
through the center of the crystallite. Solid-like particles are shown in yellow and liq-
uid-like particles in blue. The layers shown in the figure are close-packed hexagonal
crystal planes. The stacking shown in this figure happens to be fcc-like (i.e., ABC-
stacking); however, analysis of many such snapshots showed that fcc and hcp stack-
ings were equally likely.
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