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Abstract: 17 

Splicing is a highly regulated process that depends on numerous factors. It is 18 

particularly challenging to quantitatively predict how a mutation will affect precursor 19 

messenger RNA (mRNA) structure and the subsequent functional consequences. Here 20 

we use a novel Mutational Profiling (-MaP) methodology to obtain highly reproducible 21 

endogenous precursor and mature mRNA structural probing data in vivo. We use these 22 

data to estimate Boltzmann suboptimal ensembles, and predict the structural 23 

consequences of mutations on precursor mRNA structure. Together with a structural 24 

analysis of recent cryo-EM spliceosome structures at different stages of the splicing 25 

cycle, we determined that the footprint of the Bact complex on precursor mRNA is best 26 

able to predict splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT 27 

gene. However, structure alone only achieves 74% accuracy. We therefore developed a 28 

b-regression weighting framework that incorporates splice site strength, structure and 29 
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 2 

exonic/intronic splicing regulatory elements which together achieves 90% accuracy for 30 

47 known and six newly discovered splice-altering variants. This combined 31 

experimental/computational framework represents a path forward for accurate 32 

prediction of splicing related disease-causing variants.  33 

 34 

Introduction 35 

Precursor messenger RNA (pre-mRNA) splicing is a highly regulated process in 36 

eukaryotic cells (Z. Wang and Burge 2008). Numerous factors control splicing including 37 

trans-acting RNA-binding proteins (RBPs), components of the spliceosome, and the 38 

pre-mRNA itself. Pre-mRNA structure is a key attribute that directs splicing, particularly 39 

alternative splicing, but we have only a poor understanding of pre-mRNA structure-40 

mediated splicing mechanisms (Taylor and Sobczak 2020). In addition, it is particularly 41 

challenging to develop quantitative models capable of predicting splicing outcome, 42 

specifically the Percent Spliced In (PSI) for alternatively spliced junctions. This difficulty 43 

is especially true for predicting the effects of genetic variation at exon-intron junctions. 44 

Indeed, mutations may affect not only the binding specificity of RBPs but also may alter 45 

pre-mRNA structure (Tazi, Bakkour, and Stamm 2009).  46 

 47 

Similar to the challenge of predicting PSI outcomes, the consequences of mutations on 48 

pre-mRNA structure are difficult to predict. First and foremost, little is known about 49 

native pre-mRNA structure because pre-mRNAs are relatively short-lived in cells 50 

(Herzel et al. 2017). Only recently has pre-mRNA structure determination become 51 

amenable to high resolution in vivo experimental characterization (Mustoe et al. 2018). 52 

Second, it is not clear what structures of a pre-mRNA control spliceosome assembly 53 

and activity. Finally, we lack quantitative measures for the relative weighting of RBPs’ 54 

affinity for specific motifs in pre-mRNA to the importance of pre-mRNA structure. 55 

Several technical developments address these issues and enable us to propose an 56 

integrated, RNA structure based-framework that accurately predicts the percent of 57 

splicing. In this study, we used a combination of endogenous pre-mRNA chemical 58 
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structure probing (Homan et al. 2014), an RNA structure model that considers multiple 59 

alternative structures in equilibrium (Dethoff et al. 2012; Lai et al. 2018), quantitative 60 

analysis of exonic and intronic splicing enhancers/silencers (Fairbrother et al. 2002; Z. 61 

Wang et al. 2004; Yang Wang, Ma, et al. 2012; Yang Wang, Xiao, et al. 2012), and a b-62 

regression weighting (Ferrari and Cribari-Neto 2004). 63 

 64 

In this work we measure endogenous pre-mRNA structure in vivo by combining recent 65 

developments in RNA structure Mutational Profiling (so-called -MaP approaches) with 66 

targeted amplification of specific exon-intron junctions. This novel approach enables us 67 

to obtain single-nucleotide RNA structure probing data for endogenous pre- and mature 68 

mRNAs in the same cell. The high reproducibility of these data also makes it possible to 69 

use Boltzmann suboptimal sampling guided by the data (Spasic et al. 2018) to predict 70 

free energies of unfolding for an ensemble of structures. In addition, we can now 71 

leverage recent high resolution cryo-Electron Microscopy (cryo-EM) structures of 72 

various stages of the spliceosome during the splicing cycle to reveal the effective 73 

spliceosomal footprint on pre-mRNA (L. Zhang et al. 2019). 74 

 75 

As a model system to validate our framework, we study the effects of 47 experimentally 76 

measured mutations at the Exon10-Intron10 junction of the human Microtubule-77 

Associated Protein Tau gene, MAPT (Park, Ahn, and Gallo 2016; Catarina Silva and 78 

Haggarty 2020). Exon 10 is a cassette exon that is alternatively spliced resulting in a 79 

Tau protein with either four microtubule binding repeats (4R) or three repeats (3R). The 80 

ratio of 3R to 4R isoforms is approximately 1:1 (Hefti et al. 2018). This is highly unusual 81 

for a splicing event as single-cell RNA-seq analysis demonstrates that this type of 82 

event, where alternative isoforms are expressed equally, comprises less than 20% of all 83 

splicing events (Song et al. 2017). The Exon10-Intron10 junction has 29 clinically 84 

validated disease-causing mutations (Stenson et al. 2003) that impair the function of 85 

Tau protein and are implicated in many neurodegenerative diseases (Spillantini et al. 86 

1998; Hutton et al. 1998; Clark et al. 1998; Rizzu et al. 1999; Goedert et al. 1999). 87 

Although some mutations alter the Tau protein sequence (Mirra et al. 1999; Iseki et al. 88 
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2001), 20 disease-associated mutations are known that deregulate MAPT pre-mRNA 89 

splicing by altering the 1:1 ratio of 3R to 4R MAPT isoforms (Hutton et al. 1998; 90 

D’Souza et al. 1999; Hasegawa et al. 1999; Jiang et al. 2000). An additional 27 91 

mutations were previously experimentally tested to measure Exon 10 PSI with splicing 92 

assays (D’Souza and Schellenberg 2000; Tan et al. 2019; Grover et al. 1999), making 93 

this junction the most experimentally characterized junction of clinical importance in the 94 

human genome and an excellent system for developing forward predictive models of 95 

splicing. Our work thus provides a framework for integrating endogenous pre-mRNA 96 

structure probing data with our current structural understanding of spliceosome 97 

assembly and trans-acting RBPs to achieve unprecedented quantitative prediction 98 

accuracy of the effect of mutations at structured exon-intron junctions. 99 

 100 

Results 101 

Median ratio of individual and tissue 3R to 4R MAPT mRNA isoforms is 1:1  102 

Splicing of MAPT Exon 10 yields a 1:1 ratio of alternatively spliced isoforms (Goedert et 103 

al. 1989; Andreadis 2005). To corroborate the 1:1 isoform ratio among tissues and 104 

individuals, we analyzed RNA-sequencing data from the Genotype-Tissue Expression 105 

(GTEx) database (Lonsdale et al. 2013). We selected tissue types with median MAPT 106 

transcripts per million greater than 10 (Figure 1-figure supplement 1A) and calculated 107 

the Percent Spliced In (PSI) value for Exon 10 for each sample (Figure 1A-source data 108 

1; Materials and methods). We examined the distribution of PSIs for each tissue type 109 

over 2,315 tissue samples in 375 individuals of median age 61 (Figure 1A; Figure 1-110 

figure supplement 1B). A PSI of 0 indicated that none of the MAPT transcripts in a 111 

sample had Exon 10 spliced in (3R isoform), whereas a PSI of 1 corresponded to all 112 

MAPT transcripts having Exon 10 spliced in (4R isoform). We found variation in Exon 10 113 

PSI both within and between different tissue types; the pituitary gland had the largest 114 

variation among brain tissues, and the cerebellum had the least variation but the 115 

difference between the two standard deviations was 0.04. Also, while the pituitary gland 116 

and caudate had the lowest and highest median Exon 10 PSI respectively among 117 
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individual samples, the distance between the two values was only 0.25. Interestingly, 118 

although MAPT’s function in breast tissue is not understood compared with its function 119 

in the brain, for breast tissue, individuals had greater variation in Exon 10 PSI and a 120 

lower median PSI compared with the pituitary gland (Figure 1-figure supplement 1B). 121 

We also discovered a large amount of variation within tissues of an individual (Figure 1-122 

figure supplement 1C), although there was significantly greater variation between 123 

individuals than within a single individual (see Supplementary file 1 for ANOVA table). 124 

Overall, 75% of samples were within a standard deviation of the median PSI of 0.54, 125 

which confirmed that the 3R to 4R isoform ratio was approximately 1:1 among 126 

individuals and within different tissue types. The consistency of this isoform ratio, 127 

despite the likely presence of different levels of RBPs, suggest that inherent sequence 128 

and structural features regulate splicing at this exon-intron junction. RNA structure 129 

regulates alternative splicing around exon-intron junctions (Warf and Berglund 2010; 130 

Buratti and Baralle 2004) and a hairpin structure at the exon 10-intron 10 junction is 131 

implicated in establishing the 3R to 4R 1:1 isoform ratio (Hutton et al. 1998; Varani et al. 132 

1999; Grover et al. 1999; Donahue et al. 2006). Hence, we next used high-throughput 133 

chemical mapping techniques to interrogate the endogenous in vivo structure of the 134 

MAPT junction. 135 

 136 

Structure of 3R and 4R MAPT mature mRNA isoforms is open and accessibility of 137 

exons is similar for the two isoforms 138 

Although the structure of the MAPT pre-mRNA was previously studied computationally 139 

and in vitro (Varani et al. 1999; Lisowiec et al. 2015; Tan et al. 2019; Chen et al. 2019), 140 

the structures of the mature 3R and 4R isoforms and MAPT pre-mRNA have not been 141 

assessed in their endogenous in vivo context. We used dimethyl sulfate (DMS) to 142 

chemically probe RNA structure in T47D and neuronal SH-SY5Y cells and primer-143 

amplified the Exon 9-Exon 11 and Exon 9-Exon 10-Exon 11 junctions during library 144 

preparation for Mutational-Profiling (-MaP) (Figure 1B; Materials and methods). This 145 

approach leverages the read-through aspect of MaP technology to probe the structure 146 

of two alternatively spliced isoforms in the same cells. DMS reactivities for replicates, 147 
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and between T47D and SH-SY5Y MAPT mRNAs were highly correlated (Figure 1-figure 148 

supplement 2A; Figure 1-figure supplement 2B; Figure 1-figure supplement 2D; Figure 149 

1-figure supplement 2E).  150 

 151 

We also collected in vivo DMS data for the small ribosomal RNA (SSU) whose 152 

secondary structure is known from X-ray crystallography (Petrov et al. 2014) (Figure 1-153 

figure supplement 3A). The DMS reactivities for unpaired nucleotides in the SSU were 154 

significantly higher than for paired nucleotides (Figure 1-figure supplement 3B), 155 

confirming our probing strategy accurately recapitulates RNA secondary structure. We 156 

used the SSU in vivo data to calibrate the estimation of equilibrium ensembles as 157 

guided by MaP technology (Methods and materials), and we validated that structure 158 

prediction guided by experimental DMS reactivities yielded more accurate estimation of 159 

the SSU structure (Figure 1-figure supplement 3C). The median DMS reactivity of the 160 

mature MAPT isoforms was 0.22, significantly greater than the median DMS reactivity of 161 

the SSU, 0.0083 (Figure 1-figure supplement 3D); these results suggested that the 162 

nucleotides of the mature MAPT isoforms were more accessible and unpaired 163 

compared with the highly structured SSU, indicating that our endogenous in vivo 164 

probing strategy reveals important differences in the structure of cellular RNAs. 165 

 166 

Reactivities of Exon 9 and Exon 11 were highly correlated between the 3R and 4R 167 

isoforms (Figure 1-figure supplement 2C). Additionally, computed base-pairing 168 

probabilities guided by the experimental data for the two isoforms revealed that, 169 

although there were some long-range interactions, 66% of base pairs spanned less than 170 

50 nucleotides and were contained within the exon units (Figure 1B). This result 171 

suggested that the mature exons function as their own structural unit. However, the 172 

mature isoform structures did not suggest how they might regulate splicing of Exon 10. 173 

Hence, we next chemically probed the MAPT pre-mRNA.  174 

 175 

 176 

 177 
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 178 

Figure 1: In vivo DMS-MaP structure probing data for 3R and 4R mature MAPT 179 

transcripts that are expressed in a 1:1 ratio.   180 

A) Ratio of 3R and 4R MAPT transcripts is approximately 1:1 among brain tissues. 181 

There are 14 exons alternatively spliced in MAPT. Exons 4A, 6, and 8 are not 182 

found in brain mRNA. The four exons highlighted in color are repeat regions that 183 

form the microtubule binding domain in the Tau protein. Exon 10 is alternatively 184 

spliced to form the 3 repeat (3R) or 4 repeat (4R) isoform. The six canonical 185 

transcripts found in the central nervous system can be separated into 3R and 4R 186 

transcripts. Percent Spliced In (PSI) of Exon 10 was calculated from RNA-seq 187 

data for 2315 tissue samples representing 12 central nervous system tissue 188 

types and collected from 375 individuals in GTEx v8 database. The violin plot for 189 

each tissue type and the corresponding region on the brain diagram is colored by 190 

the median PSI for all samples of a given type. The patterned regions on the 191 

brain diagram indicate tissue types with no data. Tissue types Spinal cord and 192 
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 8 

Nucleus accumbens are not visualized on the brain diagram. The median PSI of 193 

0.54 among all tissue samples is indicated by the red dotted line. 194 

B) In vivo DMS-MaP structure probing data across exon9-exon11 junction of 3R 195 

mature MAPT transcript. T47D cells were treated with DMS. Structure probing 196 

data for junctions of interest were obtained using primers (Supplementary file 4) 197 

following RT of extracted RNA. DMS reactivity is plotted for each nucleotide 198 

across spliced junctions.  Each value is shown with its standard error and colored 199 

by reactivity based on color scale. High DMS reactivities correspond to 200 

unstructured regions, whereas low DMS reactivities correspond to structured 201 

regions. The base pairs of the predicted secondary structure guided by DMS 202 

reactivities are shown in the arcs colored by pairing probabilities.  203 

C) In vivo DMS-MaP structure probing data across exon9-exon10-exon11 junction 204 

of 4R mature MAPT transcript  205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 
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MAPT pre-mRNA Exon 10-Intron 10 junction is more structured compared with the 222 

mature isoforms 223 

Existence of a hairpin at the MAPT Exon 10-Intron 10 junction, implicated in regulating 224 

Exon 10 splicing, was established by NMR and in vitro chemical probing (Varani et al. 225 

1999; Lisowiec et al. 2015); however, the endogenous in vivo structure of this region 226 

has yet to be determined. While collecting data for mature MAPT isoform junctions, we 227 

simultaneously obtained data for the pre-mRNA Exon 10-Intron 10 junction (Figure 2A; 228 

Materials and methods). Replicates were highly correlated (Figure 2-figure supplement 229 

1A). Surprisingly, although Exon 10 was still being spliced, the reactivities for Exon 10 in 230 

pre-mRNA and the mature 4R isoform were highly correlated (Figure 2-figure 231 

supplement 1B). Again, base pairing between nucleotides appeared to be contained 232 

within exons, independent of introns. The reactivities were highly correlated between 233 

data collected in SH-SY5Y and T47D cells (Figure 2-figure supplement 1C); thus, 234 

despite likely differences in RBP concentrations, the structure of the pre-spliced region 235 

is the same between cell lines. Additionally, we found lower DMS reactivities for the pre-236 

mRNA Exon 10-Intron 10 junction compared with the mature isoform junctions (Figure 237 

2-figure supplement 1D), which suggests that pre-mRNA is more structured than mature 238 

mRNA. We uncovered strong evidence for the previously in vitro identified hairpin 239 

structure in the DMS reactivity data; pairing probabilities were greater than 0.8 for the 240 

entire hairpin stem (Figure 2A).  241 

 242 

Shifts in structural ensemble of MAPT Exon 10-Intron 10 junction associated with 243 

disease mutations correlate with changes in splicing level of Exon 10 244 

Many RNAs inhabit multiple conformations in vivo to form a structural ensemble instead 245 

of a single rigid structure (Halvorsen et al. 2010; Adivarahan et al. 2018). We posit that 246 

a structural ensemble at the MAPT Exon 10-Intron 10 junction regulates Exon 10 247 

splicing and disease mutations alter the composition of the structural ensemble to 248 

disrupt splicing. 249 

 250 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.09.13.460117doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460117
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

We used Boltzmann sampling of RNA structures guided by DMS reactivity data (Spasic 251 

et al. 2018) (Materials and methods) to sample 1000 structures for the wild type and two 252 

mutant intronic sequences, +15A>C and +19C>G. The two mutations alter, in opposite 253 

directions, the isoform ratio at this junction (Tan et al. 2019). We visualized the 254 

structural ensemble for the 3000 structures using t-Distributed stochastic neighbor 255 

embedding (t-SNE) (Van Der Maaten and Hinton 2008) (Figure 2B; Materials and 256 

methods). Each structure is a dot and is colored by the DG‡ of unfolding of the 5’ splice 257 

site defined as the last three nucleotides of Exon 10 and the first six nucleotides of 258 

Intron 10 (Yeo and Burge 2004). The lower the unfolding free energy, the easier to 259 

unfold the structure. Overall, although there was a range of unfolding free energies for 260 

the three ensembles, there were three distinct populations of free energies for the three 261 

sequences (Figure 2-figure supplement 2A). We used k-means clustering to identify 262 

representative structures for each cluster (Figure 2B; Figure 2-figure supplement 2B; 263 

Materials and methods). We quantified and visualized the density of the clusters (Figure 264 

2C; Materials and methods) and revealed distinct regions in the structure space 265 

occupied by each sequence. More than 55% of structures in the ensemble of the 266 

+19C>G mutation, which shifts the isoform balance entirely 3R (3R mutation) (Figure 267 

2C inset), clustered in the lower left quadrant with larger unfolding free energies for the 268 

splice site. This result was evidenced by the highly base-paired exon-intron junction in 269 

the representative structure for the cluster. Hence, in the presence of the 3R mutation, 270 

the structural ensemble of the junction shifted towards more closed structures. 271 

Conversely, greater than 50% of structures in the ensemble of the +15 A>C mutation, 272 

which shifts the isoform balance entirely 4R (4R mutation) (Figure 2C inset), were 273 

clustered in the upper left quadrant with lower unfolding free energies for the splice site. 274 

The representative structure for this region was more open and accessible around the 275 

exon-intron junction. Correspondingly, the wild-type sequence had structures distributed 276 

across the entire space consistent with an ensemble of structures. The exon-intron 277 

junction of the representative structure for this region was not as accessible with the 4R 278 

mutation, but it had fewer base-pairs than with the 3R mutation, a result recapitulated by 279 
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the two other representative structures in the right quadrants (Figure 2-figure 280 

supplement 2B).  281 

 282 
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Figure 2: The 4R and 3R mutations shift DMS reactivity-guided structural ensemble of 284 

Exon 10-Intron 10 junction to more open and closed structures, respectively.   285 

A) In vivo DMS-MaP structure probing data across Exon 10-Intron 10 junction of 286 

precursor MAPT transcript. T47D cells were treated with DMS. Structure probing 287 

data for junctions of interest were obtained using primers (Supplementary file 4) 288 

following RT of extracted RNA. DMS reactivity is plotted for each nucleotide.  289 

Each value is shown with its standard error and colored by reactivity based on 290 

the color scale. High DMS reactivities correspond to unstructured regions, 291 

whereas low DMS reactivities correspond to structured regions. Base pairs of 292 

predicted secondary structure guided by DMS reactivities are shown by arcs 293 

colored by pairing probabilities. Strongly predicted hairpin structure near exon-294 

intron junction is highlighted by dotted box. 295 

B) t-SNE Visualization of structural ensemble of wildtype (WT) and, +19C>G (3R) 296 

and +15A>C (4R) mutations. Structures were predicted using Boltzmann 297 

suboptimal sampling and guided by DMS reactivity data generated in A. Data 298 

were visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE). 299 

Shown are 3000 structures corresponding to 1000 structures per sequence. 300 

Each dot represents a single structure and is colored by calculated unfolding free 301 

energy of splice site at exon-intron junction (3 exonic, 6 intronic bases). Data 302 

were clustered by k-means clustering and representative structures for three of 303 

the clusters are shown. The exon-intron junction is marked by EIJ on each 304 

structure. Positions of 3R and 4R mutations are marked by a red asterisk on their 305 

respective representative structures. 306 

C) Density contour plots of structural ensemble of WT and, 3R and 4R mutations. 307 

Contour plots were derived from the distribution of points on the t-SNE plot in B. 308 

The darker the blue, the higher the density of structures. Contour lines 309 

additionally represent density of points. Color scales for the three plots are 310 

identical. Gel insets of RT-PCR products from splicing assays in HEK293 cells 311 

for 3R and 4R mutation are in their respective density plots.  312 
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Unfolding mRNA within the spliceosome Bact complex yields best prediction of Exon 10 313 

splicing level 314 

RNA structure controls alternative splicing by hindering or aiding accessibility of key 315 

regulatory regions to spliceosome components (McManus and Graveley 2011; Warf and 316 

Berglund 2010). The 5’ splice site, defined as the last 3 nucleotides of the exon and first 317 

6 nucleotides of the intron, is the minimum region of RNA that must be accessible for 318 

base pairing with the U1snRNA (Blanchette and Chabot 1997; Singh, Singh, and 319 

Androphy 2007). However, the splicing cycle, orchestrated by the spliceosome, 320 

traverses multiple stages to prepare the pre-mRNA and catalyze the two-step splicing 321 

reaction (Matera and Wang 2014) (Figure 3A). The RNA itself adopts many 322 

conformations as different components of the spliceosome bind to it (L. Zhang et al. 323 

2019). In addition to the 5’ splice site, a larger segment of RNA likely needs to unpair to 324 

accommodate the changing conformations induced by the spliceosome. We analyzed 325 

high resolution Cryo-EM structures of the human spliceosome Pre-B, B, Pre-Bact, and 326 

Bact complexes (Charenton, Wilkinson, and Nagai 2019; Bertram et al. 2017; Townsend 327 

et al. 2020; X. Zhang et al. 2018) to quantify the number of nucleotides around the 5’ 328 

splice site for which sufficient density was observed in the cryo-EM structure and which 329 

were unpaired (Materials and methods). As can be seen in Figure 3A, the number of 330 

unpaired pre-mRNA nucleotides observed in each structure increased through the 331 

splicing cycle. Thus, it is likely that RNA structures outside the U1snRNA binding site 332 

have to be unfolded to accommodate splicing.  333 

 334 

To evaluate the footprint of the spliceosome that best predicts splicing outcome, we 335 

initially focus on predicting 20 synonymous and intronic mutations as a training set 336 

(Figure 3-figure supplement 1A). These mutations are most likely to have a structural 337 

component to their function (Sharma et al. 2019; Lin, Taggart, and Fairbrother 2016). 338 

The distribution of DG‡ of unfolding of the splice sites in the presence of these mutations 339 

was correlated with Exon 10 PSI (Figure 3-figure supplement 1B). We calculated the 340 

DG‡ of unfolding of the RNA near the 5’ splice site in the four splicing stages’ footprints. 341 

Features of the unfolding free energy distribution including mean and standard deviation 342 
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were then used in a beta regression to predict Exon 10 PSI (Materials and methods; Eq. 343 

1). Unfolding larger regions of the exon-intron mRNA junction improved the predictive 344 

power of the model, and the Bact complex footprint yielded the best prediction accuracy 345 

(R2 = 89%; Figure 3B). Crucially, we found that using features of the distribution of 346 

unfolding free energies in the structural ensemble produced greater predictive power 347 

than simply using the unfolding free energy of a single minimum free energy (MFE) 348 

structure (Figure 3-figure supplement 1C). We performed bootstrapping cross-validation 349 

and confirmed that unfolding the RNA within the Bact spliceosome complex yielded the 350 

best prediction (Figure 3C). We tested the structural ensemble-based model on 24 non-351 

synonymous and compensatory mutations. Although the model performed well for 352 

compensatory mutations (median bootstrapped R2=0.76), it yielded significantly less 353 

accurate predictions for non-synonymous mutations (median bootstrapped R2=-0.21) 354 

(Figure 3-figure supplement 1D). One possible reason this structure-only model has 355 

limited performance is that it does not account for the effects of mutations on potential 356 

splicing regulatory elements (SREs) in the sequence.  357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 
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373 

Figure 3: The best predictor of Exon 10 PSI for intronic and synonymous mutations was 374 
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the unfolding free energy of pre-mRNA during the Bact stage of splicing 375 

A) Spliceosome footprint on pre-mRNA during splicing cycle. Structure in the center 376 

of the cycle is the WT representative structure from Fig 2B. The dotted box 377 

indicates the zoomed-in region at each stage of interest. Cryo-EM structures of 378 

the human spliceosome complex at stages Pre-B (PDB ID: 6QX9), B (PDB ID: 379 

5O9Z), Pre-Bact (PDB ID: 7ABF) and Bact (PDB ID: 5Z56) are available in the 380 

Protein Data Bank. The region around the 5’ splice site of pre-mRNA within the 381 

spliceosome at each stage is highlighted in blue on the zoomed-in representative 382 

structure. The number of nucleotides for each stage is as follows: Pre-B (2 383 

exonic, 8 intronic); B (10 exonic, 17 intronic); Pre-Bact (9 exonic, 20 intronic); Bact 384 

(12 exonic, 31 intronic). These values represent the minimum number of 385 

nucleotides required to be unfolded to be accessible to the spliceosome. The 386 

mean free energy and standard error to unfold RNA within the spliceosome at 387 

each stage is calculated for the WT structural ensemble and indicated under the 388 

zoomed-in structure. 389 

B) Exon 10 PSIs of synonymous and intronic mutations predicted with the unfolding 390 

free energy of pre-mRNA within the spliceosome in B, Pre-B, Pre-Bact, Bact stages 391 

versus corresponding experimental PSIs measured in splicing assays. Exon 10 392 

PSIs were predicted using Eq. 1. Grey line represents the best fit with dotted 393 

lines indicating the 95% confidence interval. Pearson correlation coefficients (R2) 394 

of experimental to predicted PSIs were calculated for each stage. Violin plots 395 

(inset) show R2s calculated for each mutation category by training and testing on 396 

subsets of all mutations by non-parametric bootstrapping; Synonymous (n=6), 397 

Intronic (n=14), Wildtype (n=1).  398 

C) Overall Pearson correlation coefficients (R2) calculated for experimental versus 399 

predicted Exon 10 PSIs by nonparametric bootstrapping of mutations. Subsets of 400 

mutations were randomly sampled 10 times, trained and tested using unfolding 401 

free energy of the exon-intron junction region of pre-mRNA within the 402 

spliceosome for the respective splicing stage. Pearson’s R2 was calculated by 403 

comparing predicted PSIs to experimental PSIs. A two-tailed Wilcoxon Rank 404 
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Sum test was used to determine significance between Bact complex and the other 405 

three complexes. Level of significance: ***p-value < 10-6, **p-value < 0.001, * p-406 

value < 0.01 407 

 408 
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Effect of exonic non-synonymous mutations was best predicted by motif strength 435 

changes of splicing regulatory elements  436 

Exon 10 splicing is highly regulated by differential binding of RBPs to cis-SREs within 437 

exon 10 and intron 10 (Qian and Liu 2014). While our structure-only model performs 438 

moderately well for 47 mutations (R2=0.74) (see Supplementary file 2 for further details 439 

about mutations), MAPT Exon 10 PSIs of non-synonymous mutations were poorly 440 

predicted (median bootstrapped R2 = -0.21, Figure 4-figure supplement 1B). Hence, we 441 

investigated whether these non-synonymous mutations are predicted better by 442 

incorporating changes to the strength of adjacent SREs. We identified SREs by 443 

similarity to reported general enhancer and silencer hexamer motifs (Fairbrother et al. 444 

2002; Z. Wang et al. 2004; Yang Wang, Ma, et al. 2012; Yang Wang, Xiao, et al. 2012) 445 

(Materials and methods).  We calculated the changes to splice site, enhancer, and 446 

silencer motif strengths in the presence of a mutation (Materials and methods) and 447 

visualized the motif strength changes in a heatmap (Figure 4A). We found that using 448 

splice site strength as the sole predictor yielded poor prediction of Exon 10 PSI in all 449 

mutation categories (Figure 4B; Eq. 3) because most mutations were outside the splice 450 

site. We quantified a weak positive correlation between PSI and enhancer strength and 451 

a significant negative correlation between PSI and silencer strength (Figure 4A; Figure 452 

4-figure supplement 1C). We modeled Exon 10 PSI with the changes to the motif 453 

strength of all splicing regulatory elements (Eq. 4) and found an increase in prediction 454 

accuracy (R2=0.51; Figure 4C) compared with using only splice site strength (R2=0.29). 455 

Non-synonymous mutations were predicted more accurately using SRE strength with a 456 

median bootstrapped R2 of 0.75.  457 

 458 

Many RBPs have been identified that regulate MAPT Exon 10 splicing (Qian et al. 2011; 459 

Ian D’Souza and Schellenberg 2006; Kondo et al. 2004; J. Wang et al. 2004; L. Gao et 460 

al. 2007; S. Ding et al. 2012; Broderick, Wang, and Andreadis 2004; Yan Wang et al. 461 

2010; Kar et al. 2006, 2011; P. Ray et al. 2011). To determine whether these proteins 462 

specific to Exon 10 splicing would improve the model’s accuracy, we calculated 463 

changes to the strength of their RBP motifs obtained from high throughput sequencing 464 
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of bound RNAs (Dominguez et al. 2018; D. Ray et al. 2013) (Materials and methods). 465 

Unlike SRE motifs, there was no clear pattern or correlation between motif strength 466 

change and PSI (Figure 4-figure supplement 2A, B). Subsequently, the model’s 467 

prediction accuracy was lower (R2=0.08, Figure 4-figure supplement 2C), and changes 468 

to the strength of general SRE motifs were better predictors of Exon 10 PSI.  469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 
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 480 

 481 

 482 
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 484 

Figure 4: Combining the strength of all splicing regulatory elements improves prediction 485 

of Exon 10 PSI by 75% compared with using only splice site strength 486 

A) Heatmap of splicing regulatory element (SRE) relative strength for 47 mutations 487 

compared with wildtype (WT). A value of 0 indicates mutation does not change 488 

WT SRE strength, positive values indicate SRE strength is greater than WT, and 489 

negative values indicate SRE strength is weaker than WT. Splice site strengths 490 

were calculated using MaxEntScan; a splice site was defined as the last 3 491 

nucleotides of the exon and first 6 nucleotides of the intron. Enhancer and 492 

silencer strengths were calculated from position weight matrices of known motifs 493 

derived from cell-based screens (Materials and methods).  494 

B) Exon 10 PSIs of 47 mutations predicted from change in splice site strength and 495 

plotted against experimental PSIs measured in splicing assays. Exon 10 PSIs 496 

predicted using Eq. 3. Each point on the scatterplot represents a mutation and is 497 

colored by mutation category. Grey line represents the best fit with dotted lines 498 

indicating the 95% confidence interval. Pearson correlation coefficient (R2) 499 

calculated of experimental to predicted PSIs. Violin plot shows R2s calculated for 500 

each category by training and testing on subsets of all mutations by non-501 
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parametric bootstrapping; Exonic non-synonymous (n=11), Exonic synonymous 502 

(n=7), Intronic (n=15), Compensatory (n=14), Wildtype (n=1). 503 

C) Exon 10 PSIs of 47 mutations predicted by combining change in splice site, 504 

enhancer, and silencer strength and plotted against experimental PSIs measured 505 

in splicing assays. Exon 10 PSIs predicted using Eq. 4. 506 
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Model with both structural and SRE motif changes yields best prediction of Exon 10 PSI 532 

Our quantitative models showed that, although SRE motif changes accurately predicted 533 

the effects of non-synonymous mutations, structural changes were a better predictor of 534 

splicing outcomes of intronic and synonymous mutations. Combining all features (Eq. 6) 535 

yielded the highest prediction accuracy (R2 = 0.89) (Figure 5A). This combined 536 

interactive model consistently produced more accurate predictions of Exon 10 PSI 537 

compared with a structure-only model and an SRE-only model for all mutation 538 

categories (Figure 5B). An additive model (Eq. 7) had lower prediction accuracy (R2= 539 

0.80) (Figure 5-figure supplement 1A), and this lower accuracy resulted primarily from 540 

less accurate PSI predictions of non-synonymous mutation effects (Figure 5-figure 541 

supplement 1B).  542 

 543 

To determine whether structure or SRE changes were responsible for the splicing 544 

changes from each mutation, we hierarchically clustered the four primary features for 545 

the 47 experimentally validated mutations (Materials and methods). Six categories 546 

emerged from the clustering of features (Figure 5C) where approximately 80% of 547 

mutations modified both structure and silencer strength (Figure 5-figure supplement 548 

1C). Further, we found that for more than 50% of mutations both structure and SRE 549 

motif strength were altered in the same direction and accordingly promoted Exon 10 550 

splicing in that direction (Figure 5D). For the remaining mutations in which structure and 551 

SRE strength changed in opposite directions, structure dominated the direction of 552 

splicing for 18% of mutations, and SRE strength was dominant for 20% (Figure 5D). 553 

Overall, these results supported our conclusion that both structure and SREs have 554 

equally important effects in regulating splicing at this exon-intron junction.  555 

 556 

 557 
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 559 
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562 

Figure 5: Combining structure and SRE strength into a unified model is the best 563 

predictor of Exon 10 PSI 564 

A) Exon 10 PSIs of 47 mutations predicted from combined model using structure 565 

and SRE strength and fit to experimental PSIs measured in splicing assays. 566 

Exon 10 PSIs predicted using Eq. 6. Each point on scatterplot represents a 567 

mutation and is colored by mutation category. Grey line represents the best fit 568 

with dotted lines indicating the 95% confidence interval. Pearson correlation 569 

coefficient (R2) calculated of experimental to predicted PSIs. 570 

B) Violin plots of correlation coefficients for each mutation category for structure 571 

model, SRE model, and combined model. R2s calculated for each mutation 572 

category by training and testing on subsets of all mutations by non-parametric 573 

bootstrapping 10 times. Structure model uses unfolding free energy of pre-mRNA 574 
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within spliceosome at Bact stage as predictor. SRE strength model uses relative 575 

change in SRE strength as predictor. Combined model using both structure and 576 

SRE strength and weighs the features based on if mutation is 577 

intronic/synonymous or non-synonymous (Materials and methods).  578 

C) Heatmap of the normalized changes in structure and SRE strength for each 579 

mutation clustered by affected features. Features were normalized such that a 580 

value of 1 implied that change in the feature should result in Exon 10 being 581 

spliced in (4R isoform, blue), whereas a value of 0 implies Exon 10 should be 582 

spliced out (3R isoform, red). Mutations were clustered using hierarchal 583 

clustering on normalized features (Materials and methods). Experimental PSIs 584 

are plotted for each mutation with a PSI of 1 colored as blue, PSI of 0.5 colored 585 

as white and PSI of 0 colored as red.  586 

D) Pie chart showing the features that regulate Exon 10 splicing for the 47 587 

experimentally validated mutations. The pie chart was generated based on the 588 

heatmap in C. Exon 10 splicing for 51.1% of mutations is supported by changes 589 

in both structure and SRE, which implies that structure, at least one SRE, and 590 

PSI are either all blue or all red. Exon 10 splicing for 23.4% of mutations is 591 

supported by changes in SRE wherein one of the SREs is the same color as PSI. 592 

For 17.0% of mutations, structural changes support Exon 10 splicing wherein 593 

structure and PSI are the same color. For 4 mutations (8.5%), the colors of none 594 

of the features match the color of PSI. 595 

 596 
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Mutations around the MAPT Exon 10-Intron 10 junction skew to Exon 10 inclusion 605 

Having established that our quantitative models accurately predicted Exon 10 PSIs for 606 

experimentally validated mutations, we interrogated the model by performing a 607 

systematic mutagenic analysis spanning a 100-nucleotide window of the exon-intron 608 

junction (Figure 6A). Our model predicts that more mutations result in the inclusion of 609 

Exon 10 (4R isoform). This is consistent with the observation that a majority (75%) of 610 

known disease associated mutations (Figure 6B) are also 4R; this result is also 611 

consistent when categorized by all substitution types (Figure 6-figure supplement 1A). 612 

We found that a significantly greater proportion of disease mutations (76.4%) resulted in 613 

changes to both structure and SRE compared with non-disease mutations (36.0%) 614 

(Figure 6C) suggesting that mutations which affect both structure and SREs have a 615 

greater likelihood of causing disease compared with mutations that alter only one of the 616 

two factors. Intriguingly, mutations overall caused a slight skew towards a structured 617 

exon-intron junction, which would result in decreased inclusion of Exon 10 (Figure 6A, 618 

Figure 6-figure supplement 1B). However, changes to SRE strength skewed towards 619 

increased inclusion of Exon 10 (Figure 6-figure supplement 1C), which suggested that 620 

SREs were acting to counter the effect of structural changes. Our model reveals how a 621 

complex balance of structure and SRE RBP binding sites effectively results in the 622 

observed 50:50 ratio of the 3R and 4R isoforms.   623 

 624 

To assess the general applicability of our model beyond our mutation training set, we 625 

predicted Exon 10 PSIs for 55 variants of unknown significance (VUSs) found in dbSNP 626 

(see Supplementary file 3 for further details of VUSs). These are mutations observed in 627 

the human population but are not currently associated with disease. The mean Exon 10 628 

PSI for VUSs was 0.66, and 70% were within a standard deviation of the mean (Figure 629 

6D). We observed that only a few mutations were predicted to have a PSI of zero (3R) 630 

(Figure 6D red bar). We therefore experimentally verified with splicing assays (Materials 631 

and methods) 6 VUSs: 3 VUSs predicted to be 3R, 1 VUS predicted to be 4R and 2 632 

VUSs predicted to maintain the WT splicing ratio (Figure 6D). We found these 6 633 

predictions were correct (Figure 6E). The three 3R VUSs made the region around the 634 
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exon-intron junction more structured while the 4R VUS made the region less structured 635 

compared to WT (Figure 6-figure supplement 1D) matching the direction of Exon 10 636 

splicing change. Though we see changes to SRE strength match up to Exon 10 splicing 637 

direction for +30U>C and -6G>A, this was not the case for +25C>G and +23U>C 638 

(Figure 6-figure supplement 1E). For +23U>C and +26G>A, we observed changes in 639 

structured-ness around the exon-intron junction and silencer strengths in diverging 640 

directions (Figure 6-figure supplement 1D, E) suggesting that these opposing changes 641 

would preserve the WT 3R/4R ratio.  642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 
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 650 

Figure 6: Mutations around Exon 10-Intron 10 junction skew towards inclusion of Exon 651 

10 652 

A) Heatmap of predicted Exon 10 PSIs for every possible mutation around 100 653 

nucleotide window of Exon 10-Intron 10 junction. Combined model was trained 654 

using 47 mutations with experimental PSIs measured from splicing assays and 655 

used to predict PSIs for all mutation combinations for 100 nucleotides around the 656 

junction. Tiles with sequence indicate the wild type nucleotide at the position. 657 

Heatmap of mean PSI per position and mean relative change in unfolding free 658 

energy of pre-mRNA within spliceosome at Bact stage compared with wild type is 659 

shown below the gene diagram.  660 

B) Violin plot of predicted PSIs for all possible mutations around Exon 10-Intron 10 661 

junction and only disease mutations. All possible mutations (n=300), disease 662 
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mutations (n=17). A two-tailed Wilcoxon Rank Sum test was used to determine 663 

significance between the two categories. Level of significance: ***p-value < 10-6, 664 

**p-value < 0.001, * p-value < 0.01  665 

C) Pie chart showing features that drive Exon 10 splicing for disease and non-666 

disease mutations. The pie chart was generated by quantifying the number of 667 

mutations for which the direction of predicted Exon 10 PSI matched the direction 668 

of structure or SRE change. Exon 10 splicing for 76.4% of disease mutations is 669 

supported by changes to both structure and SRE compared with only 36.0% of 670 

non-disease mutations. The difference in proportions was tested with a one-tailed 671 

Fisher’s exact test. 672 

D) Histogram displaying the distribution of predicted PSIs using the combined model 673 

for 55 variants of unknown significance (VUSs) found in dbSNP. Density curve 674 

was overlaid on top of histogram showing that predicted PSIs skew away from 675 

3R. Dotted line shows mean predicted PSI of 0.66. VUSs tested in splicing 676 

assays are indicated by their dbSNP RS IDs. 677 

E) Representative gel of RT-PCR data for splicing assay in the presence of VUSs. 678 

Splicing reporter was transfected into HEK293 cells. The mean Exon 10 PSI 679 

displayed for each variant was calculated from three replicates and standard 680 

error is shown in brackets below. Structure diagram on left displays the location 681 

of the VUSs tested.  682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 
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Discussion 691 

In vivo DMS chemical probing of endogenous MAPT Exon 10-Intron 10 junction 692 

Splicing specificity is complex (Baralle and Giudice 2017). The spliceosome does not 693 

rely on sequence alone to correctly identify 5’ and 3’ splice sites; other cues ensure 694 

correct binding to appropriate locations. In addition, the 5’ splice site must be accessible 695 

to permit base pairing with the U1snRNA to initiate splicing (Roca et al. 2012). The 696 

MAPT Exon 10-Intron 10 junction is a well-studied example of the effect of 5’ splice site 697 

secondary structure in splicing regulation. A hairpin was hypothesized initially because 698 

disease mutations close to the exon-intron junction (Hutton et al. 1998; Grover et al. 699 

1999) shifted the isoform balance to either completely exclude or include Exon 10. 700 

Although NMR, in vitro chemical probing, and computation confirmed the presence of 701 

the hairpin (Varani et al. 1999; Chen et al. 2019; Lisowiec et al. 2015), recent studies 702 

showed that most RNAs were less structured in vivo and in the nucleus compared with 703 

in vitro conditions (Sun et al. 2019; Rouskin et al. 2014). However, our results revealed 704 

that this is not the case for the Exon10-Intron10 junction: in vivo chemical probing of the 705 

endogenous junction showcased strong evidence of structure. 706 

 707 

In this study we observed that, in vivo, endogenous exons are less structured than 708 

introns, as found by Sun et al (Sun et al. 2019). Mature MAPT 3R and 4R exon-exon 709 

junctions are less structured compared with the pre-mRNA Exon 10-Intron 10 junction. 710 

The high correlation of structure we observed between the same exons found in 711 

different MAPT isoforms corroborates results observed with yeast ribosomal protein 712 

genes (Zubradt et al. 2016), which suggests that RNA folding in both pre- and post-713 

spliced human exons is highly local and modular in exons. 714 

 715 

Changes to structural ensemble around the 5’ splice site are strong predictors of Exon 716 

10 splicing 717 

We showed that structural ensembles have an important function at the Exon 10-Intron 718 

10 junction. If the 5’ SS was always paired, only one isoform lacking Exon 10 would 719 
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result. However, the simultaneous presence of 3R and 4R isoforms implies that the 720 

junction is accessible in a subset of the structures. Unlike transfer RNAs and ribosomal 721 

RNAs that have single structures (Petrov et al. 2014), most RNAs are dynamic, 722 

unfolding and refolding within a landscape (Cruz and Westhof 2009; Giegé et al. 2012). 723 

We found disease mutations produced distinct shifts in the ensemble of the MAPT Exon 724 

10-Intron 10 junction; the shifts corresponded to changes in the 3R:4R isoform ratio and 725 

confirmed that ensembles are essential at this junction. The activity of ensembles was 726 

corroborated by our quantitative model; including free energy features of the structural 727 

ensemble produced 1.5 times more accurate prediction of Exon 10 PSI compared with 728 

the unfolding free energy of the minimum free energy (MFE) structure.  729 

 730 

Considering a larger spliceosome footprint on pre-mRNA produced more accurate 731 

prediction of Exon 10 PSI 732 

The U1snRNA base pairs with the nine nucleotide sequence around the exon-intron 733 

junction (Roca et al. 2012). However, our analysis of the Cryo-EM structures of the 734 

human spliceosomal assembly cycle revealed that a larger region of the pre-mRNA 735 

interacts with the spliceosome during the splicing cycle and is therefore unfolded. Like 736 

the other main cellular ribonucleoprotein complex, the ribosome (Ingolia 2016), there is 737 

likely a spliceosomal footprint on the pre-mRNA and a minimum span around the 738 

splicing signals (5’ splice site, 3’ splice site and branch point) must be single-stranded 739 

for splicing to occur. Accordingly, our structural model performed most accurately when 740 

we used the unfolding free energy of 43 nucleotides around the 5’ exon-intron junction 741 

that exists within the spliceosome Bact complex. This suggests that structures distal to 742 

the exon-intron junction regulate Exon 10 splicing, a finding that corroborates evidence 743 

that RNA structure near this exon-intron junction is more extended than previously 744 

determined (Tan et al. 2019). This result, combined with our use of Boltzmann 745 

suboptimal sampling demonstrates the key role of pre-cursor mRNA structure in splicing 746 

outcome. 747 

 748 

RNA structure and SREs have complementary functions in MAPT Exon 10 regulation 749 
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Considerable evidence supports a function for either splicing regulatory elements and 750 

their corresponding RBPs or RNA structure in alternative splicing of MAPT Exon 10 at 751 

the 5’ splice site (Andreadis 2012). However, there was no consensus as to which of the 752 

two factors is dominant. The regression model we developed established the relative 753 

importance of RNA structure vs. SREs at the exon-intron junction. We discovered a 754 

cooperative relationship between SREs and RNA structure whereby exonic non-755 

synonymous mutations promoted splicing changes primarily by SRE motifs and exonic 756 

synonymous and intronic mutations by RNA structure around the exon-intron junction. A 757 

combined model that accounted for both structure and SREs was the most accurate 758 

predictor of Exon 10 PSI, and most experimentally validated mutations altered RNA 759 

structure and SRE motif strength around the Exon 10-Intron 10 junction in the same 760 

direction (Figure 5D). The model further suggested that the overall region favored 761 

increased Exon 10 inclusion (Figure 6 A,B), which confirmed previous experimental 762 

findings that inclusion is Exon 10’s typical splicing mode (Q. S. Gao et al. 2000). This 763 

preference was proposed to be due to a weak 5’ splice site (Ian D’Souza and 764 

Schellenberg 2005), and, indeed, we found that almost all experimentally validated 765 

mutations strengthened the splice site to increase inclusion of Exon 10 (Figure 4A). 766 

However, interestingly, our model revealed that structural changes caused by the 767 

mutations resulted in a more structured exon-intron junction, which would imply 768 

decreased Exon 10 inclusion. However, SRE strength alterations overall skewed more 769 

towards increased Exon 10 inclusion, which suggest that SREs and the RBPs that bind 770 

them buffer the effects of RNA structure to maintain the 1:1 isoform ratio at this junction. 771 

Our work revealed that structure and splicing regulatory elements most often have 772 

opposite effects on splicing outcomes. However, disease variants were the exception to 773 

this rule and resulted in a synergistic effect on splicing outcome (Fig. 6E), leading to a 774 

greater disruption of splicing, and therefore increased pathogenicity. The combined 775 

model was finally validated by accurate prediction of the effects of six previously 776 

untested VUSs on Exon 10 splicing (Figure 6E). As was the case with the complete 777 

mutagenesis, there were few VUSs predicted to completely alter the ratio of isoforms to 778 

entirely 3R: only 5 VUSs had PSIs less than 0.25. However, our model accurately 779 
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predicted the effect of the three 3R VUSs tested. Interestingly, the systematic 780 

computational mutagenesis revealed a hotspot of 3R mutations around 25-30 781 

nucleotides downstream of the exon-intron junction (Figure 6A) and indeed the 3R 782 

VUSs experimentally validated were located in this region.  783 

 784 

Quantitative modeling of splicing regulation at exon-intron junctions 785 

Predictive models can measure the contribution of individual factors to an outcome. 786 

Structure around the 5’ splice site and SRE motifs were excellent predictors of Exon 10 787 

splicing in cells. The use of general SRE motifs enables this splicing framework to 788 

extend to other exon-intron junctions. By using a common dependent variable of Exon 789 

10 PSI, we could use experimentally validated mutation data from disparate sources. 790 

Although our model provided an exact PSI prediction for each mutation, its principal 791 

utility was in predicting the direction in which the 3R:4R isoform ratio shifted from the 792 

wild type balance. On the basis of RNA-sequencing of brain tissue from healthy 793 

individuals, we find a range of Exon 10 PSIs between individuals and between tissues 794 

within an individual (Figure 1A). Even in individuals with progressive supranuclear palsy, 795 

a tauopathy in which MAPT variants are implicated, there is variability in Exon 10 PSIs 796 

between different brain tissues (Majounie et al. 2013). Ultimately, although it is likely 797 

that what is considered the correct ratio for normal brain function varies between 798 

tissues, our model provides a means to determine the baseline change of Exon 10 799 

splicing simply based on sequence features. Many neurodegenerative diseases are 800 

caused by mutations around the MAPT Exon 10-Intron 10 junction, and there are no 801 

approved therapeutics that target this junction. Our work suggests that it is crucial to 802 

consider the larger structural context of the Exon 10-Intron 10 junction and the interplay 803 

between structure and SREs when considering the consequences of mutations on 804 

splicing regulation and the design of potential therapeutics to alter this ratio.  805 

 806 

 807 

 808 
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Materials and methods 809 

MAPT Exon 10 PSIs for GTEx tissue types 810 

Aligned BAM files of individual samples from the Genotype-Tissue Expression (GTEx) 811 

v8 project, for tissue types with MAPT TPM greater than 10, were accessed in the 812 

AnVIL/Terra environment (Kumar 2020a). Reads aligning to MAPT were extracted in 813 

Terra (Kumar 2020b) and downloaded. Exon 10 PSIs were quantified per BAM file with 814 

Outrigger (Song et al. 2017) using MAPT transcriptome reference from Ensembl 815 

GRCh38. Only samples with at least 10 reads mapping across the Exon 10-Intron 10 816 

junction were considered. Median values for each tissue type were calculated and then 817 

visualized on the brain diagram with R package, CerebroViz (Bahl, Koomar, and 818 

Michaelson 2017). Source file for Figure 1 provides Exon 10 PSI values for the 2,962 819 

samples. An ANOVA test was run in R to test significance in variation between 820 

individuals versus within an individual (for individuals with MAPT expression in more 821 

than 7 tissues) (Supplementary file 1). 822 

 823 

Culture of T47D and SH-SY5Y cells 824 

Mammary gland carcinoma cells (T47D) were cultured in RPMI 1640 medium, 825 

supplemented with 10% Fetal Bovine Serum (FBS) and 0.2 units/mL of human insulin at 826 

37°C and 5% CO2. Bone marrow neuroblastoma SH-SY5Y cells were cultured in 1:1 827 

mixture of 1X Minimum Essential Medium (MEM) and 1X F12 medium, supplemented 828 

with 10% FBS at 37 °C and 5% CO2.  829 

 830 

In vivo DMS-MaP probing for MAPT RNA 831 

Approximately 20 million T47D cells and 30 million SHSY-5Y cells were harvested by 832 

centrifugation and resuspended in bicine buffered medium (300 mM Bicine pH 8.3, 150 833 

mM NaCl, 5 mM MgCl2) followed by treatment with DMS (1:10 ethanol diluted) for 5 min 834 

at 37°C.  For the negative control (unmodified RNA), instead of DMS, an equivalent 835 

amount of ethanol was added to the same number of T47D and SH-SY5Y cells. After 836 

incubation, the reactions were neutralized by addition of 200 µl of 20% by volume β-837 
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mercaptoethanol. Total RNA was extracted by Trizol (ThermoFisher Scientific), treated 838 

with TURBODNase (ThermoFisher Scientific), purified using Purelink RNA mini kit 839 

(ThermoFisher Scientific) and quantified with NanoDrop™ spectrophotometer.  840 

 841 

DMS-MaP cDNA synthesis, library construction and sequencing for MAPT RNA 842 

Purified RNA (9 µg) was reverse transcribed using Random Primer 9 (NEB) and 843 

SuperScript II reverse transcriptase under error prone conditions as described in Smola 844 

et al., 2015. The resultant cDNA was purified using G50 column (GE healthcare) and 845 

subjected to second strand synthesis (NEBNext Second Strand Synthesis Module). 846 

Supplementary file 4 lists PCR primers used for library generation. The cDNA was 847 

amplified by the NEB Q5 HotStart polymerase (NEB). Secondary PCR was performed 848 

to introduce TrueSeq barcodes (Smola et al. 2015). All samples were purified using the 849 

Ampure XP (Beckman Coulter) beads and quantification of the libraries was performed 850 

with Qubit dsDNA HS Assay kit (ThermoFisher Scientific). Final libraries were run on 851 

Agilent Bioanalyzer for quality check. TrueSeq libraries were then sequenced as 852 

necessary for their desired length as paired end 2×151 and 2×301 read multiplex runs 853 

on MiSeq platform (Illumina) for pre-cursor and mature MAPT isoforms respectively. 854 

Sequenced reads have been uploaded to the NCBI SRA database under BioProject ID 855 

PRJNA762079. 856 

 857 

In vivo DMS-MaP probing for SSU ribosome 858 

For in vivo ribosomal structure data, we used approximately 10 million T47D cells in 10 859 

cm plates for each condition. We removed the growth media, added 1.8 mL of bicine 860 

buffered growth medium (200 mM Bicine pH 8.3) followed by treatment at 37°C with 200 861 

uL of DMS diluted in ethanol (1.25% final DMS) for 5 min. For the negative control 862 

(unmodified RNA), instead of DMS, an equivalent amount of ethanol was added to the 863 

same number of T47D cells. After incubation, all reactions were neutralized by 864 

addition of ice cold 20% by volume β-mercaptoethanol and kept on ice for 5 minutes. 865 

Total RNA was extracted by Trizol (ThermoFisher Scientific), chloroform and isoamyl 866 

alcohol using phase lock heavy tubes (5PRIME Phase Lock Gel). RNA was purified 867 
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using Purelink RNA mini kit (ThermoFisher Scientific), treated with TURBODNase 868 

(ThermoFisher Scientific) and quantified with NanoDrop™ spectrophotometer. 869 

 870 

DMS-MaP cDNA synthesis, library construction and sequencing for SSU 871 

ribosome 872 

Purified RNA (5 ug) was reverse transcribed using Random Primer 9 (NEB) and 873 

SuperScript II reverse transcriptase under error prone conditions as described Smola et 874 

al., 2015. The resultant cDNA was purified using G50 column (GE healthcare) and 875 

subjected to second strand synthesis (NEBNext Second Strand Synthesis Module). 876 

Standard Nextera DNA library protocol (Illumina) was used to fragment the cDNA and 877 

add sequencing barcodes. All samples were purified using Ampure XP (Beckman 878 

Coulter) beads and quantification of the libraries was performed with Qubit dsDNA HS 879 

Assay kit (ThermoFisher Scientific). Final libraries were run on Agilent Bioanalyzer for 880 

quality check. Libraries were sequenced as paired end 2×151 read multiplex runs on 881 

MiSeq platform (Illumina). Sequenced reads have been uploaded to the NCBI SRA 882 

database under BioProject ID PRJNA762079. 883 

 884 

DMS-MaP analysis 885 

Sequenced reads were analyzed using the ShapeMapper pipeline(Busan and Weeks 886 

2018), version (v2.1.4) which calculates the DMS reactivity of each nucleotide i as 887 

follows: 888 

    𝑅" = 𝑚𝑢𝑡𝑟( −𝑚𝑢𝑡𝑟* 889 

where mutrS is the mutation rate in the sample treated with DMS, mutrU is the mutation 890 

rate in the untreated control. DMS reactivities were normalized within a sample and per 891 

nucleotide type (A, C, U, G) using the normalization method described in Busan and 892 

Weeks, 2018. DMS probing data were collected for the Exon 9-Exon 11 and Exon 9-893 

Exon 10-Exon 11 junctions using a single pair of primers listed in Supplementary file 4. 894 

The ShapeMapper pipeline ran for the two junctions in a single run with reference 895 

sequences for both junctions entered in one FASTA file. For the SSU, sequenced reads 896 

were first aligned to the SSU ribosome sequence using Bowtie2 parameters from Busan 897 
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and Weeks, 2018.  Using samtools, alignments with MAPQ score greater than 10 were 898 

kept, sorted, and converted back into FASTQ files after which the ShapeMapper 899 

pipeline was executed.  900 

 901 

Updating DMS parameters for RNAstructure using SSU ribosome data from T47D 902 

cells 903 

To use DMS data to guide secondary structure prediction by the Rsample (Spasic et al. 904 

2018) component of RNAstructure (Reuter and Mathews 2010), we calibrated the 905 

expected DMS reactivities per nucleotide. Using the SSU ribosome mapping data and 906 

the known secondary structure (Petrov et al. 2014), we determined histograms for DMS 907 

reactivities for unpaired nucleotides, nucleotides paired at helix ends, and nucleotides 908 

paired in base pairs stacked between two other base pairs.  These DMS histograms can 909 

be invoked by Rsample with the “--DMS” command line switch as part of RNAstructure 910 

6.4 or later.  The histograms had long tails to relatively high reactivities. We empirically 911 

found that limiting reactivities in the histograms and in the input data to a reactivity of 5 912 

(where higher values are set to 5) gave the best performance at improving SSU rRNA 913 

secondary structure. The “--max 5” parameter is used with Rsample to apply this 914 

limitation.  Pre-release of Rsample code including in vivo DMS parameters is included 915 

as a zip file for review, and will be included in RNAstructure 6.4. 916 

 917 

Base-pairing probabilities for SSU 918 

The partition function for the SSU was generated using Rsample, using either the 919 

sequence or using the sequence and the DMS reactivities. All possible i-j base pairing 920 

probabilities were summed for each nucleotide i to generate a base pairing probability 921 

per nucleotide i.  922 

 923 

ROC curves for predicting SSU base pairs 924 

Using the known secondary structure of the SSU, we assigned a nucleotide as either 0 925 

or 1 if it was paired or unpaired. DMS reactivities were used to predict whether a 926 

nucleotide was paired; the higher the DMS reactivity, the more likely a nucleotide is 927 
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unpaired. Base pairing probabilities were subtracted from 1 to obtain the probability that 928 

a base was unpaired, with 0 implying base was paired and 1 implying that base was 929 

unpaired. ROC curves and AUC values were generated using the plotROC (Sachs 930 

2017) R package.  931 

 932 

Arc plots 933 

Arc plots were generated using Superfold (Siegfried et al. 2014) modified to process 934 

DMS reactivity data. 935 

   936 

Generating structural ensemble of Exon 10-Intron 10 MAPT junction 937 

The partition function of the Exon 10-Intron 10 MAPT junction for wild type (WT) and 938 

mutations was calculated with DMS reactivities as restraints using Rsample (Spasic et 939 

al. 2018). The DMS reactivities, which were collected for the WT sequence, were also 940 

used for the mutations to restrain the structural space with the reactivity made NA at the 941 

nucleotide where the mutation occurred. The program stochastic (Reuter and Mathews 942 

2010) was used to sample 1000 structures (in CT format) from the Boltzmann 943 

distribution wherein the likelihood a structure is sampled was proportional to the 944 

probability that it occurred in the distribution (Y. Ding and Lawrence 2003).   945 

 946 

t-SNE visualization of structural ensembles of WT, 3R and 4R mutations of Exon 947 

10-Intron 10 MAPT junction 948 

Structural ensembles were generated as described above for WT, 3R, and 4R 949 

mutations. For each sequence, the 1000 structures in CT format were converted to dot-950 

bracket (db) format with ct2dot (Reuter and Mathews 2010), after which the db structure 951 

was transformed into the element format using rnaConvert in the Forgi package 952 

(Kerpedjiev, Höner Zu Siederdissen, and Hofacker 2015). In the element format, every 953 

base is represented by the subtype of RNA structure in which it is found: stem (s), 954 

hairpin (h), loop(m), 5’end(f), and 3’end(t). Hence, each db structure is a string of 955 

characters. These characters were digitized (f, t:0, s:1, h:2, m:3) to create a numerical 956 

matrix with 1000 rows and 234 columns, the length of the exon-intron junction. 957 
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Combining the matrices for the three sequences resulted in a 3000×234 matrix. This 958 

matrix was entered into the tSNE function from the scikit-learn python package 959 

(Pedregosa et al. 2011) and dimensionality was reduced to a 3000×2 matrix which was 960 

then plotted with ggplot2 (Wickham 2016) in R. The DG‡ of unfolding of the splice site 961 

was calculated for each of the 3000 structures as described below. Source file for 962 

Figure 3B lists t-SNE reduced data with corresponding free energies.  963 

 964 

Determining representative structures for clusters in t-SNE plot 965 

The 3000×2 matrix, the result of t-SNE dimensionality reduction, was clustered using k-966 

means clustering with the k-means function from the scikit-learn python package 967 

(Pedregosa et al. 2011). The value of k was set to 5 as determined visually. A custom 968 

python script was used to deduce the representative structure for each cluster by first 969 

calculating the most common RNA structure subtype at each position. The actual 970 

structure in the ensemble, most similar to the RNA structure with the most common 971 

subtypes at each position, was then determined and deemed to be the representative 972 

structure of that cluster. 973 

 974 

Visualizing density of structures in t-SNE plot  975 

A custom python script was written. For the WT and, 3R, and 4R mutant sequences, a 976 

meshgrid was created for the three matrices using a 1000-point interpolation and 977 

NumPy (Harris et al. 2020) meshgrid function which returns two two-dimensional arrays 978 

that represent all the possible x-y coordinates for the three matrices.  A gaussian kernel 979 

was next fit and evaluated for each 1000×2 matrix with SciPy gaussian_kde function 980 

(Virtanen et al. 2020) to smoothen over the meshgrid. Contour lines were generated for 981 

the smoothed data with Matplotlib contour function (Hunter 2007) and contourf was 982 

used to plot the data.  983 

 984 

Quantifying nucleotides around the 5’ splice site in cryo-EM structure 985 

The Protein Databank (PDB) files for Pre-B (PDB ID: 6QX9), B (PDB ID: 5O9Z), Pre-986 

Bact (PDB ID: 7ABF) and Bact (PDB ID: 5Z56) complexes were downloaded from the 987 
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PDB website. A custom python script was used to extract pre-mRNA from each PDB 988 

file. The number of nucleotides were counted for mRNA found near the 5’ splice site. 989 

The result was visually confirmed by visualizing the PDB on PyMol. 990 

 991 

Calculating DG‡ of unfolding of a region of interest 992 

The DG‡ of a structure was calculated using the efn2 program in RNAstructure (Reuter 993 

and Mathews 2010). This represents the non-equilibrium unfolding energy of the region 994 

as the sequence is not allowed to refold after unfolding (Mustoe et al. 2018). The base 995 

pairs within a region of interest were removed using a custom python script. The DG‡ of 996 

the “unfolded” structure was next re-calculated with efn2. The DG‡ of unfolding of a 997 

region was the subtraction of the DG‡ of the original structure from the DG‡ of the 998 

unfolded structure. For example, for determining the DG‡ of unfolding of the splice site, 999 

we removed all base pairs within the last 3 nucleotides of the exon and the first 6 1000 

nucleotides of the intron.  1001 

 1002 

Calculating the change in strength of SRE motifs 1003 

Splice Site: Strength of the WT splice site was calculated with MaxEntScan (Yeo and 1004 

Burge 2004). Strength was recalculated in the presence of splice site mutations either in 1005 

the last 3 bases of Exon 10 or first 6 bases of Intron 10. WT strength was subtracted 1006 

from the mutant strength: a 0 implied no change in splice site strength, positive values 1007 

implied that a mutation made splice site stronger, resulting in increased inclusion of 1008 

Exon 10, and negative values implied that a mutation made splice site weaker and 1009 

decreased inclusion of Exon 10.  1010 

Enhancers and Silencers: Overrepresented hexamers in cell-based screens of general 1011 

exonic and intronic splicing enhancers (ESEs, ISEs) and silencers (ESSs, ISSs) were 1012 

obtained from Fairbrother et al., 2002, Wang et al., 2004, Wang, Ma et al., 2012 and 1013 

Wang, Xiao et al., 2012. Position weight matrices (PWMs) of hexamers for each 1014 

category were re-calculated as described in Fairbrother et al., 2002 and collated in 1015 

Supplementary file 5. There were 8 clusters of ESE motifs, 7 of ESS motifs, 7 of ISE 1016 

motifs, and 8 clusters of ISS motifs; each cluster had an associated PWM. For each 1017 
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PWM, a threshold strength was found by taking the 95th percentile value of strength of 1018 

all possible k-mers of PWM length. This threshold was used to determine whether there 1019 

was a valid SRE motif at a particular position. The strength of the PWM motif was 1020 

calculated across the exon-intron junction using a sliding window for both WT sequence 1021 

and per mutation. The only windows that differed were around the location of the 1022 

mutation, and only windows with strength above the threshold were considered. The 1023 

WT strength was subtracted from the mutation strength for each window, and all 1024 

windows were then summed to yield a Dstrength for every PWM per mutation. The 1025 

average of the non-zero Dstrengths was calculated for ESE, ESS, ISE and ISS 1026 

categories. The ESE and ISE Dstrengths were summed to obtain an enhancer strength, 1027 

and the ESS and ISS Dstrengths were summed to obtain a silencer strength. 1028 

Supplementary file 6 presents all SRE Dstrengths for the 47 mutations and 55 VUSs. 1029 

 1030 

Calculating the change in strength of RBP motifs 1031 

Position Frequency Matrices (PFMs) were available from Ray et al. 2013 for the 1032 

following RBPs: SRSF1, SRSF2, SRSF7, SRSF9, SRSF10, PCBP2, RBM4 and SFPQ. 1033 

PFMs were converted into PWMs by normalizing frequencies to 0.25 (Prior probability 1034 

for nucleotide frequency) and calculating the log2 value. Overrepresented hexamers 1035 

were available from Dominguez et al., 2018 for the following RBPs: SRSF11, SRSF4, 1036 

SRSF5 and SRSF8. PFMs for those RBPs were calculated as described in Fairbrother 1037 

et al., 2002. Dstrength in RBP motifs were calculated the same way as SRE motifs. The 1038 

average of non-zero values of RBPs implicated in either the inclusion or exclusion of 1039 

Exon 10 was computed separately. All RBP Dstrengths for the 47 mutations are found in 1040 

Supplementary file 6. 1041 

 1042 

Models and bootstrapping 1043 

Exon 10 PSI was limited to values between 0 and 1 with 0 signifying that no transcripts 1044 

had Exon 10 and 1 implying that all transcripts had Exon 10. Hence, standard linear 1045 

regression was no longer appropriate and features were fit with a beta regression model 1046 

to Exon 10 PSI. Regression parameters were determined using the betareg package 1047 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.09.13.460117doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460117
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

(Cribari-Neto and Zeileis 2010) in R. Bootstrapping was performed by sampling without 1048 

replacement 70% of the mutations to train and test the model and calculating the 1049 

Pearson correlation coefficient (R2) between true values and predictions of the sample. 1050 

This bootstrapping was executed 10 times resulting in a range of R2s, ensuring that no 1051 

subset of mutations skewed model performance. Since there were only 4 mutations that 1052 

maintained the wildtype 3R to 4R ratio in our training set, we added 3 additional variants 1053 

of unknown significance (VUSs) from the Single Nucleotide Polymorphism database 1054 

(dbSNP) which we experimentally verified preserved the wildtype splicing pattern (see 1055 

Supplementary file 7 for gel).  WT VUSs tested and added to the training set were 1056 

assigned a PSI of 0.5 to indicate equivalence to the WT sequence. Eq. 1, the structure 1057 

ensemble model, uses four characteristics describing X, the DG° of unfolding of the 1058 

region of interest around the exon-intron junction for 1000 structures in the ensemble. 1059 

Eq. 2, the minimum free energy (MFE) model, uses just Y, the DG° of unfolding of the 1060 

exon-intron junction found within the spliceosome at the Bact stage for the single MFE 1061 

structure. Eq. 3, the splice site model, uses the difference in splice site strength 1062 

between WT sequence and a mutation where SS represents splice site. Eq. 4, the 1063 

combined SRE model, uses the difference in SRE strength between WT sequence and 1064 

a mutation where SS represents splice site, E represents enhancer, and S represents 1065 

silencer. Eq. 5, the RBP model, uses the difference in RBP motif strength between WT 1066 

sequence and a mutation where Ex represents RBPs involved in the exclusion of Exon 1067 

10 and In represents RBPs involved in the inclusion of Exon 10. Eq. 6 is the interactive 1068 

model between structure and SRE, and Eq.7 is the additive model. isNonSynonymous, 1069 

isSynonymous and isIntronic represent the category of mutation and is either 0 or 1. 1070 

Supplementary file 6 summarizes the performance of the models and features utilized.  1071 

 1072 

𝑃𝑆𝐼	~	𝑀𝑒𝑎𝑛(𝑋) + 𝑆𝐷(𝑋) + 𝑆𝑘𝑒𝑤(𝑋) + 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋)												[𝟏] 1073 

 1074 

𝑃𝑆𝐼	~	𝑌						[𝟐] 1075 

 1076 

𝑃𝑆𝐼	~	D𝑆𝑆							[𝟑] 1077 
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 1078 

𝑃𝑆𝐼	~	D𝐸 + D𝑆 + D𝑆𝑆							[𝟒] 1079 

 1080 

𝑃𝑆𝐼	~	D𝐸𝑥 + D𝐼𝑛							[𝟓] 1081 

 1082 

𝑃𝑆𝐼	~	[𝑀𝑒𝑎𝑛(𝑋) + 𝑆𝐷(𝑋) + 𝑆𝑘𝑒𝑤(𝑋) + 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋)] ∗ [𝑖𝑠𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 + 𝑖𝑠𝐼𝑛𝑡𝑟𝑜𝑛𝑖𝑐]1083 

+ [D𝐸 + D𝑆 + D𝑆𝑆] ∗ [𝑖𝑠𝑁𝑜𝑛𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠]												[𝟔] 1084 

 1085 

𝑃𝑆𝐼	~	[𝑀𝑒𝑎𝑛(𝑋) + 𝑆𝐷(𝑋) + 𝑆𝑘𝑒𝑤(𝑋) + 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋)] + [D𝐸 + D𝑆 + D𝑆𝑆]												[𝟕] 1086 

 1087 

Clustering changes in structural and SRE features 1088 

For each feature, non-zero values greater than the 95th percentile value were set to the 1089 

95th percentile or, if less than the 5th percentile value, were set to the 5th percentile for 1090 

visualization, after which all values were normalized to the maximum absolute value. 1091 

Silencer Dstrength and mean DG° of unfolding of exon-intron junction of ensemble were 1092 

inverted to follow the visualization such that values closer to 1 would result in greater 1093 

Exon 10 inclusion and values closer to 0 would result in lower Exon 10 inclusion. 1094 

Features were then assigned values 0 or 1 depending on whether the feature changed 1095 

at all in the presence of the mutation. These digitized features were first clustered by 1096 

hierarchal clustering resulting in 6 clusters. Each individual cluster was clustered again 1097 

by hierarchal clustering but using the normalized feature values instead of 0s and 1s.  1098 

 1099 

Splicing Assays 1100 

HEK-293 cells (ATCC CRL-1573) were grown at 37°C in 5% CO2 in Dulbecco’s 1101 

Modified Eagle Medium (Gibco) supplemented with 10% FBS (Omega Scientific) and 1102 

0.5% Penicillin Streptomycin (Gibco). The wild type splicing reporter plasmid was 1103 

generously provided by the Roca lab and is described in Tan et al., 2019. Single-1104 

nucleotide point mutations were generated using a Q5 site-directed mutagenesis kit 1105 

(NEB) and confirmed by Sanger sequencing, or custom ordered directly from GenScript. 1106 

Reporter plasmids (2!µg) were transfected into HEK-293 cells in 6-well plates at ~60-1107 
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90% confluency using Lipofectamine 3000 (ThermoFisher Scientific). Cells were 1108 

harvested after 1 day by aspirating the media and resuspending the cells in 1 mL Trizol 1109 

reagent (ThermoFisher Scientific). RNA was isolated using the PureLink RNA Isolation 1110 

Kit (ThermoFisher Scientific) with on-column DNase treatment, following manufacturer’s 1111 

instructions. RNA (1 µg) was reverse transcribed to cDNA using Superscript VILO 1112 

reverse transcriptase (ThermoFisher Scientific). Reverse transcriptions were performed 1113 

by annealing (25°C 10 minutes), extension (50°C 10 minutes), and inactivation (85°C 10 1114 

min) steps. Heat-inactivated controls were prepared by heating the reaction without 1115 

RNA at 85°C for 10 minutes prior to adding RNA, then following the described reaction 1116 

conditions. The cDNA was PCR amplified with NEB Q5 HotStart polymerase (NEB) 1117 

using splicing assay primers from IDT (AGACCCAAGCTGGCTAGCGTT forward, 1118 

GAGGCTGATCAGCGGGTTTAAAC reverse) with 25 cycles. PCR product was purified 1119 

and concentrated using the PureLink PCR micro clean up kit (ThermoFisher Scientific), 1120 

following manufacturer’s instructions. Splicing products were visualized by loading ~200 1121 

ng of DNA on a 2% agarose gel in 1X tris-acetate EDTA (TAE) buffer and staining with 1122 

ethidium bromide. Gel images were quantified with ImageJ.  1123 

 1124 

Supplementary files, figure source files, SNRNASMs and code are available at 1125 

GitHub repository: https://git.io/JuSW8 1126 
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Figure 1-figure supplement 1: Distribution of Exon 10 PSIs calculated for RNA-seq 1461 

data from GTEx database.   1462 

A) Distribution of TPM values of MAPT gene expression for tissues in the GTEx 1463 

database sorted by median TPM. Dotted box indicates tissues with median TPM 1464 

greater than 10. MAPT is highly expressed in the brain, and there is little 1465 

expression in other tissues. Figure was downloaded from the GTEx website.  1466 

B) Distribution of Exon 10 PSI for 12 central nervous system, muscle-skeletal, 1467 

colon-sigmoid, and breast-mammary tissue types. Percent Spliced In (PSI) of 1468 

Exon 10 was calculated from RNA-seq data for 2,962 tissue samples among 15 1469 

tissue types collected from 818 individuals in GTEx v8 database. The violin plot 1470 

for each tissue type and the corresponding region on the brain diagram is colored 1471 

by the median PSI for all samples of that type. The median PSI of 0.56 for all 1472 

tissue samples is indicated by the red dotted line. 1473 

C) Distribution of Exon 10 PSI for tissues per individual. Only individuals with MAPT 1474 

expression data in 8 or more tissues were plotted. Median PSI for each individual 1475 

is labelled by red dot on box plot. 1476 
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 Figure 1-figure supplement 2: DMS structure probing data for mature MAPT 3R and 1478 

4R isoforms 1479 

A) DMS reactivity data from T47D cells for two biological replicates for Exon 9-Exon 1480 

11 junction (3R isoform). Structure probing data for junctions of interest were 1481 

obtained using primers (Supplementary file 4) following RT of extracted RNA. 1482 

DMS reactivity is plotted for each nucleotide across spliced junctions for both 1483 

replicates overlaid in plot on the left. For scatter plot on the right, DMS reactivity 1484 

for Rep 1 vs Rep 2 is plotted per nucleotide with Pearson’s correlation coefficient 1485 

displayed.  1486 

B) DMS reactivity data from T47D cells for two biological replicates for Exon 9-Exon 1487 

10-Exon 11 junction (4R isoform). 1488 

C) Comparison of DMS reactivity data for 3R vs 4R isoforms. Replicates 1 and 2 1489 

were pooled for each isoform. Top plot shows DMS reactivity plotted for each 1490 

nucleotide with isoforms overlaid. No data were collected for Exon 10 for the 3R 1491 

isoform because Exon 10 is spliced out. Bottom left scatter plot shows DMS 1492 

reactivities for Exon 9 in the 3R vs 4R context, whereas bottom right scatter plot 1493 

shows DMS reactivities for Exon 11 in the 3R vs 4R context. Pearson’s 1494 

correlation coefficient is shown for each comparison.  1495 

D) DMS reactivity data from T47D and SH-SY5Y cells for Exon 9-Exon 11 junction 1496 

(3R isoform). Replicates from T47D cells were pooled. DMS reactivity is plotted 1497 

for each nucleotide across spliced junctions for both replicates overlaid in plot on 1498 

the left. For scatter plot on the right, DMS reactivity for T47D vs SH-SY5Y is 1499 

plotted per nucleotide with Pearson’s correlation coefficient displayed.  1500 

E) DMS reactivity data from T47D and SH-SY5Y cells for Exon 9-Exon 10-Exon 11 1501 

junction (4R isoform). 1502 

 1503 
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 1504 

Figure 1-figure supplement 3: DMS structure probing data for human small subunit 1505 

ribosome RNA (SSU) collected from T47D cells.  1506 

A) T47D cells were treated with DMS. Data for SSU were extracted by aligning reverse 1507 

transcribed RNA-seq data against the SSU sequence, after which reactivities were 1508 

calculated. DMS reactivities are plotted for each of the four sub-domains of the SSU. 1509 

Each value is shown with its standard error and colored by reactivity based on color 1510 

scale. Reactivities were cut off at 2. High DMS reactivities correspond to 1511 

unstructured regions, whereas low DMS reactivities correspond to structured 1512 

regions. The secondary structure of the SSU was downloaded from Loren William’s 1513 
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lab Ribosome Gallery website 1514 

(http://apollo.chemistry.gatech.edu/RibosomeGallery/eukarya/H%20sapiens/SSU/ind1515 

ex.html). 1516 

B) Violin plots showing distribution of DMS reactivities for adenines and cytosines 1517 

partitioned by paired versus unpaired nucleotides. Pairing status of nucleotides was 1518 

determined from the known secondary structure of the SSU. Median DMS reactivity 1519 

is indicated by thick horizontal black line on violin plot.  1520 

C) ROC curves for predicting whether a nucleotide in the SSU is paired. Three different 1521 

parameters were used for each of the three curves: DMS reactivities, base pairing 1522 

probabilities predicted from SSU sequence, and base pairing probabilities for SSU 1523 

sequence that were guided by DMS reactivities. The area under the curve (AUC) for 1524 

each curve was calculated with AUCs closer to 1 corresponding to higher accuracy 1525 

of predictions. Dotted line indicates AUC of 0.5 which corresponds to a model 1526 

making random predictions. 1527 

D) Comparison of distribution of DMS reactivities between SSU, MAPT 3R and 4R 1528 

isoforms. Larger plot shows a density histogram of the DMS reactivities for each 1529 

RNA. Inset boxplots display distribution of DMS reactivities. Level of significance: 1530 

***p-value < 10-6 1531 
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Figure 2-figure supplement 1: DMS structure probing data for precursor MAPT Exon 1533 

10-Intron 10 junction 1534 

A) DMS reactivity data from T47D cells for two biological replicates for Exon 10-1535 

Intron 10 junction. Structure probing data for junctions of interest were obtained 1536 

using primers following RT of extracted RNA. DMS reactivity is plotted for each 1537 

nucleotide across spliced junctions for both replicates overlaid in plot on the left. 1538 

For scatter plot on the right, DMS reactivity for Rep 1 vs Rep 2 is plotted per 1539 

nucleotide with Pearson’s correlation coefficient displayed.  1540 

B) DMS reactivity data comparing Exon 10 in precursor vs mature transcript. 1541 

Replicates 1 and 2 were pooled for each transcript. Right plot shows DMS 1542 

reactivity plotted for each nucleotide with mature and precursor RNAs overlaid. 1543 

DMS data for all of Exon 10 could not be collected for the precursor RNA due to 1544 

the position of primers chosen for amplification. Scatter plot on the left shows 1545 

DMS reactivities for Exon 10 in the precursor vs mature mRNA context with 1546 

Pearson’s correlation coefficient shown for the comparison.  1547 

C) DMS reactivity data from T47D and SH-SY5Y cells for Exon 10-Intron 10 1548 

junction. Replicates from T47D cells were pooled. DMS reactivities are plotted for 1549 

each nucleotide across exon-intron junctions for both cell types overlaid in plot on 1550 

the left. For scatter plot on the right, DMS reactivity for T47D vs SH-SY5Y is 1551 

plotted per nucleotide with Pearson’s correlation coefficient displayed.  1552 

D) Boxplots of distribution of DMS reactivities between SSU, MAPT 3R isoform, 4R 1553 

isoform and pre-cursor mRNA.  1554 

 1555 
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Figure 2-figure supplement 2: The 3R and 4R mutations shift the WT structural 1557 

ensemble towards less and more accessible exon-intron junctions, respectively.  1558 

A) Density histogram showing the distribution of unfolding free energies of the splice 1559 

site (defined as last 3 nucleotides of exon, first 6 nucleotides of intron) for all 1560 

structures in the ensemble for WT, 3R and 4R mutated sequence. Distributions 1561 

for each sequence are colored according to the legend.  1562 

B) t-SNE Visualization of structural ensemble of wild type (WT) and, 3R (+19C>G) 1563 

and 4R (+15A>C) mutations. Structures were predicted using Boltzmann 1564 

suboptimal sampling and guided by DMS reactivity data (in Figure 2A). Data 1565 

were visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE). 1566 

Shown are 3000 structures corresponding to 1000 structures per category. Each 1567 

dot represents a single structure and was colored by calculated unfolding free 1568 

energy of splice site at exon-intron junction (3 exonic bases, 6 intronic bases). 1569 

Data were clustered by k-means clustering and representative structures for five 1570 

clusters are shown. Bar plots next to the representative structure show the 1571 

proportion of the cluster in WT, 3R and 4R. The exon-intron junction is marked by 1572 

EIJ on each structure. Position of 3R and 4R mutations are marked by a red 1573 

asterisk on their respective representative structures. There are two additional 1574 

representative structures shared by WT and 4R sequence which have similar 1575 

structural contexts around the EIJ as the representative WT structure in Figure 1576 

2B.  1577 

 1578 
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 1579 

Figure 3-figure supplement 1: Structure is a poor predictor of Exon 10 PSI for exonic 1580 

non-synonymous mutations 1581 

A) Positions of intronic and synonymous experimentally validated mutations, used in 1582 

training the structure model, are shown on the wild type representative structure 1583 
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from Figure 2B. Each nucleotide is colored by its corresponding reactivity value 1584 

based on the color scale.  1585 

B) Violin plots showing the distribution of unfolding free energy of the exon-intron 1586 

pre-mRNA in the spliceosome Bact complex for the 1000 structures in the 1587 

ensembles of the 22 intronic and synonymous mutations. Each violin plot is 1588 

colored by whether the mutation promotes the 3R or 4R isoform ratio or the ratio 1589 

remains 50:50.  1590 

C) Exon 10 PSIs of 22 mutations predicted using unfolding free energy of the exon-1591 

intron pre-mRNA in Bact complex of the spliceosome for the single minimum free 1592 

energy (MFE) structure and plotted against experimental PSIs measured in 1593 

splicing assays. Exon 10 PSIs predicted using Eq. 2. Each point on the 1594 

scatterplot represents a mutation and is colored by mutation category. Dotted 1595 

diagonal line is the x=y line, and the closer the points are to the diagonal, the 1596 

more accurate the prediction. Pearson correlation coefficient (R2) of experimental 1597 

to predicted PSIs was calculated.  1598 

D) Exon 10 PSIs of non-synonymous and compensatory mutations predicted using 1599 

the unfolding free energy of pre-mRNA within the spliceosome Bact stage plotted 1600 

against corresponding experimental PSIs measured in splicing assays. Exon 10 1601 

PSIs were predicted using Eq. 1. 1602 

E) Violin plots show R2s calculated for each mutation category by training and 1603 

testing on subsets of all mutations by non-parametric bootstrapping; Non-1604 

synonymous (n=10), Compensatory (n=14).  1605 
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 1606 

Figure 4-figure supplement 1: RBP binding motif strength is a poor predictor of Exon 1607 

10 PSI for all mutations 1608 

A) Exon 10 PSIs of 47 mutations predicted from structural change and plotted 1609 

against experimental PSIs measured in splicing assays. Exon 10 PSIs predicted 1610 

using Eq. 1. Each point on the scatterplot represents a mutation and is colored 1611 

by mutation category. Grey line represents the best fit with dotted lines indicating 1612 

the 95% confidence interval. Pearson correlation coefficient (R2) of experimental 1613 

to predicted PSIs. Violin plot shows R2s calculated for each category by training 1614 

and testing on subsets of all mutations by non-parametric bootstrapping; Exonic 1615 

non-synonymous (n=11), Exonic synonymous (n=7), Intronic (n=15), 1616 

Compensatory (n=14), Wildtype (n=1). 1617 

B) Scatter plot of change in enhancer or silencer strength versus Exon 10 PSI. Each 1618 

point represents a mutation. Blue line represents the line of best fit with dotted 1619 
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lines indicating the 95% confidence interval. Pearson correlation coefficient (R2) 1620 

is shown. The negative correlation between silencer strength and Exon 10 PSI is 1621 

statistically significant with a p-value of 0.004. 1622 

 1623 

 1624 

 1625 
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 1626 

Figure 4-figure supplement 2: RBP binding motif strength is a poor predictor of Exon 1627 

10 PSI for all mutations 1628 

A) Heatmap of relative RBP binding motif strengths compared to wild type for 44 1629 

mutations. A value of 0 indicates that the mutation does not change RBP binding 1630 

motif strength, a positive value indicates increase in RBP binding motif strength, 1631 
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and a negative value indicates weaker strength. RBPs implicated in the 1632 

regulation of Exon 10 splicing were collected from Qian & Liu, 2014 and the RBP 1633 

binding motifs were from Dominguez et al., 2018 and Ray et al., 2013. RBPs on 1634 

the left, implicated in the splicing inclusion of MAPT Exon 10, are highlighted in 1635 

pink, and RBPs involved in the exclusion of Exon 10 are highlighted in green. 1636 

Mutations are marked based on whether they promote the 3R or 4R isoform ratio 1637 

or the ratio remains 50:50. 1638 

B) Scatter plot displaying change in RBP motif strength versus Exon 10 PSI, 1639 

categorized based on whether the RBP is implicated in exclusion or inclusion of 1640 

Exon 10. Neither correlation coefficient is statistically significant. 1641 

C) Exon 10 PSIs of 44 mutations and wild type predicted using change in RBP motif 1642 

strength and plotted against experimental PSIs measured in splicing assays. 1643 

Exon 10 PSIs predicted using Eq. 5. Each point represents a mutation and is 1644 

colored by category of mutation. Dotted diagonal line is the x=y line, and the 1645 

closer the points are to the diagonal, the more accurate the prediction. Pearson 1646 

correlation coefficient (R2) of experimental to predicted PSIs was calculated.  1647 

 1648 
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 1649 

Figure 5-figure supplement 1: Additive model of structure and SRE has poorer 1650 

predictive performance compared with an interactive model specifically for synonymous 1651 

and non-synonymous mutations 1652 

A) Exon 10 PSIs of 47 mutations and wild type predicted using addition between 1653 

structure and SRE strength and fit to experimental PSIs measured in splicing 1654 

assays. Exon 10 PSIs are predicted using Eq. 7. Each point on scatterplot 1655 

represents a mutation and is colored by category of mutation. Grey line 1656 

represents the best fit with dotted lines indicating the 95% confidence interval.  1657 

Pearson correlation coefficient (R2) of experimental to predicted PSIs was 1658 

calculated. 1659 

B) Violin plots showing correlation coefficients for each mutation category for 1660 

structure and SRE additive model. R2s calculated for each mutation category by 1661 

training and testing on subsets of all mutations by non-parametric bootstrapping 1662 

10 times.  1663 
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C) Pie chart of number and proportion of experimentally validated mutations in each 1664 

cluster for heatmap in Fig 5B. Color of segment of pie chart matches up to the 1665 

color of dendrogram branch in Fig 5B. 1666 
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Figure 6-figure supplement 1: Complete mutagenesis of 100-nucleotide window 1668 

spanning Exon 10-Intron 10 junction  1669 

A) Heatmap of mean predicted Exon 10 PSIs grouped by wild type and mutant 1670 

nucleotide. Mutations were grouped by wild type and mutant nucleotide, and 1671 

mean predicted PSIs were calculated by group and colored according to color 1672 

scale. Violin plots of the distribution of PSI per group are shown in tile 1673 

corresponding to group. On each tile, mean PSI is indicated by dot and labeled 1674 

within violin plot.  1675 

B) Violin plot of the distribution of normalized change in unfolding free energy of the 1676 

exon-intron pre-mRNA in the spliceosome Bact complex from WT for all mutations 1677 

around a 100-nucleotide window of exon-intron junction. Mean of -0.67 is 1678 

indicated by dot. Dotted line represents the 0 value where there is no difference 1679 

between WT and mutant unfolding free energy. Positive values imply region 1680 

becomes less structured and has increased inclusion of Exon 10 (4R isoform); 1681 

negative values are interpreted as more structured and decreased inclusion of 1682 

Exon 10 (3R isoform).  1683 

C) Violin plots showing the distribution of normalized change in splice site, 1684 

enhancer, and silencer strength compared with WT for all mutations spanning a 1685 

100-nucleotide window of exon-intron junction. Mean is indicated by large black 1686 

dots on violin plots. Dotted lines represent the 0 value where there is no 1687 

difference from WT strength for mutation. Positive values suggest increased 1688 

inclusion of Exon 10 (4R isoform), whereas negative values are interpreted as 1689 

decreased inclusion of Exon 10 (3R isoform). 1690 

D) Violin plot shows the distribution of unfolding free energy of the exon-intron pre-1691 

mRNA in the spliceosome Bact complex for the 1000 structures in the ensembles 1692 

of wild type and the 6 VUSs experimentally tested. Each violin plot is colored by 1693 

whether the mutation promotes the 3R or 4R isoform ratio or the ratio remains 1694 

50:50. The dotted line indicates the median unfolding free energy of the WT 1695 

ensemble.   1696 
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E) Bar plots display the change in enhancer and silencer strength of the 6 VUSs 1697 

compared with WT. 1698 

F) Quantification of Exon 10 PSI of three replicates for splicing assay gels for 6 1699 

VUSs. One tailed Wilcoxon Rank Sum test was used to calculate significance of 1700 

Exon 10 PSI of VUS of interest compared to WT.  1701 
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