
Lawrence Berkeley National Laboratory
Recent Work

Title
Quantitative principles of cis-translational control by general mRNA sequence features in 
eukaryotes.

Permalink
https://escholarship.org/uc/item/20v1920p

Journal
Genome biology, 20(1)

ISSN
1474-7596

Authors
Li, Jingyi Jessica
Chew, Guo-Liang
Biggin, Mark Douglas

Publication Date
2019-08-01

DOI
10.1186/s13059-019-1761-9
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/20v1920p
https://escholarship.org
http://www.cdlib.org/


RESEARCH Open Access

Quantitative principles of cis-translational
control by general mRNA sequence
features in eukaryotes
Jingyi Jessica Li1*, Guo-Liang Chew2 and Mark Douglas Biggin3*

Abstract

Background: General translational cis-elements are present in the mRNAs of all genes and affect the recruitment,

assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These

elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG

codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence

features and how and why they coordinate to control translation rates are not well understood.

Results: Here, we show that these sequence features specify 42–81% of the variance in translation rates in Saccharomyces

cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by

RNA secondary structure is chiefly mediated by highly folded 25–60 nucleotide segments within mRNA 5′ regions, that

changes in tri-nucleotide frequencies between highly and poorly translated 5′ regions are correlated between all species,

and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in

different parts of the same mRNA.

Conclusions: Our work shows that general features control a much larger fraction of the variance in translation rates than

previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs

translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control

features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of

the translation machinery by the cell.

Keywords: Translation , Cis-control , RNA structure , Codon usage , Collinear regulation

Background

It is a major challenge to determine from nucleotide se-

quence data the rates at which eukaryotic mRNAs are

translated into protein. There are two classes of cis-

acting elements in mRNAs that determine these rates:

general sequence features and gene/condition-specific

elements [1–11]. The general features are secondary

structure in the 5′ portion of the mRNA; upstream

open reading frames (uORFs), which lie 5′ of the pro-

tein coding sequence (CDS); specific nucleotides imme-

diately flanking the initiating AUG codon (iAUG) at the

5′ of the CDS; CDS length; and codon usage. These five

features are each present in all or many mRNAs and

function by affecting the formation and progress of pre-

initiation complexes or the ribosome. As such, they act

in a wide array of physiological states and tissues. Gene

or condition-specific elements, in contrast, are short se-

quences recognized by trans-acting factors such as

microRNAs or regulatory proteins. A given type of spe-

cific element is present in only a subset of genes and its

cognate trans-acting factor only functional in a subset

of cells or conditions.

Here, we focus on the general elements. Our major goal

is to estimate the contributions of these sequence fea-

tures—and their associated biochemical mechanisms—to

the total variance in translation rates, singly and in com-

bination. We argue that from this, one can, in addition,

approximate from the unexplained variance the
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contribution of specific elements, or at least set an upper

limit on that contribution. By optimizing the models that

predict the contribution of each general feature, we also

aim to better understand the nucleic acid sequences that

encode them. Further, to establish common principles, we

have analyzed in parallel data from five model eukaryotes:

two yeasts, a plant, and two mammals.

The general sequence features have long been known

to affect the translation rates of individual genes. The

quantitative contributions of these elements to the vari-

ance in genome-wide translation rates, however, have

not been well characterized. The correlation of subsets

of these sequence features with ribosome profiling trans-

lation rate data has been estimated in Saccharomyces

cerevisiae and several animal models [4, 10, 12–16]

(Additional file 1: Table S1). In addition, the effect of

large numbers of artificial sequence mutations on trans-

lation has been determined for 10–50 nucleotide seg-

ments proximal to the iAUG codon in S. cerevisiae and

Homo sapiens [12, 17–21] (Additional file 1: Table S2).

The role of RNA secondary structure in 5′ untranslated

regions (5′UTRs) has also been addressed in vitro for S.

cerevisae [22] (Additional file 1: Table S2). A prior study

that we conducted was the only one to assess the contri-

butions of all five features [10]. This work established

that mRNA folding, uORFs, iAUG proximal sequence el-

ements (APEs), and CDS length explain 58% of the vari-

ance in translation rates among S. cerevisiae genes,

presumably due to their impact on the initiation rate.

When the effect of codon usage on elongation by the

ribosome is also taken into account, 80% of the variance

can be explained.

Here, we have developed new models that characterize

in detail the mRNA secondary structures and sequence

motifs that regulate translation rates. By applying our

models to five well-studied eukaryotes and by examining

the correlations in control between general features and

between different parts of the same mRNA, we identify

the key principles common to all five species as well as

phylum-specific differences.

Results

Datasets

The five model eukaryotes we chose to study are: S. cere-

visiae, Schizosaccharomyces pombe, Arabidopsis thali-

ana, Mus musculus, and H. sapiens. Translation rates

were determined from ribosome profiling data as prior

work has shown that the density of ribosomes per

mRNA molecule (i.e., the translational efficiency) is a

useful estimate of the rate [13, 23]. For each species, we

chose an example dataset to analyze in most detail [4,

13, 24–26]. In addition, key analyses were repeated on

further datasets of three species for other tissues or bio-

logical replicas [4, 14, 27, 28]. Additional file 1: Figure

S1 presents the distributions of translation rates, 5′UTR

length, and CDS lengths for the five example datasets.

Additional file 1: Figure S2 shows the variation in trans-

lation rates for all ten datasets examined. The lengths of

5′UTRs vary among the species, with the average for S.

cerevisiae being the shortest and that for the two mam-

mals and S. pombe the longest. By contrast, the ranges

of CDS lengths are more consistent among the five eu-

karyotes. The variance in translation rates is relatively

narrow for all species and conditions. The mRNA se-

quences, translation rates, and other primary informa-

tion for each dataset are given in Additional file 2.

Table 1 provides a glossary of abbreviations used.

Control by 5′ mRNA secondary structures

Biophysical measurements of short RNA oligonucleo-

tides in vitro have allowed the melting temperatures and

Gibbs free energies of stem/loop structures to be accur-

ately calculated for any short sequence based on a set of

rules for the energies of base pairing and adjacent base

stacking as well as the destabilizing entropic effect of

Table 1 Glossary of abbreviations

Abbreviation Explanation

APE AUG proximal element: control sequences that flank the
iAUG

dAPE Downstream APE: that part of the APE located
downstream (3′) of the iAUG

uAPE Upstream APE: that part of the APE located upstream (5′)
of the iAUG

5′ofAPE The 5′UTR sequences that lie 5′ of the APE

iAUG Initiating AUG: the AUG codon at the 5′ end of the CDS

uAUG Upstream AUG: an AUG codon in the 5′ UTR, i.e., an AUG
at the 5′ end of an uORF

BIC Bayesian Information Criteria: a method to select an
efficient set of model features

5′ cap The 5′ most nucleotide of the mRNA

CDS Coding sequence: the protein coding portion of the
mRNA

CDS 3′ofAPE That part of the CDS that lies 3′ of the APE

MFE Minimum free energy: the Gibbs free energy of folding
for a defined segment of RNA

uORF Upstream open reading frame: an uAUG containing open
reading frame in the 5′UTR

PWM Position Weight Matrix: the fraction of A, U, G, and Cs at
each nucleotide position

5′region The region spanning the 5′UTR and the 5′ most ~ 30
nucleotides of the CDS

5′UTR 5′ Untranslated region: all mRNA nucleotides 5′ of the
CDS

TR Translation rate: rate of translation per mRNA molecule at
steady state

high TR A cohort of genes with the highest translation rates

low TR A cohort of genes with the lowest translation rates
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loop length [29–32]. For example, the coefficient of the

determination correlation coefficient between measured

and predicted Gibbs energies for 109 4–14-bp double-

stranded RNA oligonucleotides from [33] is R2 = 0.98

(Additional file 3). Computational predictions of mRNA

secondary structure that incorporates these and other

information are quite effective: the algorithm we

employed having 74% recall (percent of true-positive

base pairs identified) and 79% precision (percent of base

pairs identified that are true positives) [32]. Previous

work has shown that the free energies of RNA folding

from this or similar algorithms positively correlate with

the translation rates (Additional file 1: Tables S1 and

S2), supporting the view that the preinitiation complex

and ribosome must unfold RNA structures in order to

progress down the mRNA. Our preliminary analyses,

however, showed that these prior studies had greatly

underestimated the contribution of mRNA folding to

translation. We therefore systematically assessed which

aspects of secondary structure are most important in de-

termining translational efficiency and used this informa-

tion to improve the predictive models of rates.

Figure 1 shows the mean and the 25th percentile-75th

percentile interval for the free folding energies of 35 nu-

cleotide windows for two cohorts of genes, the 10% of

genes with the highest translation rates (high TR) and

the 10% with the lowest (low TR). Within the 5′UTR,

the low TR cohort has smaller folding energies (i.e., are

more folded) than the high TR cohort, consistent with

the repression of preinitiation complexes by RNA struc-

ture. For S. cerevisiae, S. pombe, and Arabidopsis, the

differences between the two cohorts are largest from −

35 to + 35, − 35 to + 1, and − 120 to + 35, respectively.

For mouse and human, the differences are largest to-

wards the 5′ cap. In the CDS region 3′ of + 30, the rela-

tionship of RNA folding energy and translation rate is

not consistent, with either a strong negative correlation

in S. pombe; a weak negative correlation in S. cerevisiae,

Arabidopsis, and M. musculus; or a positive correlation

in H. sapiens. Prior analysis in S. cerevisiae implied that

strongly folded RNA structures in the CDS are associ-

ated with more stable mRNAs and that the negative cor-

relation of CDS folding energy with translation is

indirect, being due to the positive correlation between

translation and mRNA abundance and the negative ef-

fect of RNA turnover on mRNA abundance [10]. Given

this and a lack of evidence that RNA structure affects

the elongating ribosome, we have limited our models to

the 5′UTR and the 5′ most part of CDS, where folding

energy values and translation rates correlate positively.

We term the combination of the 5′UTR and the short

5′ CDS segment the 5′ region.

Along the 5′ regions of individual mRNAs, free energy

values vary dramatically (Additional file 1: Figure S3),

reflecting mRNA stem/loop structures at some locations

and unfolded regions at others. Despite the mean ten-

dencies shown in Fig. 1, Additional file 1: Figure S3 re-

veals that individual genes can have folded or unfolded

regions at almost any location.

To capture and exploit these complex distributions, we

devised a number of features that each score every gene

using some aspect of predicted RNA folding energy. We

also constructed three multivariate linear models that

combine multiple features to form feature sets. The coeffi-

cient of determination correlation coefficient (R2) was

then calculated between each feature or feature set and

the translation rates (Fig. 2; Additional file 4). One feature

was defined as the folding energy for the contiguous se-

quence from the 5′ cap to + 35 (whole). The other fea-

tures were determined for each of 21 window lengths

varying from 6 to 100 nucleotides, the 5′ ends of the win-

dows tiling from the 5′ cap to − 1 (Fig. 2). The result is a

set of 421 metrics for translational control by RNA struc-

ture for each species.

Our most accurate prediction of translation derived from

a multivariate linear model that was selected by Bayesian In-

formation Criteria (BIC) and that contains 9–33 features of

whichever window length(s) provided the most useful infor-

mation (“RNAfold,” Fig. 2; Additional file 5). These “RNA-

fold” feature sets explain between 11 and 33% of the

variance in rates and as such have over twice the predictive

power (R2) of models used by other groups (Additional file 1:

Table S1).

Most features employed windows identified based on

their free energy values. A substantial proportion of con-

trol by RNA secondary structure—often greater than a

half—can be explained by the single window that has the

minimum free energy within each mRNA (i.e., by the

window that has the most folded structure) (“min,”

Figs. 2 and 3a). Less folded windows each have progres-

sively reduced explanatory power compared to the “min”

window (“10%,” “25%,” “75%,” “90%,” and “max,” Fig. 3a).

Likewise, features that sum Gibbs energies for the most

folded window with the energies of other strongly folded

segments (“sum ≤ 5%,” “sum ≤ 10%,” or “sum ≤ 20%”)

have more explanatory power than features that sum the

energies of less well-folded segments (“sum > 90%” and

“sum > 80%”) (Fig. 2). A similar relationship is also seen

for features that determine the percent of windows in

each mRNA that pass some threshold on the energies of

all windows in the dataset (“% ≤ 20%” vs “% > 80%” and

“% > 90%”) (Fig. 2). These results collectively indicate

that translation rates are much more strongly influenced

by the differences among the more folded segment(s)

within the 5′ regions than by the differences among

their less folded sequences.

Additional results imply that base pairing between se-

quences separated by more than 60 nucleotides does not
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Fig. 1 Different distributions of secondary structures in the 5′ portions of mRNAs. The predicted RNA folding energy (ΔG kcal/mol) of 35 nucleotide windows (y-

axis) are plotted for the 10% most highly translated mRNAs (high TR, black) and the 10% most poorly translated (low TR, red). The x-axis shows the position of the

5′most nucleotide of each window. Windows for every one nucleotide offset were calculated. At each location, the free energies for the mean (continuous lines)

and the interval between the 25th and 75th percentile (shading) are shown. mRNAs were aligned at their 5′ cap (left), at the iAUG (center), or at the 3′ of the CDS

(right). In S. cerevisiae, S. pombe, and Arabidopsis, the differences between the two cohorts are greatest proximal to the iAUG. In the two mammals, the differences

are greatest towards the 5′ cap
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Fig. 2 Translation rates are optimally determined by a combination of RNA folding features. The R2 coefficients of determination between log10
translation rates (TR) and a variety of single features and feature sets based on RNA folding energies. Nine features use the free energy value of a

single window per gene (left): windows “5′ cap” through “− 1” were identified by the location of their 5′ most nucleotide, while windows “min”

through “max” were identified by the rank of their free energy. Nine additional features were each calculated using multiple windows per gene

(center): “mean,” the mean of all windows in a gene; “%≤ 20%,” “%≥ =90%,” and “%≥ 80%,” the percent of windows in a given gene that respect a

threshold on the free energy of all windows for all genes; and “sum≤ 5%,” “sum≤ 10%,” “sum≤ 20%,” “sum≥ 80%,” and “sum≥ 90%,” the sum of free

energies of windows in a given gene that respect a threshold on the free energy of all windows for all genes. Twenty one window lengths from 6 to

100 nucleotides were employed for each of the above features. In addition, a final feature, “whole” (right), was calculated from the free energy of

folding of the contiguous sequence from the 5′cap to + 35 for each mRNA. Three multivariate feature sets were also determined (right): “model all-1”

combined all window-based features for a given window length; “model all” included in addition the “whole” feature; while “RNAfold” used Bayesian

Information Criteria to select features from the complete set of features, using whichever window length variant(s) provided the most useful

information. “RNAfold” was additionally constrained for S. pombe by removal of all windows that extend 3′ of + 30 nucleotides to avoid sequences

showing a strong negative correlation of free energy values and TR. Additional file 4 provides the R2 values for all features. Additional file 5 provides

details of the features selected for the “RNAfold” model
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play a dominant role in regulating translation. Because

the “whole” feature includes the full 5′ region, it ac-

counts for all long-range interactions. Models that con-

tain all features, however, perform little better than the

ones lacking “whole” (Fig. 2, compare “models all” to

“models all-1”).

To further define the secondary structures that control

translation, we focused on the most folded window as

these are strongly predictive in all species. The optimum

length of “min” window ranges from 25 to 35 nucleo-

tides in the two yeasts to 55–60 in the two mammals

(Fig. 2). Windows shorter than the optimum are less

predictive presumably because they exclude important

secondary structures, whereas windows longer than the

optimum include unfolded sequences that “dilute” the

control information. The optimum length “min” win-

dows generally contain either one or two stem/loops of

varying sizes, some of which include mismatched or

single nucleotide bulges within their stems (Add-

itional file 6). For all species, the longest contiguous run

of paired nucleotides within a stem contains much of

the regulatory information (Fig. 3b). With the exception

of S. pombe, however, the total number of nucleotide

pairs in the window is more predictive of translation

than the number of nucleotide pairs in the longest con-

tiguous run or in the longest stem (Fig. 3b). This sug-

gests that most nucleotide pairs in “min” windows are

controlling, including those within smaller secondary

Fig. 2 (Continued)
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stem/loops. The different result for S. pombe may well be

because its “min” windows have shorter optimum lengths

than those of other species (25 vs 35–60 nucleotides) and

tend to have only one major stem/loop (Additional file 6).

Finally, It is striking that between cohorts of highly

translated and lowly translated genes, while free energies

and loop sizes vary significantly, the number of nucleotide

pairs in contiguous runs, longest stems, or full windows is

similar for all five species (Additional file 1: Figures S4

and S5).

We also defined a location-specific group of features

that use the fold energy of a single window whose 5′

end is at a defined location: either at the 5′ of the

mRNA (5′cap) or at a location relative to the iAUG

(“-65” to “-1”) (Fig. 2). These features give results con-

sistent with the distributions of RNA folding energies

shown in Fig. 1. For example, in M. musculus and H. sa-

piens features using windows located at the 5′ cap have

more predictive power than those at or near the iAUG.

While most of the features selected by BIC for the

“RNAfold” feature set used windows identified by their

free energies, several others belonged to the location-

specific group (Additional file 5). By combining these

two feature classes, we are able to more fully capture

how mRNA secondary structure directs translation.

Sequence motifs in 5′ regions

One feature we used previously to explain translation

rates in S. cerevisiae exploited sequence differences

between highly and poorly translated mRNAs without

regard to the biochemical mechanism(s) of control [10].

This approach proved powerful, showing that nucleo-

tides flanking the iAUG from − 35 to + 28—a region

termed the AUG proximal element (APE)—explain a

third of the variance in rates [10]. To extend this strat-

egy to the other four species, we first compared position

weight matrices (PWMs) for sequences − 80 to + 35 for

the most highly translated (high TR) and most poorly

translated (low TR) 10% of genes (Fig. 4a; Add-

itional file 7). The S. pombe and Arabidopsis PWMs re-

semble those of S. cerevisiae: for example, A nucleotides

are enriched 5′ of the iAUG in high TR genes vs low TR

genes, while Gs are depleted. M. musculus and H. sapi-

ens mRNAs, by contrast, are GC rich, and sequence dif-

ferences between high and low TR cohorts are less

readily apparent. Following the strategy used earlier for

S. cerevisiae (see the “Materials and methods” section),

we assigned a score to each gene based on PWMs of

varying lengths in high TR genes and defined APE

boundaries by maximizing the R2 between the PWM

scores and translation rates (Fig. 4b; Additional file 1:

Figure S6). Arabidopsis has, like S. cerevisiae, an ex-

tended APE, spanning nucleotides − 65 to + 33, whereas

S. pombe and the two mammals have shorter APEs that

span − 6 to + 13 or less and in which the Kozak consen-

sus [34] plays a major role.

To increase these PWM-based models’ predictive

power, we used BIC to select subsets of di- and tri-

nucleotides whose frequencies in each mRNA most

a

b

Fig. 3 The RNA structures that control translation rates. a The most

folded window controls translation more strongly than less folded

windows. The correlation between log10 translation rates (TR) and

single windows within mRNA 5′ regions is shown. Six windows were

selected based on the rank of their free energy: “min,” “10%,” “25%,”

“75%,” “90%,” and “max,” where “min” is the most folded (smallest

free energy) and “max” is the least folded. The values plotted are the

R2 coefficients of determination expressed as a percent of the R2

coefficient for the “min” window. The window length was the optimum

for each species: S. cerevisiae, 35; Arabidopsis, 40; and M. musculus, 55; H.

sapiens, 60; and S. pombe, 25. b Number of nucleotide pairs describe the

regulatory potential of the most folded window. The number of paired

nucleotides was calculated in the most folded (min) window of each

gene for the longest contiguous stem without mismatches or single

nucleotide bulges (contig stem, light blue), the longest stem (max stem,

mid blue), and for all pairs within the window, including those not in the

longest stem (all, dark blue). The Pearson correlation coefficients

between each of these three measures and log10 translation rates are

plotted on the y-axis for the five example datasets. The lengths of the

most folded widows are also given. For all but S. pombe, the correlation

coefficients are more negative for measures that include more

nucleotide pairs. The primary data are provided in Additional file 6

Li et al. Genome Biology          (2019) 20:162 Page 7 of 24



Fig. 4 (See legend on next page.)
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strongly explain translation. Di- and tri-nucleotide fre-

quency features were selected for the portion of APE up-

stream of the iAUG (uAPE) and separately for the

portion downstream of the iAUG (dAPE), 4–16 di- and

tri-nucleotides being selected per region (Additional file 1:

Figure S7, Additional file 5). In the resulting multivariate

models, S. cerevisiae, S. pombe, and Arabidopsis APEs exert

stronger control than their mammalian counterparts, the

former explaining 16–33% of the variance in translation

and the latter only 3–4% (Additional file 1: Figure S7).

Because the above models capture only part of the 5′

region, we also examined the motifs in the area that ex-

tends from just 5′ of the APE to the 5′ cap (5′ofAPE).

We found that an effective model for this 5′ofAPE

region included a five nucleotide length PWM at the

5′ cap and a subset of di- and tri-nucleotide

Fig. 5 Correlations between regulatory regions in Arabidopsis mRNAs. The four heat maps show the frequency of each tri-nucleotide in the most

highly translated 10% of genes divided by its frequency in the most poorly translated 10% of genes (high TR/low TR ratio). Ratios were calculated

for four separate parts of the mRNA: 5′ofAPE, uAPE, dAPE, and the CDS 3′ofAPE. Scatter plots show the correlation in high TR/low TR ratios

between the selected regions. The Pearson correlation is given. Data points for four tri-nucleotides are indicated (GGG, AUG, CAA, AAC). Strong

positive correlates are seen between 5′ofAPE and uAPE and between uAPE and dAPE. CDS 3′ofAPE only correlates weakly with the other regions,

consistent with its different function

(See figure on previous page.)

Fig. 4 The 5′ and 3′ boundaries of AUG proximal elements. a Position Weight Matrices (PWMs) for the 10% of mRNAs with the highest translation

rate (high TR cohort) and the 10% with the lowest rate (low TR cohort). Sequence logos show the frequency of each nucleotide at each position

relative to the first nucleotide of the iAUG. The location of the AUG proximal element (APE) is indicated with a black box. b The R2 coefficients of

determination between log10 translation rates (TR) and PWM scores. PWMs of varying lengths were built from the sequences of the high TR cohort, the PWMs

extending 5′ from − 1 in 5 nucleotide increments and extending 3′ from +4 in 5 or 10 nucleotide increments. Log odds scores were then calculated for all

mRNAs that completely contained a given PWM. Additional file 1: Figure S6 shows more detailed mapping of the 5′ and 3′ boundaries for M. musculus and H.

sapiens. The frequencies of nucleotides in the PWMs are given in Additional file 7
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frequencies for the full region that was selected using

BIC (Additional file 5; Additional file 1: Figure S8). In

non-mammalian species, 5′ofAPE sequences are much

less predictive of translation than the APE, whereas

in mammals, the reverse is found (Additional file 1:

Figure S9). Multivariate models that combine 5′ofAPE

and APE motifs provide our most accurate prediction

of translation rates using 5′ region sequence motifs

(feature set “5′motifs,” Additional file 1: Figure S9).

To determine if control sequences are similar

within and between species, we divided each mRNA

into four parts: 5′ofAPE, uAPE, dAPE, and the CDS

3′ of the APE (CDS 3′ofAPE). We then calculated

the frequencies of each tri-nucleotide in each region

of each gene for the high TR and low TR cohorts

separately and took the ratio of the means of these

values, yielding “high TR/low TR ratios” (Add-

itional file 8). Six results stand out:

i. The (high TR/low TR) ratios in 5′ UTRs vary from

0 to 3.6, with most ratios differing markedly from

one (Figs. 5 and 6; Additional file 1: Figure S10;

Additional file 8). This suggests that a high

proportion of all nucleotides in these regions

contribute to translational regulation and that the

tri-nucleotides whose ratios differ most from one

make the largest contributions.

ii. In 5′UTRs, AUG has one of the smallest (high TR/

low TR) ratios of any tri-nucleotide (mean (high

TR/low TR ratio) = 0.31), showing that our motifs

detect the inhibition of initiation at the CDS that

results from translation of uORFs (Fig. 5; Add-

itional file 1: Figure S10; Additional file 8).

iii. Within each of the two species that have

extended APE sequences—S. cerevisiae and

Arabidopsis—the uAPE and dAPE share strong

sequence similarities, as shown by the positive

correlation between their (high TR/low TR) tri-

nucleotide ratios (r = + 0.41 and + 0.70; Add-

itional file 1: Figure S11).

iv. As expected, the CDS 3′ofAPEs show little

similarity to 5′UTRs (r < 0.1; Additional file 1:

Figure S11).

v. Some of the strongest (high TR/low TR) ratio

correlations are between the uAPEs of the three

non-mammals (r > 0.65) and separately between the

5′ofAPEs of M. musculus and H. sapiens (r = 0.8)

(Fig. 6). There are also, however, lower but clear

correlations between the 5′ regions of mammalian

and non-mammalian species (Fig. 6). Hence, while

the mRNA GC contents of these two groups of eu-

karyotes differ greatly, the variations in the 5′ re-

gion sequences that direct translation are related

across the five species.

ba

Fig. 6 Correlations between translational cis-regulatory sequences in different species. a Scatter plots showing strong correlations between (TR high/TR

low) tri-nucleotide ratios for selected genomic regions from different species. The Pearson correlations (r) are indicated. b Pearson correlation coefficients

between each of the four mRNA regions among the five species. The color intensities are scaled to the correlation coefficient. Clear correlations are

observed in many cases
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vi. The CDS 3′ofAPE shows a positive correlation in

(high TR/low TR) tri-nucleotide ratios between all

species except H. sapiens, which shows a negative

correlation with the other species (Fig. 6). This last

probably reflects a previously characterized negative

correlation in tRNA abundances—and as a conse-

quence in optimum codon usage—between cancer-

ous cell lines and other cell types [35] rather than a

difference between species as the H. sapiens dataset

was derived from cancerous HeLa cells.

A model for control by 5′ regions

mRNA 5′ regions control translation in part through

their secondary structures and uORFs, both of which re-

duce the frequency of preinitiation complexes that reach

the iAUG. Our motif models for 5′ regions likely include

sequence information for these two general features as

well as capturing general machinery contacts close to

the iAUG and, potentially, other cis-elements also. It is

interesting, therefore, to quantitate the overlap of regula-

tory information in models for RNA structure, for

uORFs and for 5′ sequence motifs.

For this purpose, we represented regulation by RNA

structure using the “RNAfold” feature set, repression by

uORFs using the number of upstream AUGs (uAUGs)

present in 5′UTRs (uAUG), and the combination of

these two using a further multivariate model: “5′bio-

chem.” To calculate the overlap of the three resulting

biochemical feature sets with “5′motifs,” three further

models were constructed that paired “5′motifs” with

each biochemical feature set (Fig. 7). The regulatory

overlap is given by the percent of the variance in

Fig. 7 Control by “RNAfold” and “uAUG” is collinear with that by “5′motifs.” Two 5′ features each partially capture control by a biochemical process:

“uAUG,” repression due to translation of uORFs; and “RNAfold,” inhibition by RNA secondary structure. A third feature, “5′motifs,” captures 5′ sequences

that correlate with translation, without regard to biochemical mechanism. To determine how similar information captured by “5′motifs” is to that in

“uAUG” and “RNAfold,” three multivariate models were constructed that combined “5′motifs” either with “uAUG,” with “RNAfold,” or with a third feature

(5′biochem) that combines both “uAUG” and “RNAfold.” The R2 coefficients of these feature sets vs TR are shown (top). The percent of the R2 values

contributed by “5′motifs” (gray) or the biochemical process(es) (orange) is shown by length along the y-axis. Because some of this information is

collinear, the R2 coefficient of the combined models is less than that of the sum of the individual contributions. This collinear portion is shown by the

darker orange shading, while the lighter orange and the gray shading show the unique contributions
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translation that is collinear (i.e., shared) between the fea-

ture sets. Control information in “5′motifs” overlaps

strongly with that in “uAUG,” “RNAfold,” and “5′bio-

chem” and vice versa (Fig. 7). For example, 39–78% of

the explanatory power of “5′motifs” is collinear with “5′

biochem.” At the same time, “uAUG,” “RNAfold,” and

“5′motifs” each contain unique cis-regulatory informa-

tion not captured by the other. For instance, 48–72% of

the information in the model combining “5′biochem”

and “5′motifs” is uniquely obtained from the models

that employ only one of these two feature sets, making

the combined model our most complete for explaining

the 5′ region control.

The contributions of general features to translation rates

In addition to the 5′ region general features, two others

control translation rates: CDS length and codon fre-

quency. CDS lengths are inversely correlated with trans-

lation because ribosomal subunits released from mRNAs

are recycled from the stop codon to the 5′ cap (40S) or

iAUG (60S) within single mRNA molecules, and this

process is more efficient for a shorter CDS [9]. Codon

frequencies in highly expressed mRNAs more closely

match the concentrations of aminoacylated tRNAs than

do those in poorly expressed mRNAs, which leads to

more efficient use of the pool of translational machinery

in the cell [10, 13, 35–37].

Therefore, we calculated the features sets that capture

regulation by codon frequency and CDS length (features

“codon” and “CDS length”) and built a model that com-

bines them with the feature sets that describe control by

the 5′ region. The results were calculated for the five ex-

ample datasets (S. cerevisae, S. pombe 2, Arabidopsis

shoot 2, M. musculus NIH3T3 cell line, and H. sapiens

HeLa cell line), for a second S. pombe dataset (S. pombe

1), and for the data from additional tissues or biological

replicas for Arabidopsis (root 1 and shoot 1) and M.

musculus (whole liver and whole kidney). The combined

models explain 37–81% of the variance of translation,

depending on the dataset, and at least 42% for the best

predicted dataset from each species (Fig. 8b;

Additional file 9; Additional file 1: Figure S12). These re-

sults are robust to variations in data as shown by the

narrow 95% confidence limits from a 1000× bootstrap

(Fig. 8b). Our results thus suggest a considerably larger

role for the general elements than previous models im-

plied (Additional file 1: Table S1). We have also com-

pared the individual contributions of the general

features as the percent of either the sum of their five R2

values vs translation (Fig. 8a) or the R2 value of a model

combining all five features (Additional file 1: Figure

S13). By either approach, the contributions of each fea-

ture vary more between the species than between differ-

ent datasets from the same organism, suggesting that

Fig. 8 The contributions of general cis-control features in five species and several tissues. a For each feature or feature set separately, its R2 coefficient of

determination vs log10 translation rate (TR) is given as a percent of the sum of the R2 coefficients for linear models for each of the five features. b The R2

coefficients between log10 TR and a multivariate linear model that combines the five features. The 95% confidence limits are shown for 1000× bootstraps

with replacement. The R2 values and the values plotted for each feature and the combined model are given in Additional file 9
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aspects of translational regulation alter quantitatively be-

tween species.

Metazoan genes in particular often encode multiple

mRNA isoforms. These isoforms vary in their transcrip-

tion start sites, splicing patterns, and poly-A addition

sites, and in some cases, isoforms for the same gene are

translated at different rates [38–42]. Because our analysis

employs a single representative mRNA isoform for each

gene, such isoform complexity could introduce error,

which would cause our models to underestimate the

contribution by the general features. Adapting an ap-

proach used by others to reduce error due to multiple

isoforms [16, 28, 43], we tested the ~ 30% of Arabidopsis

and M. musculus genes for which only a single mRNA

isoform is known (see the “Materials and methods” sec-

tion). The predictive power of multivariate models for

translation control by this subset of genes is, however,

substantially similar to that of the models for all genes

(Additional file 1: Figures S14 and S15), indicating that

any variation in translation rates between mRNA iso-

forms is not sufficient to influence our results. Most

metazoan genes that express multiple isoforms produce

only one dominant form in a given tissue, and most iso-

forms for a given gene encode the same protein variant

[40, 41]. Thus, it is not unreasonable that models

employing a single representative mRNA isoform per

gene should perform well.

Collinear control

The sum of the variances in translation rates predicted

by each of the general features separately is 157–203% of

the variance explained by the model that combines all

five features (Additional file 1: Figure S13). Four of the

features each represent a separate biochemical process

(the exception being “5′motifs,” which captures informa-

tion redundant with “RNAfold” and “uAUG,” see Fig. 7).

The cis-elements that direct these four biochemical pro-

cesses must, therefore, have coevolved to work in a cor-

related manner.

To quantitate the overlap in control, we calculated col-

linearity between pair-wise combinations of general fea-

tures within each species. “5′motifs” was excluded,

though, to avoid its redundancy with “RNAfold” and

“uAUG.” All feature pairs tested show collinearity (Fig. 9).

This collinearity is due to the inherent correlations

among the general mRNA features because if we ran-

domly permute each feature’s observed values independ-

ent of other features, the collinearity among features is

expected to go down to zero. The overlap in control is

largest in the two yeasts, where five out of the six pairs

have a remarkable 47–100% overlap, and smallest in the

two mammals, where five of the six pairs have 22–59%

overlap. Some feature pairs are strongly collinear in all

species: for example, “CDS length” and “codon,” which

show 45–62% overlap. Other pairs show dramatic differ-

ences: for example, “uAUG” is ≥ 70% collinear with

“RNAfold” in S. cerevisiae, S. pombe, and Arabidopsis

but only 7% in M. musculus.

The collinearity between features in the 5′ region and

either “codon” or “CDS length” occurs between physic-

ally distinct parts of the mRNA. Our earlier analysis of

the 5′ region motifs provides additional evidence of

correlated regulation between distinct mRNA segments:

for example, in the two species with long APEs, tri-

Fig. 9 Distinct biochemical processes control translation collinearly. For two features A and B, the R2 coefficient of a model that combines both

features vs log10 translation rate (TR) was defined as R2AB, while the R2 coefficients of each feature separately vs log10 TR were defined as R2A

and R2B. The larger of (R2A + R2B-R2AB)/R2A or (R2A + R2B-R2AB)/R2B is given and represents the percent in overlap of regulatory control. The

overlap in regulatory information varies widely between different pairs, both within and between species
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nucleotide frequencies correlate strongly between the

5′ofAPE, the uAPE, and the dAPE (Fig. 5 and Add-

itional file 1: Figure S11). To characterize the collinear-

ity between the physically distinct parts of mRNAs

further, we identified the second and third most folded

windows within the 5′ regions that do not overlap with

each other or with the most folded window. Sixty-three

to 98% of control exerted by the second most folded

window is correlated with that by the most folded win-

dow (Fig. 10a). Similarly, 67–92% of control by the third

most folded window is collinear with that of the most of

folded window (Fig. 10b). We also tested for collinearity

within the CDS by calculating codon frequencies in N-

terminal halves and separately in C-terminal halves. Con-

trol by the C-terminal half is 49–85% collinear with that

by the N-terminal half (Fig. 10c).

The correlation of codon frequency with translation

rates is determined both by the frequencies of amino

acid in proteins and by the preference for some syn-

onymous codons vs others [10, 44]. Synonymous codon

a

c

b

Fig. 10 Collinear control between differently located RNA segments. a A model was built for the combined control of translation rate (TR) by

both the most highly folded window (min) and the non-overlapping second most highly folded window (2ndmin). The R2 coefficients for these

combined features vs log10 TR are given (top). The percent of the unique and collinear contributions of “min” and “2ndmin” to the total variance

in translation explained by the model for both features is shown by length on the y-axis. The percent of control of TR by “2ndmin” that is collinear

with control by “min” is shown in red text. The percent of genes in the dataset whose 5′ regions are long enough to contain the two non-overlapping

windows used in the analysis are indicated (top). b The collinearity between the most highly folded window (min) and the non-overlapping third

most highly folded window (3ndmin) is displayed as described in a. c The collinearity between regulation of translation by codon frequency in the N-

terminal half of each protein (N-codon) and C-terminal half of each protein (C-codon) is shown as described in a, except that the percent of control of

TR by “C-codon” that is collinear with control by “N-codon” is shown (red text), and 100% of genes in each dataset were used (top)
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preferences and amino acid content are logically inde-

pendent of each other, i.e., in the absence of empirical

data, one cannot assume a priori that their variation be-

tween genes is related (Fig. 11a). It is possible, then, that

their effect on translation could be either collinear or

non-collinear. To test for any collinearity, we calculated

for each gene both the frequency of each amino acid

(“AA,” 20 features in total) and the synonymous prefer-

ence ratio for each codon (“syn.codon,” 61 features in

total) (Fig. 11a). Control by both “AA” and “syn.codon”

correlates, as expected, with tRNA abundances (Add-

itional file 1: Figure S16) [10, 13, 35–37]. Importantly,

we find that the regulation of TR by “AA” and “syn.co-

don” is strongly collinear in all species (Fig. 11b).

Our various analyses thus reveal surprising, strong,

and complex co-evolution of control between distinct

biochemical processes and between multiple segments of

mRNA.

Discussion and conclusions

Here, we have sought to better understand how and why

the differences in translation rates among genes are regu-

lated at steady state by focusing on general mRNA se-

quence features. We have established common

quantitative principles, discussed below, by which these

control elements act in diverse eukaryotes. Through opti-

mizing methods to predict translation using mRNA

structures, sequence motifs, uORFs, CDS length, and

codon usage, we find that the general features together

control 81% and 65% of the variance in rates in S. cerevi-

siae and S. pombe, respectively, and 42–46% in Arabidop-

sis, M. musculus, and H. sapiens (Fig. 8). This is

significantly higher than earlier estimates (Additional file 1:

Table S1). For example, prior work suggested that general

features explained 39% of the variance in S. cerevisiae [13]

and 14% in M. musculus [16].

The part of the variance in measured translation rates

that is unexplained by our models for general features is

likely due to a combination of the following:

i. Gene/condition-specific regulation by miRNAs and

sequence-specific RNA-binding proteins, which our

models do not detect

ii. Failure of our models to fully capture control by the

general features due to, for example, uncertainty in

fully predicting RNA structures

iii. Measurement error in the translation rate data

It is also possible that our models have exaggerated con-

trol by the general features due to “overfitting,” which

would lead to aberrant capture of some part(s) of i. and/or

iii. Our conservative approach of fitting linear models to

features that score known biochemical processes or simple

motifs should limit this, however. The likelihood of

b

a

Fig. 11 Collinear control by amino acid frequency and synonymous codon preference. a The frequency of a codon in a gene is the product of

its cognate amino acid frequency (AA) and its synonymous codon preference (syn.codon), where the latter = (number of occurrences of the codon)/

(number of occurrences all codons for the cognate amino acid). Examples for the two codons for phenylalanine (Phe) are shown. A priori, there is no

necessity for “AA” and “syn.codon” to be correlated. b A model was built for control of translation rates (TR) by the combination of “syn.codon” (61

features) and “AA” (20 features). The R2 coefficients for this model are given (top). The percent of the unique and collinear contributions of “AA” and

“syn.codon” to the total variance in log10 TR explained by the combined model is shown by length on the y-axis. The percent control of TR by

“syn.codon” that is collinear with that by “AA” is shown in red text. The percent of the dataset that contains all 20 amino acids and thus could be used

to calculate “syn.codon” is also shown (top). This set of genes was used for all analyses
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overfitting is reduced further by our use of Bayesian Infor-

mation Criterion for feature selection, which we found

typically selected fewer features than other approaches,

such as tenfold cross-validation (unpublished data). Our

models, thus, probably have underestimated true control

by the general cis-elements by the—unknown—percent of

the variance in the translation rate data that is due to ii.

and iii.

It is noteworthy that our general feature models predict

translation rates more effectively in S. cerevisiae and S.

pombe than in multicellular eukaryotes. miRNAs are not

present in the two yeasts, whereas Arabidopsis encodes ~

420 miRNAs and M. musculus and H. sapiens > 1800 each

[45, 46]. Likewise, S. cerevisiae and S. pombe encode con-

siderably fewer sequence-specific RNA-binding proteins

than the multicellular eukaryotes (~ 100 vs > 350; http://

cisbp-rna.ccbr.utoronto.ca [47, 48]). Thus, the general fea-

tures may well play a larger role in the two yeasts than in

the multicellular eukaryotes as the latter are expected to

suffer greater gene and condition-specific regulation.

5′ mRNA secondary structure

Our analysis provides a more precise understanding of the

mRNA secondary structures that control translation within

the 5′ regions. We have found that the most folded 25–60

nucleotide segments contain far more regulatory informa-

tion than the less folded parts of the 5′ regions in all five

species (Figs. 2 and 3a). Previous studies, by contrast, relied

on the mean of the folding energies of short windows that

tile the 5′ region, on the folding of a single large window

encompassing the entire region, or on windows at fixed lo-

cations (Additional file 1: Table S1). Our analysis indicates

that the most folded windows alone are more predictive

than these prior approaches and that models that combine

highly folded windows with location-specific ones are even

more effective (Figs. 2 and 3a; Additional file 5). Control by

the most folded segment is dominated by the longest con-

tiguous run of paired nucleotides within a stem (Fig. 3b).

This control is enhanced by additional nucleotide pairs that

lie beyond any mismatched nucleotides or single nucleotide

bulges to form a longer stem and by smaller satellite stem

loops that reside within the segment (Fig. 3b). Pairings be-

tween nucleotides that are separated by > 25–60 nucleo-

tides have only a minimal effect on the translation rates

(Fig. 2). The differences in structures that distinguish trans-

lation rates are surprisingly small: only 0.7–1.6 nucleotide

pairs on average differentiate the most folded segments in

highly translated mRNAs from those in poorly translated

mRNAs across all species (Additional file 1: Figure S4).

Conserved 5′ sequence motifs

One of the approaches that we have used to define general

cis-control elements is an unbiased method that simply

categorizes the differences in the 5′ region sequence

motifs between highly and poorly translated mRNAs

(Figs. 4, 5, and 6). Non-mammalian species have A/T-rich

5′ regions, whereas those of mammals are G/C rich. Des-

pite these differences, we find that when judged by the ra-

tios of the frequencies of each tri-nucleotide in highly and

in poorly translated mRNAs (high TR/low TR ratios),

there are marked correlations between the cis-control se-

quences in the 5′ regions of mammalian and non-

mammalian eukaryotes (Fig. 6). The fact that most tri-

nucleotides’ (high TR/low TR) ratios ≠ 1 and are similar

across many species (Figs. 5 and 6; Additional file 1 Figure

S10) strongly implies that a large percent of nucleotides in

the 5′ regions are involved in regulating translation, rather

than having some other function or no function. Those

tri-nucleotides whose (high TR/low TR) ratios differ the

most from one are presumably those most important for

control.

The correlation in 5′ motifs between distant species

occurs in part because our motif model captures repres-

sion by uORFs via the higher density of uAUGs in

poorly translated mRNA (Fig. 6). It also results because

our 5′ motifs model captures control by evolutionarily

conserved nucleotides that are adjacent to the iAUG and

contact the ribosome (Fig. 4) [34, 49–51]. Additionally,

the correlation is probably due to the fact that di- and

tri-nucleotides have differing propensities to form

mRNA secondary structures because of their respective

base pairing and stacking energies [29, 32, 52, 53]. The

important role of RNA structure in directing translation

rates will thus drive similar changes in nucleotide con-

tent between highly and poorly translated mRNAs in all

species. Indeed, 38–66% of translational control ex-

plained by our 5′ motifs model is collinear with control

by our model for RNA folding (Fig. 7), and those mRNA

regions that show the greatest conservation of tri-

nucleotide ratios between highly diverged eukaryotes

also have the largest differences in RNA folding energies

between highly and poorly translated mRNAs (Figs. 1, 2,

and 6).

Collinear control between processes and between mRNA

segments

Perhaps our most striking observation is that there is a

strong correlation in control (i.e., collinearity) between

general features that act through distinct biochemical

processes and also between different parts of the mRNA.

For example, all pair-wise combinations of the four bio-

chemical processes show collinear regulation of transla-

tion, many by > 50% (Fig. 9). Also, the Gibbs energies of

the second and third most folded mRNA segment within

the 5′ regions share a remarkable 63–98% control with

those of the most folded segment, and codon frequen-

cies in the C-terminal half of CDSs share 49–85%
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control with those in the N-terminal half (Fig. 10). Fi-

nally, regulation by synonymous codon preferences is

37–70% collinear with that by amino acid content, even

though the two determinants of codon usage are logic-

ally independent of each other (Fig. 11). This extensive

collinearity reveals a form of strongly repeated informa-

tion within each mRNA that other approaches, such as

testing for nucleotide sequence similarities, have failed

to detect, illustrating the power of the analysis of vari-

ance (ANOVA)-based approach we have used.

Collinearity between different sections of the mRNA

keeps the rate of progress of the translation machinery

more constant and thus the density of translational com-

plexes more uniform along any given mRNA (Fig. 12a).

The translation rate within each mRNA is not determined

by a single rate-limiting step in this case. Instead, the flux

of complexes down a particular mRNA is controlled by a

series of steps that are each set to allow a similar rate. The

steps share regulation much in the way that the enzymes

in a metabolic pathway share fractional control of meta-

bolic flux, as defined by their flux control coefficients [54,

55]. Uncorrelated control, by contrast, would lead to a

more uneven distribution of complexes. In this alternate

case, the overall flux of complexes for a given mRNA

would often be defined by a single rate-limiting step, with

the important proviso that different steps would limit on

different genes to account for the fact that all general fea-

tures contribute to the overall variance in rates (Fig. 12b).

There are two known selective pressures that favor—or

force—uniform densities of complexes and thus collinear

control over non-collinear control.

i. Non-collinear control would increase the frequency

of particle collisions when preinitiation complexes or ri-

bosomes that are moving rapidly down an mRNA enter

a region whose regulatory sequences signal a slower rate

of progress (Fig. 12b, bottom). Ribosomal collisions lead

to translational termination and no-go RNA decay or

simply slow the mean elongation rate [56–58]. Collinear

control between mRNA segments thus reduces the fre-

quency of these deleterious events. Earlier work has

shown that the rate of translation is slower near the N-

terminus of the CDS then increases moderately further

3′ [13, 36]. This arrangement has been proposed to re-

duce collision frequency [36]. Our results extend this

prior model to suggest that it is important to keep a

relatively even flux of translational complexes—avoiding

strong stops—from the assembly of the preinitiation

complex at the 5′ cap all the way to the termination of

translation at the stop codon.

ii. Collinear control requires fewer ribosomal subunits

per cell than non-collinear control to achieve a given set

of translation rates (compare Fig. 12a, b). This is import-

ant as the translational machinery is limiting for protein

synthesis and cell growth [59–61]: for example, a two-

fold reduction in the abundances of any one of a number

of ribosomal proteins greatly reduces cell division rates

in Drosophila [59], and under many conditions, ≥ 90% of

ribosomal subunits are bound to mRNA and active at

any instance [62, 63] and/or are present at locally high

concentrations in the vicinity of each mRNA due to

CDS length-dependent recycling [9]. There is thus a

strong selective pressure to use the set of ribosomal

a b

Fig. 12 Collinear control results in more uniform particle densities than non-collinear control. a Collinear control. The upper, high translation rate

(TR) mRNA has multiple small mRNA stem/loops, no uORFs, a short CDS, and optimal codon frequency. The bottom, low TR mRNA has multiple

larger mRNA stem/loops, uORFs, a long CDS, and non-optimal codon frequency. As a result, both mRNAs have relatively even densities of

translational complexes along their length. The CDS length-dependent rate of ribosome subunit recycling also matches their respective

translation rates. b Non-collinear control. Both mRNAs have multiple small mRNA stem/loops and no uORFs resulting in a high density of

preinitiation complexes on the 5′UTR. The top mRNA has a short CDS and optimal codon frequency, which results in a high density of

ribosomes along the CDS and efficient ribosome subunit recycling. The bottom mRNA has a suboptimal ribosomal contacts at the iAUG,

which reduces the efficiency with which preinitiation complexes convert to active ribosomes. As a result, the density of ribosomes along

the CDS and in the recycling step is lower than that directed by the 5′UTR. The density of translational complexes along this mRNA is

thus uneven. The rates of translation of mRNAs in a and b are the same. The total number of translation machinery complexes needed

in a cell, however, is greater in the non-collinear scenario than in a cell employing collinear control
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subunits in the cell most efficiently. As Fig. 12 shows,

this requires collinear control of the complete transla-

tion cycle, including the recycling step.

In addition to the two above explanations, a general

pressure to increase or decrease protein production from

a given gene could lead to multiple, independent muta-

tions affecting different processes or the same process in

different mRNA regions. This too would result in collin-

ear control. However, we suggest instead that the discov-

ery of strong collinear control supports other evidence

that gene-specific translation rates are not determined

for the most part by the need to achieve a certain pro-

tein abundance. First, translation rates only correlate

poorly with protein abundance (R2 ~ 0.08 in S. cerevisiae

and M. musculus) [10, 64]. Second, while CDS length is

an important determinant of translation rates (Fig. 8),

the length of a protein is unlikely to be selected only to

affect translation. Protein length is presumably set

largely by protein function. There is a caveat to this,

though: it is plausible that highly abundant proteins that

are members of multi-subunit complexes, e.g., histones

and ribosome, are selected to be short to allow efficient

translation. Third, codon frequency—and thus its correl-

ation with translation—is determined by the amino acid

content of proteins as well as by the preferences for co-

dons synonymous for the same amino acid (Fig. 11).

Amino acid contents probably result from selection for

protein function rather than for translational regulation.

Synonymous codon frequencies in highly abundant

mRNAs are selected to optimize the use of the total pool

of aminoacylated tRNAs in the cell [10, 13, 35–37] (Add-

itional file 1: Figure S16); the effect that codon usage has

on ribosomal elongation rates could be a secondary conse-

quence, one that is, besides, generally small [13, 65, 66].

Thus, both CDS length and codon frequencies are likely

driven in part by forces external to the need to determine

protein abundances, yet combined the two constitute a

significant fraction of control by the general features

(Fig. 8). The proposed need for collinearity to ensure effi-

cient use of ribosomes by the cell will then force the other

three general features to coordinate their activities with

CDS length and codon frequency. This may explain why

translation is not well correlated with protein abundance.

Translation rates are determined by multiple selective

pressures. In contrast, the selective pressure on protein

abundance dominantly affects transcription, at least for

the few conditions for which this has been most carefully

measured by ANOVA [10, 67].

S. cerevisae and other yeasts have larger effective

population sizes than Arabidopsis, M. musculus, and H.

sapiens. As a result, the former have lower mutational

loads and have been able to better optimize their gen-

ome sequences for energy-efficient cell growth than have

the latter [68, 69]. These results from population

genetics provide an additional explanation for our obser-

vation that the general features play a more prominent

role in S. cerevisae and S. pombe than in the three multi-

cellular eukaryotes: the general elements should be more

important in organisms with larger effective population

sizes, an idea that has been suggested previously for syn-

onymous codon preference [68, 70] and which we now

extend to the other general features.

High throughput mutant assays

A separate approach to identify translational cis-elements

has tested large numbers of heterologous reporter genes

bearing random sequences or mutations in 10 to 50 nu-

cleotide segments proximal to the iAUG [12, 17–21]. In

some studies, models have been developed that explain ~

70–90% of the variance in translation resulting from these

sequence changes (Additional file 1: Table S2).

It is difficult to relate the results of these reporter gene

experiments to the regulation of endogenous mRNAs.

The regions bearing sequence changes in the heterol-

ogous reporter assays are smaller than or lie outside of

the regions where our analysis indicates that regulatory

secondary structures are prevalent. Thus, the reporter

assays have not captured normal control by RNA fold-

ing, let alone that by CDS length and codon usage,

which are invariant in a reporter assay. In addition, the

consensus sequences for uAUGs associated with repres-

sion in a heterologous assay differ dramatically from

those identified by studies of uORFs in intact natural

transcripts. The high-throughput reporter gene assays

identified strong enrichment of A or G at nucleotide − 3

relative to uAUGs, similar to the Kozak consensus for

the iAUG [20]. In endogenous mRNAs, by contrast, no

specific nucleotides are strongly associated with repres-

sive uAUGs at location − 3 [16, 25, 71]. Thus, the

sequences of the cis-elements driving translation in the

heterologous assays differ strongly from those acting in

endogenous mRNAs.

One S. cerevisiae study did measure the protein pro-

duction from natural 5′UTRs ≤ 50 nucleotides in length

fused upstream of a reporter gene [21]. Although this

study successfully modeled 60% of the variance in mea-

sured output, we find that this output correlates poorly

with ribosome profiling data for the corresponding en-

dogenous genes (R2 = 0.09, Additional file 10). Thus, at

least (60–9)/60 = 85% of the variance in reporter expres-

sion predicted by the model cannot be explained by

measured endogenous translation rates.

Our analysis establishes that there is an extensive co-

ordination (collinearity) between control by distinct

parts of the mRNA and between multiple steps in the

translation cycle. Heterologous reporter constructs that

include only short segments of mRNAs thus fail to cor-

rectly capture cis-elements in part because they miss the
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normal interactions between steps and between differ-

ently located cis-elements. It will be necessary to design

alternative mutant series to understand cis-translational

control of endogenous transcripts.

Materials and methods

Data and code

An example dataset was chosen from each of the five

species to present figures for all analyses: S. cerevisiae

[13], S. pombe 2 [26], Arabidopsis shoot 2 (dark) [25],

M. musculus NIH3T3 cell line [4], and H. sapiens HeLa

cell line [24]. Results from five additional datasets are

shown for a subset of analyses: S. pombe 1 [4], Arabi-

dopsis root 1 and Arabidopsis shoot 1 [27], and M. mus-

culus liver and M. musculus kidney [14, 28]. The

example and additional datasets were produced by a var-

iety of protocol variants in several laboratories. Our

main conclusions are true across multiple datasets from

different species, tissues, and protocol variants, suggest-

ing that they are not influenced by the specifics of par-

ticular methods. Datasets were chosen in which

ribosome footprints showed the expected strong enrich-

ment for the first nucleotide in each codon and for

which there was a positive correlation between transla-

tion rates and mRNA abundances.

Where replica data was available from a study, genes

without data in all replicas were removed; for each gene,

its data were then averaged across all replicas; and if the

data in the original publication had not been thre-

sholded, genes with mRNA abundances < 1 RPKM were

excluded. For all datasets, genes for which data on poly-

A tail length were not available from Subtelny et al. were

removed. The mRNA sequence isoforms used for gener-

ating sequence features were those used in the original

publications for determining TR and mRNA abundance

values for S. cerevisae, S. pombe, Arabidopsis root 1 and

shoot 1, H. sapiens, and M. musculus NIH3T3. In the

case of the M. musculus liver and kidney datasets, the

mRNA isoform with the longest 5′UTR in Ensemble

genome version GRCm38 was used, and for the Arabi-

dopsis shoot 2 dataset, the TAIR10 representative gene

model that was also employed for root and shoot was

used. Genes that express a single mRNA isoform in Ara-

bidopsis were identified using the AtRTD2 annotations

[42] and in M. musculus using the Ensemble GRCm38

annotations. Additional file 2 provides all mRNA se-

quences, ribosome profiling data, and mRNA abun-

dances as well as scores for each of the general features

for the set of genes analyzed for each dataset.

The complete code files for reproducing the results

presented are available at Zenodo: https://doi.org/10.52

81/zenodo.3272133 [72]. These files include the R code,

input data, processed files, and preliminary figures.

Common aspects of models

Translation rate (TR) is defined as translation efficiency

(TE) values from ribosome profiling data or in the case

of S. cerevisiae as initiation efficiency (IE) values, which

are corrected TE values that take into account codon-

specific elongation rates [13]. Log10 transformed TR

values were used in all regressions.

All models employed single part, multivariate linear

regressions for S. pombe, M. musculus, and H. sapi-

ens; two-part, multivariate linear regressions of Arabi-

dopsis; and three-part, multivariate linear regressions

for S. cerevisiae. The multipart regressions were

employed in the latter two species to allow optimal

scoring of their extended APE PWMs, described

below. Of necessity, multipart regression then had to

be employed for all other features in these species to

allow a model that combines all general features. For

the multipart regressions, genes were divided into

groups based on lengths of 5′ untranslated regions

(UTRs), with the number of groups equal to the

number of parts. For Arabidopsis, genes were grouped

into those with 5′UTRs < 65 nucleotides and those

with 5′UTRs ≥ 65 nucleotides. For S. cerevisiae, genes

were grouped into those with 5′UTRs < 20 nucleo-

tides; those with 5′UTRs ≥ 20 nucleotides but < 35

nucleotides; and those with 5′UTRs ≥ 35 nucleotides.

Each part corresponds to a separate multivariate linear

model fitted to the corresponding group of genes, with

the intercept and feature coefficients allowed to differ be-

tween parts. Single-part regressions included all genes in

the dataset. Models for the subset of genes that express

only a single mRNA isoform (see Additional file 1: Figures

S14 and S15) were produced by the same approach used

for models employing all genes, though the APE boundar-

ies were kept the same.

The coefficient of determination R2 coefficient was

based on the ordinary least squares (OLS) in all cases. The

R2 calculated in this way is equal to the square of the Pear-

son correlation between the observed response values and

the predicted response values, and it measures the good-

ness of fit or the predictive power of a model.

Control by RNA folding (RNAfold)

To predict control of TR by RNA folding in the 5′ re-

gion, a series of features were developed using predicted

Gibbs free energies generated by ViennaRNA RNAfold

[16, 32] (Fig. 2). Most features were calculated in 21 var-

iants based on one nucleotide offset sliding windows of

lengths varying from 6 to 100 nucleotides (Fig. 2). For

these window-based features, the 5′ regions used span

from the 5′ cap to that part of the CDS that is covered

by the window whose 5′ end maps to position − 1. The

features are as follows:
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Single window features

5′ cap, − 65, − 30, − 35, − 6, − 1: the free energy of the

window whose 5′ nucleotide lies at the position

specified.

min, 10%, 25%, 75%, 90%, max: the free energy of the

window with the minimum, the 10th percentile, the 25th

percentile, the 75th percentile, the 90th percentile, or

the maximum energy of all windows in the 5′ region of

the mRNA

Note that windows corresponding to different single-

window features are allowed to overlap.

Multi window features

Mean: the mean free energy of windows of the specified

length.

% ≤ 20%, % ≥ =90%, % ≥ 80%: the percent of windows

in a 5′ region that have free energy ≤ 20th percentile, ≥

90th percentile, or ≥ 80th percentile of the free energy of

all windows of all genes in the dataset. Some genes will

thus have scores of 0 as they lack any windows defined

by these thresholds.

sum ≤ 5%, sum ≤ 10%, sum ≤ 20%, sum ≥ 80%, sum ≥

90%: the sum of free energies defined by these thresh-

olds out all windows of all genes in the datasets. Some

genes will thus have scores of 0 as they lack any win-

dows defined by these thresholds.

Whole 5′ region

Whole: free energy of a fold of the entire sequence from

the 5′ cap to + 35

Feature sets

Feature sets fit multivariate linear models (possibly mul-

tipart, depending on the species) between log10 TR and

multiple of the above features.

All-1: combines all features of a given window length

All: combines all features of a given window length

and in addition includes the “whole” feature

RNAfold: uses forward selection with Bayesian Informa-

tion Criterion (BIC) to identify an effective subset of fea-

tures to predict log10 TR. The model is allowed to select

different length windows for different features. In the case

of S. pombe, prior to BIC selection, all windows with se-

quences that extend 3′ of + 30 were removed to avoid ele-

ments whose Gibbs energies have a strong negative

correlation with TR. “RNAfold” is our most accurate

model for control of TR by RNA structures (Fig. 2). Its

BIC-selected features are listed in Additional file 5.

Control by sequence motifs (5′motifs)

Defining an optimum PWM for the iAUG proximal elements

Various length position weight matrices (PWMs) were

calculated using the 10% of genes with the highest TR

scores (Fig. 4a, high TR cohorts). The mRNA sequences

of these sets of genes were aligned such that nucleotide

+ 1 corresponds to the A of the iAUG. The frequencies

of A, U, C, and G at every position from − 100 to + 35

were calculated (Additional file 7). Sequences of all high

TR genes were used, including those with 5′UTRs

shorter than 100 nucleotides, these short 5′UTR genes

contributing only to the frequencies at the 5′UTR posi-

tions they contained.

A series of PWMs were constructed that all contained pos-

ition nucleotide − 1 and positions 5′ of that in five nucleotide

steps to − 100, i.e., − 5 to − 1 PWM, − 10 to − 1 PWM, and

− 15 to − 1 PWM. Variants of each of these PMWs were

constructed that also included nucleotide + 4 and positions

3′ in 5 or 10 nucleotide steps within the protein coding se-

quence (CDS) to + 33, i.e., − 5 to + 13 PWM, − 5 to + 23

PWM, and − 10 to + 13 PWM. Given each PWM, say a

PWM for m nucleotides from the 5′UTR and for n nucleo-

tides of the CDS, we calculated the PWM scores of all the

genes in a dataset as follows: score of gene g=

log10
Qn

i ¼ −m

i≠0

p ðnucleotide at position i of gene gÞ.

We then calculated the R2 correlation coefficient be-

tween the PWM scores based on each PWM boundary

and the log10 TR values. The results are plotted in

Fig. 4b. The locations of the approximately optimum

APE PWMs are shown boxed (Fig. 4a).

An APE feature set

The APE was divided into the part 5′ of + 1 (uAPE) and

the part 3′ of + 3 (dAPE). The optimum length PWMs de-

fined above were divided into two (e.g., S. cerevisiae uAPE

PWM − 35 to − 1 and dAPE PWM + 4 to + 28). All genes

were scored with the dAPE PWM. In single regression

species, all genes were also scored the corresponding

uAPE. In S. cerevisiae, genes with 5′UTRs ≥ 35 nucleo-

tides were scored with uAPE PWM − 35 to − 1, genes with

5′UTRs ≥ 20 nucleotides but < 35 nucleotides were scored

with uAPE PWM − 20 to − 1, and genes with 5′UTRs <

20 nucleotides with uAPE PWM − 5 to − 1. In Arabidop-

sis, genes with 5′UTRs ≥ 65 nucleotides were scored with

uAPE PWM − 65 to − 1, and genes with 5′UTRs < 65 nu-

cleotides with uAPE PWM − 5 to − 1.

In addition, we calculate the 16 dinucleotide frequen-

cies and 64 trinucleotide frequencies in the uAPE region

for every gene as well as the 16 dinucleotide frequencies

and 64 trinucleotide frequencies in the dAPE region for

every gene. Then, we fit a multivariate linear model

(possibly multipart, depending on the species) between

the log10 TR (response) and all features for the uAPE

(i.e., uAPE PWM + 16 dinucleotide frequencies + 64 tri-

nucleotide frequencies) and separately all features for

the dAPE and selected features by forward selection with
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Bayesian Information Criterion. This results in a subset

of features that form the uAPE feature set and the dAPE

feature set (Additional file 1: Figure S7; Additional file 5).

In addition, we combined the selected uAPE and dAPE

feature sets to define the APE feature set (Add-

itional file 1: Figure S7).

A 5′ofAPE feature set

A 5′cap PWM was defined using various length PWMs

calculated using the 10% of genes with the highest TR

scores in a procedure similar to that used to define the

APE (Additional file 1: Figure S8a, high TR cohorts). All

5′cap PWMs share a common 5′ end at the 5′ cap site

and differ only in length. The R2 correlation coefficients

between these PWM scores and log10 TR values show a

local peak from 3 to 15 nucleotides from the 5′ cap

(Additional file 1: Figure S8b). To simplify our model

while taking into account the low R2 values (< 1.2%), a

5′cap PWM was defined as the first 5 nucleotides of the

transcript in all species.

In addition, we calculate the 16 dinucleotide frequencies

and 64 trinucleotide frequencies in the region 5′ of the

APE. Then, we fit a multivariate linear model (possibly

multipart, depending on the species) between the log10
TR (response) and all features for this 5′ofAPE region

(i.e., 5′cap PWM + 16 dinucleotide frequencies + 64 trinu-

cleotide frequencies) and selected features by forward se-

lection with Bayesian Information Criterion. The BIC-

selected features for 5′ofAPE, are listed in Additional file 5,

and their R2 correlation coefficients vs TR are shown in

Additional file 1: Figure S9.

A 5′motif feature set

A “5′motifs” feature set was defined by combining the

5′ofAPE, uAPE, and dAPE feature sets (Additional file 1:

Figure S9).

Control by upstream open reading frames (uAUG)

For each gene, the number of AUGs upstream of the

iAUG of the CDS was calculated. This feature is desig-

nated “uAUG,” and its contribution to the prediction of

log10 TR is due to the repression of CDS translation by

translation of upstream open reading frames (Fig. 8;

Additional file 1: Figure S13).

Control by CDS length (CDS length)

For each gene, the log10(number of CDS amino acids)

was calculated. This feature is designated “CDS length,”

and its contribution to the prediction of log10 TR is due

to the impact of CDS length on the recycling of riboso-

mal subunits (Fig. 8; Additional file 1: Figure S13).

Control by codon frequencies (codon)

For each gene, we calculate the frequencies of the 61 non-

stop codon frequencies in its CDS nucleotide sequence.

These 61 features together define the feature set “codon”

(Fig. 8; Additional file 1: Figure S13).

Control by poly-A tail length

For each gene, we took the poly-A tail length defined by

Subtelny et al. For all ten datasets, we find that poly-A

length is weakly negatively correlated with translation

rates. Prior evidence suggests that this negative correlation

does not necessarily reflect a direct control of translation

rates but is instead a result of two phenomena: the

stabilization of mRNAs against degradation by shorter

poly-A tails and the fact that translation rates are posi-

tively correlated with mRNA abundance [4, 73]. For this

reason, we have not included poly-A length as a feature in

our study. Note that there is a much stronger, positive cor-

relation of poly-A tail length with translation rates in

pregastrula embryos that likely reflects direct control of

translation [4, 15].

Control by 5′UTR length

5′UTR length has been used as a feature to capture

control by the 5′ regions in some prior studies [10,

13, 14, 16, 22, 74] (Additional file 1: Tables S1 and

S2). We have found, however, that models that com-

bine 5′UTR length with the “5′motifs,” “uAUGs,” and

“RNAfold” features only explain an additional 0.03–

0.62% of the variance in translation rates, compared

with models that do not include 5′UTR length. This

suggests that 5′UTR length is not a direct determin-

ant of translation rates, but is instead largely a co-

correlate of other sequence features that do directly

affect translation. The fact that control by RNA fold-

ing is largely determined by most folded regions, not

by less folded regions (Figs. 2 and 3a), further sup-

ports this conclusion. We, therefore, have not in-

cluded 5′UTR length as a feature in our final models.

A general feature model using five features

To determine the variance in translation rates explained

by “RNAfold,” “5′motifs,” “uAUG,” “CDS length,” and

“codon,” a multivariate model (possibly multipart, de-

pending on the species) was used to regress log10 TR on

all five feature sets together (Fig. 8; Additional file 1: Fig-

ure S12). The resulting R2 correlation coefficient esti-

mates the degree of translational control exerted by

these general features.

Control by amino acid frequencies (AA) and synonymous

codon preferences (syn.codon)

For each gene, we calculated the frequencies of the 20

amino acid frequencies in its CDS nucleotide sequence.
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These 20 features together were defined to be the feature

set “AA” (Fig. 11). Then, for each of the 61 nonstop codons,

we defined a synonymous codon preference as its fre-

quency divided by the sum of the frequencies of synonym-

ous codons that code the same amino acid. For example,

AAA, AAT, AAC, and AAG code the same amino acid, so

we computed their synonymous codon preferences as

AAA/(AAA+AAT+AAG+AAC), AAT/(AAA+AAT+

AAG+AAC), AAC/(AAA+AAT+AAG+AAC), and

AAG/(AAA+AAT+AAG+AAC), respectively. These 61

synonymous codon preferences together define the feature

set “syn.codon” (Fig. 11).
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