
Quantitative relaxation of concurrent data

structures

Christoph-Simon Senjak

Lehr- und Forschungseinheit für Theoretische Informatik
Institut für Informatik

Ludwig-Maximilians-Universität München
Oettingenstr.67, 80538 München

Oberseminarvortrag 21. Dezember 2012

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 1 / 19

Foreword

This talk bases on “Quantitative Relaxations of Concurrent Data
Structures” by Thomas A. Henzinger, Christoph M. Kirsch,
Hannes Payer, Ali Sezgin, Ana Sokolova.

Some definitions are slightly adapted and not made in full
generality.

I am responsible for any mistake in this talk.

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 2 / 19

Concurrent Data Structures

Shared structures between several processes/threads (Stack,
Fifo, Deque, Heap)

Important for parallel programming

Synchronized, for example via compare-and-swap

May impose threads to wait ⇒ bottleneck in many cases

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 3 / 19

Example

Time | Thread 1 | Thread 2 | Stack

=====*================*================*========

1 | beginCalc | beginCalc | ()

2 | calc | calc | ()

3 | end, result: x | calc | ()

4 | lock | end, result: y | [()]

5 | expand stack | lock | [(?)] |

6 | write x | wait | [(x)] |wasted

7 | release | wait | (x) |time

8 | | wait | [(x)] |

9 | | expand stack | [(? x)]

10 | | write y | [(y x)]

11 | | release | (y x)

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 4 / 19

Tradeoff

The common shared structures have very strict semantics

In many cases, the full strictness is not needed

Relaxation of semantics may increase performance

Problem: How to formalize relaxations?

Idea: Transition system in which every violation of strict
semantics has a certain cost

⇒ Costs can be limited to limit the relaxation

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 5 / 19

Informal Example

Time | Thread 1 | Thread 2 | Stack

=====*================*================*========

1 | beginCalc | beginCalc | ()

2 | calc | calc | ()

3 | end, result: x | calc | ()

4 | make-buffer | end, result: y | () ? ?

5 | write x 1 | write y 2 | () x y

6 | try-lock=>win | try-lock=>fail | [()] [x y]

7 | push-buffer | ... | [(x y)]

8 | release | | (x y)

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 6 / 19

Formal framework - 1

Usually, the structures are containers, so let D be the set of
objects the structure can contain

For Deques we can use the contained objects
For synchronized counters, we use their integer range

They have several operations that can manipulate the data
structure, they usually either return or insert objects from D.
Call the set of these operations with the associated objects Σ,
like Σstack = {f x | x ∈ D, f ∈ {push, pop}} ∪ {pop null}
We call the set of legal sequences of such operations S ⊆ Σ∗ the
sequential specification. We require it to be ≺-closed, where
≺ shall denote the prefix relation

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 7 / 19

Formal Framework - 2

The same state might be reachable by several sequences:
push(a) pop(a), push(a) push(b) pop(b) pop(a).

We do not want to rely on further underlying structures

⇒ define state-equality extensionally:

s =S t :⇔ ∀u∈Σ∗(su ∈ S ⇔ tu ∈ S)

The states of the structure can then be identified with the
elements [q]S of the set S/=S

The kernel of a state is the set of its shortest sequences,
ker[q]S = {t ∈ [q]S | t has minimal length}

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 8 / 19

Example

Example: Stack (+ = push, - = pop)
Stack | non-kernel sequences | kernel sequences

=========*=========================*==================

() | +a-a, +a+b-a-b, | ()

| +a+b-b+c+d-d-c-a, ... |

---------+-------------------------+------------------

(2 1) | +1+2+1+1-1-1-2+2, ... | +1+2

---------+-------------------------+------------------

(1 2 3) | +a+b-b-a+3+2+c-c+1, ... | +1+2+3

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 9 / 19

Labelled transition systems

Define a labelled transition relation [p]S
m−→ [q]S on

[p]s , [q]S ∈ S/=S
, [pm]S = [q]S ,m ∈ Σ to model the

state-changes of the structures

Example: Stack

()

(1)

(2 1)

(3 2 1)(4 2 1)

push(1)pop(1)

push(2)pop(2)
push(3)

pop(3)push(4)

pop(4)

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 10 / 19

Quantified labelled transition systems

To relax a structure, we will allow the sequences outside of S
Let α be some ordinal number. It denotes the set of possible
costs of a transition.

Define a cost function

cost : S/=S
→ Σ→ S/=S

→ α

between any two states such that cost(p,m, q) = 0 for p
m−→ q

Gain the quantified labelled transition system of the
structure and the cost function by defining the quantified labelled

transition relation by p
m,cost(p,m,q)−−−−−−−→ q for all valid p,m, q.

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 11 / 19

Example

Example: Stack (+=push,-=pop) with values describing the number
of left-out elements (only pushs with value 6= 0 are drawn).

()

(1)

(2 1)

(3 2 1)(4 2 1)

+ ,2+ ,2
+ ,3

+ ,3+ ,3

+ ,3

+ ,2

+ ,2
+ ,2

+ ,2

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 12 / 19

Path cost functions

Quantitative paths are paths in our quantified labelled
transition system. They are of the form

κ = q1
m1,k1−−−→ . . .

mn,kn−−−→ qn+1

Their quantitative trace is the sequence of transition labels
(〈mi , ki〉)i and their trace is the sequence of the applied
operations (mi)i
Notice: There might be multiple quantitative traces per trace!
The set of quantitative traces of a trace u beginning from the
initial state is denoted by qtr(u), and qtr(S) =

⋃
m∈Σ∗

qtr(m)

A path cost function is a function of type qtr(S)→ α which is
≺-⊆-preserving

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 13 / 19

Relaxations

Now let Σ, S, α, cost and a path cost function pcost be given.

Define the distance function d : Σ∗ → α by
du = min{pcost(τ) | τ ∈ qtr(u)}.
The k-relaxed specification Sk , k ∈ α, can now be defined as

Sk = {u ∈ Σ∗ | du ≤ k}

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 14 / 19

Stuttering Relaxation

One possible general relaxation is the allowance of repetitions of
the same operation, the stuttering relaxation

The cost function is defined by

stcost(q,m, q′) =

0 for q

m−→ q′

1 for q = q′, q 6 m−→ q,∃rq
m−→ r

ω otherwise

A transition costs 1 if it erroneously returns to the same state
after applying m.

The path cost function is the length of a maximal subsequence
in which a state is erroneously preserved.

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 15 / 19

Example: Stuttering Relaxation of CAS

Example: Stuttering relaxation of a CAS-Structure
(Compare-And-Swap)

We have D = ω + 1, we use ω ∈ ω + 1 as “uninitialized”.
Σ = {cas(d , d ′, b) | d ∈ ω + 1, d ′ ∈ ω, b ∈ 2}.
We define S inductively:

{(cas(ω, d , 1)) | d ∈ ω} ⊆ S
If (. . . , cas(d , d ′, 1)) ∈ S then
(. . . , cas(d , d ′, 1), cas(d1, d

′
1, 0), . . . , cas(dn, d

′
n, 0)) ∈ S and

(. . . , cas(d , d ′, 1), cas(d1, d
′
1, 0), . . . , cas(dn, d

′
n, 0), (d

′, d ′′, 1)) ∈
S for d ′ 6∈ {d1, . . . , dn}

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 16 / 19

Example: Stuttering Relaxation of CAS

We define the path cost function to be infinite if any of its
transitions is infinite, and otherwise as the maximum length of a
subsequence of that path that contains only correct transitions
of the form cas(d , d ′, 0) and transitions with value 1:

pcost((〈mi , ki〉)i) =

ω for ∃iki = ω

max
j−i+1

∀i≤x≤j .kx 6= 0 ∨mx = cas(, , 0) otherwise

A k-Relaxation then allows a failed state to remain at most k
operations.

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 17 / 19

Example: A simple relaxed FIFO

There are very efficient implementations of relaxed FIFOs which
do not fully guarantee the preserving of order

One less efficient but very easy implementation is to use multiple
strict FIFOs parallely in a round-robin manner

By iterating over the inputs until a non-locked FIFO for input
can be found, and iterating over the outputs until a FIFO ready
for output is found, when the number of parallel strict FIFOs is
near the number of producing threads, and provided that the
consumption of the elements on the other end is nearly
immediately, there might not be waiting time at all, as always
some FIFO is unlocked

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 18 / 19

Happy Doomsday!

Christoph-Simon Senjak (LMU München) Relaxed data structures 2012-12-21 19 / 19

