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Abstract

In this paper we are dealing with improved Rellich inequalities on Finsler-Hadamard manifolds with vanishing

mean covariation where the remainder terms are expressed by means of the flag curvature. By exploiting

various arguments from Finsler geometry we show that more weighty curvature implies more powerful im-

provements. The sharpness of the involved constants are also studied.
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1 Introduction and main results

The Hardy inequality ∫
Rn
|∇u|2dx ≥ (n− 2)2

4

∫
Rn

u2

|x|2
dx, ∀u ∈ C∞0 (Rn),

plays a central role in the study of singular elliptic problems, n ≥ 3, where the constant (n−2)2

4 is sharp
but not achieved. The second-order Hardy inequalities are referred as Rellich inequalities whose most
familiar forms can be stated as follows; given n ≥ 5, one has∫

Rn
(∆u)2dx ≥ n2(n− 4)2

16

∫
Rn

u2

|x|4
dx, ∀u ∈ C∞0 (Rn), (1.1)

∫
Rn

(∆u)2dx ≥ n2

4

∫
Rn

|∇u|2

|x|2
dx, ∀u ∈ C∞0 (Rn), (1.2)

where both constants n2(n−4)2

16 and n2

4 are sharp, but are never achieved. Hereafter, ∆, ∇, | · | and dx
denote the classical Laplace operator, the Euclidean gradient, the Euclidean norm and the Lebesgue
measure on Rn, respectively. Due to the lack of extremal functions in the Rellich inequalities, various
improvements of (1.1) and (1.2) can be found in the literature; see e.g. Ghoussoub and Moradifam [6],
Tertikas and Zographopoulos [13], and references therein.

Hardy and Rellich inequalities have also been studied on curved spaces. As far as we know, Carron
[4] first studied Hardy inequalities on complete, non-compact Riemannian manifolds. Motivated by [4],
Kombe and Özaydin [7, 8], and Yang, Su and Kong [15] presented various Brezis-Vazquez-type improve-
ments of Hardy and Rellich inequalities on complete, non-compact Riemannian manifolds. Recently,
Kristály [9] proved Hardy inequalities on reversible Finsler manifolds where the improvements are given
in terms of the curvature.
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The purpose of our paper is to describe improved Rellich inequalities on Finsler-Hadamard manifolds
(i.e., complete, simply connected Finsler manifolds with non-positive flag curvature) where the remainder
terms involve the flag curvature. Two facts should be highlighted:

• We prove that Rellich inequalities on Finsler-Hadamard manifolds are better improved once the
flag curvature is more powerful. These phenomena can be considered as second-order versions of
the result described in [9].

• Since Rellich inequalities on Finsler manifolds involve the highly nonlinear Finsler-Laplace operator
∆, expected properties usually fail (which trivially hold on the ’linear’ Riemannian context). Al-
though our results are also genuinely new in the Riemannian framework, we prefer to present them
in the context of Finsler geometry. In this manner, we emphasize the deep connection between
geometric and analytic phenomena which are behind of second-order Sobolev-type inequalities on
Finsler manifolds, providing a new bridge between Finsler geometry and PDEs. This fact is inter-
esting in its own right as well from the point of view of applications, see Antonelli, Ingarden and
Matsumoto [1].

In order to present the nature of our results, we need some notations and notions, see §2.
Let (M,F ) be an n−dimensional complete reversible Finsler manifold (n ≥ 5), dF : M ×M → R

being the natural distance function generated by the Finsler metric F , and let F ∗ : T ∗M → [0,∞) be
the polar transform of F . Let Du(x) ∈ T ∗xM , ∇u(x) ∈ TxM and ∆u(x) be the derivative, gradient and
Finsler-Laplace operator of u at x ∈ M , respectively. Let dVF (x) be the Busemann-Hausdorff measure
on (M,F ) and for a fixed x0 ∈M , let us denote d(x) := dF (x0, x).

Let GF : C∞0 (M)→ R be defined by

GF (u) =

∫
M

[
u(x)2∆(d(x)−2)− d(x)−2∆(u(x)2)

]
dVF (x),

which gives the ’Green-deflection’ of u with respect to the Finsler metric F ; for a generic Finsler manifold
(M,F ), the function GF does not vanish. However, GF ≡ 0 whenever (M,F ) is Riemannian due to
Green’s identity. Finally, we introduce the following class of functions

C∞0,F (M) = {u ∈ C∞0 (M) : GF (u) = 0} .

A simple consequence of our main results (see Theorems 3.1 & 3.2) can be stated as follows.

Theorem 1.1 Let (M,F ) be an n−dimensional reversible Finsler-Hadamard manifold with vanishing
mean covariation, and suppose the flag curvature on (M,F ) is bounded above by c ≤ 0.

(a) If n ≥ 5, then for every u ∈ C∞0,F (M) one has∫
M

(∆u)2dVF (x) ≥ n2(n− 4)2

16

∫
M

u2

d(x)4
dVF (x)

+
3|c|n(n− 1)(n− 2)(n− 4)

4

∫
M

u2

(π2 + |c|d(x)2)d(x)2
dVF (x),

and the constant n2(n−4)2

16 is sharp.
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(b) If n ≥ 9, then for every u ∈ C∞0,F (M) one has∫
M

(∆u)2dVF (x) ≥ n2

4

∫
M

F ∗(x,Du(x))2

d(x)2
dVF (x),

+
3|c|n(n− 1)(n− 4)2

8

∫
M

u2

(π2 + |c|d(x)2)d(x)2
dVF (x),

and the constant n2

4 is sharp.

Remark 1.1 (i) When the flag curvature on (M,F ) becomes more powerful (i.e., |c| is large), the Rellich
inequalities in Theorem 1.1 is also better improved.

(ii) Theorem 1.1 is also new for Cartan-type Riemannian manifolds; indeed, these spaces belong to
the class of Cartan-Finsler manifolds with vanishing mean covariation and C∞0,F (M) = C∞0 (M).

In Section 2 we shall recall some elements from Finsler geometry, namely the flag curvature, Laplace
and volume comparisons, differentials. In Section 3 we shall prove our main results (see Theorems 3.1 &
3.2), while in Section 4 we shall present some concluding remarks.

2 Preliminaries

Let M be a connected n−dimensional C∞ manifold and TM =
⋃
x∈M TxM its tangent bundle. The pair

(M,F ) is called a reversible Finsler manifold if the continuous function F : TM → [0,∞) satisfies the
following conditions

(a) F ∈ C∞(TM \ {0});
(b) F (x, ty) = |t|F (x, y) for all t ∈ R and (x, y) ∈ TM ;
(c) gij(x, y) := [ 1

2F
2(x, y)]yiyj is positive definite for all (x, y) ∈ TM \ {0}.

If gij(x) = gij(x, y) is independent of y then (M,F ) is called Riemannian manifold. A Minkowski space
consists of a finite dimensional vector space V and a Minkowski norm which induces a Finsler metric
on V by translation, i.e., F (x, y) is independent of the base point x; in such cases we often write F (y)
instead of F (x, y). While there is a unique Euclidean space (up to isometry), there are infinitely many
(isometrically different) Minkowski spaces.

We consider the polar transform of F , defined for every (x, ξ) ∈ T ∗M by

F ∗(x, ξ) = sup
y∈TxM\{0}

ξ(y)

F (x, y)
. (2.1)

Note that for every x ∈ M , the function F ∗(x, ·) is a Minkowski norm on T ∗xM. Since F ∗(x, ·)2 is twice
differentiable on T ∗xM \ {0}, we consider the matrix

g∗ij(x, ξ) := [
1

2
F ∗(x, ξ)2]ξiξj

for every ξ =
∑n
i=1 ξ

idxi ∈ T ∗xM \ {0} in a local coordinate system (xi).
Let π∗TM be the pull-back bundle of the tangent bundle TM generated by the natural projection

π : TM \ {0} →M, see Bao, Chern and Shen [2, p. 28]. The vectors of the pull-back bundle π∗TM are
denoted by (v;w) with (x, y) = v ∈ TM \ {0} and w ∈ TxM. For simplicity, let ∂i|v = (v; ∂/∂xi|x) be the
natural local basis for π∗TM , where v ∈ TxM. One can introduce the fundamental tensor g on π∗TM by

gv := g(∂i|v, ∂i|v) = gij(x, y), (2.2)
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where v = yi(∂/∂xi)|x. Unlike the Levi-Civita connection in the Riemannian case, there is no unique
natural connection in the Finsler geometry. Among all natural connections on the pull-back bundle
π∗TM, we choose a torsion free and almost metric-compatible linear connection on π∗TM , the so-called
Chern connection, see Bao, Chern and Shen [2, Theorem 2.4.1]. The coefficients of the Chern connection
are denoted by Γijk, which replace the well known Christoffel symbols from Riemannian geometry. A

Finsler manifold is said to be of Berwald type if the coefficients Γkij(x, y) in natural coordinates are
independent of y. It is clear that Riemannian manifolds and (locally) Minkowski spaces are Berwald
spaces. The Chern connection induces in a natural manner on π∗TM the curvature tensor R, see Bao,
Chern and Shen [2, Chapter 3]. By means of the connection, we also have the covariant derivative Dvu of
a vector field u in the direction v ∈ TxM. Note that v 7→ Dvu is not linear. A vector field u = u(t) along
a curve σ is said to be parallel if Dσ̇u = 0. A C∞ curve σ : [0, a] → M is called a geodesic if Dσ̇σ̇ = 0.
Geodesics are considered to be parametrized proportionally to their arc-length. The Finsler manifold is
said to be complete if every geodesic segment can be extended to R.

Let u, v ∈ TxM be two non-collinear vectors and S = span{u, v} ⊂ TxM . By means of the curvature
tensor R, the flag curvature of the flag {S, v} is then defined by

K(S; v) =
gv(R(U, V )V,U)

gv(V, V )gv(U,U)− gv(U, V )2
, (2.3)

where U = (v;u), V = (v; v) ∈ π∗TM. If for some c ∈ R we have K(S; v) ≤ c for every choice of U and
V , we say that the flag curvature is bounded from above by c and we write K ≤ c. (M,F ) is called a
Finsler-Hadamard manifold if it is complete, simply connected and K ≤ 0. If (M,F ) is Riemannian, the
flag curvature reduces to the well known sectional curvature.

Let σ : [0, r] → M be a piecewise C∞ curve. The value LF (σ) =
∫ r

0
F (σ(t), σ̇(t)) dt denotes the

integral length of σ. For x1, x2 ∈M , denote by Λ(x1, x2) the set of all piecewise C∞ curves σ : [0, r]→M
such that σ(0) = x1 and σ(r) = x2. Define the distance function dF : M ×M → [0,∞) by

dF (x1, x2) = inf
σ∈Λ(x1,x2)

LF (σ). (2.4)

Clearly, dF satisfies all properties of the metric (i.e., dF (x1, x2) = 0 if and only if x1 = x2, dF is symmetric,
and it satisfies the triangle inequality). The open metric ball with center x0 ∈ M and radius ρ > 0 is
defined by B(x0, ρ) = {x ∈M : dF (x0, x) < ρ}.

Let {∂/∂xi}i=1,...,n be a local basis for the tangent bundle TM, and let {dxi}i=1,...,n be its dual
basis for T ∗M. Let Bx(1) = {y = (yi) : F (x, yi∂/∂xi) < 1} be the unit tangent ball at TxM . The
Busemann-Hausdorff volume form dVF on (M,F ) is defined by

dVF (x) = σF (x)dx1 ∧ ... ∧ dxn, (2.5)

where σF (x) = ωn
Vol(Bx(1)) . Hereafter, ωn will denote the volume of the unit n−dimensional ball and

Vol(S) the Euclidean volume of the set S ⊂ Rn. The Finslerian-volume of a bounded open set S ⊂M is
defined as VolF (S) =

∫
S

dVF (x). In general, one has that for every x ∈M,

lim
ρ→0+

VolF (B(x, ρ))

ωnρn
= 1. (2.6)

When (Rn, F ) is a Minkowski space, then by virtue of (2.5), VolF (B(x, ρ)) = ωnρ
n for every ρ > 0 and

x ∈ Rn.
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The Legendre transform J∗ : T ∗M → TM associates to each element ξ ∈ T ∗xM the unique maximizer
on TxM of the map y 7→ ξ(y) − 1

2F
2(x, y). This element can also be interpreted as the unique vector

y ∈ TxM with the following properties

F (x, y) = F ∗(x, ξ) and ξ(y) = F (x, y)F ∗(x, ξ). (2.7)

In a similar manner we can define the Legendre transform J : TM → T ∗M . In particular, J∗ = J−1 on
T ∗xM and if ξ =

∑n
i=1 ξ

idxi ∈ T ∗xM and y =
∑n
i=1 y

i(∂/∂xi) ∈ TxM , then one has

J(x, y) =

n∑
i=1

∂

∂yi

(
1

2
F (x, y)2

)
∂

∂xi
and J∗(x, ξ) =

n∑
i=1

∂

∂ξi

(
1

2
F ∗(x, ξ)2

)
∂

∂xi
. (2.8)

Let u : M → R be a differentiable function in the distributional sense. The gradient of u is defined by

∇u(x) = J∗(x,Du(x)), (2.9)

where Du(x) ∈ T ∗xM denotes the (distributional) derivative of u at x ∈ M. In general, u 7→ ∇u is not
linear.

Let x0 ∈M be fixed. From now on when no confusion arises, we shall introduce the abbreviation

d(x) = dF (x0, x). (2.10)

Due to Ohta and Sturm [10] and by relation (2.7), one has

F (x,∇d(x)) = F ∗(x,Dd(x)) = Dd(x)(∇d(x)) = 1 for a.e. x ∈M. (2.11)

In fact, relations from (2.11) are valid for every x ∈ M \ ({x0} ∪ Cut(x0)), where Cut(x0) denotes the
cut locus of x0, see Bao, Chern and Shen [2, Chapter 8]. Note that Cut(x0) has null Lebesgue (thus
Hausdorff) measure for every x0 ∈M .

Let X be a vector field on M . In a local coordinate system (xi), by virtue of (2.5), the divergence is
defined by div(X) = 1

σF
∂
∂xi (σFX

i). The Finsler-Laplace operator

∆u = div(∇u)

acts on W 1,2
loc (M) and for every v ∈ C∞0 (M), we have∫

M

v∆udVF (x) = −
∫
M

Dv(∇u)dVF (x), (2.12)

see Ohta and Sturm [10] and Shen [12]. In the Riemannian case, the Finsler-Laplace operator reduces to
the Laplace-Beltrami operator, see Bonanno, G. Molica Bisci, V. Rădulescu [3].

Let {ei}i=1,...,n be a basis for TxM and gvij = gv(ei, ej). The mean distortion µ : TM \ {0} → (0,∞)

is defined by µ(v) =

√
det(gvij)

σF
. The mean covariation S : TM \ {0} → R is defined by

S(x, v) =
d

dt
(lnµ(σ̇v(t)))

∣∣
t=0

,

where σv is the geodesic such that σv(0) = x and σ̇v(0) = v. We say that (M,F ) has vanishing mean
covariation if S(x, v) = 0 for every (x, v) ∈ TM , and we denote this by S = 0. We recall that any Berwald
space has vanishing mean covariation, see Shen [11].
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We conclude this section by some important comparison results. Let x0 ∈ M be fixed and recall the
notation introduced in (2.10). First, one has

∆d(x)− n− 1

d(x)
= o(1) as x→ x0. (2.13)

In order to have a global estimate for ∆d(x), we consider for every c ≤ 0 the function ctc : (0,∞) → R
defined by

ctc(ρ) =


1
ρ if c = 0,√
|c| coth(

√
|c|ρ) if c < 0.

Theorem 2.1 Let (M,F ) be an n−dimensional Finsler-Hadamard manifold with S = 0 and K ≤ c ≤ 0,
and let x0 ∈M be fixed. Then the following assertions hold:

(a) (see [14, Theorem 5.1]) For a.e. x ∈M one has ∆d(x) ≥ (n− 1)ctc(d(x)).

(b) (see [14, Theorem 6.1]) The function ρ 7→ VolF (B(x,ρ))
ρn is non-decreasing, ρ > 0. In particular, by

(2.6) we have
VolF (B(x, ρ)) ≥ ωnρn for all x ∈M and ρ > 0.

3 Main results

Let Dc : [0,∞)→ R be the function defined by

Dc(ρ) =

 0 if ρ = 0,

ρctc(ρ)− 1 if ρ > 0.

It is clear that Dc ≥ 0.
In order to establish our main results, we first need a quantitative Hardy inequality; see [9] for a

particular form. For the reader’s convenience we provide its proof.

Lemma 3.1 Let (M,F ) be an n−dimensional Finsler-Hadamard manifold with S = 0 and let K ≤ c ≤ 0,
x0 ∈M be fixed, and choose any α ∈ R such that n− 2 + α > 0. Then for every u ∈ C∞0 (M) we have∫

M

d(x)αF ∗(x,Du(x))2dVF (x) ≥ (n− 2 + α)2

4

∫
M

d(x)α−2u(x)2dVF (x)

+
(n− 2 + α)(n− 1)

2

∫
M

d(x)α−2Dc(d(x))u(x)2dVF (x).

Proof. By convexity and (2.8), one has

F ∗(x, ξ2)2 ≥ F ∗(x, ξ1)2 + 2(ξ2 − ξ1)(J∗(x, ξ1)), ∀ξ1, ξ2 ∈ T ∗xM. (3.1)

Let u ∈ C∞0 (M) be arbitrarily and choose τ = n−2+α
2 > 0. Let v(x) = d(x)τu(x). Therefore, for

u(x) = d(x)−τv(x) one has Du(x) = −τd(x)−τ−1v(x)Dd(x) + d(x)−τDv(x). By inequality (3.1) applied
for ξ2 = −Du(x) and ξ1 = τd(x)−τ−1v(x)Dd(x), the symmetry of F ∗(x, ·) implies that

F ∗(x,Du(x))2 = F ∗(x,−Du(x))2

≥ F ∗(x, τd(x)−τ−1v(x)Dd(x))2 − 2d(x)−τDv(x)(J∗(x, τd(x)−τ−1v(x)Dd(x))).
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Since F ∗(x,Dd(x)) = 1 (see (2.11)), J∗(x,Dd(x)) = ∇d(x) and Dv(x) ∈ T ∗xM, we obtain

F ∗(x,Du(x))2 ≥ τ2d(x)−2τ−2v(x)2 − 2τd(x)−2τ−1v(x)Dv(x)(∇d(x)).

Multiplying the latter inequality by d(x)α, and integrating over M , we obtain∫
M

d(x)αF ∗(x,Du(x))2dVF (x) ≥ τ2

∫
M

d(x)α−2τ−2v(x)2dVF (x) +R0,

where

R0 = −2τ

∫
M

d(x)α−2τ−1v(x)Dv(x)(∇d(x))dVF (x)

= − τ

α− 2τ

∫
M

D(v(x)2)(∇(d(x)α−2τ ))dVF (x)

=
τ

α− 2τ

∫
M

v(x)2∆(d(x)α−2τ )dVF (x) (see (2.12))

= τ

∫
M

u(x)2d(x)α−2 [α− 2τ − 1 + d(x)∆d(x)] dVF (x)

≥ τ(n− 1)

∫
M

u(x)2d(x)α−2 [d(x)ctc(d(x))− 1] dVF (x), (see Theorem 2.1 (a))

= τ(n− 1)

∫
M

d(x)α−2Dc(d(x))u(x)2dVF (x),

which completes the proof. �

For every x ∈M and y ∈ TxM , ξ ∈ T ∗xM, we introduce the function

KF (x, y, ξ) = ξ(y)− J(x, y)(J∗(x, ξ)). (3.2)

For α ∈ R with n− 4 + α > 0 we introduce the Green-deflection function GαF : C∞0 (M)→ R defined by

GαF (u) =

∫
M

KF

(
x,∇(u(x))2, D(d(x)α−2)

)
dVF (x).

The layer cake representation and the fact that n− 4 +α > 0 imply that the function GαF is well defined.
Moreover, by definition of KF and relations (2.9) and (2.12) one has

GαF (u) =

∫
M

[
u(x)2∆(d(x)α−2)− d(x)α−2∆(u(x)2)

]
dVF (x). (3.3)

It is now clear that GαF ≡ 0 whenever (M,F ) is Riemannian due to Green’s identity. In fact, the latter
statement also holds by the following observation.

Proposition 3.1 KF ≡ 0 if and only if (M,F ) is Riemannian.

Proof. If (M,F ) is Riemannian then g(x, y) = a(x), where a(x) is a symmetric and positive-definite
matrix and by Riesz representation, one can identify TxM and T ∗xM. Moreover, J(x, y) = a(x)y and
J∗(x, ξ) = a(x)−1ξ. Consequently, we have

KF (x, y, ξ) = ξ(y)− J(x, y)(J∗(x, ξ)) = ξ(y)− a(x)y(a(x)−1ξ) = 0.
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Conversely, we assume that KF ≡ 0, i.e., ξ(y)− J(x, y)(J∗(x, ξ)) = 0 for every x ∈M , y ∈ TxM and
ξ ∈ T ∗xM. For an arbitrary z ∈ TxM replace ξ = J(x, z) ∈ T ∗xM into the preceding relation to obtain
J(x, z)(y) = J(x, y)(z). In particular, J(x, ·) is linear; by virtue of (2.8) it implies that F (x, ·)2 comes
from an inner product on TxM. �

Let us consider the following set of functions

C∞0,F,α(M) = {u ∈ C∞0 (M) : GαF (u) = 0} .

By Proposition 3.1, C∞0,F,α(M) = C∞0 (M) whenever (M,F ) is Riemannian. However, in the generic
Finsler context the role of C∞0,F,α(M) seems to be indispensable for the study of Rellich inequalities.

We are in position to state our first main result.

Theorem 3.1 (Rellich inequality I) Let (M,F ) be an n−dimensional Finsler-Hadamard manifold with
S = 0 and K ≤ c ≤ 0, let x0 ∈ M be fixed, and choose any α ∈ R such that n − 4 + α > 0 and α < 2.
Then for every u ∈ C∞0,F,α(M) we have∫

M

d(x)α(∆u(x))2dVF (x) ≥ (n− 4 + α)2(n− α)2

16

∫
M

d(x)α−4u(x)2dVF (x)

+
(n− 4 + α)(n− α)(n− 2)(n− 1)

4

∫
M

d(x)α−4Dc(d(x))u(x)2dVF (x).

Moreover, the constant (n−4+α)2(n−α)2

16 is sharp.

Proof. Throughout the proof, we shall consider γ = n−4+α
2 > 0. Since α < 2, a simple calculation and

Theorem 2.1(a) yield

∆(d(x)α−2) = (α− 2)[α− 3 + d(x)∆(d(x))]d(x)α−4

≤ (α− 2)[α− 3 + (n− 1)d(x)ctc(d(x))]d(x)α−4

= (α− 2) [2γ + (n− 1)Dc(d(x))] d(x)α−4.

Let us fix u ∈ C∞0,F,α(M). Multiplying the above inequality by u2, we see that∫
M

∆(d(x)α−2)u(x)2dVF (x) ≤ (α− 2)

∫
M

[2γ + (n− 1)Dc(d(x))]d(x)α−4u(x)2dVF (x). (3.4)

Note that
∆(u(x)2) = 2div(u∇(u(x)) = 2F ∗(x,Du(x))2 + 2u∆(u(x)).

Multiplying the latter relation by dα−2 and integrating over M , we obtain∫
M

d(x)α−2∆(u(x)2)dVF (x) = 2

∫
M

d(x)α−2F ∗(x,Du(x))2dVF (x) + 2

∫
M

d(x)α−2u∆(u(x))dVF (x).

Subtracting the latter relation by (3.4), one gets that

GαF (u) ≤ (α− 2)

∫
M

[2γ + (n− 1)Dc(d(x))]d(x)α−4u(x)2dVF (x)

−2

∫
M

d(x)α−2F ∗(x,Du(x))2dVF (x)− 2

∫
M

d(x)α−2u∆(u(x))dVF (x).
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Since u ∈ C∞0,F,α(M), then GαF (u) = 0 and we obtain that

−
∫
M

d(x)α−2u∆(u(x))dVF (x) ≥ 2− α
2

∫
M

[2γ + (n− 1)Dc(d(x))]d(x)α−4u(x)2dVF (x)

+

∫
M

d(x)α−2F ∗(x,Du(x))2dVF (x). (3.5)

For the latter term we apply the Hardy inequality (Lemma 3.1), and obtain∫
M

d(x)α−2F ∗(x,Du(x))2dVF (x) ≥ γ2

∫
M

d(x)α−4u(x)2dVF (x)

+γ(n− 1)

∫
M

d(x)α−4Dc(d(x))u(x)2dVF (x). (3.6)

Combining these inequalities, a trivial rearrangement now yields

−
∫
M

d(x)α−2u∆(u(x))dVF (x) ≥ γ(n− α)

2

∫
M

d(x)α−4u(x)2dVF (x)

+
(n− 1)(n− 2)

2

∫
M

d(x)α−4Dc(d(x))u(x)2dVF (x).

The Hölder inequality for the left hand side of the above inequality gives that(∫
M

d(x)α(∆u(x))2dVF (x)

) 1
2

·
(∫

M

d(x)α−4u(x)2dVF (x)

) 1
2

≥
∫
M

d(x)α−2|u∆(u(x))|dVF (x). (3.7)

The last inequalities and a simple estimate show that∫
M

d(x)α(∆u(x))2dVF (x) ≥ γ2(n− α)2

4

∫
M

d(x)α−4u(x)2dVF (x)

+
γ(n− α)(n− 2)(n− 1)

2

∫
M

d(x)α−4Dc(d(x))u(x)2dVF (x),

which completes the proof of Rellich inequality I.

Now, we shall prove that in the Rellich inequality I the constant C̃ := γ2(n−α)2

4 is sharp. Clearly, it
is enough to prove that

C̃ = inf
u∈C∞0,F,α(M)\{0}

∫
M
d(x)α(∆u(x))2dVF (x)∫

M
d(x)α−4u(x)2dVF (x)

. (3.8)

First, it follows by (2.13) that there exists 0 < r0 <
n−α

2 such that∣∣∣∣∆d(x)− n− 1

d(x)

∣∣∣∣ ≤ 1 for a.e. x ∈ B(x0, r0).

In particular, one has

| − γ − 1 + d(x)∆d(x)| ≤ n− α
2

+ d(x) for a.e. x ∈ B(x0, r0). (3.9)

Let us fix numbers r,R ∈ R such that 0 < r < R < r0 and a smooth cutoff function ψ : M → [0, 1]
with supp(ψ) = B(x0, R) and ψ(x) = 1 for x ∈ B(x0, r). For every 0 < ε < r, let

uε(x) = (max{ε, d(x)})−γ , x ∈M. (3.10)
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Note that ψuε can be approximated by elements from C∞0 (M) and since both functions ψ and uε are
d(x)−radial, it follows by the representation (3.3) of GαF that GαF (ψuε) = 0, therefore, ψuε ∈ C∞0,F,α(M)
for every 0 < ε < r.

One the one hand, by relation (3.9) one has

I1(ε) :=

∫
M

d(x)α(∆(ψ(x)uε(x)))2dVF (x)

=

∫
B(x0,r)\B(x0,ε)

d(x)α(∆(d(x)−γ))2dVF (x)

+

∫
B(x0,R)\B(x0,r)

d(x)α(∆(ψ(x)d(x)−γ))2dVF (x)

= γ2

∫
B(x0,r)\B(x0,ε)

d(x)α−2γ−4[−γ − 1 + d(x)∆d(x)]2dVF (x) + c(α, r,R)

≤ γ2

(
n− α

2
+ r

)2 ∫
B(x0,r)\B(x0,ε)

d(x)α−2γ−4dVF (x) + c(α, r,R)

= γ2

(
n− α

2
+ r

)2

Ĩ(ε) + c(α, r,R),

where

Ĩ(ε) =

∫
B(x0,r)\B(x0,ε)

d(x)α−2γ−4dVF (x) =

∫
B(x0,r)\B(x0,ε)

d(x)−ndVF (x)

and

c(α, r,R) =

∫
B(x0,R)\B(x0,r)

d(x)α(∆(ψ(x)d(x)−γ))2dVF (x).

Clearly, c(α, r,R) is finite. On the other hand,

I2(ε) :=

∫
M

d(x)α−4ψ(x)2uε(x)2dVF (x)

≥
∫
B(x0,r)\B(x0,ε)

d(x)α−4−2γdVF (x)

= Ĩ(ε).

By applying the layer cake representation and the volume comparison (see Theorem 2.1 (b)), we deduce
that

Ĩ(ε) =

∫
B(x0,r)\B(x0,ε)

d(x)−ndVF (x) =

∫ ε−n

r−n
VolF (B(x0, ρ

− 1
n ))dρ

≥ ωn

∫ ε−n

r−n
ρ−1dρ

= nωn(ln r − ln ε).
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In particular, limε→0+ Ĩ(ε) = +∞. Therefore, it follows that

C̃ ≤ inf
u∈C∞0,F,α(M)\{0}

∫
M
d(x)α(∆u(x))2dVF (x)∫

M
d(x)α−4u(x)2dVF (x)

≤ lim
ε→0+

I1(ε)

I2(ε)

≤ lim
ε→0+

γ2
(
n−α

2 + r
)2
Ĩ(ε) + c(α, r,R)

Ĩ(ε)

= γ2

(
n− α

2
+ r

)2

.

Since r > 0 is arbitrary, we can take r → 0+, which completes the proof of (3.8). �

Our second main result connects first to second order terms and it can be stated as follows.

Theorem 3.2 (Rellich inequality II) Let (M,F ) be an n−dimensional Finsler-Hadamard manifold with
S = 0 and K ≤ c ≤ 0, let x0 ∈ M be fixed, and choose any α ∈ R such that n − 8 + 3α > 0 and α < 2.
Then for every u ∈ C∞0,F,α(M) we have∫

M

d(x)α(∆u(x))2dVF (x) ≥ (n− α)2

4

∫
M

d(x)α−2F ∗(x,Du(x))2dVF (x)

+
(n− 4 + α)2(n− α)(n− 1)

8

∫
M

d(x)α−4Dc(d(x))u(x)2dVF (x).

Moreover, the constant (n−α)2

4 is sharp.

Proof. We shall keep the notations and shall invoke some of the arguments from the proof of Theorem
3.1. Let u ∈ C∞0,F,α(M). By applying the arithmetic-geometric mean inequality to the left hand side of
(3.7), it follows that

2

∫
M

d(x)α−2|u∆(u(x))|dVF (x) ≤ C̃− 1
2

∫
M

d(x)α(∆u(x))2dVF (x) + C̃
1
2

∫
M

d(x)α−4u(x)2dVF (x).

Combining this inequality with (3.5), we see that

2

∫
M

d(x)α−2F ∗(x,Du(x))2dVF (x) ≤ C̃−
1
2

∫
M

d(x)α(∆u(x))2dVF (x)

+
(
C̃

1
2 − 2(2− α)γ

)∫
M

d(x)α−4u(x)2dVF (x)

−(2− α)(n− 1)

∫
M

d(x)α−4Dc(d(x))u(x)2dVF (x).

Since C̃
1
2 − 2(2− α)γ = (n−8+3α)γ

2 > 0, by applying Rellich inequality I to the second integrand on the
right hand side of the above inequality, a reorganization of the expressions implies that

2

∫
M

d(x)α−2F ∗(x,Du(x))2dVF (x) ≤ 8

(n− α)2

∫
M

d(x)α(∆u(x))2dVF (x)

− (n− 4 + α)2(n− 1)

n− α

∫
M

d(x)α−4Dc(d(x))u(x)2dVF (x).
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Once we multiply this inequality by (n−α)2

8 , we obtain the Rellich inequality II.

It remains to prove that in Rellich inequality II the constant (n−α)2

4 is sharp. By using the same
functions as in the proof of Theorem 3.1, it follows by (2.11) that

I3(ε) :=

∫
M

d(x)α−2F ∗(x,D(ψuε)(x))2dVF (x)

≥ γ2

∫
B(x0,r)\B(x0,ε)

d(x)α−4−2γdVF (x)

= γ2Ĩ(ε).

The rest of the proof is similar as for Theorem 3.1. �

Proof of Theorem 1.1. Take in Theorems 3.1 and 3.2 the value α = 0. By considering the continued
fraction representation of the function ρ 7→ coth(ρ), one has

ρ coth(ρ)− 1 ≥ 3ρ2

π2 + ρ2
, ∀ρ > 0,

and this concludes the proof. �

4 Concluding remarks and questions

Remark 4.1 [Tour of Rellich inequalities] The technical hypothesis n − 8 + 3α > 0 is indispensable in
the proof of Theorem 3.2. However, we believe an alternative proof should eliminate this assumption.
Interestingly, Rellich inequalities I and II are deducible from each other via the Hardy inequality once the
assumption n− 8 + 3α > 0 holds. First, we have seen that the proof of Theorem 3.2 is obtained from the
statement of Theorem 3.1. Conversely, by Rellich inequality II and Hardy inequality (see relation (3.6)),
we obtain∫
M

d(x)α(∆u(x))2dVF (x) ≥ (n− α)2

4

∫
M

d(x)α−2F ∗(x,Du(x))2dVF (x)

+
(n− 4 + α)2(n− α)(n− 1)

8

∫
M

d(x)α−4Dc(d(x))u(x)2dVF (x)

≥ (n− α)2γ2

4

∫
M

d(x)α−4u(x)2dVF (x)

+

[
(n− 4 + α)2(n− α)(n− 1)

8
+

(n− α)2

4
γ(n− 1)

]
×

×
∫
M

d(x)α−4Dc(d(x))u(x)2dVF (x)

=
(n− 4 + α)2(n− α)2

16

∫
M

d(x)α−4u(x)2dVF (x)

+
(n− 4 + α)(n− α)(n− 2)(n− 1)

4

∫
M

d(x)α−4Dc(d(x))u(x)2dVF (x),

which is precisely Rellich inequality I. In particular, the Euclidean Rellich inequalities (1.1) and (1.2)
can be considered to be equivalent whenever n ≥ 9.
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Remark 4.2 [Rigidity] For a generic Finsler manifold (M,F ) the vanishing of Green-deflection GF
(where the function KF appears) played a crucial role in Rellich inequalities. As we have already pointed
out in Proposition 3.1, KF ≡ 0 if and only if (M,F ) is Riemannian. On account of this characterization
we believe that the full Rellich inequality holds, i.e.,

(n− 4 + α)2(n− α)2

16
= inf
u∈C∞0 (M)\{0}

∫
M
d(x)α(∆u(x))2dVF (x)∫

M
d(x)α−4u(x)2dVF (x)

,

if and only if (M,F ) is Riemannian. Note that in Theorem 3.1 only the set of functions C∞0,F,α(M) is
considered while the latter relation is formulated for the entire space C∞0 (M).

Remark 4.3 [Mean value property vs. KF ≡ 0 on Minkowski spaces] Let (M,F ) = (Rn, F ) be a
Minkowski space. Recently, Ferone and Kawohl [5, p. 252] proved the mean value property for ∆-
harmonics whenever

〈a, b〉
F (a)F ∗(b)

= 〈∇F (a),∇F ∗(b)〉, ∀a, b ∈ Rn \ {0}. (4.1)

Here, 〈·, ·〉 denotes the usual inner product on Rn. Interestingly, one can show that (4.1) is equivalent to
KF ≡ 0, see relation (2.8). Therefore, according to Proposition 3.1, no proper non-Euclidean class of
Minkowski norms can be delimited in [5] to verify the mean value property. In fact, we conjecture that
the validity of the mean value property of ∆-harmonics on a Minkowski space (Rn, F ) holds if and only
if (Rn, F ) is Euclidean. This problem will be studied in a forthcoming paper.

Remark 4.4 [Nonreversible Finsler manifolds] In order to avoid further technicalities, we focused our
study only to reversible Finsler manifolds. However, by employing suitable modifications in the proofs,
we can state Hardy and Rellich inequalities on not necessarily reversible Finsler manifolds.
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