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Abstract: In the last 10 years, development in robotics, computer vision, and sensor technology has

provided new spectral remote sensing tools to capture unprecedented ultra-high spatial and high

spectral resolution with unmanned aerial vehicles (UAVs). This development has led to a revolution in

geospatial data collection in which not only few specialist data providers collect and deliver remotely

sensed data, but a whole diverse community is potentially able to gather geospatial data that fit

their needs. However, the diversification of sensing systems and user applications challenges the

common application of good practice procedures that ensure the quality of the data. This challenge

can only be met by establishing and communicating common procedures that have had demonstrated

success in scientific experiments and operational demonstrations. In this review, we evaluate the

state-of-the-art methods in UAV spectral remote sensing and discuss sensor technology, measurement

procedures, geometric processing, and radiometric calibration based on the literature and more than

a decade of experimentation. We follow the ‘journey’ of the reflected energy from the particle in

the environment to its representation as a pixel in a 2D or 2.5D map, or 3D spectral point cloud.

Additionally, we reflect on the current revolution in remote sensing, and identify trends, potential

opportunities, and limitations.

Keywords: imaging spectroscopy; spectral; unmanned aerial vehicles; unmanned aerial systems

(UAS); Remotely Piloted Aircraft Systems (RPAS); drone; calibration; hyperspectral; multispectral;

low-altitude; remote sensing; sensors; 2D imager; pushbroom; snapshot; spectroradiometers

1. Introduction

Over the past decade, the number of applications of unmanned aerial vehicles (UAVs, also referred

to as drones, unmanned aerial/aircraft systems (UAS), or remotely piloted aircraft systems (RPAS)

has exploded. Already in 2008, unmanned robots were envisioned to bring about a new era in

agriculture [1]. Recent studies have shown that UAV remote sensing techniques are revolutionizing

forest studies [2], spatial ecology [3], ecohydrology [4,5] and other environmental monitoring

applications [6]. The main driver for this revolution is the fast pace of technological advances and the
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miniaturization of sensors, airframes, and software [7]. A wide range of UAV platforms and sensors

have been developed in the last decade. They have given individual scientists, small teams, and

the commercial sector the opportunity to repeatedly obtain low-cost imagery at ultra-high spatial

resolutions (1 cm to 1 m) that have been tailored to specific areas, products, and delivery times [3,8–11].

Moreover, computing power and easy to use consumer-grade software packages, which include

modern computer vision and photogrammetry algorithms such as structure from motion (SfM) [12],

are becoming cheaper and available to many users.

Before the era of UAVs, the majority of spectral datasets was produced by external data suppliers

(companies or institutions) in a standardized way using a few types of sensors on-board satellites and

manned aircraft. Today, research teams own or even build their own sensing systems and process

their data themselves without the need for external data suppliers. Technology is developing rapidly

and offering new types of sensors. This diversification makes data quality assurance considerations

even more critical—in particular for quantitative and spectral remote sensing approaches, given the

complexity of the geometric and radiometric corrections required for accurate spectroscopy-focused

environmental remote sensing.

Spectral remote sensing gathers information by measuring the radiance emitted (e.g., in the case

of chlorophyll fluorescence), reflected, and transmitted from particles, objects, or surfaces. However,

this information is influenced by environmental conditions (mainly the illumination conditions) and

modified by the sensor, measurement protocol, and the data-processing procedure. Thus, it is critical

to understand the full sensing process, since undesired effects during data acquisition and processing

may have a significant impact on the confidence of decisions made using the data [13]. Moreover,

it is also a prerequisite to later use pixels to understand the biological processes of the Earth system

(c.f. [14]).

Recently, several papers have reviewed the literature for UAV technology and its application

in Earth observation [7–10,15–17]. With the issues potentially arising from an increasing diversity

of small spectral sensors for UAV remote sensing, there is also a growing need to spread knowledge on

sensor technology, data acquisition, protocols, and data processing. Thus, the objective of this review

is to describe and discuss recent spectral UAV sensing technology, its integration on UAV platforms,

and geometric and radiometric data-processing procedures for spectral data captured by UAV sensing

systems based on the literature, but also on more than a decade of our own experiences. Our aim is to

follow the signal through the sensing process (Figure 1) and discuss important steps to acquire reliable

data with UAV spectral sensing. Additionally, we reflect on the current revolution in remote sensing to

identify trends and potentials.

 

Figure 1. The path of information from a particle (e.g., pigments within the leaf), object, or surface to

the data product. The spectral signal is influenced by the environment, the sensor, the measurement

protocol, and data processing on the path to its representation as a pixel in a data product.

In combination with metadata, this representation becomes information.

This review is structured as follows. Different technical solutions for spectral UAV sensor

technology are described in Section 2. The geometric and radiometric processing steps are elaborated in
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Sections 3 and 4, respectively. In Section 5, we build a more complete picture of significant development

steps and present the recommended best practices. The conclusions in Section 6 complete this review.

2. Spectral UAV Sensors

Spectral sensing can be performed using different approaches. Since in most countries the

threshold to fly UAVs without permission is below a take-off weight of 30 kg, this paper will focus

on sensors that can be carried by these UAVs. Generally, spectral sensors capture information

in spectrally and radiometrically characterized bands. Commonly, they are distinguished by the

arrangement and/or a number of bands [18,19]. Furthermore, sensors can be classified on the basis

of the method by which they achieve spatial discrimination and the method by which they achieve

spectral discrimination [20]. In the following subsections, we introduce several types of sensors that

are available for UAVs with some example applications. Table 1 at the end of Section 2 summarizes the

different sensor types.

2.1. Point Spectrometers

Point spectrometers (referred to as spectroradiometers if they are spectrally and radiometrically

calibrated) capture individual spectral signatures of objects. The spectrometer’s field of view (FOV)

and the distance to the object define the footprint of the measurement.

Already in 2008, point spectrometers were mounted on flying platforms (e.g., [21]). Recently,

spectrometers have been miniaturized such that their size and the payload capacity of UAVs converged.

In 2014, Burkart et al. [22] developed an ultra-lightweight UAV spectrometer system based on

the compact Ocean Optics STS [23] for field spectroscopy. It recorded spectral information in the

wavelength range of 338 nm to 824 nm, with a full width at half maximum (FWHM) of 3 nm and a FOV

of 12◦, and later it was used as a flying goniometer to measure the bidirectional reflectance distribution

function of vegetation [24]. Garzonio et al. [25] presented a system to measure sun-induced fluorescence

in the oxygen A absorption band with the high-spectral resolution spectrometer Ocean optics USB4000

with an FWHM of 1.5 nm and a FOV of 6◦. Furthermore, UAV point spectrometers have been used to

investigate the impact of environmental variables on water reflectance [26] and for intercomparison

with data from a moderate resolution imaging spectroradiometer (MODIS) in Greenland [27]. Besides,

UAV point measurements have been fused with multispectral 2D imaging sensors [28] and applied

from fixed-wing UAVs [29], e.g., to monitor phytoplankton bloom [30]. Additionally, first attempts

have been made to build low-cost whiskbroom systems for UAVs, which are able to quickly scan

points on the surface [31].

The benefits of point spectrometers are their high spectral resolution, high dynamic range,

high signal-to-noise ratio (SNR), and low weight. The USB4000 weighs approximately 190 g, and the

STS spectrometer only weighs about 60 g. In combination with a microcontroller, the total ready-to-fly

payload with the STS is only 216 g [22], allowing their installation on very small UAVs. However,

since their data contains no spatial reference, auxiliary data is required for georeferencing; this makes

additional devices necessary, increasing the overall weight and cost of the system (c.f. Section 3.1).

In addition, the data within the FOV of the spectrometer cannot be spatially resolved; i.e., each spectral

measurement includes spectral information from objects within the FOV of the sensor.

2.2. Pushbroom Spectrometers

The pushbroom sensor records a line of spectral information at each exposure. By repeating the

recording of individual lines during flight, a continuous spectral image over the object is obtained.

Each pixel represents the spectral signature of the objects within its instantaneous FOV (IFOV) [32].

The pushbroom design has been the ‘standard’ design for large airborne imaging spectrometers for

many years; however, miniaturization for small UAVs has only recently been achieved.

Zarco-Tejada et al. [33] demonstrated the use of narrow-band indices acquired from a UAV

platform for water stress detection in an orchard using a Headwall micro-Hyperspec VNIR pushbroom
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scanner [34] with a FWHM of 3.2 nm or 6.4 nm, depending on the slit used. In addition, pushbroom

scanners have been used to detect plant diseases [35], estimate gross primary production (GPP) by

means of physiological vegetation indices [36], and retrieve chlorophyll fluorescence by means of

the Fraunhofer line depth method with three narrow spectral bands around the O2-A absorption

feature at 760 nm [35,36]. Pushbroom sensors have also been flown together with light detection and

ranging (LiDAR) systems to fuse spectral and 3D data [37]. Most of these studies were carried out with

fixed-wing UAVs at flying altitudes of 330–575 m above ground level (AGL), resulting in a ground

sampling distance (GSD) of 0.3–0.4 m. Pushbroom systems have also been mounted on multi-rotor

UAVs, flying lower and slower, resulting in ultra-high ground sampling distances (<10 cm pixel size).

Lucieer et al. [38] and Malenovsky et al. [39] achieved resolutions of up to 4 cm to map the health of

Antarctic moss beds.

State-of-the-art pushbroom sensors for UAVs weigh between 0.5–4 kg (typically ~1 kg) including

the lens. However, due to the large amount of data captured by such a sensor, a mini-computer with

considerable storage capacity has to be flown together with the sensor, which increases the payload

(Section 3.2). Suomalainen et al. [40] built a hyperspectral mapping system based on off-the-shelf

components. Their total system included a pushbroom spectrometer, global navigation satellite system

(GNSS) receiver and inertial measurement unit (IMU), a red–green–blue (RGB) camera, and a Raspberry

PI to control the system and acting as a data sink. The total weight of the system was 2 kg [40]. Recently,

companies that formerly focused on full-size aircraft systems have also attempted to miniaturize their

sensors for UAVs and provide self-contained systems including the sensor, GNSS/IMU, and control

and storage devices (e.g., [41]).

The benefits of pushbroom devices include their high spatial and spectral resolution, and the

ability to provide spatially resolved images. Compared to the point spectrometers, they are heavier and

require more powerful on-board computers. Similar to point spectrometers, pushbroom systems need

additional equipment on-board the UAV to enable accurate georeferencing of the data (c.f. Section 3.2).

2.3. Spectral 2D Imagers

2D spectral imagers record spectral data in two spatial dimensions within every exposure. This has

opened up new ways of imaging spectroscopy [42], since computer vision algorithms can be used to

compose a scene from individual images, and spectral and 3D information can be retrieved from the

same data and composed to (hyper)spectral digital surface models [43,44]. Since [43] first attempted

to categorize 2D imagers (then commonly referred to as image-frame cameras or central perspective

images [32]), new technologies have appeared. Today, 2D imagers exist that record the spectral

bands sequentially or altogether within a snapshot. In addition, multi-camera systems record spectral

bands synchronously with several cameras. In the following sections, these different technologies

are reviewed.

2.3.1. Multi-Camera 2D Imagers

A multi-camera 2D imager uses several integrated cameras to record a multispectral or

hyperspectral image. Often, this is done by placing filters with a specific wavelength configuration

in front of the detector. The first popular camera for this type for UAV application was the MCA,

which had four or six cameras. Some examples of applications that have been developed with this

first bulky model (2.7 kg) carried out on-board a helicopter UAV include water stress detection and

precision agriculture studies [45–47]. Further miniaturization of the MCA model into the mini-MCA

camera enabled its use from lightweight platforms for vegetation detection in herbaceous crops [48]

and weed mapping [49]. However, due to its technical configuration, calibration and post-processing

of data was complex [50]. Additionally, the camera had a rolling shutter, where not all parts of the

image are recorded at the same time. For moving scenes (e.g., due to the movement of the sensor),

this results in “rolling-shutter” effects that distort the images. Thus, rolling shutter cameras are not
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suited for taking images during UAV movement. Newer Tetracam cameras now also use global shutter

in the Macaw model.

Recently, similar but more compact systems have appeared on the market. Among them are the

MicaSense Parrot Sequoia and RedEdge(-m) [51,52] with four and five spectral bands (blue, green, red,

red edge, near-infrared), and the MAIA camera [53], with nine bands captured by separate imaging

sensors that operate simultaneously. Such cameras were used to assess forest health [54], leaf area index

in mangrove forests [55] and grapevine disease infestation [56]. In addition, self-built multi-camera

spectral 2D systems have been used to identify water stress [57] as well as crop biomass and nitrogen

content [58].

2.3.2. Sequential 2D Imagers

Sequential band systems record bands or sets of bands sequentially in time, with a time

lag between two consecutive spectral bands. These systems have often been called image-frame

sensors [43,44,59,60]. An example of such a system is the Rikola hyperspectral imager by Senop Oy [61]

that is based on the tunable Fabry–Pérot Interferometer (FPI). The camera weighs 720 g. The desired

spectral bands are obtained by scanning the spectral range with different air gap values within the

FPI [44,62]. The current commercial camera has approximately 1010 × 1010 pixels, providing a vertical

and horizontal FOV of 36.5◦ [61,63]. In total, 380 spectral bands can be selected with a 1-nm spectral

step in the spectral range of approximately 500–900 nm, but in typical UAV operation, 50–100 bands

are collected. The FWHM increases with the wavelength if the order of interference and the reflectance

of the mirrors remain the same [64]. However, in practical implementation of the Rikola camera,

the resulting FWHMs are similar in the visible and near-infrared (NIR) ranges: approximately 5–12 nm.

The Rikola HSI records up to 32 individual bands within a second; so, for example, a hypercube with

60 freely selectable individual bands can be captured within a 2-s interval. Recently, a sort-wave

infrared (SWIR) range prototype camera was developed, with a spectral range of 0.9–1.7 µm and an

image size of 320 × 256 pixels [65,66].

Benefits of the sequential 2D imagers are the comparably high spatial resolution and the flexibility

to choose spectral bands. At the same time, the more bands that are chosen, the longer it takes to

record all of them. In mobile applications, the bands in individual cubes have spatial offsets that need

to be corrected in post-processing (c.f. Section 3.3.2) [44,67,68]. The frame rate, exposure time, number

of bands, and flying height limit the flight speed in tunable filter-based systems. The FPI cameras have

been used in various environmental remote sensing studies, including precision agriculture [44,69–71],

peat production area moisture monitoring [65], tree species classification, forest stand parameter

estimation, biodiversity assessment [72–74], mineral exploration [68], and detection of insect damage

in forests [60,75].

2.3.3. Snapshot 2D Imagers

Snapshot systems record all of the bands at the same time [43,76,77], which has the advantage

that no spatial co-registration needs to be carried out [43]. Currently, multi-point and filter-on-chip

snapshot systems exist for UAVs.

Multi-point spectrometer

Multi-point spectrometers use a beam splitter to divide the 2D image into sections, of which the

signal is spread in the spectral domain [78]. An example is the Cubert Firefleye [79]. The camera and

a controlling computer weighs about 1 kg and records an image cube with 50 × 50 pixel of spectral

data from 450–900 nm with an FWHM of 5 nm (460 nm) to 25 nm (860 nm). Simultaneously, a one

megapixel grey image with the same extent is taken and can be used to collate the images into a full

scene [43]. Multi-point snapshot cameras have been used to derive chlorophyll [42], plant height [43]

and leaf area index [80] in crops.
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The advantage of multi-point 2D imagers is that they record all of the spectral information for

each point in the image at the same time, and typical integration times are very short due to the

high light throughput. However, the disadvantage is the relatively low spatial resolution of the

spectral information.

Mosaic filter-on-chip cameras

In the mosaic filter-on-chip technology, each pixel carries a spectral filter that has a certain

transmission, such as the principle of a Bayer pattern in an RGB camera. The combined information

of the pixels within a mosaic or tiles then represents the spectral information of the area seen by the

tile. The technology is based on a thin wafer on top of a monochromatic complementary metal–oxide

semiconductor (CMOS) sensor in which the wafer contains band pass filters that isolate spectral

wavelengths according to the Fabry–Pérot interference principle [81,82]. The wafers are produced

in a range of spatial configurations, including linear, mosaic, and tile-based filters. This technique

was developed by Imec using the FPI filters to provide different spectral bands [81]. Currently,

the chip is available for the range of 470–630 nm in 16 (4 × 4 pattern) bands with a spatial resolution

of 512 × 256 pixels, and in the range of 600–1000 nm in 25 bands (5 × 5 pattern) with a spatial resolution

of 409 × 216 pixels. The FWHM is below 15 nm for both systems. The two chips are integrated into

cameras by several companies, and weigh below 400 g (e.g., [83,84]). So far, only first attempts with this

new technology have been published [85,86], including a study on how to optimize the demosaicing

of the images [87]. Recently, Imec has announced a SWIR version of the camera [88].

The advantage of filter-on-chip cameras is that they record all of the bands at the same time.

Additionally, they are very light, and can be carried by small UAVs. The disadvantage is that each

band is just measured once within each tile and thus, accurate spectral information for one band is

only available once every few pixels. Currently, this is tackled by slightly defocusing the camera

and interpolation techniques. They have a higher spatial resolution than multi-point spectrometers,

but the radiometric performance of the filter-on-chip technology has not yet reached the quality

of established sensing principles that is used in point and line scanning devices. This mainly results

from the technical challenges during the manufacturing process (i.e., strong variation of the thickness

of the filter elements between adjacent pixels) and the novelty of the technique. Figure 2 shows images

captured by a sequential 2D imager, a multi-point spectrometer, and a filter-on-chip snapshot camera.

 

 

Figure 2. Example images captured by the sequential Rikola Fabry–Pérot Interferometer (FPI) (left),

multi-point spectrometer CUBERT Firefleye (center) and filter-on-chip Imec NIR (right) 2D imagers.

The excerpt shows one 5 × 5 tile used to capture the spectral information.

Spatiospectral filter-on-chip cameras

To address the latter, a modified version of the filter-on-chip camera called COSI Cam has been

developed [89]. This sensor no longer uses a small number of spectral filters in a tiled or pixel-wise

mosaic arrangement. Instead, a larger number of narrow band filters are used, which are sampled

densely enough to have continuous spectral sampling. The filters are arranged in a line-wise fashion,

with a n amount of lines (a small number, five or eight) of the same filter next to each other, followed

by n lines of spectrally adjacent filter bands. In this arrangement, filters on adjacent pixels only vary
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slightly in thickness, leading to much cleaner spectral responses than the 4 × 4 and 5 × 5 pattern.

The COSI Cam prototype [89] was the first camera using such a chip, capturing more than 100 spectral

bands in the range of 600 nm–900 nm. In a further development, by using two types of filter material on

the chip, a larger spectral range of 475 nm–925 nm was achieved (ButterflEYE LS; [90]) with a spectral

sampling of less than 2.5 nm.

Physically, these cameras are filter-on-chip cameras, but their filter arrangement requires

a different mode of operation. Their operation includes scanning over an area, and is similar to

the operation of a pushbroom camera. Therefore, these sensors are also referred to as spatiospectral

scanners. The 2D sensor can be seen as a large array of 1D sensors, each capturing a different spectral

band (in fact, n duplicate lines per band). To capture all of the spectral bands at every location, a new

image has to be captured every time the platform has moved the equivalent of n lines. This is achieved

by limiting the flying speed and operating the camera with a high frame rate (typically 30 frames

per second (fps)), which means a larger portion of the flying time is used for collecting information.

A specialized processing workflow then generates the full image cube for the scene [90].

Due to their improved design, the radiometric quality of the spectrospatial cameras is better

compared to the classical filter-on-chip design. At the same time, their data enables the reconstruction

of the 3D geometry similar to other 2D imagers due to the 2D spatial information within the images.

Sima et al. [91] showed that a good spatial co-registration can be achieved that also allows extraction

of digital surface models (DSMs). The drawback of these systems is that they require large storage

capacity and a lower flying speed to obtain full coverage over the target of interest. A further challenge

in this kind of sensor is that each band has different anisotropy effects as a result of having different

view angles to the object.

Characterized (modified) RGB cameras

RGB and modified RGB cameras (e.g., where the infrared filter is removed, and so called

color-infrared cameras (CIR) with green, red and near-infrared bands) can also be used to capture

spectral data if they are spectrally and radiometrically characterized, and the automatic image

adjustment is turned off. These cameras only have a very limited number of rather wide spectral bands,

but have a very high spatial resolution at comparatively low cost. An example is the Canon s110 NIR,

which records green (560 nm, FWHM: 50 nm), red (625 nm, FWHM: 90 nm), and near-infrared (850 nm,

FWHM: 100 nm) bands at 3000 by 4000 pixels. For some cameras, firmware enhancements such as

the Canon Hack Development Kit (CHDK Community, 2017) are available and provide additional

functionality beyond the native camera firmware, which is potentially useful for remote sensing

activities. Berra et al. [92] demonstrated how to characterize such cameras and compared the results of

multi-temporal flights to map phenology to Landsat 8 data.

While the main advantage of RGB and CIR cameras is their high spatial resolution and

comparatively low cost, a main limitation is the overlap between spectral bands. Additionally, these

bands also do not comply with the bands originally used in standard vegetation indices (VIs). Thus,

the pseudo-normalized difference vegetation index (pseudo-NDVI) is calculated, where the available

bands are used in some combination. However, these cameras were not intentionally built for precise

radiometric measurements, and thus might lack stability. Thus, one needs to be careful with the

settings, since image-processing procedures within the camera might alter the information captured by

the camera. The best way to use consumer-grade cameras is to store images in a raw data format (e.g.,

open DNG; [93]). In addition, some consumer-grade systems only offer a low radiometric resolution

of eight bits per channel, which might be unable to resolve subtle radiometric differences.
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Table 1. Different spectral sensor types for unmanned aerial vehicle (UAV) sensing systems with properties of example sensors. The exact numbers may vary between

different models, and should just be taken as indication. The visualizations indicate the image cube slices recorded during each measurement of a sensor type (adapted

from drawings provided by Stefan Livens). The information in the table is composed of information found in the literature, on websites of the manufacturers, and

personal correspondence with Stefan Livens from VITO (for the COSI cam), Trond Løke from HySpex (for the Mjolnir), and Robert Parker from Micasense (for the

RedEdge-m). FWHM: full width at half maximum.

Data Cube Slice
Scanning

Dimension
Spatial Resolution Spectral Bands **

Spectral Resolution
(FWHM)

Bit Depth Example Sensors

P
o

in
t

 

 

spatial none
++++ (1024)

+++++ (3648)
++++ (1–12 nm)

+++++ (0.1–10 nm)
12 bit
16 bit

Ocean Optics STS
Ocean Optics USB4000

P
u

sh
b

ro
o

m

 

 

spatial

V
N

IR

+++ (1240) ++++ (200) +++ (3.2–6.4 nm) 12 bit

HySpex Mjolnir V
Specim AisaKESTREL 10, Headwall
micro-hyperspec/nano-hyperspec,

Bayspec OCI, Resonon Pika

S
W

IR
+++ (620) ++++ (300) +++ (~6 nm) 16 bit

HySpex Mjolnir S (970–2500 nm)
Specim AisaKESTREL 16

(600–1640 nm)

2D
im

ag
er

M
u

lt
i-

ca
m

er
a

 

spatial +++ (1280 × 960) + (5) + (10–40 nm) 12 bit
Micasense RedEdge-m

Parrot Sequoia, Tetracam Mini MCA,
macaw

S
eq

u
en

ti
al

(m
u

lt
i-

)
b

an
d

 

 

spectral

V
N

IR

+++ (1000 × 1000) +++ (100) +++ (5–12 nm) 12 bit Rikola FPI VNIR

S
W

IR

++ (320 × 256) ++ (30) ++ (20–30 nm) Prototype FPI SWIR
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Table 1. Cont.

Data Cube Slice
Scanning

Dimension
Spatial Resolution Spectral Bands **

Spectral Resolution
(FWHM)

Bit Depth Example Sensors
2D

im
ag

er

sn
ap

sh
o

t

M
u

lt
i-

p
o

in
t

 

 

none + (50 × 50) +++ (125) +++ (5–25 nm) 12 bit Cubert FireFleye
F

il
te

r-
o

n
-c

h
ip

 

 

none

V
IS ++ (512 × 272) ++ (16) ++ (5–10 nm) 10 bit imec SNm4x4 *

N
IR ++ (409 × 216) ++ (25) ++ (5–10 nm) 10 bit imec SNm5x5 *

C
h

ar
ac

te
ri

ze
d

(m
o

d
ifi

ed
)

R
G

B

 

 

none ++++ 3000 × 4000 + (3) + (50–100 nm) 12 bit canon s110 (NIR)

S
p

at
io

sp
ec

tr
al

 

 

spatiospectral ++++ 2000 ++ (160) ++ (5–10 nm) 8 bit
COSI cam

Cubert ButterflEYE LS

* Sold by different companies, e.g., Cubert Butterfly VIS/NIR, ximea MQ022HG-IM-SM4X4-VIS/MQ022HG-IM-SM5X5-NIR, photonFocus MV1-D2048x1088-HS03-96-G2/
MV1-D2048x1088-HS02-96-G2. ** number of spectral bands depends on the configuration and binning of the devices and should just be used as a reference.
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3. Integration of Sensors and Geometric Processing

Accurate geometric processing is a crucial task in the data processing workflow for UAV datasets.

Fundamental steps include the determination of the sensor interior characteristics of the sensor system

(interior orientation), the exterior orientation of the data sequence (position and rotation of the sensor

during the data capture), and the object geometric model to find the geometric relationship between

the object and the recorded radiance value.

Accurate position and orientation information is required to compute the location of each pixel

on the ground. Full-size airborne hyperspectral sensors follow the pushbroom design, and some

can use a survey-grade differential GNSS receiver (typically multi-constellation and dual frequency

capabilities) and IMU to determine the position and orientation (pitch, roll, and heading) of the image

lines. When post-processed against a GNSS base station established over a survey mark at a short

baseline (within 5–10 km), a positioning accuracy of 1–4 cm can be achieved for the on-board GNSS

antenna, after which propagation of all of the pose-related errors typically results in 5–10 cm direct

georeferencing accuracy of UAS image data. This can be further improved by using ground control

points (GCPs) measured with a differential GNSS rover on the ground or a total station survey [94–97].

One of the challenges in hyperspectral data collection from UAVs is the limitation in weight and size of

the total sensor payload. Survey-grade GNSS and IMU sensors tend to be relatively heavy, bulky, and

expensive, e.g., fiber optic gyro (FOG) IMUs providing absolute accuracy in orientation of <0.05◦ [98].

Development in microelectromechanical systems (MEMS) has resulted in small and lightweight IMUs

suitable for UAV applications; however, traditionally, the absolute accuracy of these MEMS IMUs has

been relatively poor (e.g., typically ~1◦ absolute accuracy in pitch, roll, and yaw) [98]. The impact of a 1◦

error at a flying height of 50 m above ground level (AGL) is a 0.87-m geometric offset for a pixel on the

ground. If we consider the key benefit of UAV remote sensing to be the ability to collect sub-decimeter

resolution imagery, then such a large error is potentially unacceptable. The combined error in pitch, roll,

heading, and position can make this even worse. There is an important requirement for the optimal

combination of sensors to determine accurate position and orientation (pose) of the spectral sensor

during acquisition (which also requires accurate time synchronization), or an appropriate geometric

processing strategy based on image matching and ground control points (GCPs).

3.1. Georeferencing of Point Spectrometer Data

While point spectrometers offer high spectral resolution, their data contain no spatial reference.

Thus, precise positioning and orientation information as well as an accurate digital surface model are

necessary to project the measurement points on the surface. One approach is to use precise GNSS/IMU

equipment, which is still expensive. An alternative is to align and capture data simultaneously with

a 2D imager, such as for example with an either monochrome or RGB machine vision camera (e.g., [25]).

In a next step, computer vision algorithms such as SfM can then be used to derive the orientation and

position of the images and the associated point spectrometer measurements, assuming that the images

contain sufficient features and are captured with enough overlap [99,100]. While the second approach

is cheaper than the first, both add additional payload to be carried by the sensing system. For both

approaches, accurate time synchronization between the spectroradiometer and the GNSS/IMU or

camera is required. Furthermore, each spectroradiometer has a certain FOV determined by the slit or

foreoptic, which can be constrained with additional accessories, such as a Gershun tube or collimating

lens. Finally, the integration time of the spectroradiometer will also have an impact on the size of the

footprint. For a spectroradiometer with a relatively long integration time (e.g., 1 s) on a moving UAV

platform, the circular footprint will be ‘dragged out’ into an elongated shape. Additionally, in off-nadir

measurements, the circular footprint also elongates to an elliptical shape [24]. The combined effects

of the position, orientation, FOV, integration time of the spectroradiometer, flying height and speed

of the UAV, and the surface topography will determine the location and size/shape of the spectral

footprint. Finally, one should also consider that measurements of a field spectrometer are center
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weighted within their FOV, and the configuration of the fiber and fore optic might influence the

measured signal [101].

3.2. Georeferencing of Pushbroom Scanner Data

Pushbroom sensors need to move to build up a spatial image of a scene. Typically, these

sensors collect 20–100 frames per second (depending on integration time and camera specifications).

The slit width, lens focal length, and integration time determine the spatial resolution of the pixels

in the along-track direction (i.e., flight direction). The number of pixels on the sensor array (i.e.,

number of columns) and the focal length of the sensor determine the spatial resolution of the

pixels in the across-track direction. To accurately map the spatial location of each pixel in the

scene, several parameters need to be provided or determined: camera/lens distortion parameters,

sensor location (XYZ), sensor absolute orientation (pitch, roll, and heading), and surface model of the

terrain. Pushbroom sensors are particularly sensitive to flight dynamics in pitch, roll, and heading,

which makes it challenging to perform a robust geometric correction or orthorectification. For dynamic

UAV airframes, such as multi-rotors, this is particularly challenging.

Lucieer et al. [38] and Malenovský et al. [39] developed and used an early hyperspectral

multi-rotor prototype in Antarctica that did not use GNSS/IMU observations, but rather relied

on a dense network of GCPs for geometric rectification based on triangulation/rubber-sheeting.

This prototype was later upgraded to include synchronized GNSS/IMU data (Figure 3) in order to

enable orthorectification using the PARGE geometric rectification software [102,103].

With the use of a limited number of GCPs and/or on-board GNSS coordinates, machine vision

imagery can be used to determine the position and orientation of a hyperspectral sensor without

the need for complex and expensive GNSS/IMU sensors. The main advantage of machine vision

imagery is that it can be used in rigorous photogrammetric modeling [104], SfM [105], or simultaneous

localization and mapping (SLAM) [106] workflows to extract 3D terrain information and pose

information simultaneously. Suomalainen et al. [40] developed a hyperspectral pushbroom system

with a synchronized GNSS/IMU unit for orthorectification; they used a photogrammetric approach

based on SfM to improve the accuracy of the on-board navigation-grade GNSS receiver and derive

a digital surface model for orthorectification. Habib et al. [107] and Ramirez-Paredes et al. [108]

presented approaches for the georectification of hyperspectral pushbroom imagery that were purely

based on imagery and image matching. Their approaches are attractive, as a fully image-based

approach reduces the complexity of sensor integration on board the UAV. However, in order to achieve

a high absolute accuracy, accurate GCP measurements still need to be obtained, or an accurate on-board

GNSS needs to be employed. In addition, to match the frame rate of a hyperspectral sensor, a lot of

machine vision data will have to be stored and processed (potentially thousands of images per flight).

Recently, sensor manufacturers have started to produce turnkey hyperspectral pushbroom sensor

packages that include the imaging spectrometer, data logging unit, and GNSS/IMU sensors in a small

and lightweight package, e.g., Headwall Photonics nano-Hyperspec. One of the major issues with

complete packages such as these is the quality of the GNSS and IMU data. The nano-Hyperspec

for example carries a GNSS/IMU with a navigation-grade GNSS receiver delivering an absolute

accuracy of 5–10 m. In addition, the IMU can measure yaw, but to derive an absolute heading from

yaw requires an absolute baseline measurement, which is usually derived from the GNSS flight

path and/or a 3D magnetometer. The heading derived from the flight path will provide the general

flight direction; however, the UAV airframe can have a completely different absolute heading (i.e.,

a multi-rotor can have a yaw direction that is different from the flight direction). These heading

measurements are notoriously inaccurate, which can result in major georectification errors. A dual

antenna tightly coupled GNSS/IMU solution can overcome these issues, but they tend to be heavier

and more expensive. Two GNSS antennae at a relatively short baseline, e.g., ~1 m, can offer an absolute

heading accuracy of 0.1◦. Machine vision data can be used to assist pose estimation and facilitate more

accurate georectification through feature image matching and co-registration [103].
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Figure 3. TerraLuma pushbroom system: Image (top left) and drawing of the sensor payload (top

right) and device interaction flow chart (bottom; CAD design and flow chart: Richard Ballard,

TerraLuma group).

3.3. Georeferencing of 2D Imager Data

3.3.1. Snapshot 2D Imagers

The major advantage of snapshot 2D imagers is that the spatial patterns in each image frame can

be used in an SfM workflow. Through the selection of an optimal spectral band or the use of the raw

2D hyperspectral mosaic, the SfM process allows for the extraction and matching of image features.

The resulting bundle adjustment will then calculate the position and orientation for each image

frame without the need for GNSS/IMU sensors (although the image-matching phase can be assisted

with GNSS/IMU observations), which reduces the complexity of the setup (Figure 4). Since this

approach derives the relative position and orientation of the images, a scene with relative scaling

can be generated. For several applications, this is already sufficient, and the approach is appealing,

since one can forgo the additional weight and complexity of a GNSS/INS approach. Still, with the aid



Remote Sens. 2018, 10, 1091 13 of 42

of an accurate on-board GNSS receiver or GCPs, geometrically accurate orthomosaics can be created

(with a typical absolute accuracy of 1–2 pixels). One of the issues with this approach is that 2D imagers

tend to have a lower spatial resolution, which can affect the number of matching features found in the

SfM process. This can result in poor performance in image matching in complex terrain/vegetation,

which has a direct impact on the quality of the spectral orthomosaic. This can be compensated by

merging the low-resolution hyperspectral information with, e.g., a higher resolution panchromatic

image [43]. An additional benefit of 2D imagers is that an initial bundle adjustment can be followed

by an optional dense matching approach, which then allows the generation of high-resolution 3D

hyperspectral point clouds and surface models (c.f. Section 5.4).

 

 

Figure 4. TerraLuma 2D imager system (top) with exemplary device interaction flow chart (bottom;

source: Richard Ballard, TerraLuma group).

3.3.2. Georeferencing of Sequential and Multi-Camera 2D Imagers

The multispectral and hyperspectral sensors based on multiple cameras or tunable filters produce

non-aligned spectral bands. The straightforward approach would be to determine the exterior

orientations of each band individually using SfM. If the number of bands is large, for example

20 or 100, the separate orientation of each band can result in a significant computational challenge,

and therefore, solutions based on image registration are more feasible [109]. The transformation

can be two-dimensional (such as rigid body, Helmert, affine, polynomial, or projective) or

three-dimensional, based on the collinearity model and accounting for the object’s 3D structure,

i.e., the orthorectification [110].
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Jhan et al. [111] presented an approach utilizing the relative calibration information and projective

transformations for the Mini-MCA lightweight camera, which is composed of six individual, rigidly

assembled cameras. They used a laboratory calibration process to determine the relative orientations

of individual cameras with respect to the master camera in the multi-camera system; the relative

orientations of the master camera (red band) and an additional RGB camera were determined. The RGB

camera was oriented with bundle-block adjustment, and the exterior orientations of the rest of the

bands were calculated based on the relative orientations and the exterior orientations of the reference

camera. An accuracy of 0.33 pixels was reported in the registered images. Several researchers

reported accuracies on the level of approximately two pixels when using approaches based on 2D

transformations with the mini-MCA camera [112–114].

In the cases of tunable filters such as the Rikola camera, each band has a unique exterior orientation.

Honkavaara et al. [67] showed that the geometric challenges increase with the decreasing flight height

and increasing flight speed, time difference between the bands, and height differences among the

objects. In several studies, good results have been reported when using 2D image transformations

in flat environments [44,115]. If the object has great height differences, such as forest, rugged

terrain, and built areas, the 2D image transformations do not give accurate solutions in general

cases; however, good results were reported also in a rugged environment when using 2D image

transformations if combined with image capture based on stopping while taking each hypercube [68].

Image registration based on physical exterior orientation parameters and orthorectification should be

used when operating these tunable filter sensors from mobile platforms in environments where the

object of interest has significant height differences. Honkavaara et al. [67] developed a rigorous and

efficient approach to calculate co-registered orthophoto mosaics of tunable filter images. The process

include the determination of orientations of three to five reference bands using SfM, subsequent

matching of the unoriented bands to the reference bands, calculation of their exterior orientations,

and the orthorectification of all of the bands. Registration errors of less than a pixel were obtained in

forested environments. The authors emphasized the need for proper block design in order to achieve

the desired precision.

4. Radiometric Processing Workflow

4.1. General Procedure for Generating Reflectance Maps from UAVs

Radiometric processing transforms the readings of a sensor into useful data. First, sensor-related

radiometric and spectral calibration needs to be carried out. Second, transformation to top-of-canopy

reflectance based on radiometric reference panels and/or an empirical line method (ELM), secondary

reference devices, or atmospheric modeling needs to be carried out. Third, influences of the object

reflectance anisotropy (bidirectional reflectance distribution function, BRDF) effects, and shadows can

be normalized. Schott [116] calls this entire multi-step process the image chain approach. The different

calibration schemes are outlined in Figure 5. These steps can be carried out sequentially as independent

steps, which has been the typical approach in the classical approaches used for the airborne and

spaceborne applications, for example, as implemented in the ATmospheric CORrection (ATCOR) [102].

UAVs also provide some novel aspects to be considered.

The desired output is usually reflectance. However, in typical situations, the output is strictly

speaking the hemispherical conical reflectance factor (HCRF; [117,118]), because the IFOVs of each

pixel captures a conical beam. The pixels of imaging spectrometers have a relatively small IFOV;

therefore, their measurements can be considered an approximation of hemispherical directional

reflectance factors (HDRF; [42,119]). Finally, multi-angular measurements across large parts of the

hemisphere can be used to approximate the BRDF of a surface (e.g., [24]). Besides, if measurements

from the hemisphere are averaged, the bihemispherical reflectance, which is also called albedo (blue

sky albedo in the MODIS product suite; [118]), can be approximated. Consequently, the albedo is

also approximated if the information of pixels with a wide range of different viewing geometries
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(e.g., from multiple images) are averaged, as is often done during orthomosaic generation from 2D

images [42]. In every case, the data needs to be calibrated. In the following subsections, the sensor

calibration (Section 4.2) and the image data calibration (Section 4.3) processes are described in detail.

 

 

Figure 5. The full data processing workflow to create a reflectance data product. First, sensor-related

calibration procedures are carried out. Relative calibration (RC1) and spectral calibration (SC) transform

the digital numbers (DN) of the sensor to normalized DN (DNn). Further, absolute radiometric

calibration (RC2) can be carried out to generate at-sensor radiance (Ls). Second, the data is transformed

to reflectance factors (R) with the empirical line method (ELM), based on a second radiometrically

calibrated reference device on the ground, the UAV, or models. Geometric processing (GP) is an

estimation of the relative position and orientation of the measurements, and composes the data into

a scene. Radiometric block adjustment can be used at different steps in the process to optimize

the radiometry of the scene and correct for bidirectional reflectance distribution function (BRDF)

effects. The geometric processing (GP) composes the data into a scene. Additional modules may then

transform the reflectance factors in the scene to reflectance quantities (c.f. Section 4.4), and shadows and

topography effects may be corrected. Independent radiometric reference targets are used to validate

the data. The processing procedures are tracked in metadata to allow an accurate interpretation

of the results.

4.2. Sensor-Related Calibration

Radiometric sensor calibration determines the radiometric response of an individual

sensor [120–122]. The calibration process includes several phases: a relative radiometric calibration,

which aims for a uniform output across the pixels and time, a spectral calibration, which determines

the spectral response of the bands, and an absolute radiometric calibration, which determines the

transformation from pixel values to the physical unit radiance. A comprehensive review on calibration

procedures for high-resolution radiance measurements can be found in Jablonski et al., [123] and Yoon

and Kacker [124]. In the following, we will focus on sensor calibration procedures that are required

to generate reflectance maps from spectral UAV data. These procedures will provide sensor-specific

calibration factors that are applied to the captured spectrometric datasets. While the calibration

steps are essentially the same for point, line, and 2D imagers, the complexity increases with data

dimension, since every pixel needs to be characterized and calibrated. In many cases, researchers

have implemented their own calibration procedures for small spectrometers or spectral imagers

used in UAVs, since either the systems have been experimental setups, or the sensor manufacturers

of small-format sensors have not provided calibration files or suitable calibration procedures.

The examples in this section are taken from studies with the point spectrometer Ocean Optics

STS-VIS [22] and USB 4000 [25], the pushbroom system Headwall Photonics Micro-Hyperspec [38,125],
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other custom-made pushbroom sensors [40,126], 2D imagers Cubert Firefleye [43,127–129], Rikola

FPI [68], and Tetracam MCA and mini-MCA models [50,130,131].

4.2.1. Relative Radiometric Calibration

Relative radiometric calibration transforms the output of the sensor to normalized DNs

(DNn), which have a uniform response over the entire image during the time of operation [121].

This transformation includes dark signal correction and photo response and optical path

non-uniformity normalization.

The dark signal noise mainly consists of the read out noise and thermal noise, which are related

to sensor temperature and integration time [121] and is corrected by estimating the dark signal

non-uniformity (DSNU). Practical approaches for DSNU compensation are the thermal characterization

of the DSNU in the laboratory at multiple integration times, the correction based on continuous

measurement of dark current during operation utilizing so-called “black pixels” within the sensor,

or taking closed shutter images. When no dark pixels are available but temperature readings are,

the DSNU can be characterized at multiple temperatures and integration times [22,126]. For sensors

where neither dark pixels nor temperature readings are available, the DSNU might be estimated by

taking pictures with blocking the lens under the same conditions as during the image capture [40,43,68].

Preferably, this should be combined with an analysis of the DSNU variability during operation [127]

or with integration time [50].

The optical path of a camera alters the incoming radiant flux (vignetting, c.f. [132,133]), and

different pixels transform it non-uniformly to an electric signal. To normalize these effects, modeling the

optical pathway or image-based techniques can be performed. For the latter approach, both a simpler

and more accurate approach [134], a uniform target such as an integration sphere or homogeneously

illuminated Lambertian surface is measured, and a look-up-table (LUT) or sensor model is created for

every pixel. Suomalainen et al. [40] and Lucieer et al. [38] performed non-uniformity normalization

for their pushbroom systems by taking a series of images of a large integrating sphere illuminated

with a quartz-tungsten-halogen lamp. Kelcey and Lucieer [50] and Nocerino et al. [135] determined

a per-pixel correction factor look-up-table (LUT) using a uniform, spectrally homogeneous, Lambertian

flat field surface for the mini-MCA and the MAIA multispectral cameras, respectively. Aasen et al. [127],

Büttner and Röser [126], and Yang et al. [129] used an integrating sphere to perform the non-uniformity

normalization and determined the sensor’s linear response range by measuring at different integration

times. Aasen et al. [43] and Yang et al. [129] determined the vignetting correction with a Lambertian

panel in the field. Khanna et al. [86] presented a simplified approach to the non-uniformity and photo

response normalization by using computer vision techniques.

Finally, while dark signal correction is relatively easy as long as a sensor provides temperature

readings, the vignetting correction might be challenging in practice. Large integration spheres are

expensive, and small spheres might not provide homogeneous illumination across the sensor’s FOV.

On the other hand, when using a Lambertian surface, such as a radiometric reference panel, it is

challenging to illuminate the whole target homogenously.

4.2.2. Spectral Calibration

Spectral response gives the system’s radiometric response as a function of wavelength for each

band and spatial pixel [120,123,136,137]. Monochromators or line emission lamps are usually used for

determining the spectral calibration. Either complete measured spectral response or some functional

form is used in calculations; typically, a Gaussian with the central wavelength and the full width

of half maximum (FWHM) is used as the model spectral response. In addition, the smile effect,

which causes a shift of the central wavelength as the function of the position of the pixel in the

focal plane, and the keystone, which causes a bending of spatial lines across the spectral axis [123]

needs to be corrected. Thus, the spectral response must be measured in the spectral as well as in the
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spatial detector dimension. The smile and keystone characterization are necessary, in particular with

hyperspectral sensors [123,137].

The information of the spectral response functions of the lightweight spectral sensors is still

rather limited. To date, mostly monochromators [22,128,129] or HgAr, Xe, and Ne gas emission

lamps [38,40,126] have been used for spectral calibration. Garzonio et al. [25] characterized their

Ocean optics USB 4000 point spectrometer to measure fluorescence that requires a rigorous calibration.

They also used emission lamps while also integrating vibration tests that simulated real flight situations,

and found that the system had a good spectral stability.

A different approach can use Fraunhofer and absorption lines of the atmosphere for spectral

calibration [138], if the spectral resolution of the sensor is good enough. Busetto et al. [139] published

software that estimates the spectral shift of a given data set to moderate resolution atmospheric

transmission (MODTRAN) simulations [140]. This approach is particularly important, since it can

be used during the flight campaign, and the spectral performance can be different in laboratory and

actual flight environments.

4.2.3. Absolute Radiometric Calibration

Absolute radiometric calibration determines the coefficients for the transformation between DN

and the physical unit radiance for each spectral band [W m−2 sr−1 nm−1]. Typically, a linear model

with gain and offset parameters is appropriate [122,141]. Two procedures have been published to

accomplish this. The first approach uses a radiometrically calibrated integrating sphere. Büttner and

Röser [126] used a sphere equipped with an optometer for measuring the total radiance that is

regularly calibrated against German national standard (PTB), and stated that calibration was valid for

the spectral range from 380 nm to 1100 nm with a relative uncertainty of 5%. The second approach is

to cross-calibrate a new device with an already radiometrically calibrated device. Burkart et al. [22]

cross-calibrated their Ocean Optics STS point spectrometer with a radiometrically calibrated ASD

FieldSpec Pro 4 by aligning the FOVs of both devices such that they pointed on almost the same area

on a white reference panel. Calibration coefficients were obtained by comparing several spectra that

were collected at different solar zenith angles to provide measurements covering different light levels

and a linear relationship between ASD radiance values and STS digital counts at different light levels,

which were normalized for different instrument integration times. A similar approach was performed

by Del Pozo [131] for the 2D imager Tetracam mini-MCA. Both procedures require that the spectral

response function of the sensors is known, since the spectral bands of the reference and the sensor

need to be convolved to a common level to derive the band-specific calibration coefficients.

The absolute calibration is often a challenging process, because the source must be traceable to

radiance standards. The next section shows that absolute radiometric calibration can be omitted in

cases where only reflectance, is needed and radiance is not. Besides, many factors influence the system

radiometric response, such as for example, the shutter, stray light effects, impacts of temperature, and

pressure [123,142]. For applications that require very precise data, such as solar induced fluorescence

estimation, these parameters also need to be considered.

4.3. Scene Reflectance Generation

The instrument recordings can be transformed to reflectance either by using information of the

incident irradiance or utilizing reflectance reference targets on the ground and an empirical line

method (ELM).

4.3.1. Reflectance Generation Based on Incident Irradiance

The spectrometer radiances can be transformed into reflectance with the aid of incident irradiance

measurements. The incident irradiance can be either estimated using atmospheric radiative transfer

models (ARTMs) or measured using an irradiance spectrometer.
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ARTMs allow simulating incoming irradiance from the sun to top of the canopy as well

as the influence of the atmosphere on the signal during its way from the canopy to the sensor.

Input parameters include the time, date, location, temperature, humidity, and aerosol optical depth

measured by, e.g., a sun photometer. ARTMs can be used to generate the irradiance necessary to

calculate reflectance together with the radiance received by the sensor. One example is shown in

Zarco-Tejada et al. [125], which used the SMARTS model [143], parameterized with the aerosol optical

depth measured at 550 nm with a Micro-Tops II sun photometer (Solar LIGHT Co., Philadelphia,

PA, USA) collected in the study areas at the time of the flight, for hyperspectral pushbroom imagery

at 575 m above ground level. The drawback of ARTMs for reflectance calculations is the need for

sufficient parameterization of the atmosphere. This is particularly challenging for flights over larger

areas, where the atmosphere might be heterogeneous, and under varying illumination conditions due

to clouds.

Due to the challenges with the ARTMs, the technologies measuring the incident irradiance using

a secondary spectrometer are of great interest in the UAV spectrometry. The possible methods include

using stationary irradiance or radiance recordings (e.g., of a reference panel or with a cosine receptor on

the ground) or a mobile irradiance sensor equipped with cosine receptor optics mounted on the UAV.

Burkart et al. [22] used two Ocean Optics STS-VIS cross-calibrated point spectrometers.

One of the spectrometers was measuring radiance reflected from the object on-board a multi-rotor UAV,

and the second spectrometer measured the Spectralon panel on ground. This method is also referred

to as a “continuous panel method”, and is similar to setups of classical dual ground spectrometer

measurements, which provide reflectance factors by taking consecutive measurements of the target

and Lambertian reference panel (e.g., [144]). Burkhart et al. [27] used a dual-spectrometer approach

with two TriOS RAMSES point spectrometers. They calculated the relative sensitivity of the radiance

and irradiance sensors and fitted a third-order polynomial to this ratio. They transformed the radiance

measurements of the downwards-facing device to reflectance utilizing the simultaneous irradiance

measurements of one upward-facing spectrometer equipped with a cosine receptor on-board the UAV.

Lately, also consumer-grade multispectral sensors such as the Parrot Sequoia and Maia are shipped

with an irradiance sensor [51,53].

An upward-looking sensor equipped with a cosine receptor foreoptic is required to measure

the hemispherical irradiance. In reality, the angular response of the cosine receptor deviates from

a cosine shape (c.f. Sections 3.3.7 and 4 in [145] and [146]). The cosine error correction depends on the

atmospheric state when the measurements were made, and the deviations typically become larger as

the incidence angle increases, implying that measured irradiance is underestimated compared with

an instrument with a perfect angular response. This is particularly important during times of low

sun elevation (e.g., in high latitudes, and in the morning and evening). The underestimation may be

corrected for, providing that the sky conditions during the measurements are known, and that the

angular response of the instrument is known. Bais et al. [147] reported a deviation from a perfect

cosine response of less than 2%.

A further requirement is that the upward-looking detector must be properly leveled to

allow accurate measurements of the downwelling irradiance. LibRadtran radiative transfer

modeling [148,149] with a solar zenith angle of 55.66◦ with a 10◦ zenith angle showed approximately

20% differences depending on whether the sensor was facing toward or away from the sun [27].

When flying under cloud cover, the influence is weaker [150]. Examples of the impact of illumination

changes on broadband irradiance measurements when using an irradiance sensor fixed on the UAV

frame during eight flights carried out under sunny, partially cloudy, and cloudy conditions were

presented by Nevalainen et al. [72]. In sunny conditions, the tilting of the sensor toward and away

from the sun caused manifold impacts in the irradiance recordings.

Both the stationary and mobile approaches allow the illumination changes to be determined

during the data capture. However, the mobile solution allows the irradiance changes to be tracked

at the measurement place, which has benefits in case of non-homogeneous sky conditions (still one
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needs to regard that due to the oblique illumination from the sun, the ground could receive a different

amount of energy to the reference device on the UAV). Ideally, the second spectrometer (and eventually

also including the reflectance of the radiometric reference panel) is radiometrically and spectrally

cross-calibrated with the primary spectrometer. Often, this is done simultaneously, cross-calibrating

both devices to a third radiometrically calibrated device [22,27,151].

4.3.2. Empirical Line Method (ELM)

The ELM is a commonly used image calibration method in which a set of radiometric reference

panels with a known spectral reflectance are used to calculate reflectance factors (HDRFs). After the

relative or absolute radiometric calibration of images, a line is fitted with the least-squares method

between the image DNs and the measured target reflectance factors [152]. The sensor may be

radiometrically calibrated, or, if not, then the method combines the linear conversions from the

DNs to the reflectance factor into a single linear transformation. Implementations of the method can

be found in software packages such as ENVI (Exelis Visual Information Solutions, Bolder, CO, USA).

Several researchers have applied the ELM for their UAV operations (e.g., [129,130]).

Lucieer et al. [38] used five near-Lambertian gray panels with 5% to 70% reflectance built with

a special paint that provided a reasonably flat spectral response. Yang et al. [129] used five artificial

near-Lambertian tarps placed on flat ground for the ELM. Wang and Myint [153] described the ELM

for transforming raw RGB images to reflectance based on nine characterized gray panels with different

intensities (although they did not perform relative radiometric correction as would be recommended).

Additionally, the ELM has been used with (modified) RGB consumer-grade cameras [154,155].

Several UAV studies have also used a simplified ELM with only one panel; the reflectance factors

are calculated by rationing the target and the white reference measurements [43,129,144]. However,

Aasen and Bolten [42] found some issues when using this simplified ELM for UAVs. When placing the

sensor and the UAV above the panel, a large part of the hemisphere is (invisibly) shaded. This might

introduce a severe wavelength-dependent bias to the measurements that also affects the retrieval

of vegetation parameters. The bias is strongest under cloudy conditions, and can account for up to

15% [42]. Thus, we recommend not using the simplified ELM for UAV research when the UAV is

placed above the panel at a short distance.

The ELM is simple and accurate if all of the assumptions of the method are met. When ELM is

used in its simple form, many factors can deteriorate the accuracy, such as for example, variations

in atmospheric conditions over the area of interest, topographic variations, and atmospheric BRDF.

A minimum of two reference targets covering the range of reflectance values of interest should be

used; typically, the range is 0–50% for vegetation. Adding more than two targets reduces uncertainties,

enables an assessment of sensor linearity, and allows evaluation of the ELM results by using some

panels only for verification. The calibration targets should be flat and leveled, without obstructions,

and should be large enough (preferably more than five times the image GSD) to reduce adjacency

effects by only selecting the middle part of the panel. Targets should have uniform intensity and

be close to Lambertian reflectance characteristics. If it is not possible to deploy targets, reflectance

of ground objects with an appropriate reflectance range and Lambertian reflectance can be measured

and used, for example, gravel, sand, or asphalt surfaces. The assumption of Lambertian reflectance

can be released if the reflectance anisotropy of the target is characterized and considered [156,157].

Miura and Huete [158] stated that the ELM was suitable for flight times shorter than 30 min

under stable weather conditions (clear sky) when the results of the ELM of panel measurements at the

beginning and end of a flight were linearly interpolated. However, the main disadvantage is that the

ELM cannot adapt for illumination changes during the flight, since the panels are not within every

image. Thus, the ELM alone is not useful under variable conditions.
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4.3.3. Atmospheric Correction

Section 4.3.1 described how ARTMs can be used to simulate the irradiance to calculate reflectance.

Additionally, ARTMs are widely used for correcting multispectral and hyperspectral imagery satellite

and airborne data [102,159] and high-altitude UAV images [125,126] for atmospheric influence on

the path from the object to the sensor. Recent modeling studies suggest that atmospheric correction

is important for very precise radiometric measurements, e.g., to estimate solar-induced chlorophyll

fluorescence [160]. For reflectance studies, a detailed analysis is still missing. Thus, atmospheric

influences should be considered in each application [27,131]. An easy approach to normalize the

influence of the atmosphere is to use the ELM.

4.4. Scene Reflectance Correction

4.4.1. BRDF Correction

When analyzing imaging data measured with wide-angle FOVs, the anisotropy of the surface

might cause significant radiometric differences within individual images and between neighboring

images [42,161–163]. Wide-angle FOVs are very common in UAV imaging spectroscopy to facilitate

a larger spatial coverage. This introduces unwanted effects when mosaicing the images, and affects

the spectral signature of objects within the scene [42,161]. BRDF correction is defined as the process

of compensating the influence of anisotropy, so that the image reflectance values correspond to the

reflectance factor at the (mostly) nadir direction. The commonly used BRDF-models can be classified

as physical, empirical, or semi-empirical [164,165]. In classical remote sensing, a BRDF correction

is usually carried out by means of empirical models [102,119,159,164,166]. The BRDF correction is

calculated by determining the BRDF model of the target of interest, and then calculating a multiplicative

correction factor for BRDF compensation [159,164]. It may also include calculation and normalization

to reflectance factors for a desired geometry [118,167].

The BRDF correction using the simple empirical model by Walthall et al. [168] and Nilson and

Kusk [169] has been used by Beisl [159,164] and by Honkavaara et al. [44,65,163] in the radiometric

block adjustment approach. Different statistical methods are also popular in correcting BRDF effects.

Laliberte et al. [112] used the dodging method to compensate for the uneven lighting conditions

across a photo frame due to the BRDF effects, fragmented cloud cover, vignetting, and other factors.

The process is based on global statistics calculations for a group of images, to balance the radiometry

both within individual images and across groups of imagery. Their results showed less than 2% residual

root mean square errors (RMSEs) (in reflectance) when calculating the linear fit of the reflectance mosaic

and reference reflectance.

4.4.2. Topographic Correction

The topography can have a large influence on the local illumination within an image [170].

The radiance of the same material varies if it is located on a slope oriented toward or away from the

sunlight incidence. For a correction, a DSM and the Sun’s elevation and azimuth angles at the time

of acquisition are needed. Several correction methods exist [170]. Jakob et al. [68] implemented

and tested some of the common topographic correction methods with UAV-based imagery for

geological applications. The methods comprised Lambertian, such as the cosine method [171],

gamma method [172] or percent method, as well as non-Lambertian methods, such as the Minnaert

method [173] or the c-factor method by Teillet et al. [171]. They recommended the c-factor method.

4.4.3. Shadow Correction

Shadows are caused by 3D objects within the scene and created by clouds. The approaches

for treating shadowed areas include de-shadowing and separating the analysis of the shadowed

and sun-illuminated areas. Adeline et al. [174] categorized shadow detection methods into six

classes: histogram thresholding, invariant color models, object segmentation, geometrical methods,
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physics-based methods, and unsupervised and supervised machine learning methods. The geometric

method requires the object 3D model and the information of the solar elevation and direction to

calculate the positions of shadows. Due to various uncertainties, the accuracy of the geometric method

is not sufficient in most cases, especially with high resolution images [175]. Therefore, image-based

methods are needed. Adeline et al. [174] used simulated data to obtain accurate reference shadow

masks. In these experiments, histogram thresholding on RGB and NIR channels performed the best,

followed by physics-based methods. De-shadowing based on physical radiation modeling relies on all

of the areas in shadows being illuminated by diffuse irradiance only; the shadow correction provided

good results for hyperspectral airborne images and satellite images [176] and the ADS high-resolution

photogrammetric multispectral scanner [175]. To the authors’ knowledge, no such studies exist for

high-resolution UAV approaches; thus, further studies are needed in this field.

4.5. Radiometric Block Adjustment

Radiometric block adjustment can be used in cases when the area of interest is covered by multiple

overlapping images, such as image blocks captured with 2D or pushbroom imaging sensors. In the

photogrammetric (geometric) processing of image blocks, the block adjustment is used to determine the

best geometric fit over the entire image block. Radiometric block adjustment is based on a similar idea.

The approach is to model the radiometric imaging process, i.e., the model between the object reflectance

and the image DN, and then solve the parameters of this model using optimization techniques

utilizing redundant information from the multiple overlapping images [44,163]. The outputs of the

process are the parameters of the radiometric model, which can be used in the following processes

to produce radiometrically corrected image products, such as reflectance mosaics, reflectance point

clouds, or reflectance observations of objects of interest [44,163]. Similar approaches have previously

been used with aircraft images [177–180].

The model between a DN and reflectance by [44] accounts for the variability of the radiance

measurement and the BRDF effects, and determines the absolute transformation from DN to reflectance

using the ELM. In the adjustment process, a set of radiometric tie points are determined, observation

equations are formed utilizing the DN observations of each radiometric tie point in multiple images.

In addition to the radiometric tie points, other observations can also be included. In the current

implementation, radiometric control points (e.g., reflectance panels, c.f. Section 4.4.3) and the a priori

values of relative differences in the irradiance of different images can be included as observations [163].

Relevant model parameters are selected for each adjustment task. For example, during overcast

conditions, it is not necessary to use the BRDF parameters, whereas under stable conditions, the relative

correction parameters are not usually necessary. Furthermore, a comprehensive weighting strategy

is used to reach the optimal results in the combined adjustment mode [163]. The definition for

the reflectance outputs calculated as a result of this procedure is the hemispherical directional

reflectance factor (HDRF). Many of the steps in Figure 5 are thus integrated into the radiometric

block adjustment process.

5. Discussion and Best Practice

5.1. Sensors

During the last 10 years, the number of (commercial) sensors tailored for UAV sensing systems

has rapidly increased. Today, sensors are able to capture data faster and with much higher spatial

resolution, which allows flying higher and faster, and covering a much larger area. While most of

the UAV sensors still cannot compete with their bigger counterparts carried on airplanes such as the

CASI [181], airborne prism experiment (APEX; [182]), HyPlant [183], the Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS; [184]) or NASA Goddard’s LiDAR, Hyperspectral, and Thermal

Airborne Imager (G-LiHT; [185]), UAV point and pushbroom sensing systems, in particular, have been

demonstrated to fill a unique niche for a large variety of applications and research purposes. We expect
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this trend to continue, since manufacturers of professional airborne sensors such as HySpex and Specim

have now also started to build UAV sensors [41,186]. At the same time, UAV remote sensing has

grown to form its own discipline with research particularly directed to investigating and improving the

quality of small and lightweight sensors [22,50] and further developing data processing algorithms to

fit the ultra-high resolution data, including quality assurance approaches [43,68]. Moreover, innovative

approaches empowered by the new technology are developed that go beyond the classical capabilities

of remote sensing platforms, such as rapid BRDF quantification [24,70,161,187] and simultaneous

spectral and 3D mapping [43,44,60,72].

Table 2 reflects these developments by summarizing key publications on novel sensors, concepts,

or methods for calibration, integration, or data pre-processing for UAV spectral sensors and data.

Furthermore, the interested reader is referred to [15] for a comprehensive list of spectral imaging

sensors that extend the examples in this manuscript. Due to the variety of sensors and their

configuration, the classical discrimination between hyperspectral and multispectral is becoming

blurred. Thus, every study published should contain information on the specific band configuration.

Since so many spectral sensors with different configurations have appeared, it becomes hard to

compare the results between different studies. Making the sensor configuration transparent is the very

first step in addressing this issue. However, a prerequisite for such information is a comprehensive

characterization and calibration of the sensing system. While the interested reader is referred to the

calibration studies in Table 2 and Jablonski et al. [123], we see the main responsibility as being with the

camera manufacturers. At the same time, this also includes the correct usage of common terminology

(e.g., spectral sampling interval versus FWHM).

It is important to note that there is most likely no sensor that is able to meet all needs. Additionally,

when selecting a sensor, users are usually confronted with the spatial resolution versus spectral

resolution versus coverage challenge. Generally, a higher spatial resolution leads to a lower spectral

resolution, due to physical constraints in sensor design. Additionally, if larger areas should be covered,

this is mostly achieved by flying higher, which will in turn lower the ground sampling distance.

We expect that more UAV sensors will become available in the near future and identify two

trends. On one hand, there are the more complex and expensive cameras that are able to capture

many bands or implement new techniques to capture spectral information (e.g., [31,188,189]) with

even more lightweight and small sensors. These sensors allow researchers to conduct research on

spectral sensing and identify promising bands for different applications. Another trend is toward more

consumer-oriented cameras that are relatively easy to use and allow standardized tasks to be carried

out, such as acquisition of NDVI imagery.

Table 2. Key publications on novel sensors, concepts, or methods for calibration (C), integration (I), or

data pre-processing (P) for UAV spectral sensors and data. RGB: red–green–blue.

Year Description (Novelties) Sensor Type Sensor Content Reference

2008
Calibration and application of
spectroradiometrically characterized RGB
cameras

Multispectral 2D
imager

Canon EOS 350D
Sony DSC-F828

C, P [190]

2009
Multi-camera multispectral 2D imager on
UAV for vegetation monitoring

Multi-camera spectral
2D imager

MiniMCA C, P [130]

2012
Small hyperspectral pushbroom UAVs
system for vegetation monitoring

Pushbroom Micro-Hyperspec VNIR C, P [125]

2012
Characterization and calibration of
spectral 2D imager

Multi-camera spectral
2D imager

MiniMCA C [50]

2013
Processing chain for sequential band
spectral 2D imager for spectral and 3D
data

Sequential band
spectral 2D imager

Rikola FPI P [44]

2014

Point spectrometer on UAV
Wireless communication to ground
spectrometer for irradiance
measurements

Point spectrometer STS-VIS C, I [22]
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Table 2. Cont.

Year Description (Novelties) Sensor Type Sensor Content Reference

2014

Self-assembled pushbroom system
Orientation of image lines with a
combination of GNSS/INS and aerial
images

Pushbroom Self-assembled C, I, P [40,126]

2014

First pushbroom system on multi-rotor
UAV for ultra-high resolution imaging
spectroscopy
Comprehensive description of calibration
procedures

Pushbroom Micro-Hyperspec VNIR C, I [38]

2014

Uncertainty propagation of the
hemispherical directional reflectance
observations in the radiometric
processing chain

Sequential band
spectral 2D imager

Rikola FPI C, P [162]

2015
Hyperspectral 3D models
Quality assurance information
integration

2D snapshot 2D
imager

Cubert Firefleye C, I, P [43]

2015 Multi-angular measurements with UAV Point spectrometer OceanOptics STS-VIS C, I, P [24]

2016 Multi-angular measurements with UAV Pushbroom Self-build (HYMSY) P [187]

2016 SWIR 2D imaging from UAV
Sequential band 2D
imager

Tunable FPI SWIR P [65]

2016
Implementation and calibration of
multi-camera system on UAV

Multi-camera spectral
2D imager

Self-assembled C, I [58]

2017

Measuring sun-induced fluorescence in
the O2A band
Comprehensive description of calibration
procedures

Point spectrometer OceanOptics USB4000 C, I, P [25]

2017
Toolbox for pre-processing drone-borne
hyperspectral Data

Sequential spectral 2D
imager

Rikola VNIR C, P [68]

2017 BRDF measurements with UAV
Sequential band
spectral 2D imager

Rikola FPI P [70]

2018

Theoretical considerations to
comprehend imaging spectroscopy with
2D imagers
Explanation of differences between
imaging and non-imaging data

2D imagers in general Cubert Firefleye C, P [42]

5.2. Geometric Processing

We argue that high absolute geometric accuracy is a requirement for hyperspectral data products

acquired by UAVs. The ultra-high spatial resolution of UAV imagery is one of the key benefits for

addressing new challenges in environmental and agricultural remote sensing applications. With most

hyperspectral UAV sensors offering sub-decimeter spatial resolution, the absolute accuracy of the

resulting data products should arguably be better than 10 cm to allow for accurate co-registration

with other UAV datasets and the differentiation of small-scale features, such as sub-canopy elements

(e.g., individual leaves, branches, stems, etc.). High absolute accuracy requires centimeter-level

positioning capabilities on-board the UAV and/or centimeter-level accuracy of GCP coordinates.

This requires a local GNSS base station and a differential multi-constellation (GPS, GLONASS, Galileo,

Beidou) multi-frequency (L1/L2/L5) GNSS receiver on-board the UAV or for the collection of GCP

coordinates. We argue that navigation-grade GNSS receivers, offering an absolute accuracy of 5–10 m,

are inadequate for UAV applications. There are four approaches for georeferencing that can be used as

a standalone technique or in combination (summarized in Table 3).

Ground control points (GCPs)

GCPs are traditionally used for a non-direct georeferencing solution, where a collection of clearly

visible targets is distributed on the study site. A real-time kinematic (RTK) GNSS survey of the

GCP markers (accurate to within 2–4 cm of absolute accuracy depending on the baseline distance

to the base station) or total station survey (accurate to within 1 cm or better) is generally used to

obtain accurate coordinates for the GCPs. The GCPs are identified in the imagery, and a geometric

image transformation is performed preferably as part of the bundle adjustment through rigorous
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photogrammetric modeling or the typical SfM workflow. For 2D imagers and SfM orthomosaics,

relatively few GCPs are needed. Typically, 5–13 GCPs are sufficient for most scenes, which are

distributed along the outside of the scene, with at least one GCP in the center [94].

The advantage of this approach is that it does not require complex and expensive GNSS/IMU

hardware on the UAV. The disadvantages are as follows. (i) The manual distribution of GCPs in the field

and setup of field-based GNSS equipment can be time-consuming (especially for complex/dangerous

environments). (ii) GCPs are unsuitable for pushbroom imagery, as GCPs do not account for pitch,

roll, and yaw distortions induced by UAV flight dynamics. Correcting for these distortions requires

a very dense network of GCPs, and rigorous correction is not possible. (iii) GCPs are unsuitable for

a point-measuring spectroradiometer, as the GCPs are not visible in spectral readings.

On-board GNSS/IMU (direct georeferencing)

An on-board GNSS/IMU sensor synchronized with the spectral sensor in combination with a

digital surface model (DSM) can provide sufficient data for a full orthorectification process based on

on-board data alone, without the need for field work. This is the traditional approach for full-size

airborne hyperspectral geolocation, which requires specialist hardware and software integration of the

GNSS/IMU unit and the spectral sensor. For a point-measuring spectroradiometer, this is one of very

few options for the geolocation of the spectral footprint.

The advantage of this approach is that it allows for rigorous georeferencing of a 2D, pushbroom,

or point-based spectrometer without the need for GCPs. The disadvantages include (i) complex

integration of a GNSS/IMU unit on-board the UAV due to the additional weight and cost,

power regulation, and time synchronization of all of the sensors, and system calibration of the

GNSS/IMU and sensor; (ii) post-processing of on-board GNSS data against a GNSS base station

or communication/radio requirements for RTK data link for real-time corrections; and (iii) a dual

antenna GNSS or high-grade IMU (e.g., FOG) is required for absolute heading determination, which is

essential for multi-rotor UAVs.

Structure from Motion (SfM)

SfM can provide a simpler solution for on-board sensor integration. Several open source

(e.g., MicMac, VisualSFM, PMVS/CMVS, OpenMVG) and commercial software packages (e.g.,

Pix4D, Agisoft Photoscan) exist to carry out the SfM process. Several authors have investigated

the performance of these packages and compared them to each other for different applications

(e.g., [94,191–195]). However, the development of algorithms and software is advancing fast, and

the performance of the different solutions might change. The high geometric fidelity of the bundle

adjustment in most SfM solutions means that the camera pose can be used to determine the position

and orientation of the spectral sensor (provided that the SfM sensor and spectral sensor are accurately

synchronized). To achieve a high absolute accuracy, either GCPs or on-board GNSS data are still

required. SfM is the favored approach for 2D imagers, as it allows for a small and lightweight solution

on-board the UAV.

The advantages of this approach are that a lightweight and small machine vision camera can

replace a high-grade on-board GNSS/IMU. In addition, 3D point clouds and DSMs can be derived as

part of the SfM process (spectral and structural data products from one flight). Finally, high relative

accuracy of the 3D model and orthophoto can be derived through the SfM process. The disadvantages

of the SfM approach include the requirement of substantial on-board storage capacity for high-rate

machine vision data. In addition, the post-processing of SfM data is computationally demanding. SfM

requires high overlap between flight strips, which influences flight planning (and limits the size of the

area that can be covered in a single flight). Finally, the high absolute accuracy of an SfM solution still

requires accurate GCPs or on-board GNSS data.
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Co-registration

The co-registration approach is based on a reference or base RGB orthomosaic; the spectral images

(pushbroom or 2D imager) are co-registered to it through image matching procedures (e.g., SIFT

features, feature matching, RANSAC, transformation based on matching points). The RGB orthomosaic

can be generated using any of the georeferencing approaches described above. The advantage of this

approach is that it reduces the requirements for GNSS/IMU or the machine vision integration of the

spectral sensor. The disadvantage is that co-registration is not a straightforward process, and requires

identification of sufficient matching features. Sufficient spectral and spatial similarity has to exist

between the RGB orthomosaic and the spectral imagery. Additionally, high absolute accuracy still

requires a GCP survey or high-accuracy on-board GNSS on the SfM UAV.

Table 3. Overview of the suitability (- not suited to ++ very well-suited) of georeferencing techniques for

different types of hyperspectral UAV sensors. GCPs: ground control points, GNSS: global navigation

satellite system; IMU: inertial measurement unit.

GCPs
on-Board

GNSS/IMU
SfM + GCPs and/or

GNSS/IMU
Co-Registration

Point
spectroradiometer

- ++ ++ -

Pushbroom +/- ++ - +
2D imager + + ++ +

Recent developments in relatively low-cost GNSS receiver boards (e.g., Tersus, Emlid, Piksi) allow

for high-accuracy position solutions (<10 cm absolute accuracy) on-board UAVs for a fraction of the

cost of earlier survey-grade GNSS receivers. This will open the way for low-cost lightweight direct

georeferencing solutions at sub-decimeter accuracy in the future; however, rigorous testing needs to

occur in order to determine the effects of single frequency carrier phase versus dual frequency GNSS

processing for typical UAV flight dynamics.

5.3. Radiometric Processing

In good conditions, many radiometric calibration approaches are able to provide good quality

reflectance data from the spectrometer observations. However, one of the benefits of UAVs that has

been stated in the literature is the ability to fly below clouds to capture data (e.g., [44,196,197]). At the

same time, a study by Hakala et al. [198] stated an influence on spectral UAV measurements of more

than 100% due to “fluctuating levels of cloudiness”. Section 4 reviewed the currently available options

for transforming the spectral information captured by a sensor to the at-object reflectance. Table 4

summarizes their suitability under different atmospheric conditions.

Major challenges hindering the utilization of the ARTM simulation for atmospheric correction

are the uncertainties in the sensor absolute radiometric calibration and the inability to parameterize

and model the atmospheric influence on the irradiance, in particular under unstable conditions.

While a dual spectrometer approach requires cross-calibration of sensors, it can compensate

illumination changes, but only if the secondary reference sensor and UAV sensor are close enough.

Miura and Huete [158] found that under clear and cloud-free conditions, the approach with a stationary

second spectrometer on the ground outperforms methods where a reference measurement is just taken

before or after the flight (and then interpolated). A secondary properly stabilized device carried by the

UAV allows illumination changes to be corrected for at the place of the measurement if the sun elevation

is high enough to allow the cosine receptor to properly capture the illumination conditions. Although

the implementation of this approach is more complex, it eases the flight operations, since no ground

equipment is needed. We encourage manufacturers to build integrated dual spectrometer systems

that provide accurate recordings in the dynamic conditions that are met in UAV remote sensing;

challenges include rapid illumination changes, platform vibrations and movement, temperature
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effects, and others. For more information on the cross-calibration and reflectance factors retrieved

with radiometric reference panels and multiple spectrometers, the interested reader is referred to

the works of Anderson et al. [3,151,199,200]. Further challenges that remain unresolved with the

dual spectrometer systems include the disturbances caused by the object reflectance anisotropy and

shadows captured in a measurement (e.g., part of an image) but not by the irradiance sensor and

object topography.

The ELM is an easy and straightforward approach for the radiometric correction of datasets under

constant illumination conditions and if there is sufficient space to place the reference panels. ELM is

particularly challenging in forest studies (e.g., [72,74]), since the panels may have to be deployed in

small openings inside the forest. Here, the illumination conditions do not correspond to the conditions

at the top-of-canopy due to the scattering and blocking of the direct or diffuse sky radiance of the

surrounding canopy. In this case, the radiometric block adjustment can be beneficial for carrying the

calibration obtained from panels placed in an open area to the area of interest, as long as the datasets

are connected and preferably using an irradiance sensor on-board the UAV [72,74].

Radiometric block adjustment has been applied in studies with different settings to produce

uniform image mosaics [163,177–180,201]. Principally, the method can compensate for illumination

changes during the flight campaign based on the information contained in the images. Thus, no

further equipment is needed on-board the UAV for the irradiance measurement, but the irradiance

recordings can also be integrated to the same adjustment process. In several studies, the method

has provided the best uniformity over the entire image dataset when compared with approaches

based on ground irradiance spectra measurement and on-board irradiance measurement [44,201].

In Honkavaara et al. [44] and Hakala et al. [202], datasets were captured in illumination conditions

varying from cloudy to sunny. The performances of approaches based on the irradiance radiometer

on-board the UAV, irradiance spectrometer on the ground, and the radiometric block adjustment

were compared, and the radiometric block adjustment provided the best results. Similar conclusions

were drawn by Miyoshi et al. [201]. The radiometric block adjustment also provides the uniform

mosaics of a dataset with different flights with varying solar azimuth and elevation [163]. Although the

radiometric block adjustment can compensate for illumination fluctuations, it is important to note that

the radiometric resolution might be decreased when the sensor is underexposed, and thus, differences

in reflectance may not be sufficiently resolved for certain analysis [43].

The BRDF correction has mostly been carried out by means of empirical modeling. However,

different surfaces (e.g., vegetation types) have different anisotropic behaviors, which makes empirical

modeling challenging. With multiple overlapping images provided by 2D imagers, it is now possible

to retrieve the BRDF of different surfaces and use it to normalize the data. Additionally, incorporating

structural information is seen as a way forward [166]. As noted by Aasen et al. [42,43], the combination

of 3D and spectral information derived by 2D imagers is potentially suited for this purpose. In addition,

the anisotropy can also be used as a source of information [71,187].

New radiometric correction tools have been implemented in software packages for UAV image

data processing. For example, Pix4D and Agisoft Photoscan offer options for radiometric correction,

including sensor calibration-related corrections, irradiance-related correction utilizing irradiance

information stored in the image EXIF-file, and sun direction-related correction for some cameras.

Moreover, there is the option for radiometric calibration using reflectance panels. Additionally,

some cameras, such as the Parrot Sequoia, have an integrated irradiance sensor and GNSS receiver.

These are much-needed developments, since they ease the use of spectral sensors and help exploit the

potential of UAVs to fly below the clouds.
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Table 4. Overview of the top-of-canopy generation procedures and their applicability to different

atmospheric (e.g., cloudiness) and irradiance (e.g., different intensities due to diurnal sun angle change)

conditions. Additionally, the applicability to point (P), pushbroom (PP), and 2D imagers (2D) is

indicated. +: suitable; -: not suitable.

Radiometric Data Calibration
Method

Stable
Atmosphere

Stable
Atmosphere

Unstable
Atmosphere

Applicable to
Stable

Irradiance
Unstable

Irradiance
Unstable

Irradiance

empirical line method + - - (P), PP, 2D
radiometric block adjustment + + + (PP *), 2D

stationary radiometric tracking + + - P, PP, 2D
on-board radiometric tracking + + + P, PP, 2D

radiative transfer modeling + - - P, PP, 2D

* for radiometric block adjustment, overlapping data is needed. Thus, it also works on multiple scenes (flight strips)
of pushbroom systems.

5.4. Data Products from UAV Sensing Systems

Depending on the sensor configuration, different data products can be retrieved from UAV

spectral sensing systems. Point spectroradiometers can measure distinct points (e.g., [25]) in space

or integrated over an area of interest to get a coarse spatial representation of the spectral properties.

With a specialized flying pattern and tilting of the sensor, a multi-angular characterization of an area

can be generated [24].

Pushbroom systems allow generating a 2D spectral representation of the surface (e.g., [38,40,125]).

These hyperspectral images can be overlaid on a digital surface model derived from LiDAR (e.g., [37])

or from RGB SfM. As a result, a spectral digital surface model is generated that represents the surface

in 3D space linked with the hyperspectral information emitted and reflected by the objects covered

by the surface [43]. The 2D imagers directly allow the generation of spectral and 3D information at

the same time, and thus derive spectral 3D point clouds and their derivative spectral digital surface

models (c.f. Section 3.3 and e.g., [43,44,65]). Moreover, since the spectral information is implicitly

connected to the 3D information of every point, 3D spectral point clouds can be generated with the

same approach (e.g., Figure 6).

 

  

Figure 6. Spectral 3D point cloud (left) and 2D orthophoto (right) captured with a spectral 2D imager

(Rikola FPI) of a spruce-dominated forest area in Finland. The orthophoto has a ground sampling

distance (GSD) of 10 cm, and the point cloud has a 5-cm point interval. The spectral bands are

green (520 nm; FWHM: 22 nm), red (598.80 nm, FWHM = 24 nm) and near infrared (763.70 nm,

FWHM = 32 nm). The 3D point cloud gives a possibility for the spectral analysis of object properties in

multiple height levels in each X and Y coordinate, whereas in the orthophoto, only one value is stored

in each X and Y coordinate.
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Additionally, the information from 2D imagers can also be used to generate 2D orthomosaics.

However, in comparison with pushbroom systems, their orthorectification is likely to be more precise,

since the geometry of the scene has implicitly been taken into account during the mosaicing process

(if SfM was used). At the same time, the viewing geometries within the orthomosaics of 2D imagers

are more complex than the ones in scenes from pushbroom sensing systems. This is due to the two

dimensionality of the data and the high overlap between image frames. In every case where multiple

images (or lines for pushbroom systems) overlap, a decision needs to be made on how to ‘blend’ or

mosaic the data into a seamless orthomosaic. This decision has a significant impact on the final data

product, as a study by Aasen and Bolten [42] shows.

We think that the ultra-high resolution of UAV images can be used for precise measurements

needed by smart farming [203], agricultural [204] and phenotyping applications [42,205–207]

and with the powerful tools provided by object-based image analysis (OBIA; [208,209]) for

classification tasks (e.g., [48]). Additionally, UAVs allow mapping in terrain that is hard to access

with proximal sensing methods such as mangroves or high canopies such as forests [72–74,201].

In addition, the combination of high-resolution 3D data and spectral data enables new segmentation,

complementing, and combination approaches for data analysis [210], as shown e.g., in forests [72,73]

and agriculture [211,212]. Still, approaches and algorithms that analyze the large amounts of

multi-dimensional, high-resolution UAV data are a major bottleneck that should be focused on

in future.

5.5. Quality Assurance and Metadata Information

The signal of an object is influenced at different stages before it is stored as a digital value in

a data product. In the last sections, we looked at different sensors and their calibration, geometric,

and radiometric processing, as well as influences of the environment, i.e., illumination conditions and

the atmosphere. The keys to transforming data to useful information are the auxiliary and metadata.

They support the interpretation of scientific data, and in general help to ensure long-term usability.

Metadata provide a basis for the assessment of data quality and the possibility of data sharing and

comparing between scientists [213]. It can be pixel, image (measurement), or scene-specific.

Important pixel specific metadata includes the signal-to-noise ratio [123] and an approximation of

the radiometric resolution [43] that gives an indication of the quality of a pixel value stored in a data

product. While both can be derived on the image level during the relative radiometric calibration

(c.f. Section 4.3.1), their estimation for pixels in a scene can be complex, since it is modified when,

e.g., information of two pixels is composed. For every measurement, the measurement time (to

reconstruct the Sun’s position) and illumination conditions should be recorded. The latter would

include qualitative information on the sky condition (clear or cloud-covered) and a direct–diffuse

ratio, which could be derived from a shaded and a non-shaded reference panel. Additionally,

the measurement geometry of the FOV or IFOV of every pixel, in case of imaging sensors, needs to

be stored, since being in interaction with the illumination conditions, the measurement geometry has

a significant influence on the data [24,42,161]. In imaging data, this is sometimes visible along the

transition of mosaiced images. In this context, the influence of the data-processing scheme also needs

to be taken into account [42]. Thus, metadata that describes how the data is processed needs to be

generated for every scene. It should include the software and its version, as well as the parameters

that were set during the processing. Software packages such as Agisoft Photoscan, Pix4D mapper, and

open source tool MicMac [214] generate a report file after processing. These files could be provided

as supplementary data in every publication. Other scene-based metadata include the information

on method/protocol used to derive top-of-canopy reflectance (c.f. Section 4.4), as well as the sensors

used in the study (including their band configuration and model number or manufacturing year, since

some of the UAV sensors are manually manufactured and constantly improved, eventually making

them unique). As described above, pixel and image (measurement)-specific metadata can improve the

interpretability of the data and should be saved with the data as already done in airborne and satellite
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remote sensing [215,216]. To the best of our knowledge, a standard procedure for UAV remote sensing

does not yet exist, but some researchers have implemented it into their work (e.g., [161,163] for the

viewing geometry; [43] for the radiometric resolution, [162] to calculate uncertainty of the output HDRF

observations via the image signal-to-noise ratio and reflectance transformation standard deviation; [42]

to trace the information from the individual images into the data product). Scene-specific metadata can

be stored in an additional file, similar to ENVI header files. Ideally, quantitative metadata parameters

should also have an uncertainty assigned to them. Table 5 summarizes the mandatory and optional

metadata for UAV remote sensing. We argue that at least the mandatory scene-based metadata

should be stated in every publication or its supplementary material. With increasing resolution,

additional factors need to be considered that were not visible in remote sensing data of coarser

resolution. One example is wind and wind gusts that can have an influence on the spectral signature.

Further studies need to evaluate such effects.

Table 5. Numeric (n) or qualitatively (q) mandatory (m), and advised (a)auxiliary and metadata for

spectral data processing. Although the direct and diffuse illumination ratio is important, it is set to

advised, since it is not easy to measure.

Pixel Image Scene

signal-to-noise ratio (n, m)
radiometric resolution (n, m)
viewing geometry (n, m)

capturing position (n, m)
illumination (q, m)
conditions
direct and diffuse (n, a)
illumination ratio
capturing time (n, m)

sensor description (q, m)
(including version)
band configuration (n, m)
(FWHM, band center)
geometric processing (q, m)
procedures and accuracies
(including software version and parameters)
top-of-canopy (q, m)
reflectance calculation method
reflectance uncertainty (n, a)
environmental (q, m)
conditions during measurement

5.6. Comparability between Sensing Systems

UAVs have been envisaged to bridge the gap between classical ground, full-size aircraft,

and satellite sensing systems. While UAV sensing systems are not per se different from other

airborne sensing systems, differences between the sensing system may exist in sensor performance

(due to miniaturization), calibration, data processing, measurement geometries (integrated FOV of

non-imaging devices versus IFOV of imaging devices, nadir versus oblique), spatial and spectral

resolution, and measurement timings (fixed time with satellite versus flexible UAV).

Several researchers have investigated the comparability of non-imaging ground and imaging

and non-imaging UAV spectral data. Most found offsets, which they attributed to calibration

issues [217–219]. Aasen and Bolten [42] systematically looked at the issue and found that the differences

rather resulted from differences in the angular properties of the data. They defined the term specific

field of view (SFOV) as a concept to understand the composition of pixels and their angular properties

used to characterize a specific area of interest. This SFOV is influenced by the sensor’s FOV and the

data processing, which explains the differences in the date captured by different sensors, eventually

on different platforms, and processing [42]. Another study investigated the cross-validation of field

and airborne spectroscopy data, and identified common sources of errors and uncertainties, as well as

techniques to collect high-quality spectra under natural illumination conditions and highlighted the

importance of appropriate metadata [167].

Other studies have compared UAV data to satellite observations, i.e., a comparison of Landsat

8 and two calibrated—one modified to NIR—Panasonic DMC-LX5 digital cameras showed that

reflectance was not always consistent due to variable illumination conditions [92]. Burkhart et al. [27]

compared a flight track of 210 km UAV nadir reflectance with the MODIS nadir BRDF-adjusted surface

reflectance products of a dry snow region near Summit, Greenland. The data show that the UAV
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measurements were slightly higher than the MODIS NBARs for all of the bands, but agreed within

their stated uncertainties. Tian et al. [55] compared UAV and WorldView-2 imagery for mapping a leaf

area index. They found that the high resolution of UAV images was suitable to eliminate influences

from the background in low leaf area index situations.

In addition, many other factors might affect the comparability. One example is the measurement

duration of a method that might introduce additional artefacts: satellites may sample many square

km in an instant, while it may take the whole day to sample the same area with ground-based

measurements; the latter would introduce artefacts from the diurnal illumination change. Research on

such subjects has only just started.

6. Conclusions—From Revolution to Maturity of UAV Spectral Remote Sensing

About five years ago, the lack of suited UAV multispectral cameras along with shortcomings

related to UAV remote sensing including high initial costs, platform reliability, lack of standardized

procedure to process large volumes of data, and strict aviation regulations were limiting the usability

of UAV sensing systems. Today, several of these shortcomings have been overcome, or solutions

have been proposed. UAV spectral sensing systems that can capture spectral data in high spectral,

spatial, and temporal resolution are now available for a wide audience. We can conclude that the new

era in remote sensing with unmanned flying robots is here and ready for widespread use in various

application areas.

Overall, we expect that UAV spectral sensing systems will become common in the toolbox

of researchers in quantitative remote sensing, forestry, agriculture, field phenotyping, ecology, and

other fields that rely on environmental monitoring. We identified two trends. On one hand, sensors

such as 2D snapshot multi-cameras systems Parrot Sequoia, MicaSense RedEdge and Maia S2

that are available below €4000, €5000 and €15,000, respectively, are built to be consumer-friendly.

In combination with commercially built fixed-wing or rotary-wing UAVs, these cameras are becoming

a powerful tool for researchers, as their rapid adaption shows, but also for service providers, breeding

companies, and even farmers. On the other hand, the complex and potentially more flexible,

configurable, and expensive sensors are still mostly used by people coming from the “core” remote

sensing community. However, with companies such as HySpex and Specim formally focused on the

development of airplane sensors entering the UAV market, we hope that professional systems will also

drop in price. In the future, we hope to get a more detailed view on the developments with a survey on

the state-of-the-art in UAV remote sensing (http://www.phenofly.net/uav-survey/) supported by the

OPTIMSE community (https://optimise.dcs.aber.ac.uk/). Overall, we think that UAV sensing systems

will not replace very high-quality plane or satellite systems, but rather complement them. UAV sensing

systems allow us to go beyond classical remote sensing approaches, such as customized BRDF sampling

or spectral 3D sensing. We are confident that more examples of such exciting UAV applications will

appear in the future. Additionally, they provide us with information in higher spatial and temporal

resolutions. The potentials of such data are yet to be explored, and novel approaches are needed to

handle and analyze these data in more robust and meaningful ways. Three-dimensional hyperspectral

data at high spatial and temporal resolution has the potential to provide exciting new insights into

ecosystem composition and functioning, and address major research questions in these areas.

The important tasks now are to standardize procedures, develop algorithms, and explore the

potential to make use of the large amounts of multi-dimensional, high spatial, temporal, and spectral

resolution UAV data. In this review, we showed that many approaches exist, and identified best

practice procedures to derive calibrated spectral data from UAV sensing systems. On the other hand,

some uncertainties will always remain in data collection and processing. While the data quality might

be sufficient for many use cases if the best practice calibration procedures are followed, for some

applications, the absolute accuracy might be insufficient. Thus, it is critical to make metadata about

the data quality traceable throughout all of the steps of data capturing and processing. In addition,

the normalization of the dynamic illumination conditions in drone remote sensing still poses a problem.

http://www.phenofly.net/uav-survey/
https://optimise.dcs.aber.ac.uk/
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Although approaches exist, their development is rather recent, and they need to be applied frequently

and further investigated in order to achieve the full potential of UAVs as flexible sensing platforms.

Additionally, sensor manufacturers have a responsibility. When a sensor is sold, it should be shipped

with a good absolute radiometric and spectral calibration and a description of its performance,

including the accuracy.

With the ongoing revolution in spectral remote sensing, we cannot rely on others to ensure good

data quality. As an emerging UAV remote sensing community, we are responsible for ensuring the

good data quality of our data products, including metadata. This also includes reliable uncertainty

propagation. Key to this effort is spreading knowledge and establishing good practices within the

community. We think that the knowledge assembled in this review can be a good basis to mature UAV

spectral sampling to a reliable source of scientific data to address old and new scientific questions

from a novel perspective. Additionally, such efforts cannot be achieved by one researcher alone.

Thus, we think that collaborative work such as in the European intergovernmental framework for

cooperation in science and technology (COST) actions OPTIMSE (ES1309), HARMONIOUS (CA16219)

and the newly approved action SENSECO (CA17134) are of great help toward establishing procedures

for reliable quantitative remote sensing with UAVs.
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