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Abstract

A novel approach to the quantitative assessment of food-borne risks is proposed. The

basic idea is to use Bayesian techniques in two distinct steps: �rst by constructing a

stochastic core model via a Bayesian network based on expert knowledge, and secondly

using the data available to improve this knowledge. Unlike the Monte Carlo simulation

approach as commonly used in quantitative assessment of food-borne risks where data sets

are used independently in each module, our consistent procedure incorporates information

conveyed by data throughout the chain. It allows �back calculation� in the food chain

model, together with the use of data obtained �dowstream� in the food chain. Moreover

the expert knowledge is introduced more simply and consistently than with classical stat-

istical methods. Other advantages of this approach include the clear framework of an

iterative learning process, considerable �exibility enabling the use of heterogeneous data,

and a fully justi�ed method to explore the e¤ects of variability and uncertainty.

As an illustration, we present an estimation of the probability of contracting a campy-

lobacteriosis as a result of broiler contamination, from the standpoint of quantitative risk

assessment. Although the model thus constructed is oversimpli�ed, it clari�es the prin-

ciples and properties of the method proposed, which demonstrates its ability to deal with

quite complex situations and provides a useful basis for further discussions with di¤erent

experts in the food chain.

Key words: Risk assessment, Bayesian network, Bayesian statistics, campylobacteri-

osis, broiler, food-borne disease.
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1 Introduction

Quantitative risk assessment (QRA) regarding food-borne pathogens is growing in import-

ance, for both public health and trade purposes. International organizations such as the

WHO and FAO, and various national institutions, carry out such studies concerning the

principal hazards. The Codex Alimentarius has established certain methodological rules

which have standardized (or at least included in an identical framework) these di¤erent

studies.(1) A QRA model for microbial hazard in food is a model made up of modules each

of which is itself a model that needs to be populated with values. It is a modular approach

called Process Risk Modeling(2) (PRM) or Modular Process Risk Modeling (MPRM)(3, 4)

which splits the farm-to-fork chain into modules that logically and sequentially progress

in a similar order to that of the food system. The starting points for the model and

speci�c modules into which the system is classi�ed, needs to be determined by the as-

sessor by means of data or/and expert knowledge. In order to estimate the risk, there

is basically one or two parameters to consider: the hazard prevalence or/and the level of

contamination. This approach has the advantage of assessing the impact of the various

elements in the pathway in terms of their contribution to the overall risk to human health.

This explained why most models start by modeling con�ned modules of the chain before

attempting to link them. As a result, only part of the chain is modeled in most cases,

and the �nal output may be the probability of eating a contaminated meal.

We explore the problem starting with a global modeling. Contrary to most studies

on QRA where speci�c modules of the food chain are modeled in detail, our aim is to

tackle the problem in reverse order, i.e. starting with a simpli�ed model which would
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encompass the entire chain, and could then be improved gradually at certain points while

remaining consistent with the global model. The hope is that mutual consolidations of

the modules can be obtained by a complete construction. The Bayesian framework allows

�back calculation� together with the use of data obtained �dowstream� in the food chain

model. Information could spread through the di¤erent parts of the model.

Bayesian approaches in the context of Monte Carlo simulation and risk analyses have

been considered in particular by Patwardan and Small(5) and Brand and Small.(6) In the

�rst paper the authors make a link between Monte Carlo simulations and the Bayesian

approach (using also Monte Carlo simulations) and in the second paper they study more

precisely how the Bayesian approach can take into account the di¤erence between variab-

ility and uncertainty, through the estimation of di¤erent indices. In this paper, our aim

is slightly di¤erent since we propose a general procedure for modeling global and com-

plex phenomena in food risk assessment and for estimating such models using a Bayesian

approach. This can be used in di¤erent contexts, such as prediction or evaluation of the

risk associated with di¤erent behaviors.

We illustrate the proposed approach with the assessment of campylobacteriosis in

France caused by home consumption of chicken meat. As emphasized in previous pub-

lished reports on campylobacter,(7�9) this task is not simple for several reasons: the global

chain is highly complex (numerous important factors must be taken into account), large

areas are quantitatively almost unknown (for example, campylobacter concentrations at

the point of consumption) and pertinent data are frequently absent (for example, large

samples of campylobacter enumeration data on the birds at the entrance and at the end

of the industrial processing). Although the model we propose for this assessment is quite

crude and needs to be re�ned in many ways, we believe that it is well suited as an illus-
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tration of a Bayesian approach for a quantitative risk assessment study. This hazard is a

major food-borne pathogen and receives much attention in QRA. We establish here the

basis of a global Bayesian modeling of this risk. This example should receive a thorough

development to present the French situation concerning this hazard but it corresponds to

this context of scarce data, where a Bayesian approach is typically quite powerful, since

it enables the combination of data and other types of knowledge of very di¤erent nature.

The proposed methodology is built on the de�nition of a core model using Bayesian

network and then on the integration of available data by a Bayesian statistical approach.

2 Outline of the proposal

The proposed methodology comprises two main successive steps, each being composed

of substeps. Step M de�nes a stochastic model of the phenomenon under study by

constructing a Bayesian network. Step D improves the model with the help of available

data obtained through Bayesian statistics. In this paper we consider as data, all available

data which is treated as such, and which has not been summarized in some way. Other

types of data, such as those coming from expert knowledge or summary obtained in the

literature are used to construct informative priors and are not denoted here as data.

We propose here a consistent formalism whose theoretical properties are demonstrated

to construct a QRA model. The construction of the model and the risk estimation are

based on the Bayes� rule:

P (BjA) =
P (A \B)

P (A)
=
P (AjB)P (B)

P (A)
/ P (AjB)P (B); (1)

where A and B are random variates. From (1), we can fully specify the joint distribution
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of the model using conditional independencies between some model parameters (Bayesian

network�s principle). Then the parameters of interest are estimated from their posterior

distributions using again Bayes� rule. Let Data designates the data (see above) and � any

unknown or unobserved quantity (typically parameters):

P (�jData) / P (Dataj�)P (�);

where P (�jData), P (Dataj�) and P (�) are respectively the posterior distribution of the

parameter �, the likelihood function depending on the Data and on the parameter and

the prior distribution of �.

In this section, we list all these steps which are then illustrated in the case of campy-

lobacteriosis originating from broiler chickens in France.

2.1 Step M: core model through a Bayesian network

In a �rst step, data are not introduced. The aim is to model current (or prior) knowledge

stochastically using only expert opinions and relevant scienti�c literature. The result is a

predictive tool.

M1 Make the inventory of the variates of interest (vi) to characterize the system under

study. These are the variates in which experts are spontaneously interested. There

is no need for them to be observable. Because of uncertainty and/or variability,

most of them will be considered as random variates. The distinction between these

two notions can be introduced as described in Pouillot et al..(10)

M2 If necessary, link the variates by means of conditional dependencies, constructing a

directed acyclic graph.(11) The conditional distributions given the parent variates
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must be expressed in the simplest possible manner. Most often, to achieve this, it is

necessary to introduce some extra nodes in the graph: either complementary variates

(cv) or ancestor variates (without parents) that will be assimilated as parameters

(pa).

M3 Specify the marginal distributions of the parameters, and the conditional distribu-

tions of the other variates.

At this point, the core model is de�ned. It is constructed so that the theory ensures

that the full joint probability distribution of all de�ned variates is given simply by the

product of marginal and conditional distributions.(12) Note however that it is necessary to

check whether the global behavior of the model is consistent with the expert knowledge.

M4 Run the model to check that all variates behave sensibly. This must be done �rst of

all by generating the joint distribution of all variates using Monte Carlo methods

and then plotting the marginal and bivariate distributions of variates or pairs of

variates of interest. It is also advisable to produce some conditional distributions,

corresponding to speci�c cases well known by the experts. If the results are not

convincing, carefully reconsider stepsM1,M2 andM3 until agreement is obtained.

It may be that, faced with an inconsistency, the expert will revise his/her initial

opinions. This is a validation step based on the global behavior of the locally

constructed system.

This process produces a tool similar to that produced using a Monte Carlo simulation

approach. As the data are not yet incorporated, the above quantitative assessment is based

on available prior knowledge only. From the perspective of Bayesian statistical analysis,

it represents the prior distribution. When too little is known about some phenomenon,
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improper priors can be used if the posterior distribution is proper. In such a case M4

is no longer possible (an example of such a possibility is given in the farm and broiler

modules in the campylobacter example (see section 3.1)). Another option may be to use

some relevant data to obtain conditional proper distributions at this level, see also section

3.1.

If one does not want to follow the Bayesian statistics paradigm, it is possible to decide

at step M3 not to give marginal distributions to the parameters and adopt a classical

approach to infer the parameters from available data, for instance by maximizing the like-

lihood. The drawbacks to such a decision are not only the non-availability of software to

perform the analysis when the model is very complex but also the probable occurrence of

non-identi�abilities, from which the Bayesian statistical approach is protected by the use

of prior distributions. In addition, a classical approach does not provide a distribution on

unknown parameters, only a point estimate unless one refers to asymptotic theory to con-

struct asymptotical con�dence intervals but in such complicated models the asymptotic is

not relevant (small number of data compared to the number of parameters). We therefore

follow a Bayesian approach which enables us in particular to construct coherent credible

regions together with point estimates, using sampling algorithms such as Markov Chain

Monte Carlo (MCMC) algorithms. As noted previously, such approaches are particularly

helpful in complex situations and in situations where data are sparse.

2.2 Step D: Incorporating data within a Bayesian paradigm

This second step is devoted to extracting from available data as much relevant information

as possible to improve the core model, following a standard Bayesian approach, as has

been described, for instance, by Robert,(13) and Gelman et al.,(14), and Gilks et al..(15)
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D1 When relevant data are selected, they are represented by new random variates (des-

ignated by da) whose distributions depend on the core model variates. It is often

necessary to introduce more complementary variates (cv), and even new parameters

requiring new prior distributions. This does not modify the full joint prior distri-

bution of the core model. Let us designate the model obtained as the augmented

model. In fact, in the setting of the Bayesian statistical approach, this substep cor-

responds to the de�nition of the likelihood, the parameter of interest arising from the

Bayesian network speci�cation, possibly with some additional nuisance parameters

(pa).

D2 As is usual, the posterior distribution of non observed quantities (either variates or

parameters) is calculated conditionally on the observed data. We can then focus

on the posterior distribution of the quantities of interest by marginalizing over the

other variates.

D3 A round similar to that of M4 is then necessary with the posterior distribution of

the core model. Again, if no agreement is obtained, the process must be revised

starting fromM1.

2.3 Computation

Numerical computations can be performed easily using Jags(16) and WinBUGS(17) soft-

wares, both of which used similar codes to describe the model. We found Jags to be

much better for almost degenerate distributions (such as Beta(0.024,0.011) used in the

campylobacter�s example below), although mixing was better under WinBUGS, certainly

because it comprised a broader range of samplers, including Metropolis-Hastings sampling.

We �nally ran the calculations using WinBUGS, with a [10�5; 1� 10�6] truncation on the
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degenerate Beta distribution. The code necessary to run our example on campylobacteri-

osis is shown in Appendix §A, along with some of the data sets. Simulated data produced

by WinBUGS were processed using the coda(18) statistical R(19) software package.

It should be noted that MCMC simulations could also be performed directly in R or

in other languages, requiring that the practitioner actually writes the MCMC code.

3 Campylobacteriosis and broiler chickens

Although massive outbreaks can arise from the consumption of contaminated water,(20)

campylobacteriosis is not, in most cases, a dramatic disease; it is rarely reported in the

media and the illness usually resolves within a few days without any after-e¤ects. Some

serious complications such as Guillain-Barre syndrome may nevertheless occur. However,

it is a subject of increasing concern in industrialized countries, and is now deemed as a

major public health problem(21) with considerable socioeconomic e¤ects, e.g. the number

of work days lost. It is accepted that one of the principal sources of human contamination

is the consumption of poultry, either when the meat is undercooked or most often as a res-

ult of cross-contamination between ready-to-eat food and raw chicken meat.(22, 23) Major

studies by experts in di¤erent �elds and countries have addressed the problem of Campy-

lobacter spp. and broiler chicken.(7�9) The model, presented herewith is the continuation

of the expert review carried out at the French Agency for Food Safety (AFSSA),(24) the

main aim of which is to determine the incidence of campylobacteriosis in the French pop-

ulation, with particular emphasis on cases caused by the home consumption of chicken

meat. Because of their microaerophilic nature, campylobacters, unlike other pathogenic

food borne bacteria, do not proliferate on food; this characteristic of campylobacter sim-

pli�es the modeling process.
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3.1 De�ning the core model (step M)

The �rst objective of our modeling is to construct a QRA model leading to model all the

variates of interest listed in Table I with their variability and uncertainty. It is essential

to see how the variability and uncertainty of the food system propagates in the model to

propose new modeling or control measures. We want to see how these variates interact to

better understand the system and to possibly assess the impact of various elements in the

pathway. Also we want to see how the information produced by the data propagates into

the model to propose new modeling or in some cases to consider new data which would

be of importance in the global modeling.

The entire food chain describing the di¤erent steps between production and illness

can be broken down into modules corresponding to well-identi�ed substeps. These are:

�chicken farm� ending at the production of chicken �ocks, �broiler production� ending

with the production of chicken carcasses for the consumer,�consumption� ending with the

numbers of broilers consumed by households in the speci�ed population, �hygiene� ending

with the probability of exposure if a contaminated broiler enters the household,�exposure�

during a de�ned period and �nally the�illness� module, ending with the targeted hazards.

For each of the modules, one or two variates of interest (vi) were de�ned: they are

presented in Table I.

The joint probabilistic distribution of these seven variates of interest was speci�ed by

successive conditional distributions according to the in�uence graph depicted in Figure 1;

this implied the de�nition of complementary variates (cv) and parameters (pa). All these

distributions are presented in Table II.

For shortness sake, we do not provide all details on the determinants of the core model

de�ned above, but the principal points are outlined:
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Chicken farm and broiler production modules:

� In the chicken farm and broiler production modules, a hierarchical model has been

considered to take into account the overdispersion or variability of pf , the probabil-

ity of a farm chicken being contaminated, and pb, the probability of a carcass being

contaminated, between the farms and the slaughterhouses around the country. More

precisely, we set logit(pf ) and logit(pb) as normal random variables centered at mf

and mb respectively, with the constraint mf � mb. The constraint in mean was

deduced from the experts� opinion that on average a carcass from a contaminated

�ock was contaminated and that cross-contamination between carcasses from di¤er-

ent �ocks could occur during slaughterhouse processing. Parameters were tuned to

obtain the magnitudes accepted by experts; that is a prior belief around 0:5 for pf

and pb (see Figure 3). We have also considered an improper prior on (mf ;mb; sf ; sb)

where the latter two represents the standard errors of the Normal random variables,

in the form:

�(mf ;mb; sf ; sb) / 1mf�mb

1

sf :sb
:

This improper prior is often considered as a noninformative prior (apart from the

constraint on mf and mb). The posterior distribution of the contamination module

under this prior is proper, given the available data on the contamination of �ocks.

We cannot in this case produce the M4 step since the prior model does not follow a

proper distribution, but we can still produce a modi�ed M4 step, taking into account

the data on �ock and slaughterhouse contaminations.

Hygiene module:

� Although very little is known about what happens in household kitchens, we believe
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it is important to distinguish between the cross-contamination process (phc) and the

poor hygiene e¤ect (phh), in particular since some more data could be obtained on

either or both of these aspects. The prior on phc was assessed using the two cross-

contamination models described in the FAO/WHO report(8) and discussed by Luber

et al.(22) which lead to a probability of transfer around 1/3 and 2/3 that we translated

into a beta(8,8) as a prior on phc (mean= 0.5, CI(95%)=[0.27,0.73]); the prior phh

was assessed from Yang et al.(25) and the surveys on consumer habits mentioned by

Christensen et al.(7) who estimated a probability of bad hygiene between 10% and

37% of the population that we translated into a beta(8,28) (mean=0.22, CI(95%)=

[0.10,0.37]).

� ph, the probability of cross-contamination from a contaminated broiler in a house-

hold is taken as the product of phc times phh.

Consumption module:

� Consumption data took the form of a series of household purchases of raw chicken

meat over four-week periods, modeled as Poisson random variables with intensity

�c. Again a hierarchical model is retained to take into account the variability of �c

over the French population, which is modeled as a Gamma(ab; b) distribution for �c.

Exposure module:

� Conditionally on the number, say X, of times some raw chicken has been brought

into the household, the number of times the household is exposed is taken as a

Binomial random variable B(X; p), where p = ph�pb, which corresponds to assuming

that for each household the possible contaminations are independent. This allows

us to represent the probability of exposure during a four-week period as pe = 1 �
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exp(��e), where �e = �c�ph�pb. From this we deduce the probability of exposure

for a household during one year as pey = 1� (1� pe)
13. The risk is determined on

the basis of cross-contamination process assuming for example, that people in the

household, like children for example, not eating chicken can still be infected with

the pathogen through the entrance in the household of a contaminated chicken.

� Note that (�e; pe; pey) are equivalent parameterizations for exposure (no stochastic

relationships implied and one-to-one mappings).

Illness module:

� The formulae used to deduce the global probability of illness from the attributable

fraction (piq), the probability of illness from poultry (pib) and the probability of

exposure to poultry (pey) were based on the assumption that the dose response

e¤ect was identical for poultry and other routes. piq was assessed from control

studies: Evans et al.,(26) Friedman et al.(27) and Nauta et al. (Table 2.2)(9) which

leads to a population risk having mean 23% and lying between 10% and 33% that

we translated into a beta(9,30) (mean=0.23, CI(95%)=[0.11,0.37]).

� For pin, the probability of illness conditional on infection, we adopted the same

strategy as in the CARMA project(9) where pin is �xed based on Black
(28) because

its uncertainty is not well quanti�ed in the literature.

� The probability of being ill conditional on exposure, pie, is the product of pin times

(1� (1�pne)
d), the probability of infection due to the ingestion of d campylobacters

where pne is the probability of infection by one ingested campylobacter. We assumed

that the distribution of microorganism-host survival probability is given by the Beta
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distribution proposed by Teunis et al.,(29) i.e. a beta(0.024,0.011), including the

variability and uncertainty of the parameter.

� d is here the actual ingested dose; it is variable and so is represented by a distribu-

tion, which we have taken as the empirical distribution given in section 3.2.7 of the

CARMA report.(9)

3.2 Resulting prior distributions

It is worth pointing out that the core model previously de�ned could be used in the

same way as when simulating the food chain using the Monte Carlo simulation. It is a

probabilistic model and using WinBUGS,(17) for instance, without data, it is simple to

simulate all distributions of the random variates involved, or couples of these variates.

This provides another view of the construction and its initial form can then be modi�ed.

Figure 3 shows the marginal densities of the variates of interest.

3.3 Coupling the data sets (step D)

Data sets are available in addition to the information provided by experts. These are

not always directly linked to the core model and additional modeling is necessary to en-

able their inclusion. In this case, we decided to incorporate (i) the 16 relevant surveys

included in the AFSSA report(24) on chicken �ock contamination, (ii) the 14 relevant sur-

veys (also in the AFSSA report) concerning chicken carcass contamination, (iii) purchase

data on raw chicken meat from the TNS Worldpanel database(30) (for 2001) concerning

4770 households over several four-week periods spread throughout the year, and (iv) an

epidemiological study carried out in the United Kingdom(31) which determined the num-

ber of campylobacteriosis cases for the equivalent of 4026 person-years. The notations are
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shown in Table III.

These data were introduced in the model through their distribution conditionally on

parameters or variates present in the core model. Table IV and Figure 2 show the relevant

details.

For example, the use of a Poisson distribution for the purchase numbers (ncsb) for each

household led to the Gamma-Poisson model, because a Gamma distribution was used for

its parent parameter (�cs) (representing the variability between households).

3.4 Posterior distributions

Posterior distributions were computed using WinBUGS.(17) A burn in of 104 iterations

was followed by 105 iterations thinned at a proportion of 1 to 100. In the same way as with

prior distributions, we used the posterior distribution as a Monte Carlo simulator. The

marginal posterior densities of the seven variates of primary interest are shown in Figure

3. Modeling needs to be reconsidered if the experts do not agree with the posterior

distribution, but of course in such cases, outputs of other variates can be proposed to

facilitate any reconsideration.

3.5 Comparing prior and posterior distributions

The di¤erences between prior and posterior distributions are the result of introducing

data sets into the model. Then, the di¤erences provide information on agreement or dis-

agreement between the expert opinion and the data. Systematic and detailed comparisons

between prior and posterior distributions need to be performed; this is not an easy task

because the information is highly multivariate. Marginal distributions must therefore not

be the only ones considered. Figure 3 reveals some major di¤erences, particularly regard-

16



ing �c; pey, pib and pit. One sees clearly with these four parameters that the data, provided

in the entire model, have strongly modi�ed the prior model. One can see that posterior

distributions have di¤erent shape and are narrower. Nevertheless one observes that these

distributions are still very large. They cannot yet constitute a satisfying response to the

risk question, since the estimates are not accurate enough for decision makers. However

they re�ect all the variability and uncertainty of the entire system and point out the need

for more relevant data in the analysis, for instance in the hygiene module. It is also to be

noted that from this analysis, we can reduce the variability on the risk response by split-

ting the population into groups of individuals having similar behavior. Such a re�nement

can be done directly from the crude model presented in the paper.

By comparison, pf and pb were little modi�ed; the same applied for ph, which is not

surprising since no data were added to the corresponding module. For a more direct

examination, we present bivariate distributions in Figure 4. Striking di¤erences are then

revealed. This is for instance the case for (pey; pib) and (pib; pit). Note that such bivariate

visual comparisons required many more simulated points than univariate comparisons.

3.6 Sensitivity analysis

In order to determine the stability of the results obtained, di¤erent components in the

construction were altered to assess their marginal importance. The tests performed are

summarized in Table V. They mainly concerned prior distributions on parameters (e.g.

piq0) and the inclusion of data sets in the analysis (e.g. wed). But attempts were

also made to assess the e¤ect on a small part of the core model (e.g. pie0). For prior

distributions, the modi�cations could be of di¤erent types (shift, less or more precise,

etc...). The e¤ects were mainly assessed on variates of interest but in some cases it was
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useful to detail changes on other nodes of the Bayesian network in order to better clarify

their nature. The conclusions of these tests produced incentives and suggestions for model

improvements, or indications concerning the weakness of the information available, thus

highlighting directions to be investigated as a priority.

Using diagrams similar to those shown in Figures 3 and 4, we were able to assess

which variates of interest were mainly a¤ected by sensitivity trials, at both the prior and

posterior levels. It was shown that very similar relative e¤ects on variates of interest were

obtained during the four sensitivity trials. These are summarized in Table VI, and Figure

5 illustrates certain cases. The adjectives slight, moderate, and strong have been chosen

subjectively.

� In Table VI, when comparing priors (a), the e¤ect was irrelevant when the distri-

bution of a variate was not a¤ected by the modi�cation or was the variate itself.

� ph was strongly a¤ected by the ph0 trial. This is a consequence of the lack of data

in this module.

� pey was slightly modi�ed, except during the ph0 trial where it was markedly a¤ected.

� �c was not a¤ected by the modi�cation of prior distributions. However, it was

unexpectedly a¤ected by epidemiological data.

� pf and pb behaved similarly.

� pib and pit were sensitive to the prior distributions but became stable when the

epidemiological data were introduced.
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4 Discussion

4.1 The campylobacter-broiler application

As explained in the introduction, our aim was to adopt a global approach. In doing

so, every subpart of our modeling can be considered as crude. The objective was not to

reproduce reality in a mechanical way, but to determine whether the level of approximation

we achieved was su¢cient for the model to be useful, which is probably not yet the

case. A second round with experts in the �eld is now necessary, in order to improve

the knowledge available on each variate of interest. However, we consider it is useful to

propose a framework for this global approach and to demonstrate that conceptual and

numerical tools are available to enable this kind of application. Moreover, by doing so,

further discussions with experts are simpli�ed since this work has shown where more

information is de�nitely needed, and to which extent it is needed.

The global model we have proposed for the campylobacter-broiler problem can be

improved in numerous ways. In particular, we did not introduce the modeling of con-

tamination levels, and only considered the presence/absence of bacteria. In this speci�c

context, we argue that (i) most information is to be found at this level, and when it is

not, the correspondence between the di¤erent methods used to measure levels of contam-

ination remains an unsolved problem, (ii) binary variates could be associated with a given

threshold, not only naught or positive.

There is a desperate need for data on the hygiene module. As can be seen from

the sensitivity analysis hygiene has a strong in�uence on exposure. Most e¤orts have

focused on what we called the illness module where two goals can be highlighted: (1)

improvements to the concept of dose consumption via broilers or other routes when an
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individual is exposed, and (2) the development of more e¢cient methods to link epidemi-

ological studies with the modeling of quantitative risk assessment in a food chain; for

obvious reasons, experimentation on humans for dose response is not possible, although

it is unfortunately the principal way to improve such quantitative assessments. As can

be seen from the sensitivity analysis epidemiological data has an in�uence, which is reli-

ant upon this relationship. Note that we included the epidemiological data assuming an

error between pit, the probability of a person su¤ering from campylobacteriosis in France

within one year, whatever the source and pits, the probability of a person su¤ering from

campylobacteriosis in a similar country within one year whatever the source, because the

available epidemiological data were English data. So, it seemed reasonable to include a

possible di¤erence between the two countries. A �xed standard deviation has been given

to this error term (ss = 1). This choice has been made after di¤erent sensitivity analyses

not shown here. The choice of ss = 1 allows an introduction of these data in a reasonable

manner for us (not too soft, not too hard). Surely, this choice has an important impact

on the in�uence of these data, and a more thorough analysis on this should be considered.

Another key point is the integration in the model of the di¤erent spatial and temporal

scales at which the modules behave. Improvements to this integration will be very di¢cult,

but essential if more precise assessments are to be achieved.

4.2 The methodology proposed

Software programs such as WinBUGS(17) and Jags(16) are available and allow simple im-

plementation of these approaches. However, a cautious approach must be adopted towards

the convergence of algorithms. Speci�c programming will enable improved control of the

sampling algorithms; for example, monitoring of the Metropolis-Hastings step can be
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better adapted, and in most cases algebraic simpli�cations can be introduced.

The assembly of modules raises new problems, including the relative �exibility of dif-

ferent modules. If a prior distribution is too strongly peaked, it will not be in�uenced

by the other modules. But if a module is too �exible, it may absorb variation (even of a

random nature) from other modules. This was the case for �c, which was sensitive to the

removal of epidemiological data. A balance must be introduced between di¤erent com-

ponents in the chain. This is certainly more di¢cult when insu¢cient data are available,

a key trait of quantitative risk assessment concerning food-borne diseases. The relative

strength of the links between the principal modules thus deserves further investigation.

There are several incentives to developing the approach we propose. Clearly, the �rst

is the theoretical possibility of being able to address highly complex situations through

consistent use of the data sets and expert knowledge available. Classical statistical meth-

ods are ine¢cient in such situations, and standard Monte Carlo approaches cannot use

data sets downstream of other data sets. There are no such limitations to probabilistic

modeling de�ned using a Bayesian network and exploited with Bayesian statistics, because

back propagation is the consequence of the full joint probability distribution conditioned

by the quantities observed.

This means that it is possible to tackle the phenomenon globally, in the hope that

information will spread e¢ciently throughout the Bayesian network and thus bene�t all

modules. Study of the appropriateness of information dissemination throughout the net-

work is both necessary and instructive and can be achieved via sensitivity analysis, as

proposed in this paper.

Assuming the model is satisfactory, it is possible to gain a clearer understanding of

the e¤ect of interventions on outcomes. By altering the prior distribution of a variate to
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mimic the implementation of a new strategy, the joint posterior probability distributions

will be conditioned on the new prior and the model output will thus re�ect the outcome

that would be anticipated following the implementation of the new strategy.

As was studied in the case of epidemiological data, it is relatively simple to remove

data sets in order to understand their e¤ect on the construction of joint distributions

and their importance to the conclusions reached. It is even possible to introduce data

substitutes into the system, solely to determine the importance of their presence. The

addition of new data is relatively straightforward, and does not necessarily require new

modeling.

Finally, a major advantage of this two-steps (Model-Data) methodology is that it en-

ables a clear distinction between expert ideas and the information provided by data sets,

with an opportunity in stepsM4 andD3 to interact with the model construction. Never-

theless, it must be acknowledged that the splitting between expert knowledge and formal

data is not so clear. For instance, a way to construct modules or priors from experts�

mind is asking them to propose likely data. Then, some variation can be introduced at

this level. It should also be noted that inputs and outputs are joint probability distri-

butions on the same set of variates, a satisfactory consequence of the Bayesian approach

retained: if experts are able to provide prior distributions, they are able to interpret

posterior distributions.
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A Bugs code

model { # starting the model ..........................

### CORE MODEL #########################################

### CHICKEN FARM MODULE .......................................

p.f <- exp(lp.f)/(1+exp(lp.f)); #vi

lp.f ~ dnorm(m.f, tau.f); #..

m.f ~ dnorm(0.0,20.66); #pa

s.f ~ dunif(0,0.2); tau.f <- 1/(s.f*s.f); #pa
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### BROILER PRODUCTION MODULE ..............................

p.b <- exp(lp.b)/(1+exp(lp.b)); #vi

lp.b ~ dnorm(m.b, tau.b); #..

m.b <- m.f + d.bf; #cv

d.bf ~ dnorm(0.1,206.6)I(0,); #pa

s.b ~ dunif(0,0.2); tau.b <- 1/(s.b*s.b); #pa

### HYGIENE MODULE .....................................

p.h <- p.hc * p.hh; #vi

p.hc ~ dbeta(8,8); #pa

p.hh ~ dbeta(8,28); #pa

### CONSUMPTION MODULE .................................

lambda.c ~ dgamma(ab.c,b.c); #vi

ab.c <- a.c*b.c; #..

a.c ~ dgamma(4,4); #pa

b.c ~ dgamma(10,10); #pa

### EXPOSURE MODULE ....................................

p.ey <- 1 - pow((1-p.e),13); #vi

p.e <- 1 - exp(-lambda.e); #cv

lambda.e <- p.b * p.h * lambda.c; #cv

### ILLNESS MODULE .....................................

p.ib <- p.ey * p.ie; #vi

p.it <- p.ib / (1 - (1-p.iq)*(1-p.ey)); #vi

p.ie <- (1-pow(1-p.ne,d)) * p.in; #cv

d <- vd[c.d]; #cv

p.ne ~ dbeta(0.024,0.011)I(0.00001,0.999999); #pa

p.in <- 0.33; #pa

p.iq ~ dbeta(9,30); #pa

c.d ~ dcat(c.di[]); #..

### AUGMENTED MODEL FOR DATA INCORPORATION #############

### CHICKEN FARM MODULE .......................................

for (i.fs in 1:n.fst) { #..

g.fs[i.fs] ~ dbin(p.fs[i.fs],n.fs[i.fs]); #da

p.fs[i.fs] <- exp(lp.fs[i.fs]) / #cv

(1 + exp(lp.fs[i.fs])); #..

lp.fs[i.fs] ~ dnorm(m.f,tau.f); #..

} #..

### BROILER PRODUCTION MODULE ..............................

for (i.bs in 1:n.bst) { #..

g.bs[i.bs] ~ dbin(p.bs[i.bs],n.bs[i.bs]); #da

p.bs[i.bs] <- exp(lp.bs[i.bs]) / #cv

(1 + exp(lp.bs[i.bs])); #..

lp.bs[i.bs] ~ dnorm(m.b,tau.b); #..

} #..

### HYGIENE MODULE .....................................

### CONSUMPTION MODULE .................................

for (i.cs in 1:n.cst) { #..

n.csb[i.cs] ~ dpois(lambda.csb[i.cs]); #da

lambda.csb[i.cs] <- n.cs[i.cs]*lambda.cs[i.cs]; #cv

lambda.cs[i.cs] ~ dgamma(ab.c,b.c); #cv

} #..

### EXPOSURE MODULE ....................................

### ILLNESS MODULE .....................................

g.its ~ dbin(p.its,n.its); #da

logit(p.its) <- logit(p.it) + err; #cv

s.s <- 1; tau.s <- 1/(s.s*s.s); #pa

err ~ dnorm(0,tau.s); #..

} # ending the model ###################################

list( # starting the doses ...............................
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c.di=c(0.500,0.163,0.222,0.097,0.018), vd=c(1,2,10,100,300))

list( # starting the data incorporated ............................

n.fst=16,

n.fs=c(287,79,100,8911,75,59,125,155,403,398,112,62,187,100,22,450),

n.bst=14,

n.bs=35,82,2925,410,251,691,203,79,50,97,180,708,994,858),

n.cst=4770,

n.cs=c(.....),

n.its=4026,

g.fs=c(77,29,40,3787,32,29,63,80,228,226,64,50,153,90,22,294),

g.bs=c(28,18,1082,157,99,333,163,70,43,78,146,291,338,80),

n.csb=c(..........),

g.its=32)
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Table I: variates of interest (vi) in the six modules.
The framework for the application of variates must be clearly speci�ed. In this case, the
framework is mainland France for one year, and consumption refers to that of raw chicken
meat at home.

Module Variate De�nition
Chicken farm pf probability of a chicken �ock being contam-

inated
Broiler production pb probability of a chicken carcass being con-

taminated
Consumption �c intensity of chicken consumption in a house-

hold over a four-week period
Hygiene ph probability of cross-contamination from a

contaminated broiler in a household
Exposure pey probability of a person being exposed during

a period of one year
Illness pib probability of a person su¤ering from campy-

lobacteriosis due to broiler meat within one
year

Illness pit probability of a person su¤ering from cam-
pylobacteriosis within one year, whatever the
source
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Figure 1: Graph description of the core model.
All random variates of the core model are included in the diagram. Variates of interest
are circled. Parameters are indicated by triangles; their marginal distributions must
be speci�ed. The distribution of other nodes (variables of interest and complementary
variables) are speci�ed conditionally on their parent variates. Parent variates are indicated
by means of arrows: e.g. the parents of pit are pey, pib and piq. Thick arrows indicate a
functional relationship, otherwise this is probabilistic (de�ned in Table II).
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Table II: Prior distribution of the core model.
Each line of the table de�nes a variate. This may involve some parents and can result
from either a logical relationship (=) or a distribution (�). N (m; s) stands for the normal
distribution with an expectation m and variance s2. Possible truncation of the distribu-
tions are indicated by inequalities. Except for the normal distribution, the parameters
de�ning distributions are those used in WinBUGS(17) and Jags(16) software programs. The
variates are classi�ed according to their status: variate of interest (vi), complementary
variate (cv) and parameter (pa).
Class Variate Parent(s) Distribution / Relationship
vi pf mf ; sf logit(pf ) � N(mf ; sf )
vi pb mb; sb logit(pb) � N(mb; sb)
vi ph phc; phh = phcphh
vi �c ac; bc � Gamma(acbc; bc)

vi pey pe = 1� (1� pe)
13

vi pib pey; pie = peypie
vi pit pey; pib; piq = pib= (1� (1� piq) (1� pey))
cv mb mf ; dbf = mf + dbf
cv �e pb; �c; ph = pb�cph
cv pe �e = 1� exp (��e)

cv pie d; pne; pin =
�
1� (1� pne)

d
�
pin

pa mf - � N (0; 0:22)
pa sf - � Uniform (0; 0:2)
pa dbf - � N (0:1; 0:0696) > 0
pa sb - � Uniform (0; 0:2)
pa phc - � Beta (8; 8)
pa phh - � Beta (8; 28)
pa ac - � Gamma(4; 4)
pa bc - � Gamma(10; 10)
pa d - � (1,2,10,100,300) with p = (0.5,0.163,0.222,0.097,0.018)
pa pne - � Beta (0:024; 0:011)
pa pin - = 0:33
pa piq - � Beta (9; 30)
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Table III: The four data sets included in the statistical analysis
Module Variate De�nition

Chicken farm gfs number of chicken �ocks contaminated out of
nfs in sample s = 1; :::; 16.

Broiler production gbs number of chicken carcasses contaminated
out of nbs in sample s = 1; :::; 14.

Consumption ncsb number of broilers purchased by a given
household during ncs periods of four weeks
in sample s = 1; :::; 4770.

Illness gits number of people su¤ering from campylobac-
teriosis in a sample of size nits during a year
in a similar country.
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Table IV: Likelihood and completion of the prior distribution.
The same conventions are used as in Table II, except that data (da) replace the variate
of interest. A column giving the size (number of scalar components or observations) has
also been added, together with constants (co) associated to these sizes.

Class Variate Parent(s) size Distribution / Relationship
da gfs pfs 16 � Binomial (nfs; pfs)
da gbs pbs 14 � Binomial (nbs; pbs)
da ncsb �csb 4770 � Poisson (�csb)
da gits pits 1 � Binomial (nits; pits)
cv pfs mf ; sf 16 logit(pfs) � N(mf ; sf )
cv pbs mb; sb 14 logit(pbs) � N(mb; sb)
cv �cs ac; bc 4770 � Gamma(acbc; bc)
cv �csb �cs 4770 = ncs�cs
cv pits pit; ss 1 logit(pits) � N(logit(pit); ss)
pa ss - 1 = 1
co nfs - 16 :::
co nbs - 14 :::
co ncs - 4770 :::
co nits - 1 = 4026
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Figure 2: Augmented model.
Variates and parameters necessary to describe the available data have been added to the
core model described in Figure 1.
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Figure 3: Posterior marginal densities of the seven variates of interest de�ned in Table I.
These posterior distributions (solid lines) should be compared with the prior distributions
indicated here using dotted lines.
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Figure 4: Comparisons between prior (a-b-c) and posterior (d-e-f) distributions. Diagrams
(a) and (d) display the variates ph and pey; diagrams (b) and (e) display the variates pey
and pib; diagrams (c) and (f) display the variates pib and pit. The distributions are
represented by means of 1000 thousands simulated parameter vectors from the prior and
posterior distributions.
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Table V: Sensivity trials.
Each line of the table is associated with a sensitivity trial and provides the code name
used to designate it, the aim and the di¤erence between the basic model (described in
Table II) and the trial.
name aim: see the e¤ect of basic case modi�cation

ph0 prior information on ph Beta(8; 8)*Beta(8; 28) Beta(1
2
; 1
2
)

pie0 prior information on pie (see Table II) Beta(1
2
; 1
2
)

piq0 prior information on piq Beta(9; 30) Beta(1
2
; 1
2
)

wed epidemiological data from a similar country with gits data without gits data
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Table VI: Synthetic result of the sensitivity analysis.
For each sensitivity trial the magnitudes of the e¤ect on the variates of interest are re-
ported: irrelevant (-), no e¤ect (0), very slight e¤ect (1), slight e¤ect (2), moderate e¤ect
(3) and strong e¤ect (4). Three types of e¤ect are distinguished : (a) modi�cation to
the prior, (b) modi�cation to the posterior, (c) amount of data included [prior=no data
/ wed=data without epidemiological data / posterior= all available data]. The 6 cases,
in bold type, are illustrated in Figure 5.

pf pb ph �c pey pib pit

a: ph0 - - - - 4 2 1
a: pie0 - - - - - 2 3
a: piq0 - - - - - - 0

b: ph0 0 0 4 0 4 0 0
b: pie0 0 0 0 0 1 0 0
b: piq0 0 0 0 0 1 0 0

c: prior / wed 1 1 0 1 2 1 1
c: wed / posterior 0 0 0 0 2 3 4
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Figure 5: Comparisons of marginal distributions in certain sensitivity trials.
a-b-c cases refer to the caption to Table VI; the trial is indicated between parentheses
(see Table V); the variate is indicated between brackets. Dotted lines represent the basic
computation and solid lines the sensitivity cases.
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