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Abstract

Background: How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence

of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-

model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to

predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene

coverage and expression analysis was further investigated in the non-model context by using increasingly divergent

genomic reference species to group assembled contigs by unique genes.

Results: Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and

assessed. Hybrid 454/Illumina assemblies had the highest transcriptome and individual gene coverage. Quantitative

whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted

genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes.

Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias

and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are

relatively small.

Conclusions: Predicted gene sets from sequenced genomes of related species can provide a powerful method for

grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to

results obtained using gene models derived from a high quality genome, though biased towards conserved genes.

Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.

Background
Massively parallel sequencing of RNA, known as RNA-

Seq, provides unprecedented access to sequence and ex-

pression variation in the transcriptome [1,2] and allows

for additional insights into alternative splicing [3], cis vs.

trans gene regulation [4], and micro-RNA dynamics [5].

RNA-Seq experiments for gene expression analysis typic-

ally involve mapping 10’s of millions of short sequencing

reads onto the reference dataset (scaffold) of a model

species, whose genome has been sequenced and gene

models determined [6]. As next generation sequencing

becomes more affordable (see [7] for an insightful

discussion of hidden costs), RNA-Seq is becoming in-

creasingly attractive for quantitative studies of differen-

tial gene expression in non-model species, for which

there is often much knowledge of the evolution and

ecology but little or no genomic resources.

The non-model species community is rapidly harnes-

sing the transcriptome, with an explosion of RNA-Seq

studies published over the past 5 years, predominantly

using the longer sequencing reads of the 454 FLX tech-

nology for the generation of EST databases containing

sequence and SNP information [8-12]. This community

is now also beginning to use the Illumina platform with

excellent results, further decreasing the cost for tran-

scriptome database construction and SNP identification

[13-16]. However, although the Illumina sequencing
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platform is the main workhorse for quantitative tran-

script analysis, only a handful of studies have begun to

use this platform to study expression variation in non-

model species (e.g. [17,18]), primarily due to concerns

over read mapping accuracy in the absence of a genome

scaffold (e.g. [9]). Given that the number of RNA-Seq

studies in non-model species is expected to rapidly in-

crease [19] there is a pressing need to assess the per-

formance of RNA-Seq in the non-model species context.

A researcher wishing to conduct RNA-Seq in a species

lacking genomic resources faces a series of currently un-

answered questions. These initially are queries of how

much data is necessary to produce informative signifi-

cant results, the price of producing such data and what

sequencing platform to use. There are also concerns

over the quality of de novo transcriptomes and their util-

ity as scaffolds for mapping RNA-Seq reads compared to

a high quality genome, or indeed any genome for the

target species. An additional problem faced by the non-

model community is the ability to draw functional infor-

mation from the de novo assembly and expression

results. Combining reads per gene and annotating as-

sembly contigs can be achieved by using the genome or

predicted gene set of a related species as proxy. How-

ever, the level of bias and error this introduces is for the

most part unknown, as is the effect of evolutionary dis-

tance between the proxy reference and the study species.

Here we directly address these questions in detail using

RNA-Seq data and genomic resources available for

Homo sapiens.

Results

de novo transcriptome assembly and assessment

RNA-Seq data were assembled in various combinations

into eight different transcriptome assemblies (TAs) to

assess the relative performance of different sequencing

technologies and their utility in combination. To clarify,

a ‘read’ is the short sequence output of the sequencing

platform (e.g. Illumina with 35-100 bp reads). A ‘contig’

is a contiguous sequence formed from two or more

reads that are found to overlap. Three of the TAs were

assembled using three replicate paired-end Illumina runs

of similar size (TA_Illpr1 (15.3 Mb), TA_Illpr2

(14.7 Mb), TA_Illpr3 (14.0 Mb)). A fourth TA combined

all of the reads from these datasets into one assembly

(TA_Illprs, 28.5 Mb). The fifth also used all of this

RNA-Seq data and incorporated an additional Illumina

RNA-Seq dataset in order to determine the effect of in-

creasing the volume of data upon assembly performance

(TA_All_Ill, 35.3 Mb). The sixth TA was created using

only 454 RNA-Seq reads (TA_454, 46.1 Mb), while the

seventh used the three pairs of Illumina data plus this

454 dataset (TA_Illprs&454, 68.0 Mb). TA_All (71.0 Mb)

was assembled using all of aforementioned RNA-Seq

data (see Methods and Additional file 1: Table S1).

Standard metrics of assembly quality

We initially assessed the de novo TAs by comparing sev-

eral standard metrics commonly used in ascertaining the

quality of an assembly [10]: total number of contigs;

longest contig length; mean and median contig length;

N50 (the median contig size, length weighted); and the

summed contig lengths (i.e. raw size of the TA). The

amount and type of RNA-Seq data incorporated into the

eight TAs and the basic assembly metrics are summar-

ized in Additional file 1 Table S1. For the three TAs cre-

ated using replicate Illumina RNA-Seq data (TA_Illpr1,

TA_Illpr2, TA_Illpr3), each gave near identical perform-

ance to each other but were all consistently inferior to

the other five TAs in terms of the basic assembly

metrics. We subsequently focussed upon quality com-

parisons of the remaining five TAs: TA_Illprs, TA_All_Ill,

TA_454, TA_Illprs&454, and TA_All (Figure 1).

An optimal assembly will have near full length contigs

similar to that expected from the actual transcriptome of

the target species. The basic metrics shown in Figure 1a &

Figure 1 Basic assembly metrics of five de novo transcriptome assemblies (TAs). Comparison of the assembly metrics for five TAs

generated from different data sources: a) the mean, median and N50 TA contig length, b) the total number of contigs in the TA, and c) the

summed contig length.
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b suggested that TA performance was best with Illumina

data alone. TA_Illprs and TA_All_Ill had the largest contig

mean, median and N50 lengths, whilst also having the

lowest number of contigs. These metrics indicate that the

TA composed solely of 454 reads (TA_454) was of poorer

quality than those composed purely of Illumina reads. The

assemblies comprised of both Illumina and 454 sequen-

cing data (TA_Illprs&454 and TA_All) also had a com-

paratively small mean, median and N50 contig length.

These hybrid assemblies also had the greatest number of

contigs, containing more than twice as many as the TAs

solely composed of Illumina reads. However, the optimal

assembly will also have a large summed contig length, and

this metric provided a very different set of conclusions

(Figure 1c). For summed contig length, the hybrid assem-

blies performed much better than the pure assemblies

with summed contigs lengths of: TA_Illprs&454:

67.96 Mb and TA_All: 71.05 Mb, both of which being ap-

proximately twice as large as TA_All_Ill (35.30 Mb) and

over twice the size of TA_Illprs (28.49 Mb). Thus, despite

having larger contigs, the de novo transcriptomes com-

posed of pure Illumina reads were overall much smaller.

de novo transcriptome assembly coverage metrics

The contrasting insights provided by the basic metrics il-

lustrate their limited utility. Metrics based upon contig

lengths (e.g. mean, median, N50) do not provide quanti-

tative insights into how much of the target species tran-

scriptome is represented in the de novo TA. For

transcriptome assembly in the context of generating a

scaffold for RNA-Seq mapping, optimising the represen-

tation of the transcriptome is critical since the only

RNA-Seq data that is analysed is that which can be

aligned to a scaffold. Here we calculated several add-

itional metrics to gauge the quality of a de novo tran-

scriptome assembly by taking advantage of the genomic

resources for Homo sapiens.

We assessed the integrity and completeness of the TAs

in terms of their recapitulation of the H. sapiens pre-

dicted consensus coding sequence (CCDS) gene set.

First, we quantified the size of the coding region of the

de novo TAs in comparison to the summed length of all

CCDS (Figure 2a). Given that one or more TA contigs

may align to a given CCDS, we used BLASTn to identify

these relationships and calculate the regions that were

covered of each CCDS by at least one TA contig. That

is, we only took the length of the CCDS that was cov-

ered regardless of the number of different TA contigs

that covered those regions (i.e. if 5 TA contigs all aligned

to nucleotides 150 to 550 of a given CCDS, the length

covered was only 400 bp). Compared to the total size of

the H. sapiens CCDS dataset, the hybrid assemblies

TA_Illprs&454 and TA_All performed the best, covering

61% and 64% of the total size of the CCDS dataset

respectively, while TA_454 had the smallest transcrip-

tome coverage at 38%. Second, we counted the number

of H. sapiens predicted genes (CCDS) hit by a TA contig

in BLASTn searches (Figure 2b). The two hybrid assem-

blies had the greatest number of CCDS represented: 75%

and 76% of the CCDS being hit by TA_Illprs&454 and

TA_All respectively. Of note is that although TA_454

was the smallest in term of coding size (Figure 1a), its

coverage of the transcriptome as estimated by the num-

ber of CCDS hit by this TA was similar to both of the

TAs composed solely of Illumina reads (TA_454 64%;

TA_Illprs 62%; TA_All_Ill 66%).

In determining how successful the coverage of the ac-

tual transcriptome was in the de novo TAs created here,

we first note that the transcriptome from one tissue type

is expected to contain fewer transcripts than that of the

whole organism. One study estimates a figure of 70% of

the genes of an organism’s genome [20]. Given that the

CCDS dataset represents the entire transcriptome, and

the RNA-Seq data obtained for this study derives from

sequencing a human brain sample, we cannot therefore

expect a coverage figure near 100%. In addition the RNA

sample was not normalized, so the RNA-Seq data were

likely to primarily contain highly transcribed genes and

miss many lowly expressed transcripts. The largest TA,

TA_All, is 18.8 Mb and hits 13,343 CCDS. This is 64%

of the size of the CCDS dataset (29.6 Mb) and comprises

76% of the CCDS transcripts (n = 17,520).

While these two measures, total coding size and the

number of genes represented in each TA, are very

informative, knowing the proportion of each gene

covered by TA contigs is also important (i.e. the com-

pleteness [21]). We therefore calculated what we term

the contig reference ratio (CRR) for each of the CCDS

to ascertain the actual coverage of the transcriptome

for the different TAs. The CRR therefore is the ratio

of the length of the CCDS uniquely covered by TA

contigs divided by the length of that CCDS (e.g. a

CRR of 0.9 means that 90% of that CCDS is covered

by one or more TA contigs). This metric directly indi-

cates the amount of sequence in the TA that is in-

formative, as it is the coding regions that can be used

to align to divergent species and identify synonymous

and non-synonymous SNPs. We initially calculated the

mean and median CRR across the five TAs to assess

the average coverage per gene across the transcriptome

(Figure 2c). The mean and median CRR values were

fairly consistent between the different assemblies, with

the exception of TA_454 that had lower coverage per

CCDS and therefore would provide less sequence in-

formation per transcript. The remaining four TAs all

had very high CRR median and mean values, showing

that the majority of the CCDS represented in the TAs

have very high coverage (Figure 2c).
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Finally, a stringent assessment of assembly perfor-

mance was performed by calculating the number of

CCDS represented in a TA which had a >=90% CRR

(Figure 2d). The Illumina only TAs, and especially the

TA composed solely of 454 reads, performed poorly in

comparison to the hybrid assemblies. The results of this

metric are particularly informative when looked at in

conjunction with the number of CCDS represented in

each TA (Figure 2b). Although the number of CCDS hit

by TA_454 was comparable to that of the two TAs com-

posed purely of Illumina reads (TA_Illprs and TA_Al-

l_Ill), we can see that of those CCDS hit, the CRR is

much lower. Indeed, of the 11,297 CCDS represented in

TA_454, only 29.8% had a CRR of 0.9 or greater. This

explains the discrepancy of the results for TA_454 of

total size (Figure 2a) and number of CCDS represented

(Figure 2b). TA_Illpairs had 50.8% of 10,859 CCDS

represented with CRR >= 90% and TA_All_Ill has 58.0%

of 11,565 CCDS represented with CRR >=90%. Using

these ‘genomic’ quality metrics, we found that while the

TA_All performed best, with 61.1% of the 13,343 CCDS

represented having a CRR of > =90%, the other hybrid

TA, TA_Illprs&454, was similar in performance with

56.4% of the 13,213 CCDS represented having a CRR

of > =90%.

Closer analysis of the number of genes represented in

three of the TAs revealed that although there is a large

area of overlap in the CCDS in common between

TA_Illprs and TA_454 (n = 9794 CCDS), the TAs created

from either Illumina or the 454 data hit different areas

of the transcriptome (Figure 3). There were 1065 and

1503 CCDS unique to TA_Illprs and TA_454 respect-

ively, suggesting that these different technologies

sequenced different areas of given transcripts. This was

assessed further by looking at the CRR values for each

CCDS represented in the pure Illumina TA (TA_Illprs),

Figure 2 Assessment of TA quality using genomic information. a) the total size (kbp) of the TAs compared to the CCDS, adjusted so only

the contig sequence that aligns to a CCDS is included; b) the total number of genes represented in each TA compared to the CCDS; c) the mean

and median CRR (coverage of CCDS) in a TA; and d) the number of CCDS transcripts that have equal or greater than 90% CRR in the TA.
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the pure 454 TA (TA_454), and the largest hybrid TA

(TA_All). The CRR of a particular CCDS was often much

lower in the pure assemblies compared to the hybrid as-

sembly (Figure 4). When the 454 and Illumina reads were

combined in the other hybrid TA (TA_Illprs&454) the

CRR of a given CCDS was much longer, indicating that

these reads are providing complementary coverage rather

than similar coverage of a given CCDS, with the results

comparable in coverage to that of TA_All (Figure 4). This

is similarly true when we look at the CRR of the sin-

gle longest TA contig per CCDS (Additional file 2:

Figure S1); in the single platform TAs, although the

Illumina data does generate longer TA contigs com-

pared to the 454 data, their combined data results in

TAs that have a greater number of longer contigs per

CCDS. This derives from the much larger coverage of

the transcriptome by Illumina runs coupled with the

ability of the assembler we used to pull that data to-

gether correctly into contigs. Thus combining data

from these two different sequencing platforms not only

increased the number of CCDS, it also increased the

coverage within a CCDS by bringing together contigs

that hit different areas of that CCDS. In addition, the

hybrid transcriptome assemblies resulted in contigs

being formed for genes that were not present in as-

semblies composed of one type of sequencing platform

(n = 888, Figure 3).

Comparison of expression profiles produced using different

de novo TA scaffolds

In order to assess the performance of the different de

novo TAs as scaffolds for RNA-Seq expression analysis,

we compared the use of a TA as a mapping scaffold to

that of a predicted gene set from the well characterized

reference genome of H. sapiens. Since our focus in this

study was upon the utility of de novo RNA-Seq for quan-

tifying whole gene expression in non-model species, we

assessed the accuracy and efficiency of drawing together

sequencing reads that are from the same gene to calcu-

late an expression value for that gene. In the latter part

of this paper, we explore this mapping relationship in

the non-model species case of using increasingly evolu-

tionary divergent species (from the target species) for

grouping contigs by putative orthology (see section:

Using increasingly divergent genomic reference species for

RNA-Seq analysis).

Given the highly fragmented nature of de novo TAs,

many genes are likely to be represented by several non-

overlapping contigs. Using such a TA as a scaffold for

mapping RNA-Seq reads will result in the mRNA reads

for a given gene being split among these contigs. Thus,

in order to create an expression profile at the whole

gene level, which is equivalent to mapping RNA-Seq

reads to a predicted full length gene model, contigs of

the same gene need to be grouped in order to sum their

RNA-Seq reads. Comparing the expression profiles pro-

duced when using de novo assemblies as the mapping

reference versus using the H. sapiens CCDS dataset was

achieved by using CLC Genomics Workbench to map

paired-end Illumina to the CCDS unique gene set and to

two of the de novo TAs. The two TAs investigated in this

part of the study were TA_Illprs and TA_Illprs&454,

Figure 3 Venn diagram displaying the numbers of CCDS

transcripts represented in each of three TAs.

Figure 4 Comparison of the coverage (CRR) of the de novo TAs. The best quality transcriptome produced (TA_All) and three other TAs

created using RNA-Seq from different sequencing methods were compared: panel of three graphs depicting the CRR of CCDS that are

represented in all three TAs, each datapoint (black dots) represents the CRR of a CCDS
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since the former represents the data likely to be acquired

from a given RNA-Seq experiment, while the latter

represents a higher quality TA within the reach of most

non-model research systems. Reads mapped to the TA

contigs were then assigned to CCDS genes by assigning

each contig of a TA to a single CCDS via BLASTn

(Figure 5).

We first assessed the effects of scaffold on technical

replicate data using three pairs of Illumina sequencing

runs (pair 1: 50nt paired-end reads with an average in-

sert size of 200nt, totalling 16.4 million reads [Genbank:

SRA012427: SRR039628/29]; pair 2: 50nt paired-end

reads with an average insert size of 200nt, totalling 15.5

million reads, [Genbank: SRA012427-SRR039630/31];

pair 3: 50nt paired-end reads with an average insert size

of 200nt, totalling 14.9 million reads, [Genbank:

SRA012427-SRR039632/33]). Each of these runs were

independently mapped to both the CCDS dataset and to

the two TAs (TA_Illprs and TA_Illprs&454). Expression

was initially measured as the number of unique reads

that map to a whole gene. Scaffold had little effect on

technical replicates, with replicates having > 0.9 correl-

ation (Spearman’s rank correlation coefficient, ρ;

Additional file 3: Figure S2). These correlations were fur-

ther investigated using a MVA (minus versus average)

plot [22], which provides insights into abundance-

dependent biases [23-25]. For this analysis expression

was measured using RPKM (Reads Per Kilobase of exon

model per Million mapped reads) values [26]. As is typ-

ical for RNA-Seq technical replicates, agreement among

replicates is highly dependent upon expression level,

with low expressed genes showing less agreement among

replicates [25] and this effect was essentially identical

across scaffolds (Additional file 4: Figure S3).

We then compared the mapping of one set (pair 1) of

the RNA-Seq read data directly to the CCDS dataset ver-

sus two of the TAs to assess the performance of de novo

TAs for whole gene expression analysis. Directly map-

ping to the CCDS dataset recovered expression data

for 15,763 genes, while going through TA_Illprs or

TA_Illprs&454 provided data for 10,761 and 12,860

genes respectively. However, of those genes (CCDS) that

did have expression data in terms of number of unique

reads from both methods the correspondence between

them was extremely high (CCDS vs. TA_Illprs Spear-

man’s ρ = 0.94, P < 0.0001; CCDS vs. TA_Illprs&454

Spearman’s ρ = 0.95, P < 0.0001; Additional file 5: Figure

S4). Expression as RPKM was also measured for one

comparison – that of mapping to CCDS vs. to

TA_Illprs&454 (Figure 6a), the results of which also

showed a high degree of correlation. A MVA plot was

used to further assess the relationship between the

CCDS and TA_Illprs&454 mapping (Figure 6b). The

distribution of disagreement between the two mapping

methods was not a function of expression since the

TA_Illprs&454 mapping had a higher level of expression

than the CCDS mapping across the range of expression

values. Two separate and technical causes were observed.

First, calculation of the RPKM values for the CCDS map-

ping used the length of the CCDS gene, while for the

TA_Illprs&454 mapping, only the length of the CCDS

gene covered by the TA was used (in order to reflect the

de novo aspect of the mapping). This caused an inflation

of the TA values. Second, the two mapping approaches

were different. The direct mapping only quantified the

reads that mapped uniquely to a given CCDS. Although

the TA mapping used the same approach for mapping

RNA-Seq reads to the individual contigs of the TA, each

contig was assigned to its best CCDS BLAST hit. This

approach allowed for the collection of 5’ and 3’ UTR

regions into contigs that also overlapped with CCDS

genes, significantly inflating the TA mapping reads.

Using increasingly divergent genomic reference species

for RNA-Seq analysis

For species lacking a well assembled genome, annotating

RNA-Seq reads is problematic. One route is to map

reads to a de novo TA and then assign each TA contig

(and therefore the associated reads) to a unique gene

through a BLAST search against the reference gene set

Figure 5 Diagram of the two methods used to assign RNA-Seq reads to CCDS. a) RNA-Seq reads are mapped directly to the CCDS dataset,

b) RNA-Seq reads are mapped to a TA and then the TA contigs assigned to CCDS via BLASTn.
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of the nearest Genomic Reference Species (GRS). How-

ever, the evolutionary divergence between the target spe-

cies (the species of interest) and the GRS is likely to be a

significant source of bias and error. For genes with high

rates of evolutionary change there is a decreased likeli-

hood of successful homology matching between the TA

contigs of the target species and GRS gene. It is there-

fore expected that as evolutionary distance increases, the

ability to group contigs to a particular gene will decrease

and potentially be accompanied by an increase in incor-

rect assignment of contigs to putatively orthologous

genes. In addition, with increasing evolutionary distance,

the most accurate expression information is likely to

come from a biased set of genes, notably those having a

high level of expression and low rates of evolutionary

change (e.g. housekeeping genes). Here we explore the

magnitude of this effect by studying the decrease of in-

formation content and accuracy of RNA-Seq data gene

assignment with the use of increasingly divergent GRS

as proxy references.

Six species of increasing divergence from H. sapiens

were chosen as genomic reference proxies, spanning a

range of 5 to 160 million years divergence. This range

was chosen as a likely range researchers may encounter

in their choice of a GRS. RNA-Seq reads were mapped

to the most cost effective de novo TA that also per-

formed well (TA_Illprs&454) and each contig from this

assembly was assigned to the predicted genes from each

divergent species using BLASTx (with GRS genes as

protein sequences). The orthology relationships were

also determined between the H. sapiens CCDS and GRS

gene sets using the Reciprocal Best Hit method [27-29]

via BLASTp (see Figure 7 for a diagrammatic overview).

The results of using these GRS proxies were then com-

pared with directly using the predicted gene set of the

target species (the H. sapiens CCDS dataset).

Transcriptome coverage when using proxy GRS

We first assessed the utility of the GRS grouping ap-

proach by calculating the number of GRS genes that hit

Figure 6 Comparison of the RNA-Seq expression levels produced from different mapping methods. a) Y axis shows the RPKM values

when reads are mapped directly to the CCDS, X-axis shows the RPKM values when mapping the same CCDS genes via the TA_Illprs&454 scaffold.

Method for mapping via TAs is showing in Figure 5b. b) Y axis shows the number of differences between RNA-Seq reads mapped (in RPKM)

either directly to the CCDS or via the TA_Illprs&454 scaffold [log(CCDS) – log(TA_Illprs&454 scaffold)]. X-axis shows the average of the log RPKM

for CCDS genes using the two mapping methods

Figure 7 Overview of the non-model species RNA-Seq mapping

strategy for inferring ‘gene’ grouping of RNA-Seq read data.

Displayed are RNA-Seq reads that are mapped to three different TA

contigs. The red and green contigs (DNA) are assigned to the same

gene of the GRS (protein) via BlastX. However, due to divergence

between the target species and the genomic reference species

(GRS), the blue contig is not, resulting in only the red and green

RNA-Seq reads being assigned to this GRS ortholog. In order to

compare the expression data inferred from these GRS groupings to

that obtained by directly mapping RNA-Seq reads to the CCDS

genes, the orthology between GRS and CCDS genes was

determined using the Reciprocal Best Hit (RBH) via BLASTp. This

method can be compared to the method outlined in Figure 5b.
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the de novo TA using BLASTx (Figure 8a). There is no

appreciable difference in the number of genes of Chim-

panzee, Orangutan, Macaque and Marmoset and that

of the human dataset (CCDS) that have TA contigs

assigned to them. However, there is a decrease in the

number of genes that have a TA contig hit when using

the Mouse gene set and a further drop when using Platy-

pus. There is thus a decrease in the number of genes

that can be identified in the de novo transcriptome with

evolutionary divergence, however this effect is only

observed at the high end of divergence.

We also expect the number of orthologous relation-

ships between TA contigs and a particular GRS gene i.e.

gene coverage, to decrease with increasing divergence.

To measure this effect we determined the CRR value for

each of the GRS genes (or CCDS in the case of H.

Figure 8 Assessment of error and bias using increasingly divergent genomic reference species as proxies. a) Number of genes in

different datasets derived using either H. sapiens, or each of the six species evolutionarily divergent from H. sapiens as the genomic reference.

Lines are as follows: Blue square - the total number of genes in the filtered species dataset; Red triangle - the number of genes that have TA

contig hits; Green circle - Number of genes with CRR>= 90%; b) Blue diamond - Comparison of the Spearman’s correlation (ρ) for expression

values obtained through annotating TA contigs using the CCDS dataset and using the proxy GRS datasets; Red squares - Level of error incurred

through using divergent GRS to annotate TA measured as the percentage of TA contigs incorrectly assigned to CCDS; c) Bias obtained through

using GRS as proxy datasets (number of GO and/or KEGG categories): Red triangles - GRS genes orthologous to human CCDS genes; Blue squares

- subset of the GRS orthologs that have only TA contigs that are correctly assigned to them; Green circles - residuals from a graph of expression

values obtained via mapping to the TA and then annotated either directly to the CCDS or to a GRS gene set. Significance is at p < 0.05 in all

cases; d) Approximate divergence times of proxy GRS from H. sapiens (taken from [30-33].
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sapiens) (Figure 8a). In this case there is an immediate

effect of using a proxy reference genome, with the num-

ber of genes having a CRR >=90% decreasing from that

of Human (7353 genes) to that of the next closet rela-

tive, the Chimpanzee (5614 genes), which is a drop of

24%. This decrease then levels out, with only a 4.3% de-

crease across ca.100my to Mouse (CRR >=90% in 5370

genes) and finally reaches its lowest level in Platypus,

which only had 4645 genes with a CRR >=90%. These

results suggest that the loss of RNA-Seq read informa-

tion when using a proxy GRS derives from one or more

contigs not being assigned to their GRS gene due to lack

of orthology. This will lead to a loss of sequence and

associated expression value per gene. However, this loss

does not increase in a linear fashion with evolutionary

distance from the target species.

Effect of using proxy GRS on expression signal: introduction

of error

In order to determine how much expression signal is

lost via reduced contig assignment when using divergent

species as proxy references, expression values were cal-

culated for GRS genes that are both represented in the

de novo TA and have an RBH ortholog in the CCDS

dataset. By grouping TA contigs that hit GRS genes

orthologous to CCDS, we could compare the expression

signal between mapping to a CCDS via a TA (Figure 5b)

and to the GRS dataset via a TA (Figure 7). The correl-

ation is fairly high for all taxa (Chimpanzee, Orangutan,

Macaque, Marmoset: Spearman’s ρ= 0.94; p < 0.0001;

Mouse: Spearman’s ρ= 0.91; p < 0.0001) except Platypus

(Spearman’s ρ= 0.83; p < 0.0001). Thus, while there was

some loss of expression signal (expected as fewer contigs

are assigned to GRS datasets compared to the CCDS),

using the GRS as’gene’ grouping proxies was still

informative.

In order to explore sources of error when using in-

creasingly divergent GRS proxies, we further examined

the differences in expression values obtained via map-

ping TA contigs to the CCDS or via one of the GRS

(Figure 9). Points above the line of unity would be CCDS

that have fewer contigs assigned to it through utilisation

of GRS to annotate the TA. Points below the line of

unity, as well as some above it, are CCDS that have con-

tigs wrongly assigned to them during the BLAST search,

resulting in a greater number of reads than the direct

CCDS mapping method. The extent of this error can be

calculated by identifying the true subset of GRS genes

that are orthologous to Human genes in the CCDS data-

set. Since we previously assigned, via BLASTn, TA con-

tigs to CCDS genes, and have established CCDS to GRS

RBH orthologs with high confidence using BLASTp,

whether a given TA contig assignation to GRS gene was

correct can be determined (correct when TA contigs are

assigned to the same CCDS via direct BLASTn or via

BLASTx to a GRS gene and which in turn matches the

same CCDS via BLASTp). The BLASTp RBH between

the GRS and CCDS datasets was assumed to be robust

and so if a contig was wrongly assigned to a CCDS (via

the GRS dataset), it is likely that BLASTx is the source

of error.

The level of error (percentage of TA contigs wrongly

assigned to a CCDS via GRS dataset) was found to in-

crease as evolutionary distance from Human increases

(Figure 8b). The error for Chimpanzee was fairly low,

at 3.96%, and similar to Orangutan (4.20%), Macaque

(4.80%) and Marmoset (4.80%). Utilisation of Mouse

resulted in 6.30% of the contigs being wrongly

assigned, while for Platypus error increased massively

to 17.06%. As mentioned above, error is likely to occur

during the BLASTx of TA contigs and GRS genes

(proteins). We investigated whether increasing the

stringency of the BLAST parameters decreased the

level of error for two of the GRS: Chimpanzee and

Mouse. In both cases it did, with Chimpanzee now

having 2.49% error, and Mouse 4.43% error. As

expected this decrease was highest for the more diver-

gent Mouse. A repercussion of increasing the threshold

identity in the BLAST searches is that fewer genes

were annotated in the de novo TA (Chimpanzee:

12922 (decrease of 7.28%); Mouse: 11533 (decrease of

11.11%). The BLASTx parameters used must therefore

be a tradeoff between the size of the transcriptome

Figure 9 Quantiative gene expression results comparing results

from direct mapping vs. using a Mouse proxy. Comparison of

expression levels (log2) between genes identified via BLASTn of TA

contigs and the H. sapiens CCDS dataset (Y-axis), and genes

identified first via BLASTx of TA contigs and the Mouse dataset, and

then BLASTp RBH of Mouse dataset and the Human dataset (X-axis).

Each point represents a CCDS gene. Points above line of unity

include genes that lose contigs through no hit in the Mouse dataset
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that can be annotated by using a divergent GRS, and

the level of error accepted.

Ascertaining the level of bias when using proxy GRS

We further investigated the potential sources of error

and bias by gene set enrichment analysis using the GO

and KEGG functional categories of the Human CCDS

genes (Figure 8c; Additional file 6: Table S2, Additional

file 7: Table S3, Additional file 8: Table S4). First, we

assessed whether there was any bias in the GRS genes

identified as CCDS orthologs by TA hits of the GRS

datasets. For all the taxa investigated we observed a sig-

nificant bias in many functional categories although

there is no significant pattern of an increase in this bias

with evolutionary divergence. However, when only genes

that had no contigs incorrectly assigned to them were

analysed a different picture emerged (Figure 8c). First,

there was an increase in the number of biased functional

categories for all comparisons, although this was modest

for most taxa. Second, there was an increase in bias with

divergence that mirrored the pattern of error. This trend

was mainly due to the highly divergent Platypus, where

the number of biased functional categories rose from 21

to 27 when error was removed. This pattern suggested

that the increased error in the most divergent species

masked the higher bias in those species.

Next we investigated bias in the gene expression

results from the two different mapping approaches. We

took the residuals from a fit of expression levels from

the direct mapping of TA (TA_Illprs&454) to CCDS

against the expression levels obtained using GRS proxies

to annotate the TA contigs. Residuals had a value of 9

when genes had identical expression levels in both meth-

ods. Residuals were positive when they had fewer reads

mapped to them from the method using GRS proxies to

annotate the TA contigs, and residuals were negative

when CCDS genes had more reads mapped to them

using the GRS proxies to annotate the TA contigs

method. We expected that highly expressed and evolu-

tionarily conserved genes would be over-represented

among those having a residual of 0, and that this bias

would increase over evolutionary time. We therefore

assessed whether there was any unequal distribution of

gene functional categories among those having resi-

duals = 0 vs. those having residuals 6¼ 0. We found that

there is a significant bias in a low number of functional

categories for all taxa, except in Platypus where the

number of biased functional categories increases three-

fold above Mouse (Figure 8c). When investigating

whether there was a difference between positive and

negative residuals, we found no biased categories in any

taxa (results not shown).

Our final analysis looked at general trends in the types

of functional categories that were over and under-

represented in our analyses (Additional file 6: Table S2,

Additional file 7: Table S3, Additional file 8: Table S4).

Mitochondrion (GO:0005739) and protein binding

(GO:0005515) categories were nearly always over-

represented when using GRS to annotate TA contigs, and

in comparisons with Platypus, transcription and transla-

tion related categories (e.g. translation (GO:0006412),

RNA splicing (GO:0008380), ribosome (GO:0005840))

were also over-represented. Typically under-represented

categories included a diversity of biological functions,

from sensory perception of smell (GO:0007608) and de-

fence response to bacterium (GO:0042742), to signal

transduction (GO:0007165). In general then, it appears

that genes in the over-represented category, primarily

represented by comparisons with Platypus, included genes

with very conserved housekeeping functions, while those

being under-represented included categories of genes

known to undergo more complex evolutionary dynamics

(e.g. birth-death dynamics).

Discussion

Analysing RNA-Seq data for gene expression has trad-

itionally required genomic resources for the species of

interest in order to map and annotate reads. Greater se-

quencing depth and read length, more advanced assem-

bly software [6,34] and most importantly, lower costs,

now make RNA-Seq an attractive alternative to design-

ing and using custom microarrays for researchers want-

ing to study the transcriptomes of species that don’t

have genomic resources. For such non-model species

one route to using RNA-Seq for expression insights is to

perform de novo transcriptome assembly and use this as-

sembly as a scaffold for quantitative RNA-Seq mapping.

While this has been done using the 454 platform (e.g.

[9]), the small number of reads typically provided per

run (ca. 1 x 106) makes this perhaps only accurate for

the most highly expressed genes. Currently in the litera-

ture there is much discussion about how many RNA-Seq

reads are necessary to generate repeatable quantitative

measures for middle to low expressed genes, with emer-

ging empirical results suggesting at least 10 to 30 million

reads are necessary ([25,35], but see [36]). This strongly

suggests that using the Illumina platform, which can

provide two orders of magnitude more reads for less

than half the cost of the current 454 technology, is the

best way forward for quantitative expression analysis.

Thus, here we have assessed the performance of Illu-

mina sequencing data in the non-model species context.

To date, only a handful of studies have applied the

Illumina approach for quantitative RNA-Seq expression

analysis in non-model species. In their investigation of

the transcriptome profiles of parasitized vs. non-

parasitized Plutella xylostella moths, Etibari and collea-

gues assembled all of their Illumina reads into a de novo
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transcriptome and consequently used this as a scaffold

for mapping their differently parasitized groups. Annota-

tion of the P. xylostella transcriptome used a BLAST

search in NCBI [18], allowing them to identify differen-

tial expression of many metabolic and immune genes. A

different study developed a pipeline that facilitates the

assembly and annotation of non-model species tran-

scriptomes through utilisation of the genomic resources

of related organisms. This method allowed the research-

ers to perform expression profiling and also to increase

the quantity and quality of sequence data available for

their targeted species, the Chinese hamster [17].

The current study was motivated by questioning the

general accuracy of the de novo approach exemplified by

these two studies. While their conclusions are well justi-

fied, here we have worked to attain a deeper understand-

ing of the potential errors and biases that might underlie

such analyses. One major concern is the level of bias in

the genes that are finally included in the analysis. Genes

assembled and annotated are not likely to be a random

sample of the genome, since highly expressed genes will

likely be assembled and annotated best. Etibari et al. [18]

found no bias in GO terms between their de novo tran-

scriptome assembled for P. xylostella compared the silk-

worm Bombyx mori, which diverged approximately 120

million years ago (Wheat & Wahlberg, in review). How-

ever, the GO terms that are liable to be shared between

these two Lepidoptera are themselves likely to be highly

biased, as the greatest number of B. mori genes having

annotations are those in common with the genomic

reference species Drosophila melanogaster. Given the

deep divergence of D. melanogaster from B. mori, which

last shared an ancestor approximately 330 million years

ago (Wheat & Wahlberg, in review), the only genes

likely to be functionally annotated are those with highly

conserved function and constrained evolutionary dy-

namics. Such housekeeping genes are thus very likely to

be those highly expressed in P. xylostella, and thus un-

biased with respect to the annotated genes in B. mori.

The Birzele et al. [17] study used Velvet to assemble

their transcriptome. This is of concern given recent

comparative assessment of transcriptome assembly soft-

ware packages, which found Velvet to perform among

the worst software programs for use upon their tran-

scriptome dataset [37]. We therefore wished to use an

assembler which had previously been shown to perform

well [37] and so chose the CLC method.

In order to assess the performance of RNA-Seq, we

addressed several steps of this approach, beginning with

de novo transcriptome assembly. The effect of sequen-

cing technology and volume of data upon the quality of

the de novo TA was assessed by comparing 8 different

TAs using RNA-Seq data for H. sapiens. In comparison

to previous examinations of assembly performance that

have used simulated data [37,38], using data from H.

sapiens gave us a unique combination of genomic

insights and real world data. We find, as have others,

that the standard metrics commonly applied may lead to

a sub-optimal choice of TA [37]. While metrics solely

based on contig lengths suggested that TAs composed of

only Illumina reads performed best, in-depth investiga-

tion using genomic resources showed a different picture.

By using BLAST to identify putative orthologous rela-

tionships between TA contigs and the predicted gene set

of humans, the aligned region between the two could be

determined. By dividing this aligned length by the full

length of the predicted gene provides a ratio indicating

how much of the coding region a TA contig has success-

fully reconstructed. Here we have used this approach to

calculate the entire amount of the predicted gene cov-

ered by all the different TA contigs in a given assembly,

and referred to this as the contig reference ratio (CRR).

After such comparison between TA contigs and their

putative ortholog appeared in the first de novo transcrip-

tome assembly [12], similar ratios have been developed

(e.g. [39]). We find the three most informative ratios are

for: 1) all possible TA contigs (all CRR), 2) the longest

TA contig per ortholog (longest CRR), and 3) the sum of

the ortholog length covered by all the TA contigs, which

is then divided by the full length of the ortholog (sum

CRR). While informative, all CRR, which was used by

O’Neil et al. 2010 [39], inflates assumed TA performance

since several contigs for the same gene may be quanti-

fied while providing no information as to the total

amount of each ortholog a given TA covers. Longest

CRR is perhaps the single best metric for assessing TA

performance. Ideally, the best TA would predict single

contigs that covered the full length of each transcript, as

well as the different isoforms, without any over predic-

tion. Here we have used the longest CRR only once, for

assessing our TAs (Additional file 2: Figure S1) and this

provided very similar insights to that of our sum CRR

results. Throughout our paper we have almost entirely

used a sum CRR because we wish to know how much of

each gene we have covered in our TA, since maximizing

coverage is necessary in order to generate a good scaf-

fold for mapping the RNA-Seq data and this information

is combined on a per gene basis.

Availability of the CCDS predicted gene set allowed us

to ascertain the level of TA coverage for each gene. Al-

though pure Illumina-based TAs had fewer and longer

contigs than both the pure 454 TA and the hybrid TAs

(composed of both Illumina and 454 reads), the pure

Illumina TAs also had a much lower coverage of the

transcriptome compared to the hybrid assemblies, at

both the individual gene and total transcriptome level.

Using the hybrid TA as a scaffold produced RNA-Seq

mapping results that were similar to directly mapping to
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the CCDS predicted gene set from the H. sapiens gen-

ome. Although there were approximately 2000 fewer

genes mapped when using the TA as compared to the

CCDS gene set, the correlation in whole gene expression

values between these two methods was extremely high

(Spearman’s ρ = 0.94). Similar high levels of correlation

were observed across technical replicates when mapped

to the hybrid TA assembly. While additional improve-

ments could be made in the de novo approach, the cor-

relation between the two approaches is already much

higher than that observed in comparisons between

RNA-Seq and microarray results (Spearman’s ρ = 0.73;

[40]). Thus, hybrid TA assemblies, combining Illumina

and 454 reads, emerge as the best assemblies and scaf-

folds for RNA-Seq mapping. We should note that this

study has utilised Illumina RNA-Seq data that was avail-

able at the time, technology is advancing at a rapid rate

and the quality of de novo transcriptomes that can

be assembled with the latest sequencing data (e.g. Illu-

mina’s HiSeq 2000: http://www.illumina.com/systems/

hiseq_2000.ilmn) will likely surpass what we show here.

Thus this study should be taken as a comparative study,

and a conservative guide.

After mapping RNA-Seq reads to a TA (whether it be

a de novo assembled one, or a transcriptome already

available for the species), the contigs need to be assigned

to genes for grouping and functional annotation. In non-

model species, the ability to obtain significant biological

insights into gene expression variation is limited by gene

functional annotation. In model systems obtaining gene

expression values and assigning these to a growing num-

ber of genes of likely biological function is well devel-

oped. Non-model systems necessarily must tap into this

reservoir of data using BLAST and assumptions of gene

function homology, and the genome or gene set of a

related but potentially very divergent species. While this

approach can be successful (e.g. [12,37]), what effect

does increasing evolutionary distance from the focal spe-

cies have upon functional insights?

Gibbons and colleagues investigated the accuracy of

ortholog prediction between increasingly divergent spe-

cies, using RNA-Seq data from one species and genomic

proteome data from a GRS [41]. They observed a de-

crease in the number of successfully identified orthologs

(contig/GRS gene pairs) with increasing divergence.

Their study spanned a time-frame of 300 million years

from the target species, with the two youngest GRS

being 40 and 150 million years divergent from the focal

species. Here we sought to investigate whether a nega-

tive effect of divergence is observed within the 0–150

million year time frame. Although we expected that as

evolutionary distance increased between the GRS and H.

sapiens there would be a significant decrease in the

number of genes in the GRS gene sets that found a hit

in the de novo TA, this effect was weak up to 100 million

years of divergence (Figure 8a). A similar effect was

observed when assessing the amount of each gene that

was covered by TA contigs. Thus there is little negative

effect of using GRS as reference datasets for the group-

ing contigs as divergence increases up to 100 million

years, although beyond this age, the number of genes

having good coverage assigned decreases.

These results also suggest that the use of proxy GRS up

to 100 million years divergent from H. sapiens for group-

ing TA contigs might result in only a small bias on expres-

sion levels compared to directly mapping RNA-Seq reads

to the CCDS dataset. Within this time frame proxy GRS

are also likely to enable successful measurement of expres-

sion levels as a high correlation in expression between

these two methods was found in all cases, even when

comparing Mus musculus (mouse), which is c. 75–91 mil-

lion years divergent from H. sapiens (Figure 8d; [30-32].

However, expression results using these divergent species

as proxy references also suffered from a level of incorrect

assignment of TA contigs to genes, and this negative effect

was found to increase with evolutionary distance

(Figure 8c). While this effect was moderate using GRS

species up to 100 million years divergent, comparisons

using Platypus as the GRS showed both a dramatic in-

crease in incorrectly assigned TA contigs and a lower cor-

relation with the CCDS mapped expression values

(Figure 9b). This identified error was mirrored in the gene

set enrichment analyses, as incorrect contig assignment

should be greatest for genes that have higher evolutionary

rates, or conversely, lower for constrained genes

(Figure 8c). Error is likely to accrue during the BLASTx

search of the TA contigs against the GRS dataset, and in-

deed when this BLASTx was repeated for two of the GRS

using more stringent parameters of identity less error was

encountered. However, a repercussion of this was reduced

coverage of the transcriptome in terms of genes that could

be annotated.

Several important limitations of our approach should be

noted. First, there are certainly many species that do not

have a genomic reference species less than 100my. While

our approach would certainly aide such projects, research-

ers should be aware of the error and bias inherent in such

analyses. Fortunately, as the genomics era progresses avail-

able genomic reference species will increase. Second, a

large class of genes will lack homology between species,

and this will increase with divergence. Such orphan genes

are likely to be involved in species-specific adaptations

and potentially the most ecologically and evolutionary

interesting aspects of a species transcriptome [see [42] for

a review]. Therefore, there is a high likelihood that

insightful results reside in careful analysis of that part of

the transcriptome that does not hit a proxy reference gen-

ome and for which no known biological function is
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established. Our analyses suggest that de novo analysis of

orphan genes will be most insightful when such genes are

assembled to their full length. Careful examination of TA

contigs for long open reading frames flanked by both 5’

and 3’ UTRs may prove useful for such assessment (e.g.

looking for the polyadenylation signal). Overcoming the

bias against studying orphan genes is a challenge facing

the entire research community.

A third limitation arises due to variation in recent gene

duplication events among individuals, commonly referred

to as Copy Number Variants (CNV). When young, CNVs

can be very difficult to detect in RNA-Seq data. When

mapping RNA-Seq reads back to a full genome, which is

usually derived from a single individual, differences among

individuals in their CNV with reference to the genome

can result in reads from several independent loci being

mapped to a single locus, resulting in a spuriously inflated

measure of single locus expression. This is certainly the

case in the de novo approach we use here to obtain whole

gene expression levels, as the contigs we assign to the

same gene may derive from incomplete transcript assem-

bly as well as recent duplication events. Expression differ-

ences detected between biological groups using this whole

gene approach necessarily must be studied in more detail,

to assess the causal basis of the signal. We argue that this

is true in both model and non-model systems alike, where

there are likely to be significant differences between the

scaffold genome and the individuals having their RNA

sequenced. Finally, this is similarly true for splicing iso-

forms, as our whole gene approach pulls together expres-

sion across exons for the entire gene. To the extent that

differences among groups arise from expression differ-

ences solely in specific exons, this will give rise to expres-

sion differences that necessarily must be investigated

further to determine whether this difference is evenly dis-

tributed across the entire gene. A final point of import-

ance is regarding the choice of transcriptome assembler.

Many papers are still emerging where groups have used

poorly performing assembly software to assemble their

transcriptome data. Our results might not be obtainable

with such software, especially as few programs handle hy-

brid data well. Thus we encourage researchers to be aware

of the latest advances in transcriptome assembly and use

methods shown to perform well with their generated data

[37]. In sum, our whole gene expression quantification

provides a robust starting place for the identification of

gene expression differences whose biological basis will re-

quire more detailed study, as should be common in any

RNA-Seq study regardless of genomic resources.

Conclusions

Our findings indicate that RNA-Seq data from non-model

species can be successfully de novo assembled into quality

transcriptomes. These assemblies can then be used with

high performance, as scaffolds for mapping RNA-Seq read

data for quantitative whole gene expression analyses. In

order to functionally annotate de novo transcriptomes,

proxy genomic reference species up to approximately 100

million years divergence from the target species can be

utilised, generating results similar to those produced from

using high quality predicted gene sets as scaffolds. Al-

though there is a reduction in the size of the annotated

portion of the transcriptome assembly when using proxy

reference species, and there is a significant amount of

error, these effect sizes are relatively small until past

100my divergence. The use of more stringent parameters

in BLAST searches reduces this error, but this also

decreases the number of genes that are able to be anno-

tated, thus producing a trade-off researchers should be

aware of. The level of bias in the genes that are able to be

annotated in the resultant transcriptome is also an import-

ant consideration, as highly divergent (and often the most

interesting) genes are potentially missing from the ana-

lyses. As sequencing technology advances, as it will already

have done since this study, the quality and amount of

RNA-Seq data that will be produced and the ability of

researchers of all disciplines to assemble and annotate

transcriptomes of non-model species will increase dramat-

ically, making all species amenable to such studies in the

future.

Methods
RNA-Seq data

In order to assess the potential of de novo RNA-Seq ana-

lysis for non-model species, datasets from both Illumina

(http://www.illumina.com) and 454 GS FLX (http://

www.454.com) were needed from a species having a

wealth of genomic information. Searches of available

databases revealed that sufficient data was available for

Homo sapiens. RNA-Seq data for all analyses were gen-

erated from the same RNA reference sample (Human

Brain Reference RNA) of the MicroArray Quality Con-

trol (MAQC) project (MAQC Consortium 2006; [43]).

Data from two Illumina ([Genbank: SRA012427:

SRX018974-79], 3 sets of paired-end Illumina runs, one

run per lane; [Genbank: SRA010153: SRX016366] - one

full plate of Illumina, 7 lanes) and one 454 GS FLX

([Genbank: SRA003647: SRX002933 & SRX002935] - 11

runs, each one a half plate) experiments were down-

loaded from the Sequence Read Archive (SRA) at NCBI

(http://www.ncbi.nlm.nih.gov). The data were imported

into the CLC Genomics Workbench 4.7 (http://www.

clcbio.com) and the reads quality and adaptor trimmed

from fastq data (where appropriate) using the default

settings (Ambiguous limit = 2, quality limit = 0.05). See

Additional file 1: Table S1 for the size of the RNA-Seq

datasets and the number of reads incorporated into a de

novo transcriptome assembly.
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Predicted gene sets

A predicted gene set for Homo sapiens was downloaded

from the consensus coding sequence (CCDS) database

[44] at NCBI, build 37.1 (http://www.ncbi.nlm.nih.gov/

CCDS/CcdsBrowse.cgi). This gene set was filtered using

custom python scripts to identify and remove alternative

splice variants and recent gene duplications by self

BLAST. For each CCDS that found a hit using BLASTn

against another CCDS with > 95% DNA identify for at

least 100 nucleotides and an e-value < = 1x10-6, the

shorter of the two, or its exact duplicate, was removed.

The resulting filtered dataset is hereafter referred to as

the CCDS dataset.

Predicted gene sets of 5 species of increasing evolu-

tionarily divergence from H. sapiens were downloaded

from Ensembl, release 63 (www.ensembl.org). These

were self BLAST filtered as above, but at the protein

level (BLASTp), with removal of the shorter sequence

when amino acid identity > 90% over 33 amino acids

with an eval < = 1x10-6. The species used and approxi-

mate divergence times from H. sapiens are Chimpanzee

(Pan troglodytes, ~5-10my), Orangutan (Pongo abelii,

~13-18my), Macaque (Macaca mulatta, ~20-35my),

Marmoset (Callithrix jacchus, ~33-50my), Mouse (Mus

musculus, ~75-91my) and Platypus (Ornithorhynchus

anatinus, ~160-162my) [30-33].

de novo assembly and mapping of RNA-seq reads

RNA-Seq data were de novo assembled into tran-

scriptome assemblies in various combinations using

CLC Genomics Workbench. General parameters for

assembly were as follows: mismatch cost set at one

and both insertion and deletion cost set at two.

Other parameters used in the transcriptome assem-

blies were dependent upon the sequencing platform

of the data used. For paired-end Illumina data the

minimum and maximum distances between the pairs

was 150nt and 250nt. For 454 data, which were un-

paired, the assembly parameters also included a

length fraction of 0.4 and a similarity limit of 0.85.

The minimum contig size for all assemblies was 200

nucleotides. Scaffolding was not performed for the

assemblies in this study. Assembly statistics are

available in Additional file 1: Table S1.

Paired-end Illumina RNA-Seq data were mapped to

each de novo TA and also to the human CCDS data-

set using the following parameters in CLC Genomics

Workbench. The maximum number of mismatches

allowed was two; the minimum length and similarity

fraction was set at 0.8; and the maximum number of

hits per read was 10. Broken pairs were included in

the counting scheme and only unique mappings were

counted for expression analyses.

Bioinformatics

To uniquely assign each TA contig to its best hit CCDS,

BLASTn was used and the results filtered according to

two criteria: > 95% DNA identify for at least 100 nucleo-

tides and an e-value < = 1x10-6. Unique assignment of

each TA contig to its putative ortholog in the predicted

gene set of a given divergent species used BLASTx, at

the cut-off levels: bitscore > = 50, e-value < = 1x10-6, over

a length of 33 amino acids. A second more stringent

cut-off level was used in an assessment of the level of

error incurred during the BLASTx: bitscore > = 100, e-

value < = 1x10-25, over a length of 33 amino acids.

Orthology assignment between H. sapiens and the other

mammalian predicted gene sets, all at the amino acid

level using BLASTp, were determined using the robust

method of Reciprocal Best Hit [27-29] BLAST at the

cut-off levels: >60% DNA identify for at least 33 amino

acids and an e-value < = 1x10-5. Custom scripts were

written for running and parsing all BLAST commands

and outputs. NCBI’s BLAST version 2.2.25 was used

both locally and at the Centre for Scientific Computing

(CSC), Finland. Gene enrichment analyses compared the

distributions of GO and KEGG categories between

selected lists using the FATIGO tool of the online soft-

ware suite Babelomics (http://babelomics3.bioinfo.cipf.

es; [45]). CCDS genes were assigned their Ensembl

header and these identities as input for Babelomics,

which assigned functional categories based upon them.

The lists were quality assessed prior to use by ensuring

only one copy of each gene was used. Parameter settings

for FATIGO were as follows: GO levels analysis not in-

clusive (join levels); Direct annotation through ontology

levels; Filter terms by number of annotated genes in DB

(Your input genes). A two-tailed Fisher exact test was

performed for each FATIGO analysis (n = 30). All other

statistical analyses were performed using the software

package JMP version 8 (SAS, Inc.).

Additional files

Additional file 1: Table listing the RNA-Seq data used in the de

novo transcriptome assemblies (TA) and the basic assembly metrics

for each transcriptome assembly.

Additional file 2: Figure depicting the CRR distribution of the

single longest TA contig for each CCDS gene, for the different TAs.

Additional file 3: Panels of figures depicting pairwise comparisons

of expression data produced when mapping different technical

replicates of RNA-Seq Illumina data to varying templates.

Additional file 4: Panels of figures depicting pairwise comparisons

of expression data produced when mapping different technical

replicates of RNA-Seq Illumina data to varying templates.

Additional file 5: Plot comparing the RNA-Seq expression levels

produced from either mapping reads directly to the CCDS dataset,

or to a de novo transcriptome assembly.

Additional file 6: Table listing the functional GO and KEGG

categories that are significantly (p<0.05) over- or under-represented
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in the total list of GRS orthologs of CCDS genes that have a TA hit,

compared to the total list of CCDS genes.

Additional file 7: Table listing the functional GO and KEGG

categories that are significantly (p<0.05) over- or under-represented

in a list of GRS orthologs of CCDS genes that only have correctly

assigned TA hits, compared to the total list of CCDS genes.

Additional file 8: Table listing the functional GO and KEGG

categories that are significantly (p<0.05) over- or under-represented

in the list of residuals that equal 0 in a plot of expression levels

obtained when mapping TA contigs directly to the CCDS gene set

versus mapping the same TA contigs to the GRS dataset (and then

using the orthologous genes for comparison purposes).
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