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Abstract

In this article, a general and systematical quantitative robust linear param-

eter varying (LPV) control method is proposed for active vibration control

of LPV flexible structures such that a complete set of control objectives can

be considered, especially, the reduction of necessarily required control ener-

gy. To achieve this goal, phase and gain control policies are employed in

LPV H∞ control designs for suitable selection of weighting functions. The
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designed parameter-dependent H∞ controller allows us to explicitly consider

the time-varying parameters of the dynamical models for saving the control

energy and achieving other control objectives such as the specification of vi-

bration reduction and qualitative robustness properties to both parametric

and dynamic uncertainties. Then, various reliable robustness analyses are

conducted to quantitatively verify the robustness properties of the closed-

loop system. The design processes and the effectiveness of the proposed

control method are illustrated by active vibration control of a non-collocated

piezoelectric cantilever beam excited by an external position-varying force

which is the disturbance to be rejected. This plant has typical position-

dependent dynamics and is modeled as an LPV system whose time-varying

parameter is the actual position of the disturbance. The numerical sim-

ulations demonstrate that, compared to the classical H∞ control and the

acceleration feedback control, the proposed control method allows to com-

pute a quantitatively robust parameter (force position) dependent controller

whose benefit is to require less control energy and smaller control input, while

satisfying the same control objectives in the frequency domain.

Keywords

LPV H∞ control, phase and gain control policies, saving the control energy,

parametric and dynamic uncertainties

1. Problem statement

Since lightweight components are widely used in practical structures for

miniaturization and efficiency, these structures become more flexible and

more susceptible to vibrations, which may cause significant noises, harmful
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stresses, malfunctions and even failures. As a result, the flexible structures

have naturally become suitable candidates for active vibration control. How-

ever, in the presence of random variations in structural properties and/or the

errors in the system identification process, the obtained dynamical models in-

evitably have parametric uncertainties. Besides, since the flexible structures

have an infinite number of resonant modes and only the first few ones can be

modeled and employed in the controller designs, the high-frequency neglect-

ed dynamics are usually represented by a dynamic uncertainty, which could

lead to the spillover problem 1 (Balas, 1978; Iorga et al., 2009). Considering

parametria and dynamic uncertainties, in the field of robust active vibra-

tion control of flexible structures, a quantitative robust control method is

proposed in Zhang et al. (2014). It employs phase-and-gain-control-policies-

based output feedback H∞ control (Zhang et al., 2013) and reliable robust-

ness analyses to take into account a complete set of control objectives, e.g. the

a priori determined specification of vibration reduction and the control ener-

gy are explicitly considered, and the robustness properties of the closed-loop

system to parametric and dynamic uncertainties are quantitatively verified.

This control method is most suitable for Linear Time-Invariant (LTI)

plants, where LTI dynamical models are used for the system modeling and

an LTI H∞ controller is correspondingly designed. Besides, all the paramet-

ric uncertainties are assumed to be within certain ranges but not measurable.

However, in practice, some plants have measurable time-varying parameters,

1the sensor outputs are contaminated by the neglected dynamics, which we called

observation spillover, and the feedback control excites the neglected dynamics, which is

termed as control spillover
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and thus recently Linear Parameter Varying (LPV) systems have received a

rapidly increasing attention to model the dynamics of these plants, due to

the fact that they can provide an interesting framework for gain-scheduling

control by means of convex optimization (Rugh and Shamma, 2000; Boyd

and Vandenberghe, 2004). The LPV systems constitute a class of linear sys-

tems whose dynamics usually depend on physical time-varying parameters,

which are not a priori known but assumed to be measurable on-line. Such

parameters are restricted to vary in predetermined sets and can be used as

extra information in the control designs to synthesize parameter-dependent

controllers, thus leading to improved control performances compared to clas-

sical robust control designs. The LPV system modeling and control designs

have been used in a variety of applications as introduced in Mohammadpour

and Scherer (2012) and the references therein.

In general, in the presence of parametric and dynamic uncertainties, there

exist two approaches to the design of robust controllers for LPV systems: the

controllers that do not depend on the variation of the changing parameter,

but guarantee the control objectives for all possible dynamical models, e.g.

the classical robust or the worst-case controllers as used for LTI systems; the

controllers that change according to the variations of the changing parame-

ters, i.e. the parameter-dependent controllers are designed. Using worst-case

control designs, the dynamics of LPV systems are modeled with norm bound-

ed uncertainties and no exact knowledge of the uncertain parameters can be

considered, even it is available. In contrast, with LPV control designs, the

time-varying parameters are assumed to be measured on-line and used in the

LPV controller synthesis, which could provide better control performances.
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It is notable that, for some particular cases as investigated in this article,

both the worst-case controller and the LPV one can satisfy the specification

of vibration reduction and a certain level of robustness properties. But, in

addition to these normal control objectives, the designed controllers are re-

quired to consume as little control energy as possible for their practical imple-

mentations (Skogestad and Postlethwaite, 2005), since in some applications

very little energy is available for active control, yet passive and semi-active

methods cannot meet the control objectives, especially when the control en-

ergy is obtained from harvesting systems, e.g. Ichchou et al. (2011); Wang

and Inman (2013a,b), and/or low-power storage devices (batteries or super

capacitors) as often desirable in aerospace systems, e.g. Moreira et al. (2001);

Yang and Sun (2002). As a result, if the control energy is not well considered

or even totally neglected in the control designs, the active vibration control

systems may eventually be powered off of harvested energy and/or low power

storage devices. Moreover, due to the hardware limitations, the control input

must be restricted by a prescribed upper bound to avoid the controller satu-

ration and exceeding the actuator operated voltage, e.g. Saberi et al. (2000);

Materazzi and Ubertini (2012). Exceeding the upper bound could cause un-

expected behavior of the closed-loop system such as actuator damages, large

overshoots, loss of control effectiveness or even a dynamic instability. In

addition, as claimed in Assadian (2002), usually the vibration control capa-

bility of various controllers is measured using their effects on the sensitivity

transfer function in the frequency domain. This fails to provide the control

designers a physical measure for comparisons, but ranking controllers based

on their energy requirements or control inputs provides an supplement and
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important physical measure for the controller selection.

Therefore, an important constraint in practical active vibration control

designs is the required control energy and the control input. To achieve effec-

tive robust controllers, this constraint is critical and really deserves enough

attention. In the following, we have an extensive review of various techniques

for saving the control energy and reducing the control input:

• Kondoh et al. (1990) propose an optimization criterion for the location

selection of actuators and sensors to obtain effective vibration reduc-

tion and minimize the control energy. Bardou et al. (1997) focus on

physical parameter optimization of the plate and the locations of the ex-

citation and the actuator forces to minimize the control energy. In Lee

et al. (1996) and Baz and Poh (1988), to reduce the required control

energy for active vibration control of flexible structures, an optimal

direct velocity feedback (DVF) control and a modified independen-

t modal space control are respectively used to determine the optimal

locations of the actuators and sensors and the control gains. Kumar

and Narayanan (2008) numerically reveal that, by optimal placement

of collocated piezoelectric actuators and sensors, the designed linear

quadratic regulator (LQR) optimal controller can achieve effective vi-

bration reduction of the flexible beam, while requiring a smaller control

input compared to DVF control. For vibration control of a thin-walled

composite beam, Zorić et al. (2013) employ the fuzzy optimization s-

trategy to determine the size and the location of piezoelectric actuators

and sensors. The particle swarm optimization (PSO) based LQR con-

troller is then designed to maximize the closed-loop damping ratios
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and minimize the control input. Besides, a literature review about op-

timal placement of piezoelectric actuators and sensors for minimizing

the control energy can be found in Gupta et al. (2010).

• Assadian (2002) computes the control energy for active vibration con-

trol of an vibratory system and investigates the effects of control meth-

ods on the control energy, where nonoptimal DVF control, classical

H∞ control and LQR control are compared. The trade-off curves of

the control energy versus the closed-loop control performance are in-

vestigated. P. Van Phuoc et al. (2009) employ a genetic algorithm for

the parameter optimization of a positive position feedback (PPF) con-

troller to minimize the control energy for active vibration reduction

of a flexible robot manipulator. Similarly, Chen et al. (2011) use P-

SO to determine the parameters of the proportional-integral-derivative

(PID) controller such that the control energy for a mass-damper-spring

system is minimized.

Wang and Inman (2011) introduce a reduced energy control (REC) law

by employing a saturation control to switch the control system from

one state to another one, providing conventional active controllers with

a limited voltage boundary. Both experimental and numerical compar-

isons are performed in terms of the control energy and the setting time

with PPF control, PID control, nonlinear control and LQR control.

The REC law is then implemented in Wang and Inman (2013a,b) to

improve unmanned aerial vehicle performance in wind gusts and reduce

the control energy which is limited and harvested from ambient wing

vibration. In Kumar et al. (2006), for active vibration control of an in-
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verted L structure, the LQR based adaptive controller achieves robust

performance and requires smaller control input compared to the pole

placement method. Materazzi and Ubertini (2012) employ the ’State-

dependent Riccati Equation’ to reduce the control input, which consists

of solving online the LQR problem with adaptive weighting functions

and system matrices. In Qiu (2013), nonlinear controllers are proposed

for active vibration control of a piezoelectric cantilever plate, where

the control gains are computed with three nonlinear functions to adapt

to the measured vibration amplitudes and regulate the control input

in real-time for effective vibration reduction and avoiding the control

saturation.

• With classical H∞ control, related weighting functions are used to tune

the bandwidth of the H∞ controller, thus imposing constraints on the

control energy, e.g. the frequency-independent weighting functions are

used in Zhang et al. (2001); Huo et al. (2008), and the frequency-

dependent ones are used in Sivrioglu et al. (2004); Zhang et al. (2013,

2014). Based on H∞ loop shaping designs, Reinelt (1999, 2000, 2001)

investigates active control of multivariable systems with hard bounded

control input to avoid the control saturation. This control method as-

sumes the reference signal and its first derivative to be norm bounded,

and focuses on the selection of weighting functions which are explic-

itly related to the upper bound on the control input. The selection

procedure is fulfilled until the prescribed upper bound is met and in-

deed user iterative as performed in Forrai et al. (2001) and Forrai et al.

(2003) for active vibration control of a three-storey flexible structure.
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In Kumar (2012), LQR control, classical mixed sensitivity H∞ control,

H∞ loop shaping design and µ synthesis are used for active vibration

control of a flexible beam with variable boundary conditions. These

controllers are compared in terms of the required control energy and

the closed-loop robust performance evaluated with µ analysis (Skoges-

tad and Postlethwaite, 2005). It shows that, for this specifical case, the

H∞ loop shaping based controller outperforms others in terms of the

control energy utilization.

Above literature review proves that, for practical active vibration control

designs, it is critical to consider the constraint on the control energy and the

control input. It is also shown that, in most of these researches, the con-

straint is achieved by kinds of optimizations of the placement and sizing of

the actuators and sensors, the structural parameters, and the parameters of

fixed controllers such as DVF, PID and PPF. However, as claimed in Dari-

vandi et al. (2013), these optimization methods are generally non-convex and

the dynamical models of flexible structures usually have a large number of

degrees of freedom. Consequently, these optimization based methods could

be inaccurate or computationally impractical. Furthermore, due to physical

and installation limitations, sometimes there exists little flexibility for such

optimization, for instance, although non-collocated actuators and sensors are

not desirable for the closed-loop robust stability, they are unavoidable due to

installation restrictions and even recommendable for high degrees of observ-

ability and controllability (Bayon de Noyer and Hanagud, 1998; Kim and Oh,

2013). Besides, the measurement of all state variables required by LQR is not

always practically available, and the specification of vibration reduction and
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the robustness properties cannot be quantitatively investigated with DVF,

PPF, LQR, PID or nonlinear controllers.

On the other hand, the H∞ loop shaping designs do not directly consider

the control energy and only enforce the constraint on the control signal with

the following inequality (Reinelt, 2000):

‖u(s)‖∞ ≤ 2n‖Tud(s)‖∞‖d(s)‖∞ (1)

where, as shown in Figure 1, Tud(s) is the closed-loop transfer function form

the disturbance signal d(s) to the control signal u(s), ‖u(s)‖∞ represents the

maximum amplitude of u(s) and n denotes the McMillan degree of Tud(s) (S-

aberi et al., 2000). This inequality shows that decreasing ‖Tud(s)‖∞ reduces

the upper bound for the maximum control input. Therefore, the weighting

functions such as W1(s) and W2(s) are used in the H∞ loop shaping design

to adjust the open-loop transfer function L(s) = Gp(s)K(s) so as to reduce

‖Tud(s)‖∞ according the following relationship:

|Tud(jω)| = |Gd(jω)K(jω)(1 +Gp(jω)K(jω))−1|

≈ |Gd(jω)K(jω)|, at frequency |L(jω)| = |Gp(jω)K(jω)| ≪ 1

= |Gd(jω)W1(jω)K̂∞(jω)W2(jω)|

where the controller K̂∞(s) is designed based on the shaped plant dynamical

model Ĝp(s) = W2(s)Gp(s)W1(s).

These formulations provide a relationship between the upper bound for

the maximum control input and related weighting functions. However, in

manyH∞ loop shaping designs, e.g. Forrai et al. (2001, 2003), the magnitudes

of related weighting functions, e.g. |W1(jω)| and |W2(jω)|, are tuned in the

10



whole frequency range, that is, the selection is frequency-independent. This

selection is relatively simpler than the phase-and-gain-control-policies-based

frequency-dependent selection (Zhang et al., 2013). But, the gain of the

corresponding controller could be very small not only at high frequencies for

avoiding the spillover problem and saving the control energy, but also around

the controlled resonant frequencies, thus failing to have effective vibration

reduction. This implies that the frequency-independent weighting functions

cannot provide a good trade-off among various control objectives.

d

y

n
K

u

v

dG

pG

Figure 1: A typical feedback control structure for active vibration control

It is also notable that, in addition to the conservatism involved in the

equality of Equation (1), the assumption that |L(jω)| = |Gp(jω)K(jω)| ≪ 1

is not satisfied in the crossover regions where |L(jω)| ≈ 1, and thus one

cannot infer anything about |Tud(jω)| or ‖u(s)‖∞ from |L(jω)|. Compared

to classical H∞ control designs, the H∞ loop shaping designs cannot directly

enforce constraints on the closed-loop transfer functions related to the set

of control objectives, but just approximate these closed-loop requirements

by enforcing the constraints on |L(jω)| as some traditional control designs

do. Since this approximation is not direct, there may exist considerable
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errors in this approximation over certain frequency ranges. Particularly, if

the control performance is explicitly defined in the frequency domain such

as |Tyd(jω)| for the vibration reduction, this approximation is actually not

necessary. Besides, the H∞ loop shaping designs do not explicitly consider

the disturbance dynamical model Gd(s), which indeed has significant effects

on the set of control objectives. It is also notable that, although the LPV

control techniques have been used widely, the application of LPV system

modeling and associated LPV control techniques to reduce the control energy

or the control input has not been specifically addressed in previous researches.

Based on above discussions, in order to tackle these critical drawbacks,

the main focus of this article is placed on the application of LPV control

techniques to develop a general quantitative robust active vibration control

method for flexible structures such that the complete set of control objectives

could be satisfied, particularly the required control energy and the control

input could be reduced. In Section 2, to develop this control method, the

Linear Fractional Representation (LFR) (Hecker et al., 2005; Hecker, 2006) is

used to give a systematical approach for the LPV system modeling, where the

scheduled variables, parametric and dynamic uncertainties can be considered

uniformly. As proposed in Dinh et al. (2005), for a LTI plant considering a

set of performance trade-offs parameterized by a scalar θ, several weighting

functions depending on θ are incorporated into the LTI plant to develop an

augmented LPV system, and an trade-off dependent H∞ controller is syn-

thesized by solving the finite dimensional Linear Matrix Inequality (LMI)

optimization problem. In this article, an LPV plant with position-dependent

dynamics has to be considered, and to save the control energy, a param-
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eter (force position) dependent controller is designed thanks to the intro-

duction of parameter-dependent weighting functions. Based on the phase

and gain control policies, the weighting functions can be appropriately de-

termined, thus developing the augmented LPV system. Then, an efficient

LPV H∞ control technique, e.g. Scorletti and L. EI Ghaoui (1998); Dinh

et al. (2005), is used to synthesize a qualitative robust parameter-dependent

H∞ controller such that the complete set of control objectives are satisfied,

especially the required control energy is reduced. To quantitatively veri-

fy the robustness properties of the closed-loop system, various robustness

analyses are conducted (Zhang et al., 2014). In Section 3, the design pro-

cesses and the effectiveness of the proposed control method are illustrated

by active vibration control of a non-collocated piezoelectric cantilever beam,

where the considered scheduled variable is the position of the external force.

This is representative of the systems with parameter-dependent dynamics as

investigated in Wood (1995); Paijmans et al. (2006), which could be mod-

eled as LPV systems. In addition to the LPV H∞ control, classical robust

H∞ control is also used for this numerical case. Their nominal control per-

formances and the robustness properties are compared. In Section 4, the

effectiveness of these controllers is compared in terms of the control energy,

the control input and the system output in the time domain, which cannot

be translated precisely to anything tractable in the frequency domain (Boyd

and Barratt, 1992) and are not fully investigated in previous active vibration

control designs (Kumar, 2012). Conclusions and perspectives are present in

Section 5.
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2. Proposed quantitative robust LPV control method

2.1. LPV system modeling

An LPV system is a linear system whose dynamics, e.g. defined by a state

space representation, depend on time-varying exogenous parameters whose

trajectories are a priori unknown. Nevertheless, some information is available

such as the intervals to which the parameters and sometimes their derivatives

belong to. More formally, let R denote the field of real numbers, an LPV

system can be defined as following (Scorletti and Fromion, 2008b):

Definition 2.1. LPV system

Let the set Θt ∈ R
nθ be a compact set, Θ be a set of measurable functions

from [0,∞) to R
nθ such that for θ(·) ∈ Θ, for all t ≥ 0, θ(t) ∈ Θt and





A(θ) B(θ)

C(θ) D(θ)



 (2)

be a continuous matrix function defined from Θt ∈ R
(n+no)×(n+ni). A Linear

Parameter Varying (LPV) system is defined as

q = ΣLPV (p)



























ẋ(t) = A(θ(t))x(t) + B(θ(t))p(t)

q(t) = C(θ(t))x(t) +D(θ(t))p(t)

x(t0) = x0

, ∃θ(·) ∈ Θ (3)

where x(t) ∈ R
n is the state vector, p(t) ∈ R

ni the disturbance input, q(t) ∈

R
no the output and θ(t) ∈ R

nθ the exogenous parameter vector assumed to be

measured on-line: θ(t) = [θ(t), · · · , θnθ
(t)]T .

An LPV system is thus defined by Equation (2) and a set Θ. The LPV

systems can be usually classified along the class of the set Θ and the class of

14



the state space matrix functions of ΣLPV (s, θ) on θ. In this article, we focus

on below class of state space matrices.

Set Θ: The compact set Θt is a polytope (more precisely an hyperrectangle):

Θt =
{

θ = [θ1, · · · , θnθ
]T | ∀i = 1, . . . , nθ

}

The set Θ is defined from Θt and unbounded parameter rates of variation is

used (Scorletti and L. EI Ghaoui, 1998; Scherer, 2001):

Θ = {θ(·) | for all t ≥ 0, θ(t) ∈ Θt}

There are mainly two kinds of state space matrices dependence on θ: one is

that the state space matrices are affine functions of θ and the other one is that

the state space matrices are rational functions of θ (Scorletti and Fromion,

2008b). The later one is focused in this article, that is, any rational matrix

function in Θ has an Linear Fractional Representation (LFR): there exists

four matrices AΣ, BΣ, CΣ and DΣ of compatible dimensions such that





A(θ) B(θ)

C(θ) D(θ)



 = DΣ + CΣ∆Σ(θ(t))(I − AΣ∆Σ(θ(t)))
−1BΣ (4)

with

∆Σ(θ(t)) =























θ1(t)Ir1 0 · · · · · · 0

0
. . . . . .

...
...

. . . θi(t)Iri
. . .

...
...

. . . . . . 0

0 · · · · · · 0 θnθ
(t)Irnθ























for some ri, i = 1, ..., nθ. Such LPV systems are also referred to as Linear

Fractional Transformation (LFT) systems.
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2.2. Proposed LPV H∞ control design

As performed in classical LTI H∞ control designs, suitable weighting

functions are necessary to augment the LPV plant ΣLPV (s, θ), thus devel-

oping an augmented LPV plant Pau(s, θ) for the controller synthesis. As

the complete set of control objectives usually have conflicting requirements

on the controller, the selection of the weighting functions has to consider a

trade-off among these control objectives in a rational and systematic way.

Besides, in contrast with LTI H∞ control designs, some weighting functions

have to depend on θ to improve some control objectives, e.g. to reduce the

required control energy by adapting the bandwidth of the controller to θ.

As shown in Figure 2, with the parameter-dependent input and output

weighting functions, i.e. Win(s, θ) and Wout(s, θ), the augmented LPV plant

Pau(s, θ) can be developed and defined as







z

y






= Pau













w

u











































ẋ(t) = A(θ(t))x(t) +Bw(θ(t))w(t) +Bu(θ(t))u(t)

z(t) = Cz(θ(t))x(t) +Dzw(θ(t))w(t) +Dzu(θ(t))u(t)

y(t) = Cy(θ(t))x(t) +Dyw(θ(t))w(t)

(5)

where x(t) ∈ R
np is the state vector, u(t) ∈ R

nu the control input, y(t) ∈ R
ny

the measured output, z(t) ∈ R
nz the weighted regulated output, w(t) ∈ R

nw

the exogenous input. The state space matrices of Pau(s, θ) are assumed to

be rational functions of θ. Based on the definition of Pau(s, θ), we consider

the LPV control problem:

Design an LPV controller u = KLPV (y) such that with the closed-loop system

of Figure 2 denoted by the lower LFT Fl(Pau, KLPV ) (Zhou et al., 1996):

• Fl(Pau, KLPV ) is asymptotically stable;
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• Fl(Pau, KLPV ) satisfies a performance specification, for example,

Fl(Pau, KLPV ) has an L2 gain less than a given γ, where the L2 gain is

defined as the smallest γ such that for any input w,
∫ T

0
z(t)T z(t)dt ≤

γ2
∫ T

0
w(t)Tw(t)dt, ∀T ≥ 0. For LTI systems, the L2 gain is equal to

the H∞ norm. Moreover, if the L2 gain of Fl(Pau, KLPV ) is no larger

than γ, necessarily we have ‖Fl(Pau(s, θi), KLPV (s, θi))‖∞ ≤ γ, ∀θi.
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Figure 2: Augmented LPV plant Pau(s, θ)

Evidently, the weighting functions representing the complete set of con-

trol objectives are critical to have an efficient KLV P (s, θ) and have to be

appropriately determined. In this article, the phase and gain control policies

proposed in Zhang et al. (2013) are employed for the selection. Numerous

LPV controller design approaches have been proposed since last 90’s with
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different levels of conservatism or computational efficiency. A classification

of LPV controllers can be obtained based on the following features: the con-

troller parameters, the feedback structure and the dependence of the state

matrices of the controller on the parameters. The detailed classification of

existing LPV controller, different cases of parameter dependence and avail-

able feedback structures can be found in Scorletti and Fromion (2008b). In

this article, the controller state space matrices only depend on θ(t) and the

output feedback control is used, that is, the output y(t) of the plant Pau(s, θ)

is assumed to be measured on-line (Scorletti and L. EI Ghaoui, 1998):

u = KLPV (y)











ẋK(t) = AK(θ(t))xK(t) + BK(θ(t))y(t)

u(t) = CK(θ(t))xK(t) +DK(θ(t))y(t)

(6)

where xK(t) ∈ R
nK and the matricesAK(θ(t)), BK(θ(t)), CK(θ(t)), DK(θ(t))

have to be synthesized. In this case, we obtain the following state space rep-

resentation for the closed-loop system





Acl(θ(t)) Bcl(θ(t))

Ccl(θ(t)) Dcl(θ(t))



 =











A(θ(t)) 0 Bw(θ(t))

0 0 0

Cz(θ(t)) 0 Dzw(θ(t))











+











0 Bu(θ(t))

In 0

0 Dzu(θ(t))















AK(θ(t)) BK(θ(t))

CK(θ(t)) DK(θ(t))









AK(θ(t)) In 0

Cy(θ(t)) 0 Dyw(θ(t))





Considering the conservatism and computational efficiency, the LPV control

technique proposed in Scorletti (1996); Scorletti and L. EI Ghaoui (1998) is

employed for the LPV controller synthesis, which can be solved with LMI

constraints as briefly presented in Appendix A.
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With the designed LPV controller, reliable deterministic and probabilistic

robustness analyses have to be conducted with µ/ν analysis and the random

algorithm respectively (Zhou et al., 1996; Calafiore et al., 2000). They can

take into account the probabilistic information of parametric uncertainties

and quantitatively verify the robustness properties both in the deterministic

sense and the probabilistic one. According to the results of the robustness

analyses, if necessary, the weighting functions used in the control design can

be retuned and a trade-off could be made among various control objectives.

The LPV system modeling, the LPV controller design and the robustness

analyses consist of the proposed quantitative robust LPV control method,

which is general and allows to satisfy the complete set of control objectives.

In this article, the design processes and effectiveness of the control method

are subsequently illustrated with active vibration control of a piezoelectric

cantilever beam excited by an external position-varying force, which has

position-dependent dynamics and is modeled as an LPV system.

3. Application of the proposed control method

The proposed quantitative robust LPV control is applied to active vibra-

tion of a piezoelectric cantilever beam, as shown in Figure 3. It is excited

by an external position-varying force F (t, xf ) , i.e. xf is varying within a

bounded range and assumed to be measurable in real-time. This is repre-

sentative of the systems with parameter-dependent dynamics and could be

modeled as an LPV system.

Based on the above discussion, some main steps are outlined for the de-

sign of a quantitative robust LPV H∞ controller:
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Step 1: Focus on the LPV system modeling to determine the schedule pa-

rameter θ and develop the LPV model ΣLPV (s, θ) for the position-dependent

dynamics using LFR.

Step 2: According to the complete set of control objectives such as the

fixed specification of vibration reduction and the modulus margin, necessary

weighting functions are appropriately employed based on phase and gain con-

trol policies. Especially, to fully employ the information of θ and improve

some control objectives, one or several weighting functions have to depend

on θ, for instance, the gain of Wi(s, θ), i.e. kWi
(θ), depends on θ to reduce the

control energy. It is critical to determine kWi
(θ) in the controller design: first

a finite number of allowable θj are chosen, which provides the correspond-

ing LTI plant ΣLPV (s, θj). Based on ΣLPV (s, θj), the corresponding kWi
(θj)

and other weighting functions are selected to develop Pau(s, θj). Then one

LTI H∞ controller K∞(s, θj) is achieved to satisfy these control objectives,

e.g. ‖Fl(Pau(s, θj), K∞(s, θj))‖∞ ≤ 1. Lastly, based on the chosen θj and

the selected kWi
(θj), the interpolation of kWi

(θ) can be obtained using least

mean square method to have kWi
(θ) for the infinite number of allowable θ.

Step 3: Based on ΣLPV (s, θ) and the weighting functions, the augmented

LPV plant Pau(s, θ) is well developed using LFR. Then with the employed

LPV control technique, the LPV controller KLPV (s, θ) can be synthesized,

that is, the matrices AK(θ(t)), BK(θ(t)), CK(θ(t)), DK(θ(t)) of Equation (6)

are achieved.

Step 4: Verify that the complete set of control objectives are satisfied with

the designed KLPV (s, θ) for any allowable value of θ. With the weighting

functions, these control objectives are reduced to ‖Fl(Pau(s, θ), KLPV (s, θ))‖∞ ≤
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1, ∀θ. As above discussed, when the L2 gain of Fl(Pau(s, θ), KLPV (s, θ)) is

no larger than one, necessarily we have ‖Fl(Pau(s, θ), KLPV (s, θ))‖∞ ≤ 1, ∀θ,

that is, the set of control objectives are satisfied with KLPV (s, θ). Besides, in

the presence of parametric and dynamic uncertainties, the robustness prop-

erties of the closed-loop system using KLPV (s, θ) are quantitatively verified

with deterministic and probabilistic robustness analyses. If some control ob-

jectives are not satisfied, return to Step 2 to make a better trade-off among

various control objectives by adjusting the weighting functions and employ

more values of θj for a better interpolation of kWi
(θ).

3.1. LPV modeling of the position-dependent dynamics

As shown in Figure 3, the location of the accelerometer sensor and that of

the piezoelectric actuator are determinant, but the location of the external

force is varying within a certain range, i.e. xs and xa are fixed and the

scheduled variable θ can be introduced for xf such that

xf = θLbeam, θ ∈ [θmin, θmax], 0 < θmin < θmax < 1

where Lbeam is the total length of the cantilever beam and θmin, θmax deter-

mine the allowable position of the force.

Based on modal analysis approach (Meirovitch, 1986) and the modeling

of piezoelectric actuators (Moheimani and Fleming, 2006), applying Laplace

transformation and assuming zero initial conditions, for the first n resonant

modes we have the formulations of the disturbance dynamical model Gd(s)

representing the dynamics from F (s, xf ) to the beam acceleration Ÿ (x, s),

and the plant dynamical model Gp(s) representing the dynamics from the
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Figure 3: A piezoelectric cantilever beam with position-dependent dynamics

voltage applied on the piezoelectric actuator Va(xa, s) to the beam accelera-

tion Ÿ (s, xs), that is,

Gd(s) =
Ÿ (s, xs)

F (s, xf )
=

n
∑

i=1

Gdi(s) =
n

∑

i=1

kdi(xs, xf )s
2

s2 + 2ζiωi + ω2
i

Gp(s) =
Ÿ (s, xs)

Va(s, xa)
=

n
∑

i=1

Gpi(s) =
n

∑

i=1

kpi(xs, xa)s
2

s2 + 2ζiωi + ω2
i

To determine Gd(s) and Gp(s), we have to obtain the modal parameters such

as the damping ratio ζi, the natural frequency ωi and the gain kpi/di. Based

on the analytical formulations for the Euler-Bernoulli beam bounded with

piezoelectric actuators (Moheimani and Fleming, 2006), ωi and kpi depend

on xs, xa and the structural properties, e.g. the material properties and the

geometrical dimensions. Since these elements are fixed in this case, Gp(s)

is determined and independent on θ. On the other hand, kdi depends on

xf = θLbeam, that is,

kdi(θ) = gi[sinh(λiθ)− sin(λiθ)] + hi[cosh(λiθ)− cos(λiθ)] (7)
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where gi, λi, hi depend on the determinant structural properties. As shown

in Figure 4, for i = 1, 2, 3, the gain kdi(θ) has particularly severe dependence

on θ such that small variations in θ can generate large variations in the

magnitude and the phase of Gdi(s).

Note that, for a given structure, Gdi(s, θ) and Gpi(s) have the same ωi,

and for the sake of simplicity, their damping ratio ζi is also assumed to be the

same. To consider this fact and be readily employed in the control design, for

the ith resonant mode, it is desirable to consider the transfer function vector

[Gdi(s, θ), Gpi(s)] with the state space form:

Ai =





−2ζiωi 1

−ω2
i 0



 ∈ R
2×2, Bi(θ) =





−2ζiωi

−ω2
i



 [kdi(θ) kpi] ∈ R
2×2

Ci =
[

1 0
]

∈ R
1×2, Di(θ) = [kdi(θ) kpi] ∈ R

1×2

Naturally, when the first n resonant modes of [Gd(s, θ), Gp(s)] have to be
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investigated, we have the state space matrices:

A(θ) =

















A1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 An

















∈ R
2n×2n

B(θ) =











B1(θ)
...

Bn(θ)











=

















b1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 bn

















[

kd(θ) kp

]

∈ R
2n×2

C(θ) =
[

C1, · · · , Cn

]

∈ R
1×2n

D(θ) = [1, · · · , 1]
[

kd(θ), kp

]

∈ R
1×2

(8)

where 0 represents the zero matrix of a compatible dimension, kp = [kp1, · · · , kpn]
T ∈

R
n×1, kd(θ) = [kd1(θ), · · · , kdn(θ)]

T ∈ R
n×1 and bi =





−2ζiωi

−ω2
i



 ∈ R
2×1.

To appropriately consider the dependence of kd(θ) on θ, the LFR of kd(θ)

is used:

kd(θ) = [kd1(θ), · · · , kdn(θ)]
T = θ⋆





Akd Bkd

Ckd Dkd



 (9)

where ⋆ is the Redheffer star product (Zhou et al., 1996), the matrices Akd ∈

R
m×m, Bkd ∈ R

m×1, Ckd ∈ R
n×m and Dkd ∈ R

n×1 have to be determined, and

m is the necessary fractional order for kd(θ). Since the Equation (7) reveals

that kdi(θ) is not a rational function of θ, in order to obtain the LFR of kd(θ),

it is necessary to approximate kd(θ) by a rational function. For this purpose,

enough samples of θj ∈ [θmin, θmax] are used to have the corresponding values
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of kd(θj), and then the least mean square method is used for the interpolation

of kd(θ), θ ∈ [θmin, θmax]. With the Equation (8) and Equation (9), we have

the LFR of [Gd(s, θ), Gp(s)], that is,

[Gd(s, θ), Gp(s)] =
1

s
⋆







































































A1 0 · · · 0 b1 0 · · · 0

0
. . .

. . .
... 0

. . .
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0

0 · · · 0 An 0 · · · 0 bn

C1, · · · · · · , Cn 1, . . . . . . , 1





























I 0

0 [kd(θ), kp]



















































= (
1

s
, θ)⋆





Â B̂

Ĉ D̂





(10)

where I represents the identity matrix of a compatible dimension, the con-

stant matrices Â ∈ R
(2n+m)×(2n+m), B̂ ∈ R

(2n+m)×2, Ĉ ∈ R
1×(2n+m) and

D̂ ∈ R
1×2. It is notable that the vector [kd(θ), kp] in both B(θ) and D(θ)

has to be pulled out to have the simplest LFR of [Gd(s, θ), Gp(s)] (Scorletti

and Fromion, 2008a). This is desirable for the controller synthesis and the

robustness analysis.

In this article, using xa = 3.5mm, xs = 223.2mm and the structural

properties listed in Table 1, we have the nominal modal parameters for the

first three resonant modes:

ωi = [295.2, 1850.1, 5180.2], i = 1, 2, 3

kpi = [−8.9× 10−3, 20.0× 10−3,−10.4× 10−3], i = 1, 2, 3

ζi = [20.0× 10−3, 8.0× 10−3, 5.0× 10−3], i = 1, 2, 3

With θmin = 0.4 and θmax = 0.8, the corresponding matrices for the LFR of
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Figure 4: Analytical and LFR of kdi(θ), θ ∈ [0.4, 0.8], i = [1, 2, 3]

kd(θ), θ ∈ [0.4, 0.8] are

Akd =





2.10 −1.41

1.00 0



 , Bkd =





4.00

0





Ckd =











0.32 0.47

−1.87 2.74

−2.24 1.90











, Dkd =











1.926

−3.941

8.594











with the fractional order m = 2 for enough accuracy. As shown in Figure 4,

this LFR of kd(θ) has a good agreement with the analytical kd(θ) for the first

three resonant modes.

3.2. LPV and LTI H∞ control designs

Both the proposed LPVH∞ control design and the worst-caseH∞ control

design as employed in Zhang et al. (2013) are used to achieve the same
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Property Beam PZT Unit

E 50.0 140.0 Gpa

l 248.0 45.0 mm

w 20.5 20.5 mm

t 4.0 1.5 mm

ρ 2500.0 / kg/m3

kd31 / −1.23× 10−10 /

Table 1: Nominal geometrical and mechanical properties of the piezoelectric cantilever

beam

fixed specification of vibration reduction defined by a frequency-dependent

function U(ω). In this article, for the sake of simplicity, U(ω) = 40dB, ∀ ω ∈

R, that is,

|Tyd(jω, θj)| ≤ U(ω) = 40dB, ∀ ω ∈ R, ∀θj ∈ [0.4, 0.8] (11)

where Tyd(s) is the closed-loop transfer function from the disturbance d(s)

to the output y(s), as shown in Figure 5.

3.2.1. LPV H∞ control design

Based on the typical feedback control structure of Figure 1, the augment-

ed LPV plant Pau(s, θ) can be well constructed by using a set of necessary and

suitable weighting functions Wi(s, θ), as shown in Figure 5, where the mea-

surement noise n(s) = Wa(s, θ)w1(s), the disturbance d(s) = Wb(s, θ)w2(s),

the regulated signals z1(s) = W1(s, θ)v(s) and z2(s) = W2(s, θ)u(s). By

partitioning Pau(s, θ) according to the sizes of z(s) = [z1(s), z2(s)]
T and

27



d

n1w
v u

y

),( sG
d

),( sK),( sW
a

2
w

),( sW
b

)(sG
p

),(
1

sW ),(
2

sW
2

z1
z

),( sP
au

Figure 5: LPV H∞ control structure with parameter-dependent weighting functions

w(s) = [w1(s), w2(s)]
T , Pau(s, θ) can be described as











z1(s)

z2(s)

y(s)











= Pau(s, θ)











w1(s)

w2(s)

u(s)











To have the smallest order of Pau(s, θ), we have

Pau(s, θ) = Wout(s, θ)





























1 0 0

0 0 1

−1 0 0











+











−1

0

−1











[Gd(s, θ), Gp(s)]





0 1 0

0 0 1























Win(s, θ)

(12)

with

Wout(s, θ) =











W1(s, θ) 0 0

0 W2(s, θ) 0

0 0 1











andWin(s, θ) =











Wa(s, θ) 0 0

0 Wb(s, θ) 0

0 0 1
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Substituting [Gd(s, θ), Gp(s)] of Equation (10) into Equation (12), we have

the simplest LFR of Pau(s, θ), where either [Gd(s, θ), Gp(s)] orWi(s, θ) occurs

just one time. It is then used for the controller synthesis and the robustness

analysis.

With the LPV H∞ control design of Figure 5, W2(s, θ) can be used to en-

force constraints on the magnitudes of |K(jω)S(jω)| and |Gd(jω, θ)K(jω)S(jω)|,

which are closely related to the control energy. Therefore, to adapt the

control energy to θ, W2(s, θ) has to depend on θ, and other parameter-

independent weighting functions are used to determine the fixed specifica-

tion of vibration reduction and the requirement on the modulus margin Mm,

which is closely related to the stability robustness and defined as:

Mm = inf
ω
|1 + L(jω)| =

1

sup
ω

1
|1+L(jω)|

=
1

sup
ω

|S(jω)|
, ∀ω ∈ R (13)

where S(jω) = (1 + L(jω))−1 is the sensitivity function of the closed-loop

system. Based on the Nyquist stability criterion, the larger Mm, the better

stability robustness (Skogestad and Postlethwaite, 2005).

Based on the principle of phase and gain control policies, a second order

W2(s, θ) is used:

W2(s, θ) = kW2
(θ)×

(s+Mωb)(s+ fMωb)

(s+ ǫ)(s+ fM2ωb)
(14)

where M , ωb, ǫ, f are constants and the gain kW2
(θ) determines the depen-
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dance of W2(s, θ) on θ. With LFR, W2(s, θ) can be represented as

W2(s, θ) =

(

1

s

)

I2⋆











0 1 0

−ǫfM2ωb −(ǫ+ fM2ωb) 1

(Mωb)
2f − ǫfM2ωb Mωb(1 + f)− (ǫ+ fM2ωb) 1











× · · ·











1 0 0

0 1 0

0 0 kW2
(θ)











(15)

and kW2
(θ) can be represented as

kW2
(θ) = θ⋆





AkW2
BkW2

CkW2
DkW2



 (16)

where the parameter-independent matrices AkW2
∈ R

l×l, Bkd ∈ R
l×1, Ckd ∈

R
1×l and Dkd ∈ R

1×1 have to be determined, and l is the necessary frac-

tional order for kW2
(θ). As the determination of kd(θ), for some values of

θj ∈ [0.4, 0.8], we select the corresponding value of kW2
(θj) to satisfy the

complete set of control objectives, as shown in Table 2. Then, these data can

be used for the interpolation of kW2
(θ), ∀θ ∈ [0.4, 0.8] with the least mean

square method, that is, AkW2
= 4.044, BkW2

= 4.00, CkW2
= −3.637, DkW2

=

−3.709 with the fractional order l = 1. The other parameters of W2(s, θ) are

θj 0.4 0.5 0.6 0.7 0.8

kW2
(θj) 5.4 3.7 2.4 1.8 1.5

Table 2: The chosen θj and kW2
(θj) for the interpolation of kW2

(θ)

M = 100.0, f = 35.0, ωb = 4.5, ǫ = 1 × 10−3. With these parameter-

s, we have the LFR of W2(s, θ) of Equation (15) and the dependence of
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|W2(jω, θ)| on θ ∈ [0.4, 0.8] is illustrated in Figure 6. In this article, to

consider the fixed specification of vibration reduction of Equation (11) and

ensure Mm(θ) ≥ 0.866, ∀ ω ∈ R, the other constant weighting functions are

Wa(s) = 1.0, W1(s) = 0.866, Wb(s) = 0.0115.
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Figure 6: The dependence of |W2(jω, θ)| on θ ∈ [0.4, 0.8]

By incorporating these weighting functions into Equation (12), the sim-

plest LFR of Pau(s, θ) is obtained, which is then used for the KLPV (s, θ)

synthesis with the LPV control technique listed in Appendix A. The LFR

realization of the designed KLPV (s, θ) is presented in Appendix B. With the

designed KLPV (s, θ), the L2 gain of Fl(Pau(s, θ), KLPV (s, θ)) is smaller than

one, necessarily we have ‖Fl(Pau(s, θj), KLPV (s, θj))‖∞ < 1, that is, for any
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θj ∈ [0.4, 0.8], we have

||Tyd(s, θj)||∞ <
1

‖W1(s)Wb(s)‖∞
= 40dB

Mm(θj) =
1

‖S(s, θj)‖∞
≥ ‖W1(s)Wa(s)‖∞ = 0.866

This implies that a priori considered control objectives are simultaneously

satisfied with the designed KLPV (s, θ).

3.2.2. Worst-case H∞ control design

In addition to KLPV (s, θ), a worst-case H∞ controller Kw(s) is also de-

signed in this article. First, over the frequency of interest the worst-case dis-

turbance dynamical model Gwd(s) is obtained by fine gridding θ of Gd(s, θ),

as shown in Figure 7. Obviously, Gwd(s) includes all possible Gd(s, θ) for any

θ ∈ [0.4, 0.8] with very little conservatism. Then, to satisfy the same control

objectives as KLPV (s, θ) does, e.g. the specification of vibration reduction
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and the requirement on Mm, the constant W2(s) is used with the parameters

M = 100.0, f = 35.0, ωb = 4.5, ǫ = 1× 10−3, kW2
= 2.2. The other weight-

ing functions are the same as used for the KLPV (s, θ) synthesis. With these

weighting functions, the Kw(s) is obtained:

Kw(s) =
0.1(s+ 1.6× 106)(s− 255.8)(s− 1.8× 10−3)

(s+ 1.4× 104)(s+ 7189.0)(s+ 2050.0)
×

(s2 − 2801.0s+ 8.6× 106)(s2 + 9150s+ 6.8× 107)

(s2 + 347.9s+ 4.3× 104)(s2 + 6599.0s+ 4.9× 107)
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Figure 8: Comparisons between KLPV (s, θ) and Kw(s) for θ ∈ [0.4, 0.8]

The comparisons between KLPV (s, θ) and Kw(s) in the frequency domain

are illustrated in Figure 8. As expected, both KLPV (s, θ) and Kw(s) roll off

at high frequencies to avoid the spillover problem and the |KLPV (jω, θ)|

depends on θ, which is smaller than |Kw(jω)| at almost any frequency for

θ ∈ [0.4, 0.8]. The phases of KLPV (jω, θ) and Kw(jω) are nearly the same.
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ith controlled resonant frequency

These comparisons are consistent with the principle of phase and gain control

policies. For this parameter-dependent system, the schedule variable θ only

exists in Gd(s, θ) and Gp(s) is independent on θ. From the phase control

policy, to satisfy the fixed specification of vibration reduction while saving

the control energy, |L(jω, θ) = K(s, θ)Gp(s)| has to change with θ. On the

other hand, for the stability robustness to parametric uncertainties, since

the phase of Gp(s) does not depend on θ, the phase of K(s, θ) can also be

independent on θ. As illustrated in Figure 9, the Nyquist plot of L(s, θj)

verifies that, around the controlled resonant frequencies, |L(jω, θj)| is large

enough for effective vibration reduction and L(s, θj) stays in right half plane

to have qualitative stability robustness to parametric uncertainties. The

vibration reduction of the closed-loop system using KLPV (s, θ) is shown in
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Figure 10. As expected, for any allowable θ ∈ [0.4, 0.8], the specification

of vibration reduction of Equation (11) is satisfied with KLPV (s, θ). Since

around the controlled resonant frequencies, |KLPV (jω, θ)| < |Kw(jω)|, ∀θ,

from the principle of phase control policy, Kw(s) can necessarily satisfy the

specification of vibration reduction.

3.3. Quantitative robustness analysis of the closed-loop system

Although, in the designs of KLPV (s, θ) and Kw(s), qualitative robustness

properties of the closed-loop system are considered, both deterministic and

probabilistic robustness analyses are necessary to quantitatively verify the

robustness properties to parametric and dynamic uncertainties. In this ar-

ticle, the natural frequencies and damping ratios are assumed to have 20%
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variations, that is,

ωi = ωi0 + ωi1δωi
; |δωi

| ≤ 1, ωi1 = 0.2ωi0, i = 1, 2, 3

ζi = ζi0 + ζi1δζi ; |δζi | ≤ 1, ζi1 = 0.2ζi0, i = 1, 2, 3

where ωi0, ζi0 are the nominal values of these modal parameters. In addition,

the scheduled variable θ ∈ [0.4, 0.8] is normalized such that

θ = θ0 + θ1δθ; |δθ| ≤ 1

with θ0 = 0.6 and θ1 = 0.2. Thus, the gain kdi(θ) can be represented as

kdi(θ) = kdi0 + kdi1δθ; |δθ| ≤ 1, i = 1, 2, 3

where kdi0 is obtained with δθ = 0. Note that, in this article, θ is assumed to

be a bounded time-invariant uncertain parameter in the robustness analysis.

As shown in Figure 11, the additive dynamic uncertainty ∆Dyn(s) is used

with a suitable dynamic normalization function WDyn(s) to represent the

neglected high-frequency dynamics of Gp(s), that is,

Gp(s) = Gp0(s) +WDyn(s)∆Dyn(s), ‖∆Dyn(s)‖∞ ≤ 1

where Gp0(s) is the reduced nominal plant dynamical model including the

first three resonant modes. To consider the robust performance, a ficti-

tious unit-normalized performance uncertainty ∆Perf(s) is also used with the

corresponding performance normalization function WPerf(s) (Skogestad and

Postlethwaite, 2005).

With above uncertainty modeling, the unit-normalized diagonal augment-

ed uncertainty ∆′ = diag(∆′
1, ∆′

2) ∈ B∆̂ can be used, where B∆̂ is the
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Figure 11: The additive dynamic uncertainty normalized by WDyn(s)

norm bounded diagonal uncertainty block as defined in Zhang et al. (2014).

The ∆′
1 = diag(∆Para,∆Dyn) represents the parametric uncertainty and the

dynamic one, and ∆′
2 = ∆Perf is the norm bounded fictitious performance

uncertainty. Particularly, in this article, for the designed KLPV (s, θ), we

have

∆Para = diag (δω1
I2, δω2

I2, δω3
I2, δζ1 , δζ2 , δζ3 , δθI5)

where δθI5 is due to the fact that δθ occurs three times in KLPV (s, θ) and

two times in Gd(s, θ).

As performed in Zhang et al. (2014), reliable µ analysis is used to ob-

tain the deterministic robustness margin kDRM of the closed-loop system, as

shown in Table 3. Since the upper and lower bounds of kDRM coincide well,

the estimated kDRM is reliable, in other words, the closed-loop system re-

mains stable for any ∆ ∈ 1.02∆′
1 with Kw(s) and for any ∆ ∈ 1.35∆′

1 with

KLPV (s, θ). By ν analysis (Skogestad and Postlethwaite, 2005), we have the
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deterministic worst-case performance, as illustrated in Figure 12. It shows

that the specification of vibration reduction is fulfilled for any ∆ ∈ 1.0∆′
1

with Kw(s) and KLPV (s, θ). Above µ and ν analyses quantitatively ensure

that the closed-loop stability and the specification of vibration reduction are

satisfied in the presence of 20% variation on the modal parameters and the

assumed dynamic uncertainty.

Bounds on kDRM Kw(s) KLPV (s, θ)

Lower bound on kDRM 1.355 1.020

Upper bound on kDRM 1.360 1.026

Table 3: Deterministic robustness margin kDRM with Kw(s) and KLPV (s, θ)

Besides, the probabilistic robustness analysis using random algorithm is

performed to consider probabilistic information of parametric uncertainties

and provide complements and comparisons to the deterministic robustness

analysis. For this numerical case, both uniformly and Gaussian distributed ωi

are considered and ζk is assumed to have uniform distribution. As performed

in Zhang et al. (2014), using Monte Carlo Simulation, the results from prob-

abilistic stability analysis are illustrated in Table 4 with ǫ = 0.01, δ = 0.01.

They show that, with probability 1− δ = 99%, for either uniformly or Gaus-

sian distributed ωi, the closed-loop system remains stable for all sampled

∆ ∈ 1.02∆′
1 using Kw(s) and for all sampled ∆ ∈ 1.35∆′

1 using KLPV (s, θ).

Additionally, a few destabilizing perturbations ∆des ∈ 1.15∆′
1 are found us-

ing KLPV (s, θ), which means that there exist little conservatism in the prob-

abilistic stability analysis. These results also demonstrate that the kDRM

estimated from µ analysis is reliable. On the other hand, it shows that for
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Figure 12: Deterministic worst-case performance analysis with ∆ ∈ ∆1

Gaussian distributed ωi, if a 10.0% loss of probabilistic robust stability is

tolerated, the corresponding kPRM = 1.75 is increased by 71.6% with respect

to its deterministic counterpart kDRM = 1.02 and increased by 9.37% with

respect to the result for uniformly distributed ωi. Probabilistic worst-case

performance analysis is also performed, as summarized in Table 5. It shows

that, with probability 99.0%, the specification of vibration reduction is ful-

filled for all sampled ∆′
1 ∈ 1.00B∆′

1
with Kw(s) and KLPV (s, θ), and when
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∆′
1 ∈ 1.20B∆′

1
, a few perturbations can be found to violate the specification

of vibration reduction. This is consistent with the result from ν analysis.

Controller Uniformly distributed ωi Gaussian distributed ωi

Kw(s) p̂n(1.35) = 100% p̂n(1.35) = 100%

Kw(s) p̂n(1.60) = 90% p̂n(1.65) = 90.0%

KLPV (s, θ) p̂n(1.02) = 100% p̂n(1.02) = 100%

KLPV (s, θ) p̂n(1.60) = 90% p̂n(1.75) = 90%

Table 4: Probabilistic stability analysis: ǫ = 0.01, δ = 0.01

Controller Uniformly distributed ωi Gaussian distributed ωi

Kw(s)
λ̄m(1.00) = 39.75dB < 40.00dB

λ̄m(1.20) = 40.60dB > 40.00dB

λ̄m(1.00) = 39.60dB < 40.00dB

λ̄m(1.20) = 39.99dB < 40.00dB

KLPV (s, θ)
λ̄m(1.00) = 39.96dB < 40.00dB

λ̄m(1.20) = 45.50dB > 40.00dB

λ̄m(1.00) = 39.85dB < 40.00dB

λ̄m(1.20) = 43.94dB > 40.00dB

Table 5: Probabilistic worst-case performance analysis: ǫ = 0.001, δ = 0.01

Above robustness analyses demonstrate that, in the presence of assumed

parametric and dynamic uncertainties including the time-varying force posi-

tion θ ∈ [0.4, 0.8], both Kw(s) and KLPV (s, θ) can satisfy the specification

of vibration reduction and provide attractive robustness properties of the

closed-loop system.

4. Performance comparisons in the time domain

As above mentioned, in this article the main motivation for the applica-

tion of the proposed LPV control design is not only to design satisfying robust
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Figure 13: Comparisons of the control energy consumption using Kw(s), KAFC(s) and

KLPV (s, θ)

controllers for effective vibration reduction in the presence of parametric and

dynamic uncertainties, but also to save the necessarily required control energy

and reduce the control input. In fact, the specification of vibration reduction

can be achieved with relatively simpler acceleration feedback control (AFC),

for example, based on the worst-case disturbance dynamical model Gwd(s),

KAFC(s) can be designed for comparison purpose with the cross-over point

method (Bayon de Noyer and Hanagud, 1998):

KAFC(s) =
−8.0× 107(s2 + 2025.0s+ 1.1× 106)

(s2 + 165.3s+ 8.7× 104)(s2 + 1080s+ 3.4× 106)
×

(s2 − 926.1s+ 6.4× 105)

(s2 + 2020.0s+ 2.7× 107)

As numerically verified,KAFC(s) can also satisfy the specification of vibration

reduction as Kw(s) and KLPV (s, θ) do.

To emphasize the advantages of KLPV (s) in terms of the control energy
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and the control input, within MATLAB/Simulink R2012 environment, a unit

step signal is used as the external force and several numerical simulations are

evaluated in the time domain. As shown in Figure 13, compared to KAFC(s),

less control energy is required by Kw(s). As explained in Zhang et al. (2013),

this is mainly due to the fixed structure of AFC that makes |KAFC(jω)| too

large at very low frequencies, where no control energy is actually required.

Furthermore, as Gd(s, θ) depend on θ ∈ [0.4, 0.8], the required control energy

to satisfy the fixed specification of vibration reduction greatly varies, and

KLPV (s, θ) has the ability to adapt its bandwidth to θ such that KLPV (s, θ)

consumes less control energy than Kw(s) does for any θ ∈ [0.4, 0.78] and

KAFC(s) does for any θ ∈ [0.4, 0.8]. The fact that KLPV (s, θ) could save the

control energy is beneficial in avoiding the phenomenon of insufficient con-

trol energy and quite desirable for practical implementation, for instance, the

control energy is obtained from harvesting systems or low-power storage de-

vices (batteries or super capacitors) as often used in aerospace applications.

On the other hand, as shown in Figure 14, for any θ ∈ [0.4, 0.8], the required

control input using KLPV (s, θ) is smaller than that using Kw(s) or KAFC(s).

This is useful to avoid exceeding the control saturation and the actuator op-

erated voltage. Furthermore, KLPV (s, θ), Kw(s) and KAFC(s) can achieve

not only the same specification of vibration reduction in the frequency do-

main and the satisfactory robustness properties as shown in Table 3− 5, but

also the system output in the time domain, as illustrated in Figure 15 where

the cases with θ = 0.4, 0.8 are used for the sake of simplicity.

In these numerical simulations, the unit step-signal is used to simulate

external disturbances. The most importance of the PSD for an unit step is at
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Figure 14: Comparisons of the control input using Kw(s), KAFC(s) and KLPV (s, θ)

low frequencies where the considered resonant modes exist, and thus very low

emphasis is focused at the high frequencies. Actually, during our simulations

other signals are also used such as impulse and white noise signals which have

uniform emphasis at all frequencies. With these signals, the same conclusions

can be achieved, that is, compared to Kw(s) and KAFC(s), KLPV (s, θ) is

particularly advantageous over the reductions of the control energy and the

control input. For the sake of simplicity, the results using other signals are not

specifically shown here. All of these results demonstrate that the proposed

LPVH∞ control design can provide a quantitative robust controller. Besides,

considering required control energy and achieved control performances, the

designed controller could be regarded to have a high cost-performance ratio.
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Figure 15: Comparisons of the system output using Kw(s), KAFC(s) and KLPV (s, θ) with

θ = 0.4, 0.8

5. Conclusions and perspectives

This research builds off of our previous researches on the quantitative

robust control method for LTI systems using classical H∞ control designs and

reliable robustness analyses, and focuses on exploiting the benefits of efficient
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LPVH∞ control technique in saving the required control energy and reducing

the control input. With this proposed LPV H∞ control method, the varying

parameters of the LPV system represented by θ can be fully investigated

and the trade-off among various control objectives, e.g. the specification of

vibration reduction, the closed-loop robustness properties and the saving of

required control energy, can be achieved by systematical adjustments of the

weighting functions which could also depend on θ. Compared to AFC and

the classical H∞ control, due to the dependence of the controller on θ, the

proposed control method can explicitly save the required control energy and,

in some extend, reduce the control input, while maintaining almost the same

control performances both in the frequency and time domains.

In this article, some parameter-independent Lyapunov functions are used

for the synthesis of KLPV (s, θ). It provides a satisfactory LPV controller

for the investigated case. If, in the applications under consideration, the

employed parameter-independent approach appears to be very conservative,

parameter dependent LMI formulations can be used for the synthesis of

KLPV (s, θ), which is expected to be less conservative. The details of the

approach can be found in Dinh et al. (2005); Dinh (2005).

Although the motivation of this article is strongly influenced by practical

application to quantitative robust active vibration control of flexible struc-

tures, it is important to appreciate that most of the design processes and

employed techniques are general. In fact, many practical control problems

involve the systems whose dynamics depend on some measurable exogenous

parameters. For example, many vibration control systems are required to

function across a variety of different temperatures, however, the variation of
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ambient temperature can change the structural natural frequencies and piezo-

electric stress and permittivity coefficients, thus the applied control effort has

to consider such temperature dependence (Hegewald and Inman, 2001; Chet-

tah et al., 2009; Gupta et al., 2012). This kind of control problem is readily to

be handled with the proposed quantitative robust LPV H∞ control method

which considers the time-varying temperature as the scheduled variable. Fur-

thermore, the main interest of this research is not only for active vibration

control as illustrated by the studied numerical example, but rather for the

fundamental issues involved in practical active control designs, for example,

with few modifications, this research will be applicable to active noise con-

trol (Jemai et al., 2002), active suspensions to adapt road conditions (Fialho

and Balas, 2002), active control of heating, ventilation and air condition

(HVAC) systems Rasmussen and Alleyne (2010); Zhao et al. (2013), active

control of machine tools N.J.M. van Dijk et al. (2010) and so on.

In addition to linear systems, LPV control methods are firstly proposed

for nonlinear systems and viewed as available alternatives to classical gain-

scheduling designs for controlling nonlinear systems (Carter, 1998; Rugh and

Shamma, 2000). In particular, LPV control methods offer advantages over

classical gain-scheduled control in that the resulting LPV controllers are au-

tomatically gain-scheduled, and no ad hoc methods of interpolation of gains

are needed. Therefore, the proposed control method can also be used for ac-

tive vibration control of nonlinear systems, e.g. Zhou et al. (2006); Ho et al.

(2013).
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Appendix A. Employed LPV control technique

In this article, we use the LPV control method proposed in Scorletti and

L. EI Ghaoui (1998), which models the augmented LPV plant Pau(s, θ) with

LFR and uses parameter-independent Lyapunov functions. By the scalings

selection, this method allows us to make a trade-off between conservatism

and computational complexity. With LFR, the Pau(s, θ) of Equation (5) can

also be modeled as
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where ∆ = diag
(∫

In, diag(θi(t)Ini
)
)

. Furthermore, we can assume that

θmini ≤ θi ≤ θmaxi and thus the set Θ can be defined as

Θ = {θ, |θi ∈ [θmini, θmaxi]} (A.1)

This approach for obtaining a design method is the transformation of the

control problem in a finite dimensional Bilinear Matrix Inequalities (BMI)

optimization problem. To this end, let us introduce the following matrices

PM =

















In 0 0 0

0 0 In 0

0 Inz
0 0

0 0 0 Inw

















, PN =

















In 0 0 0

0 0 In 0

0 Inw
0 0

0 0 0 Inz

















X = diag(0n,diag(−2In))

Y = diag(In,diag((θmini + θmaxi)Ini
))

Z = diag(0n,diag(−2θminiθmaxiIni
))
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with Xperf = −I, Yperf = 0 and Zperf = γ2I.

Theorem Appendix A.1. If there exist matrices S, T, G and H such

that

M⊥T

y
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I(n+nw)





T

M
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I(n+nw)



M⊥
y < 0 (A.2)

MT⊥
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I(n+nz)
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MT

I(n+nz)



MT⊥

u < 0 (A.3)

where the matrices M and N are defined as follows:

M = PT
Mdiag









ZS Y TS +G

Y S +GT XS



 , −





Xperf Yperf

Y T
perf Zperf







PM

N = PT
Ndiag









Z̃T Ỹ TT +H

Ỹ T +HT X̃T



 , −





X̃perf Ỹperf

Ỹ T
perf Z̃perf







PN

where

S = diag(P,diag(Si)), T = diag(Q,diag(Ti))

G = diag(0n,diag(Gi)), S = diag(0n,diag(Hi))

with the n × n matrices P and Q, with the ni × ni matrices Si = ST
i , Ti =

T T
i , Gi = −GT

i , Hi = −HT
i are such that





Si I

I Ti



 > 0
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and




P I

I Q



 > 0

then there exist an LPV controller such that the closed-loop system is inter-

nally stable with an L2 gain less than γ.

This theorem actually presents a set of LMI constraints: first, a given γ

is used to test the conditions of the previous theorem; then, the smallest γ is

searched to satisfy the conditions of the theorem. If theses conditions can be

satisfied, the matrices of the LFR representation of KLPV (s, θ) can be using

a feasibility optimization problem. Explicit formulations of this optimization

problem can be found in Scorletti and L. EI Ghaoui (1998).

Appendix B. LFR realization of the designed KLPV (s, θ)

As illustrated with the Figure B.16, the input-output realization of the

designed KLPV (s, θ) is y = Fu(M,∆)u with ∆ = diag(I8/s, I3θ), where Fu is

the upper LFT, the matrix M is defined on the page 19 of J-F. Magni (2006)

and can be appropriately partitioned according to the order of the controller

and the size of θ, e.g. 8 is equal to the order of Pau(s, θ) and 3 is the sum of

m = 2 and l = 1.

By directly closing the θ loop of Figure B.16, the matrices defined in
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Figure B.16: LFR realization of KLPV (s, θ)

Equation (6) are obtained, that is,

AK(θ(t)) = A+B1I3θ(t)(I −D11I3θ(t))
−1C1

BK(θ(t)) = B2 +B1I3θ(t)(I −D11I3θ(t))
−1D12

CK(θ(t)) = C2 +D21I3θ(t)(I −D11I3θ(t))
−1C1

DK(θ(t)) = D22 +D21I3θ(t)(I −D11I3θ(t))
−1D12

Note that from the lemma 3.2.1 in J-F. Magni (2006), it is known that the

input-output LFR realization of KLPV (s, θ), that is,

y = Fu
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can also be realized by the equivalent state-space LFR
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This transformation reduces the complexity of θ in KLPV (s, θ), since θ is

not repeated in AK(θ(t)), B(θ(t)), C(θ(t)) and D(θ(t)) but occurs only once.

With this realization, the related matrices are listed as below:

A =









































−4.5301 −2612.1 −131.06 193.44 98.995 47.589 −41.269 −8.4422

2640.2 −37395 77398 −116221 −59215 −27983 23891 5416.7

−80.853 468.79 −4075.4 −9911.2 −1816.2 2061.2 −1600.5 1170.1

−129.76 1293.5 5756.9 −11144 −4433.0 511.88 −1975.4 2172.6

249.50 −1779.2 −1149.4 16932 6095.2 1643.2 3384.2 −3267.4

−328.35 2874.3 5640.6 −28393 −13090 −829.59 −4561.9 5234.0

−1097.0 8725.4 7915.2 −91020 −36269 1798.3 −16248 17843

278.66 −2243.3 −2280.2 25220.3 10344 −619.34 4012.3 −4840.8









































B1 =









































−0.09651 8.9632 −10.206

55.657 −4844.1 5680.0

−1.5235 414.87 11.311

−5.9535 2440.4 −2100.0

8.8184 −3867.4 3229.1

−15.140 5572.3 −4309.4

−45.7728 17186 −12987

12.308 −4306.7 3159.4









































, B2 =









































−0.2321

148.51

41.497

58.073

−85.43

132.77

467.92

−130.58
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C1 =











−0.4918 −286.57 −14.425 21.660 11.036 5.2154 −4.4528 −1.0095

0.0076 −0.0904 2.5651 −2.8923 −1.9579 −0.9170 0.3092 0.6601

0.0070 −0.1192 2.3009 −2.6212 −1.6963 −0.7777 0.2801 0.5827











D11 =











1.5864× 10−2 9.0284× 10−1 −1.0586

−1.7395× 10−3 2.4222× 10−1 −4.7265× 10−1

−1.4990× 10−3 5.7731× 10−1 −7.4509× 10−1











, D12 =











−0.0276

0.0079

0.0069











C2 =
[

0.8770 511.01 25.722 −38.625 −19.679 −9.3001 7.9401 1.8002
]

D21 =
[

−1.0393 −1.6099 1.8877
]

, D22 = 0.04935
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