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Abstract

Background: Scenario design is currently not a standardised process. The formulation of storylines representing
different dimensions (for example economic or societal developments) demands an investigation of assumption
compatibility, coherence, and consistency. Scenario techniques that use expert opinion as the sole information
source are particularly appropriate for personal decisions. Contexts where scenarios serve as decision support on a
societal level—for example in political decision-making—benefit from unbiased, fact-depicting, multi-dimensional
information that is available in statistical data.

Methods: The presented approach uses the well-established method of Bayesian model averaging for the
formulation of consistent, transparent, and intuitively understandable quantitative scenario assumptions. These
assumptions are used in quantitative models to produce outlooks and forecasts. Illustrated by the example of
quantitative energy models used to investigate developments of the energy system by scenario technique, the
approach contrasts with other scenario methods. Bayesian model averaging (BMA) is a method that allows for an
evaluation of both system relation stability in terms of observable co-evolvement of phenomena in the past and of
future system states of interest based on expert opinion where past evolvements serve as a point of reference.

Results: The results are scenarios assessable with respect to (1) the consistency of scenario assumptions in terms of
statistical confirmation, (2) the suitability of a quantitative model to represent the scenario, and (3) the statistical
uncertainty of the scenario for a given quantitative model. A transparent scenario construction process results in
traceable assumption documentation (an exemplary communication is provided in the Appendix). Perhaps, the
most important novelty of the approach is the possibility of communicating to decision-makers the associated
uncertainty in easily understandable terms. The distinction between provable possible assumptions (based on
statistical evidence) and hypothetical assumptions is a novelty and significantly improves the aptitude of scenario
study recipients to evaluate scenarios on their part.

Conclusions: BMA provides the possibility for decision-makers (and all recipients of outlooks based on scenario
technique) to trace back results to assumptions and provide an evaluation of these assumptions in terms of
statistical confirmation. As such, the approach adds to the currently limited methodological diversity in scenario
construction techniques.
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Background
Formulating scenarios is a relevant part of future re-
search. This paper aims to contribute to the currently
limited toolbox of scenario construction methodologies.
The Bayesian model averaging (BMA) technique is a
well-established methodology today and, as I will argue,
is an appropriate conceptual setting for consistent sce-
nario construction for application cases where (some)
cause-effect relations are uncertain and the mathemat-
ical representation in models should account for that
uncertainty. Exemplified for the case of energy model-
ling in this paper, the idea of the BMA scenario tech-
nique is that what is observed in the past (documented
by statistical data) is a proven possible state of the world.
A state of the world that observably (re-)occurred in the
past is more probable and less uncertain than a state of
the world that has not been observed before.
However, in many circumstances, investigating unpre-

cedented situations is the very reason for creating sce-
narios! BMA offers a way that uses “knowledge of the
past” about parts of the world—say, the number of un-
employed people documented in statistical data—to for-
mulate expectations about these parts of the world
(unemployment rate) in different states of accompanying
phenomena. It is important to understand that the stat-
istical method tries to find relations of phenomena
expressed as statistical data, based on similarities or dif-
ferences in the changes these phenomena undergo. It is
the expected impact of an assumption on other assump-
tions of the scenario, given the data record we consider.
The technique is particularly suitable for scenarios that
figure as assumptions for consequent processing in
quantitative models, e.g. optimization models and simu-
lation models.
In contrast to most scenario techniques, BMA does

not primarily rely on expert judgement. I emphasise that
judgement-based scenarios are suitable in different con-
texts. In the case of energy scenarios, the need for tech-
niques improving known difficulties associated with
judgement-based scenario design demands empirical evi-
dence as a further source of information. In the follow-
ing discussion, I will present the BMA method for
consistent scenario construction from a mainly concep-
tual perspective. Constructing scenarios is generally best
performed with a perspective on the specific application
case and purpose of the scenario. This implies that the
scenario construction process should rely on different
methodologies, in particular, qualitative techniques, to
avoid an overemphasis of statistics. At the same token,
applying only qualitative judgement-based approaches
risks neglecting evidence and promotes an apodictic ex-
pert opinion. Choosing the appropriate methodologies in
a scenario construction process remains the main task
of scenario designers.

The following discussion is a conceptual discussion. In
contrast to a technical presentation of a method, the focus
lies here on arguing for Bayesian model averaging in the
context of quantitative models. That means, for this paper,
I explain how to make sense of BMA results in scenario

construction, and not primarily how to derive a BMA ana-

lysis. For an example of a BMA analysis, I would like to
refer to [1]. A detailed methodological discussion of BMA
in terms of mathematical formulation and computation
options is given in [2–9], to name just a few. Fragoso et al.
[10] present a taxonomy of BMA literature by means of a
meta-analysis of published works. While earlier works of
mine could be viewed as Fragoso et al.’s usage category
“joint estimation”, the present discussion would match the
“joint prediction” category, which is justifiably a separate
category.1 Though the exemplary application case is again
energy-economic modelling, the inferences drawn from
applying BMA for scenario design are novel.
The focus of the paper is to present BMA as a technique

to compute scenarios. This is particularly suitable in con-
texts where mathematical relations are approximations and
the modelled entities’ behaviour is uncertain. In contrast,
the modelling of parts of the world that obey laws of nature
is often straightforward in mathematical terms. A model of
a dropped ball is a precise mathematical relation for
example. The results computed with such a model depict
empirically well-confirmed system states for known param-
eters (e.g. gravitational pull) and variables (e.g. weight of the
ball). The computed model results are quite precise—ex-
pectation for, say, the ball’s position at time t. It is insensible
to repeat a ball throw over and over to gather statistical
data when we know a mathematical relation describing the
relations precisely, a mathematical function. But when it
comes to scenarios depicting (also) human decision(s), for
example, scenarios in social sciences, then we lack a precise
mathematical formulation as humans can decide differently
at any time. The behaviour of humans and the consequent
“behaviour” of relevant variables depicted in statistical data
(e.g. GDP, trade balance, demand) can only be approxi-
mated. This is what BMA, as a statistical method, does.
BMA approximates with a view on the statistically evident
behaviour in the past. Judgement-based scenario techniques
reflect the expert understanding of the phenomena’s behav-
iour in the past.
In the “Energy (economic) modelling as particular

context” section, I investigate the context of energy sce-
narios. In the sections “Quantitative and qualitative sce-
nario construction” and “Scenario definition and
uncertainty evaluation”, I review multiple scenario con-
struction techniques to contrast them with each other
and to relate them to the requirements for scenario con-
struction in the energy modelling context. A basic
principle depicts scenario design in terms of phenomena
and energy model boundaries. Using an example, my
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discussion of consistent scenario construction extends to
two cases: an existing energy model and the case of a
scenario-adapted energy model in the “Consistent sce-
nario construction for a given energy model and an
adapted energy model” section. The BMA results are nu-
merical assumptions necessary for quantitative energy
models as an input as discussed in the section “Results:
consistent numerical value estimation”. The following
section consists of a critical discussion of the approach
and its limits in detail. Based thereon, I draw conclusions
and end with a brief summary. The Appendix is an ex-
emplary communication of scenario assumptions.
The hope is that this paper helps to acknowledge that

scenarios depicting a future world should also respect
the world of the past and the present. Here, BMA would
be one way to do so.

Energy (economic) modelling as particular context

The energy system of a country is interrelated with dif-
ferent societal aspects forming “systems” on their part.
Economic, social, environmental, and governmental pol-
icies influence the design and desired changes of an en-
ergy system. Stakeholders are present in all societal
“categories”, for example, industry, public, government,
or non-governmental organisations. An adequate design
and adaptation of the energy system to the changing
needs of a society are in the interest of all stakeholders.
The priorities may, however, vary according to stake-
holder objectives, planning, and societal duties.
Changes to an energy system cannot be experimentally

tested, as compared to the design of a physical experi-
ment. Implementing “new” policies is a delicate process
that needs to balance economic feasibility, societal accept-
ance, industrial attractiveness, and political rigour. In
addition, international agreements, such as the security of
supply agreements or environmental protection agree-
ments, demand for strategies that are respectful in regard
to both the accepted duties and their practicability.
Investigating potential consequences of policy mea-

sures for different stakeholders of an energy system in
terms of monetary, technical, environmental, and social
burdens has become a major concern of quantitative en-
ergy modelling for policy advice. Assisting the impact
evaluation for policy advice is a central role of quantita-
tive energy modelling [11, 12]. To account for different
possibilities, scenarios are developed representing a set
of numerical assumptions interpreted in a narrative way,
the so-called storyline. What the term “scenario” refers
to is not clearly defined in the literature.
Van Notten discusses 11 definitions and application ex-

amples for scenarios [13]. Lindgren debates paradoxical
situations and practical indications of the scenario tech-
nique [14]. Van Notten and also Lindgren accord to the
scenario technique qualities as intuitiveness, creativity,

associational thinking, causal relation assumptions, and
other possibly non-standardised characteristics. The main
objective of scenarios is to create a set of assumptions
representing a state of the world of interest, used for the
evaluation of future developments [15]. Önkal et al. have
addressed the difference between method-based statistical
forecasting and the scenario technique. According to
them, scenario technique reflects plausible futures based
on the reasoning of the scenario designer [16].
In quantitative modelling, possible future states of the

energy system are limited to some defined input scenarios,
also called storylines or key assumptions, what implies a
subjective and decisive pre-selection of futures scrutinised
with an energy model. This is a delicate process that
should involve expert knowledge, and rigorous attention
must be paid to plausibility. Individually stipulated as-
sumptions may, in concert with other individually plaus-
ible assumptions, amount to implausibility due to
reciprocal assumption impact. An energy model, designed
to represent an existing energy system, is typically applied
to investigate potential consequences for the target sys-
tem, given things were as assumed in a scenario. However,
due to the interrelated nature of the target system, experi-
mental confirmation of scenario assumptions is limited, if
not impossible. Therefore, the assumptions figuring in a
scenario cannot solely be derived from intuitive scenario
methodologies, if the energy model results should repre-
sent a provable possible or even probable energy system
state. I refer to energy models as quantitative descriptions
of an existing energy system, e.g. [17–19]. The literature
on existing energy models is given for example in [20–22],
or [12], where reviews and evaluations are published.
The method proposed for scenario construction ad-

dresses the problem of scenario representation in energy
models and evaluates the scenario assumptions for a given
energy model in terms of their empirical adequacy. The
empirical adequacy of an assumption is its propensity to
represent possible states of the world as confirmed by stat-
istical evidence.2 In other words, I take consistent scenario
construction to mean that numerical assumptions are
consistent with statistically evident stable relations in the
target system. The transparent documentation and com-
munication of the assumptions’ statistical confirmation
can help recipients find their own opinion of a scenario.
Energy model results are typically presented as energy

scenario studies, for example [23]. A consistent scenario
construction as an accompanying document is an uncer-
tainty assessment, as presented in [24], as well as the
consequent predictive density computations, the scenar-
ios. The scenarios come thus automatically with an un-
certainty estimation for the specific energy model and
the specific scenarios computed with it.
In other words, consistent BMA scenarios estimate a

quantitative (energy) model’s suitability to represent a
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scenario. Consistent scenario construction can assess sce-
narios of a specific energy model in terms deemed rele-
vant by Goodwin [25] p. 7: transparency (what are the
relevant phenomena according to the data), the ease of
judgement (how good are the relevant phenomena cap-
tured in the energy model—both quantitative via posterior
model probability (PMP) and qualitative via posterior in-
clusion probability (PIP)), the versatility (the BMA can be
applied to many quantitative models), the flexibility (pro-
vided statistical data are available, and different phenom-
ena can be included in the statistical analysis), and
theoretical correctness (the mathematical core of the
BMA is set, applying BMA means exercising that theory
on the data). I will return to these criteria by Goodwin in
the conclusion section and discuss the BMA methods’ ap-
titude as a “formal strategy evaluation process within the
scenario planning”.
The general characteristic of scenario construction

that is specific to the energy modelling context is a tight
connection of the scenario to the actual world. In other
words, scenarios modelling potential energy futures are
(partially) used as a replacement of experiments (which
cannot be carried out) and serve as concrete guidance in
decision support. This places requirements on the
employed scenario technique in terms of empirical ad-
equacy, as the purpose of energy scenario studies is an
evaluation of actual, possible, and plausible future op-
tions, which decision-makers may have to consider.

Methods: quantitative and qualitative scenario

construction
For clarity, I would like to start with a clarification of the
terminology used. I take a phenomenon to be either a
physically observable or an invisible socially emerged con-
stellation of parts of reality that are naturally interrelated.
Physically observable phenomena are quantifiable via
measurements and/or observation records. Social phe-
nomena are observable and quantifiable via an interroga-
tion and/or observation record. An observation record,
also called empirical evidence, is in this case the statistical
data. In fact, a phenomenon may exhibit different empir-
ical evidence of itself. Statistical data have the advantage
above personal observations that they are collected sys-
tematically, according to a method, and data observed the
same aspects of a phenomenon over time. This methodo-
logical transparency of statistical data serves as common
ground for different persons to speak about reality. How-
ever, one must not think that statistical data describe or
capture a phenomenon exhaustively or even just appropri-
ately. They are merely a basis allowing different people to
speak about the same aspects of the target system.
In this discussion, an energy model is a mathematical

representation of an energy system with the aim to de-
pict a real energy system simplified and idealised, but

nonetheless empirically adequate. The term energy

system refers to the part of reality that is (1) physically
existent in the world used to generate and deliver energy
(e.g. electricity, heat); (2) economically associated with
the processes of generating, transporting, and consum-
ing energy; (3) socially related to the effects induced by
energy consumption and access (e.g. fuel poverty); (4)
related to environmental phenomena (e.g. change of
gaseous composition of the atmosphere due to energy
sector CO2 emissions); and (5) part of individual human
reality, i.e. a human is aware that the energy model and
the scenarios represent a part of her reality. The energy
system (ESS) is part of the world (WSS), and the world
is part of the universe.
In Fig. 1, a subset illustrates being “part of” the larger

reality, to which I refer to as the target system. The energy
system is not naturally demarcated from any other system
of the world, and the world is not naturally separated from
any other system of the universe. The energy model de-
picts parts of the energy system and all interrelated sys-
tems of the world by stipulation, expressed in the energy

model design and energy model boundaries. Energy model
boundaries are an artificial demarcation between naturally
interrelated phenomena. The energy model design is
basically the choice of input variables, parameters, and
output variables representing the phenomena in WSS.
Statistical data are quantitative, i.e. continuous or discrete
or qualitative, i.e. categorical (nominal and ordinal)
descriptions of phenomena in WSS according to the
definition of the data collecting institution.3

I take a true data generating process to be a process that
causally influences the numerical appearance of statistical
data. A true data generating process can be artificial, for
example, if the data are created to test statistical methods,
or natural, if known or unknown phenomena in WSS
cause the data recorded. For example, let our data be the
coordinates of a ball at a time. If the ball is thrown, the
true data generating process is the force influencing the
ball, which “changes” the coordinates’ numbers—the data
we collect. The relation in WSS of the phenomena can,
for the ball example, be described by a mathematical for-
mulation using laws of classical mechanics. Depending on
the phenomena described by a statistical data point, the
number of true data generating processes can vary and
their causal status too. For example, the statistical numer-
ical description of the phenomenon GDP is caused by, or
correlated with, different phenomena in WSS as for ex-
ample consumer satisfaction, trade balance, tax burdens,
unemployment, etc. Statistical methods typically aim at
identifying what phenomena are influential. The proposed
BMA method does so, too.
Scenario construction has so far not been considered

as a scientific area itself, and to an extent it should
have been [26]. Some independently developed
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methodologies, techniques, and quality standards have
recently emerged. Research addressing the crucial role
of scenario construction and the difficulty in classify-
ing the diverse techniques has been undertaken, for
example, by [27–29]. Scenario construction is the sys-
tematic choice of numerical values for exogenous vari-
ables (input variables) and parameters of an energy
model as assumptions. Scenarios constructed to derive
recommendations for decision support necessitate a
balance between confirmed possibility and hypothet-
ical assumption creation.
Unfortunately, in energy-economic modelling, the

current practice of scenario construction is often
opaque and unsystematic [30]. Sometimes, scenarios
are defined, that is, agreed upon by modellers and
sponsors. The consequently stipulated numerical
values for assumptions translate the storyline. With
opaque scenario construction, a “result design” for
sponsors is also possible, what is in my view scien-
tific misconduct. Evaluating the representation qual-

ity of the agreed storyline in a specific energy model
is rarely addressed. The proposed method does so by
looking at the energy model input variables’ ability
to represent the scenario. If the defined scenarios
are not based on a systematic analysis of interrela-
tions in the target system, the truth and legitimacy

of the claim that energy model results represent a re-

sponse of the energy system to the scenario cannot be
evaluated. BMA scenarios for input variables allow
for the construction and evaluation of consistent
scenarios based on observable energy system rela-
tions in the past using statistical data.
Methodologies and techniques reported in the literature

are presented in Table 1. The comparison of scenario tech-
niques is based on the categorisation introduced by [31].
The following series of arguments addresses the ques-

tion as to whether the proposed BMA technique is a
sensible addition to the purely qualitative approaches of
the scenario method. To do so, I highlight some aspects
of opinion-based approaches which are implicit to them.
I emphasise that these aspects are not erroneous in
themselves. They may serve as an advantage in scenario
design in some contexts. The basic claim I argue for is
that scenario construction techniques which use opinion
as a sole source of information fall short of empirical ad-
equacy required for decision support and policy advice.
Scenarios based on opinion

1. Lack a democratic perspective,

2. Lack the possibility to evaluate the scenario quality,

3. Suffer from detrimental psychological effects in the

context of decision support,

4. Cannot reflect the target system’s complexity due to

limitations of human reasoning capacity.

I recall that the particular context of energy modelling
uses scenarios as a basis for decision support, replacing
experiments. In other words, scenarios computed with en-
ergy models may lead to political decisions influencing

real people in the real world. Scenario construction tech-
niques which suffer extensively from the four points raised
in this section bias the futures investigated, which could
have far-reaching and society-relevant consequences.
Constructing scenarios for decision support with conse-

quences surpassing the realm of personal experience of the
scenario constructor places in a sense an obligation on the
scenario to account for the interests of all people affected. If
the information source of scenarios is an expert opinion, the
constructed scenarios are necessarily and inevitably biased
towards the personal situation of the expert(s). In a democ-
racy, however, possible (probable, plausible, and consistent)
futures presented to decision-makers ought to envision
futures respectful of all stakeholders. Statistical data as an in-
formation source, in a sense, encode stakeholder choices and
implicitly reflect different interests, for instance, technology
acceptance, economic commitment to changes, ecological
concerns, institutional (personal, societal) priorities, etc.
Many statistical data are available from trustworthy sources
that collect data non-discriminatory, regularly, reliably, meth-
odologically sound, and freely available.
Moreover, statistical data connect conceivable future

scenarios to relevant constraints. Relating the thinkable to
the feasible, and showing where changes are necessary to
render scenarios feasible, can be achieved in a straightfor-
ward manner based on statistical evidence. For example,
the statistical information of average processing times for
construction permits of electricity transportation facilities
could constrain scenarios of generation capacity increase
realistically. As a transparent assumption in a scenario, it
is at the same time the action recommended to
decision-makers; the assumption that processing times for
construction permits are stipulated shorter (or equal, lon-
ger) than statistically evident in the scenario can be com-
municated in detail.4

The second and the third point concern the problem
that expert elicitation as an information source for sce-
nario construction cannot be evaluated in terms of quality.
There are no standards as to who should be considered as
an “expert” and no criteria for the status of being an ex-
pert. There are no requirements for group design and en-
vironmental design to prevent psychological effects
reported in the literature [32–35]. Although standards
have been proposed [36], it is not a common practice to
accompany the judgement-based scenario construction
with a methodological assessment, and more importantly,
the quality of the standards is itself a question of opinion.
In contrast, statistical data can be evaluated in several di-
mensions. Time, scope, collecting agency, post-processing,
data arrangement, accessibility, and financing of the data
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Table 1 Comparison of scenario design methodologies and techniques adapted from [31]

Methodological
approach

Technique Keywords or a (very) brief description Source of information

Judgement Genius forecasting “Think the unthinkable” [55] Opinion

Visualisation Intuitive images are combined to scenarios that are in juxtaposition
to analytical strategies, e.g. [56]

Opinion

Role playing A group judgement technique where individuals create a response
to a hypothetical situation which is considered as a scenario.
Playing the devil’s advocate is an example of scenario forming with
focus on unprecedented or highly unlikely scenarios [57].

(Group) opinion

Coates and Jarratt For a given time frame and domain, four to six scenario themes
regarding the most significant kinds of potential future
developments based on judgement are formulated, cf. [58]

Opinion

Baseline scenario:
the expected future

Trend extrapolation Measures existing trends and extrapolates effects into the future;
both judgement and empirical analyses are possible. The Manoa
technique defines three strong trends which are analysed w.r.t.
their implications separately, and in conjunction using a
cross-matrix, cf. [26]

Opinion or
statistical data

Elaboration of
fixed scenarios

Incasting Based on an (extreme) state of the world participants judge
potential impacts in various respects as politics, economics, etc.
Qualitative or quantitative for example life cycle assessment
technique [59]

Opinion/data

SRI matrix (Stanford
Research Institute matrix)

From a column-wise classification of fixed scenarios as for example
worst case or expected future the dimensions (e.g. population,
environment) are evaluated row-wise, cf. [60]

Opinion

Event sequences Probability trees and
scenario trees

Different future conditions constitute individual paths which are
assigned probabilities. Probability trees are used in risk management.
A related technique is scenario trees where a reduction of probable
paths to relevant paths is carried out, cf. [61]

Opinion

Intuitive scenario building Probability trees are evaluated to identify characteristics that are
common to several branches. Summarising these branches is
considered as a way to create coherent scenarios, e.g. sociovision [62]

Opinion

Divergence mapping A set of events, derived from brainstorming, is aligned in different
time horizons forming the storyline of a scenario. The relation of
earlier events to the later events is seen to be a plausible
sequence, cf. [63]

Opinion

Backcasting Horizon mission
methodology

Supposing a hypothetical situation (the scenario) was an actual
situation, the ways and necessary components at present are
analysed to achieve the scenario [31, 64]

Opinion, state-of-the-
art technology data

Impact of future
technologies

Multiple future scenarios are the basis from which experts work
backward and identify necessary (technological) breakthroughs, e.g. [65]

Opinion

Future mapping An expert elicitation technique where pre-defined events and
pre-defined end-states are arranged to investigate interrelations
and consequences, cf. [66]

Opinion

Dimensions
of uncertainty

GBN (Global Business
Network)

Based on two dimensions of uncertainty and polarities, four
combinations are seen to constitute plausible futures, cf. [62]

Opinion

Morphological analysis
and field anomaly
relaxation

Multiple dimensions of uncertainty captured in columns are
related to alternative events in rows. A scenario is created by
the alignment of alternatives of each column, cf. [67]

Opinion

Cross-impact
analysis

Interactive future
simulation IFS

Based on a set of variables (descriptors) an assessment of their
mutual relevance based on expert judgement is carried out.
Consistent scenarios are constructed in the sense that variable
combinations are computed that have been judged to be compatible.
There are probabilistic versions of cross-impact analyses [37]

Opinion arranged by
mathematical method

Modelling Trend impact analysis Based on a business-as-usual trend assumption, the impact of a
potential event on that baseline scenario is evaluated in
distinguished impact sequences (first depart from trend continuation,
maximum impact, and effect integration), cf. [68]

Opinion
(and statistical data)
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collection are transparent and often follow a methodo-
logically rigorous process. It seems legitimate to consider
that scenarios based on statistical data are less susceptible
to personal interests, personal experience, and group dy-
namics. Psychological factors (as consensual attitudes or
authority biases, in addition to cultural factors as pedigree,
or gender prejudice, and environmental factors such as
meeting facilities, meeting location, travel times and hous-
ing, as well as economic factors such as remuneration,
funding, or nepotism) are not observable in statistical data
analyses. The unclear quality of expert elicitation and the
reported psychological phenomena involved in the
construction of opinion-based scenarios gain a dramatic
momentum if we recall that these scenarios are presented
as possible (sometimes even consistent) futures to
decision-makers.
Using the technique of cross-impact analysis as an ex-

ample for a judgement-based scenario construction tech-
nique, I would like to discuss the fourth point. However,
my criticisms apply to all techniques based on expert
opinion. Consistent scenario construction is a relevant
prerequisite for the legitimation of energy model results
and one approach addressing this issue is cross-impact
analysis [37, 38], reviewed by [39]. Briefly described, the
method presented in [37] defines the so-called descrip-

tors figuring as a representation of context assumptions
for a scenario. Experts are elicited to stipulate the recip-
rocal influence of the descriptors and via an algorithm
compatible context assumption combinations are de-
rived. Although cross-impact analysis (CIB) is preferable
to an unsystematic assumption choice and numerical
value stipulation, the method has some drawbacks.
First, the number of so-called descriptors is limited

due to both practicability, cf. p359 [37], and reliance on
experts. In contrast, due to the Monte Carlo simulation,
the number of potential influences (corresponding to de-
scriptors) is not limited computationally using Bayesian
model averaging. Expert knowledge is not required but
can be included through prior choice.

Secondly, the CIB methodology defines consistency in
a particular manner based on expert judgement. The de-
scriptors are evaluated with respect to their reciprocal

influence, one-on-one, as assumed by the expert interro-
gated. The basic principle describing the consistency is
the principle of compensation that says “two opposing
influences on one state are to be judged as equally
strong if their effects can compensate each other. If it is
to be estimated that one of the influences predominates
during a confrontation, this one shall be judged higher,
i.e. be given a higher number.” p.340 [37].
Underlying the principle of compensation are three ar-

guable assumptions (1) dominance is generally valid, (2)
dominance can be extended, and (3) dominance is pair-
wise invariable if additional descriptors are simultan-
eously considered in a scenario.
Assumption 1 is a general statement for two descriptors

that can be for example “+ 1” meaning “weakly promoting
direct influence”, “− 3” meaning “strongly restricting direct
influence”, or “0” meaning “no direct influence”. The
problem is that such an evaluation needs to be related ex-
plicitly to another context (i.e. descriptor) and contexts
may vary in different scenarios, and for different experts.
For example, if an expert generally judges a descriptor as
weakly promoting another descriptor, she (implicitly) pre-
supposes conditions where the statement is valid, what I
call that a state of the world. But the presupposed condi-
tions are exactly those that are varied in different scenar-
ios. In contrast, if we use statistical data and the BMA
method, we evaluate the reciprocal influences of descrip-
tors in many different states of the world, to be precise, all
those states of the world, our data record contains. This is
in fact what statistical analyses do, regarding the rate of
change of a variable (i.e. descriptor, influence) relative to
all other variables. I call the property of a descriptor to be
influential in many different states of the world stability. It
is advantageous to formulate scenarios based on stable re-
lations in the target system as these relations are most
likely to hold in scenarios too.

Table 1 Comparison of scenario design methodologies and techniques adapted from [31] (Continued)

Methodological
approach

Technique Keywords or a (very) brief description Source of information

Sensitivity analyses Given a model, exogenous variables or model parameters are varied.
The changes of model results given varying input/parameter
assumptions are evaluated as “sensitivity”. Often the one-parameter-
at-a-time technique is employed, a kind of ceteris paribus approach [69]

(Opinion and)
statistical data

Dynamic scenarios From brainstormed scenario themes a system is mapped using
causal models. The variables figuring in different causal models
are combined in a meta-model mapping the whole domain.
The meta-model is analysed for different uncertainties involved
in the variables, cf. [70]

Opinion and
statistical data

Bayesian model
averaging (BMA)

Scenarios are constructed from statistical data records of phenomena
most relevant for an input variable of a consequent quantitative
model. Uncertainty is evaluated based on the explanatory power
of influencing phenomena most relevant in the historical record, cf. [24]

Opinion and
statistical data
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Assumption 2 implies that dominance of descriptors
can be extended to hypothetical states of the world. A
hypothetical state of the world is a state with unprece-
dented conditions. In contrast, a provable possible state
of the world is a combination of occurrences in the
world observed in the past. If the scenario construction
is based on intuitive or hypothetically possible relations
in the target system, we are confronted with two kinds
of uncertainty: (a) assumption uncertainty and (b) rep-
resentation uncertainty. Now, (a) is a natural uncer-
tainty for every future scenario and, in fact, it is the
very reason why we construct scenarios. Assumption
uncertainty arises because we do not know what will
happen in the future. So, if we assume a numerical
value we stipulate an assumption for an input variable,
we face assumption uncertainty as the value might
prove to be different in due course. In contrast, (b) rep-
resentation uncertainty means that the relations in the
target system are, at least partially, flexible and un-
known. Intuitive cause-effect relations or expert opin-
ion on reciprocal relations can be empirically adequate;
however, the only way to evaluate the adequacy is to

compare the assumed relation with actual target system

behaviour in the past. This amounts to a statistical ana-
lysis. The proposed method merely circumvents the
introduction of additional uncertainty due to poor sys-
tem relation representation and straightforwardly uses
the stable relations that are statistically confirmed for
the observation period in the target system. BMA for
consistent scenario construction extends to hypothet-
ical states of the world too but allows specifying that a
scenario represents a hypothetical state and allows for a
clear communication as to why and to which extent the
hypothetical scenario differs from the observations in
the considered historical period.
Assumption 3 is, in a sense, a ceteris paribus assumption

known to be an idealisation. It is related to assumption 1
but now I mean consistency within the same scenario. I
would like to give a simple, intuitive counterexample to this
assumption based on the interrelated nature of the energy
system with social, environmental, and political systems.
Consider the three descriptors: gross domestic product,
world tensions, and oil price, taken from the example in
[37]. The experts are supposed to judge the influence of the
gross domestic product on the world tensions, and so forth,
pairwise. But if an expert was asked to assess the relevance
of the oil price on the world tensions given a high gross do-
mestic product (a relaxed economic situation), it may be
different than when this relation is assessed given a low
gross domestic product (distressed economic situation).
Whatever the expert’s subjective reasoning behind the sup-
posed impact of one descriptor on another would be, it
must not necessarily hold true when a third, a fourth, etc.
descriptor enters the picture (and is variable).

However, for a human being, also for an expert, it is dif-
ficult to assess the strength of relations between the de-
scriptors when the number of descriptors exceeds two or
three. I suppose the cause for this is that human’s reason
about correlation and reasoning is difficult when relations
become multi-dimensional. In contrast, the statistical
BMA model can (and does) take dozens, even hundreds,
of potential combinations of descriptors (influences) into
account and assesses their explanatory power with respect
to all other descriptors in a model simultaneously. Thou-
sands of such models are investigated in the MCMP sam-
pler, which is not restricted by human capacity. And,
perhaps most relevant, the explanatory power (equivalent
to the “cross-impact judgements” of the experts) is not

based on human reasoning, but on statistical confirmation.
Consistency is hence defined as non-contradiction with
empirically confirmed states of the system (i.e. with statis-
tical fact) rather than an expert opinion.
In addition to being non-contradictory, the strength of

evidential support in a relation (given the data used) can be
analysed in principle in detail for any region, any time reso-
lution, any historical period, and any type of statistical infor-
mation by one person. In contrast, even if the group of
available experts has remarkably diverse backgrounds (what
brings about other problems, e.g. language issues, incompat-
ible implicit worldviews), this is for judgement-based scenar-
ios in principle not possible. All experts employ human
reasoning. I would like to remark that this is a fundamental
difference to all techniques presented in Table 1 with infor-
mation source opinion. To be clear, I do not say that experts
err in principle their assessment of relations, even if a
multi-dimensional scenario is constructed from their
two-dimensional assessment. But we cannot assess the qual-
ity of the “human black box” directly. Whatever the reason-
ing behind the expert’s opinion of the assessed relation
would be, it should be empirically adequate, and this ad-
equacy needs to be evaluated. Using statistical data in the
BMA method, we can obviate the risk of empirical inad-
equacy due to human reasoning naturally involving psycho-
logical effects and computational limitations.
Another drawback of a judgement-based scenario design

with a semi-formal ordinal categorical formulation is exem-
plified here using cross-impact analysis. However, the criti-
cism applies to all techniques where quantitative scales are
used as a way to represent expert judgement as an informa-
tion source, rather than using a quantitative scale as an in-

formation source. In contrast, the quantitative values of
statistical data represent statistical evidence, i.e. observable
empirical facts. Reciprocal effects and dominance in the
semi-formal formulation are represented for example as “+
1” or “− 2”, “medium” or “low”, and it is unclear according
to what procedure these formalisations are translated into
values acceptable by an energy model. Even in case the
assumed relations were right, the scenario formulation of
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numerical assumptions seems to not be based on a meth-
odologically stringent interpretation procedure. In other
words, the method invites interpretation opacity and uncer-
tainty in the numerical value stipulation necessary for an
energy model.5 Different modellers may interpret the
impact of the descriptor oil price “quantified” as + 2 on the
descriptor gross domestic product in completely different
numerical value stipulations “fed in” the energy model. The
CIB method in fact provides “sets of consistent assump-
tions” for a number of descriptors forming the scenario it-
self. To me, it is unclear if the interpretation of the scenario
B1 (p. 343 [37]) consisting of moderate world tensions,
medium borrowing industrial countries, strong cohesion of
OPEC, an oil price of 35–50$, and 2–3% world GDP
growth would be interpreted by different energy modellers
numerically in the same way. If an oil price of 35$ is equally
well confirmed as an oil price of 50$, the “rough” scenarios
are possibly too general for energy models being highly
sensitive to numerical assumption changes.
Secondly, how would “moderate world tensions” be nu-

merically interpreted? Thirdly, if it was not included in the
model numerically, how is the scenario-relevant context as-
sumption (and its non-inclusion in the energy model)
accounted for? The proposed BMA method for consistent
scenario construction uses statistical data with explicit nu-
merical assumptions for quantitative statistical data. For ex-
ample, the descriptor GDP is not interpreted but simply is

the GDP in units, e.g. billion EUR [40]. The derived statis-
tical data, as for example GDP per capita, inherit their
meaning from the basic statistics and the transparently
published computation procedure by statistic agencies.
Vague scenario formulations as “high GDP” or “moderate
world tensions” reflect the relative nature of every judge-
ment. In the case of CIB, the judgement expresses the ex-
pert’s opinion and the modeller’s interpretation stipulating
the numerical value. In the case of BMA, the judgement ex-
presses the statistical data used, e.g. the stipulated value lies
in the third quartile of the data (in the highest 25%). If data
are transformed [41] for BMA analyses, a systematic rever-
sal to derive a numerical value for scenario assumptions is
possible. In some contexts, categorical data or ordinate
statistical data are available. They can be included in the
scenario construction, but in contrast to semi-formal
quantification, BMA is not limited to them. Their interpret-
ation is straightforward from the statistical sources, for
instance, defined indices6 or systematic data treatment as,
e.g. seasonal adjustments.
The empirical assessment’s importance is particular to

energy modelling and policy advice scenarios in general.
The severe consequences of experimental trial-and-error
strategies in terms of economic impacts on society de-
mands for a scenario construction method that takes
into account assumption compatibility and strength of
evidential confirmation. As energy modelling is the best

“experiment” of the energy system we have, it is mean-
ingful to make sure that the constructed scenarios relate
to what was possible in the target system and to estimate
how much deviation, we could say “novelty”, a scenario
introduces compared to the states of the energy system
as documented in statistical data. In this way, we esti-
mate and give credit to the efforts we take in our pursuit
of hypothetical system states we dream of in scenarios.
Expert knowledge is part of this process; however, evalu-

ating the relations of target system phenomena is not an ad-
equate scope for expert judgement, as speculations about
relations are more adequately scrutinised with statistical
methods. If in fact one phenomenon in the target systems
happens to systematically change in concert with other
phenomena, statistical methods can point to that – what-

ever the reasons for the simultaneous changes are. Experts
can interpret changes and guess reasons for correlations if
the true data generating process is unknown. But a guess
remains a guess, even if performed by an expert. Pretending
expertise on something one does not understand is not
professionalism but unscientific conduct. And as we cannot
directly evaluate expert understanding and the “correct-
ness” of reasoning as confirmed by evidence we might as
well guess ourselves or directly consult evidence, as we do
in statistical analyses.
If an expert knows a true data generating process, expert

judgement is valuable for scenario design. For example, if
an expert knows of signed contracts to build a pipeline, she
knows a reason for a change. In a scenario the
phenomenon “infrastructure capacity” can be adjusted ac-
cording to the expert’s opinion in due time of the scenario.

Scenario definition and uncertainty evaluation

The first step when creating BMA-scenarios is defining (i.e.
choosing upon known) phenomena in the target system we
want to make a scenario of for an energy model. I refer to
such phenomena of interest as “scenario phenomenon”.
Public invitations to tenders for modelling exercises often
describe the scenario phenomena of interest in detail. For
example “the impact of unconventional gas production on
the electricity price of country X” could be a phenomenon
of interest. But also phenomena, as for example “implica-
tions for the energy system of a legal threshold for CO2

emissions in country X”, could be subject of a scenario. Let
me replace “country X” with “Nicastan”, an inexistent
country, to improve legibility and intuitive understanding
coupled with the generality of the presentation.
What interesting phenomena for a scenario depend on

the person who asks the question—the societal group
concerned. For energy models, governmental stake-
holders sometimes investigate consequences of debated
political measures by scenarios. Industrial stakeholders
might be interested in energy system developments
given different investment decisions. Public stakeholders
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might be interested in tax burdens or security of supply
scenarios, to name just a few. For a consistent scenario
with BMA, the phenomena investigated are not limited
in number and nature (social phenomena, environmen-
tal phenomena, economic phenomena) provided statis-
tical data are available. I return to that limitation in the
“Discussion and limits of the approach” section.
We discern between modelled phenomena and context

phenomena defined by the model boundaries of a spe-
cific energy model. The consistent scenario construction
is solely concerned with the aptitude of an energy model
to represent the scenario given the energy model design.
The relevant parts of an energy model for scenario rep-
resentation are the input variables and sometimes pa-

rameters. For the presented method of consistent
scenario construction, we do not need any judgement of
the energy model’s quality, as we only look at an energy
model’s capacity to represent the scenario, and construct
numerical assumptions consistent with statistical data
and expert opinion. In other words, the consistent sce-
nario construction as presented here is independent of
consequent processing by an energy model, its mathem-
atical formulation, and internal error propagation, what
makes the method applicable to a large number of quan-
titative modelling techniques. The “interface” of scenar-
ios and energy models are typically input variables;
therefore, the following example uses a typical input
variable. Figure 1 depicts a schematic illustration of sce-
nario phenomena, statistical data, energy model repre-
sentation of the energy system (ESS), and the target
system (WSS), i.e. the “real” energy system.

The rectangle should be considered extending be-
yond the graph as “the universe”; it is associated with
all possible states of the universe, one at a time, ac-
cording to the time increment we choose for the rec-
ord. The solid ellipse depicts schematically “the
world”; it is a subset of the universe associated with all
possible states of the world. Dots in the WSS subset
indicate existing phenomena. The dotted ellipse indi-
cates “the energy system”; it is a subset of the world
associated possible states of the energy system. The
circles indicate statistical data depicting (a collection
of ) phenomena in WSS as follows. Purple circles sche-
matically depict phenomena of the world subset
(WSS), explicitly outside the energy model boundaries.
Blue circles depict phenomena of WSS and the energy
system subset (ESS); statistical data of these phenom-
ena are accounted for in an energy model in the form
of parameters. Solid purple circles depict phenomena
of WSS and the energy system subset (ESS); statistical
data of these phenomena are accounted for in an en-
ergy model in the form of input variables. Solid blue

circles depict phenomena of WSS and the energy sys-
tem subset (ESS); statistical data of these phenomena
are accounted for in an energy model in the form of
output variables. The arrows show the BMA descrip-
tion of phenomena, to be read as “explains” in the dir-
ection of the arrow tip (Fig. 1).
I created a fictitious scenario and elaborate the dif-

ferent steps for the example. The storyline of the sce-
nario is translated to numerical assumptions for input
variables. Suppose the government of Nicastan is in-
terested in a low-cost scenario for natural gas because
in the real world, recent developments in unconven-
tional gas production indicate a lasting period of low
natural gas prices. We want to investigate the effects
of such a low-cost period on the energy system in
Nicastan with the fictitious energy model My-model.
Assessing the empirical adequacy of My-model is

our aim, expressed as a lower bound of uncertainty
that My-model is apt to represent this scenario. Find-
ing the numerical assumptions, value that best de-
scribes the scenario follows. Phenomena of interest in
this example are different target system phenomena,
including the unconventional gas production. The for-
mulation of the scenario is captured in the input vari-
able “natural gas price” of My-model. So, if the
energy models’ assumption should reflect the bearing
of unconventional gas production on natural gas
prices in Nicastan, there should be statistical evidence
for that. The strength of the supposed relation be-
tween the energy model input variable (the price for
natural gas) and the scenario-phenomenon of the
target system (unconventional gas production) is
assessed by statistical evidence.

Fig. 1 Schematic illustration of the world, the energy system, and
the representation of phenomena with BMA
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It is, in a straightforward sense, evaluating whether the
considered scenario can be described by the energy
model at all (and how well), based on the energy model
design. The input variable of My-model represents many
phenomena; with BMA, we can find out how relevant
the one phenomenon we are interested in (the uncon-
ventional gas production) is. The uncertainty assessment
estimates how relevant the relation of scenario phenom-
ena and energy model input variables is, based on obser-
vations. For statistical data of phenomena outside the
energy model boundary, it is a quantitative assessment
of scenario uncertainty as defined by Walker et al. [42].
This is a fundamental assessment because it concerns
the grounds of justification for any energy model result

claiming to illustrate the scenario.
I would like to emphasise that hypothetical energy system

state scenarios (i.e. not designed to represent energy system
states observed in the past) are not in conflict with using
statistical data for scenario construction. Both energy
models and scenarios are designed to describe possible en-
ergy system states. Statistical data are evidence for a system
state to be possible. Equivalent to energy model calibration,
consistent scenario construction uses the evidential basis to
derive statements about the possibility of scenarios. This is
of interest for scenarios describing unprecedented energy
system states (hypothetical scenarios) because it provides
an expectation based on what we know to be possible.
The statistical data are used to analyse relations in the

target system of relevance for the scenario representa-
tion in an energy model. To do so, classical statistical
methods could be used. These methods have some dis-
advantages, for example, biases in the choice of explana-
tory variables by the scenario constructor. Using Baysian
model averaging (BMA) [2, 3] allows for both expert
opinion and statistical likelihood and reduces the risk of
model misspecification.
The mathematical formulation representing a general

relation between the influences (also called explanatory
variables) and the dependent variable is chosen, where the
input variable of the energy model (the natural gas price)
figures as the dependent variable in the BMA model. Evi-
dentially, production data of unconventional gas is consid-
ered as an explanatory variable, but for an empirically
adequate representation, statistical data of any kind which
is suspected to be relevant can be included. Our aim is to
find out what phenomena in the target system the input
variable actually represents, according to statistical evi-
dence. We employ BMA to evaluate the relevance of dif-
ferent phenomena for the input variable, taking full
advantage of the fact that BMA “sorts out” influences that
cannot contribute to explaining the dependent variable.
Defining the prior distribution also allows us to take into
account the expert opinion on the number of explanatory
variables expected to influence the dependent variable.

The BMA results are models containing different explana-
tory variables. The models are ranked according to their
explanatory power which is expressed as a posterior
model probability (PMP). The relevance of individual ex-
planatory variables is expressed as posterior inclusion
probability (PIP). These two values per se already encode
highly relevant information for scenario design. In a sense,
they are the empirically confirmed counterpart to the ex-
pert opinion of scenario design by cross-impact analysis.
In contrast to the assumptions of cross-impact analysis, it
is observable that the inclusion or exclusion of variables is
not reciprocally balancing. Even for the simplest case of
one explanatory and one dependent variable (comparable
to CIB), we find that changing the role of the variables
does not always lead to reciprocal balancing. The balan-
cing is even less observable, given a growing number of
explanatory variables. However, the CIB idea that influ-
ences are “impacting” each other according to the rela-
tions of phenomena in the target system is also captured
in the BMA models. Unfortunately, the true data generat-
ing process is often unknown, and in systems influenced
by human decision, individual relations may be difficult to
find in statistical data. What we seek to analyse is the
strength of “stability” in the relations of influencing phe-
nomena vis-à-vis the dependent variable.
Briefly described, the BMA method takes statistical data

of all influences (i.e. context phenomena of the target
system, also called explanatory variables) and uses a
Markov Chain Monte Carlo importance sampling method
to “build” different models. “Different models” are just
equations arranging explanatory variables. The explanatory
power of a model is assessed, and the sampler builds an-
other model and assesses the explanatory power of that
model for the dependent variable. The number of explana-
tory variables forms the “model space” defined as the pos-
sible combinations of explanatory variables. For example, if
an energy model input variable (the dependent variable) is
suspected to be influenced by 18 phenomena, the model
space (218) contains 262,144 different models that could de-
scribe the relations in the target system. A stipulated prior
distribution depicts the scenario constructor’s opinion on
how many influences she considers relevant. If the con-
structor has no expertise at all, a flat prior (non-informative
prior) reflects ignorance,7 and the models are determined
based on statistical evidence, called likelihood. The poster-
ior model probability (PMP) is proportional to the product
of prior model probability and the marginal likelihood of a
model. The marginal likelihood of a model in the model
space is the probability of the data given the specific model.
With increased computational power and advanced import-
ance of sampling techniques, the employment of BMA has
risen since the 1990s considerably. Today, different
ready-to-use options for mathematical software are avail-
able which relinquishes the need for programming skills
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and tedious construction of adequate software. For the ex-
ample in [1], I used the R package BMS by Zeugner [43],
which offers abundant possibilities of BMA specification
and a complete set of standard features sufficient for a con-
sistent scenario construction.
The BMA approach amounts to saying “It is by at least

93% uncertain that My-model can describe a low-cost
natural gas period due to developments in unconven-
tional gas. The scenario is introduced in My-model via
the input variable “natural gas price”, but low natural
gas prices are also explained by …”. In the following sec-
tion, two options for consistent scenario construction
are discussed: the consistent scenario construction and
the representation quality assessment for (1) a given en-
ergy model and (2) an adapted energy model. The latter
generally allows for a better representation of scenarios,
as the model is adapted to account for the most relevant
phenomena influencing the scenario phenomenon.

Consistent scenario construction for a given energy

model and an adapted energy model

Typically, a scenario is introduced to an energy model
by input variable adjustment; in My-model, it was the
natural gas price. Having gathered statistical data of all
influences, we suspect to be related to the natural gas
price and the scenario phenomenon “unconventional gas
production” we have investigated the empirical adequacy
of the scenario in the fictitious My-model. The BMA
analysis delivers an indication of which phenomena are
relevant for the input variable and how relevant these
are relative to each other (and all phenomena we sus-
pected being relevant).
We can improve the scenario representation quality of

an energy model by changing the energy model design.
In particular, we can decrease the energy models’ repre-
sentation uncertainty of a scenario phenomenon by in-
cluding the relevant input variables and/or parameters
in the energy model. To do so empirically adequate, we
need to find out which phenomena in the target system
have influenced the scenario phenomenon in the past. If
our intention is to create a consistent scenario, rather
than justifying that our input variable assumption repre-
sents a scenario, the consistent scenario construction
method is suitable.
In consistent scenario construction for adapted energy

models, we apply a different reasoning. In the target sys-
tem, the emergence of a scenario phenomenon is often
only possible if different related phenomena develop in a
specific way. In other words, the scenario phenomenon,
due to the interrelated nature of the target system, ne-
cessitates other phenomena’s occurrence in a specific
way. In the example, the scenario phenomenon of high
unconventional gas production necessitates high natural
gas prices; otherwise gas production is not profitable.

We denote the BMA variable representing the scenario
phenomenon as the dependent variable and span the
model space over all influences suspected to impact the
phenomenon, including input variables and parameters
of the energy model as explanatory variables. In that
way, we investigate what potentially explains the sce-
nario phenomenon’s emergence in the target system. If
we consistently construct a scenario, our aim is to
“present to the model” a world in which the scenario
phenomenon is present in the way we are interested in
(i.e. high unconventional gas production). To do so em-
pirically adequate, we depict the scenario phenomenon
“indirectly”, supposing its emergence is dependent on
the influences to be in a certain way.
A phenomenon is “presented to the model” in a coherent

and consistent way by an adequate choice of numerical
values for input variables and the introduction of relevant
input variables and parameters in the energy model, called
energy model adaption. The more relevant input variables
and parameters an energy model contain, the better our
representation of the scenario would be. Again, we have
BMA select for us which influences are systematically in-
creasing or decreasing the observable value, but now, our
dependent variable is the scenario phenomenon. All we
have to do is be creative in our suspicions of what target
system phenomena influence the scenario phenomenon
and perform statistical data handling.
Including the data of energy model input variables as ex-

planatory variables allows us to evaluate how well we can
already represent the scenario phenomenon in the energy
model. We can evaluate this quite precisely using the PIP of
the influences that are energy model input variables relative
to phenomena not modelled in the energy model. Also, we
find what other influences in the target system are relevant
for the emergence of the scenario phenomenon to efficiently
adapt the energy model with the objective to increase the
empirical adequacy of scenario representation. Figure 2 is
comparable to Fig. 1 but depicts the different reasoning of
consistent scenario construction in contrast to input variable
justification (Fig. 2).
Let us suppose we want to construct a scenario repre-

senting an increase of unconventional natural gas pro-
duction with My-model; using statistical data for the
quantities of unconventional natural gas produced as
the dependent variable, we can find out what phenom-
ena in the target system are most influential. As ex-
planatory variables for BMA, we use both My-model
input variable data and data outside My-model bound-
aries (we suspect to influence the unconventional gas
production). We can investigate as many influences on
the phenomenon as we want to make a scenario. The
best BMA model in terms of posterior model probabil-
ity is represented in Table 2 (all data and variables are
fictitious).
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Using the PMP of the best BMA model, it is possible to
evaluate the probability that the phenomenon of our sce-
nario can be described with the influences (let us assume
a fictitious PMP of 16%). My-model does not contain all
phenomena to describe the scenario with the highest
probability. We can base our decision whether to adapt
the model to better represent the scenario on that evalu-
ation on the BMA results. Using the influences’ PIP, we
quickly find which energy model adaptions are most rele-
vant to increase the scenario representation quality. The
energy model adaptions may concern both input variables
and parameters, depending on the energy model design. If
not all influences are used to construct a scenario, the
lower bound of uncertainty needs to be adjusted to the
PMP of the BMA model consisting of the influences that
are used. This is a BMA model with higher uncertainty if
it is not the best BMA model in terms of PMP. The sce-
nario construction with all relevant influences is a sce-
nario representation according to statistical evidence of
the scenario phenomenon with least uncertainty for the
proven possible states of the world (observed values).

Using the consistent scenario construction approach, we
pay attention to the interrelated nature of the target
system and design our energy model to represent the sce-
nario phenomenon empirically adequate. This approach is
also applicable for phenomena, as for example enactment
of a law. This process may at first sight be self-sufficient in
that it is a human decision governed by human sover-
eignty, not grounded in statistically observable interaction
with other target system phenomena. Upon second
thought, we may find that the decision of actually enacting
the law indeed necessitates a specific target system state.
For example, the scenario of a law prohibiting the
emissions of CO2 exceeding some defined quantity may
necessitate a minimum quantity of CO2 emissions, to be
relevant at all. For human decision-governed scenarios, an
investigation of most relevant influences on the decision
improves the representation of a scenario.

Results: consistent numerical value estimation

With BMA, we can truly construct scenarios. Having iden-
tified the most influential phenomena, we insert the stipu-
lated values for the time period we want to project in the
explanatory variable data record. I would like to remark
that this is in the same instance a transparent assumption
documentation. We use the BMA model of choice to com-

pute the predictive density for the dependent variable
based on the stipulated values for the influences. This
means, expressed for readers of a scenario study, “the ad-
justed input values of the energy model correspond statis-
tically to an unconventional gas production of xy”.
The PMP of the BMA model determines the lower

bound of uncertainty for the scenarios. In addition, we
dispose of statistical criteria, for example, we can assess
whether the predicted numerical value of the scenario
phenomenon is within the double standard deviation or
not. To be clear, the procedure is (1) stipulation of
values for influences; we simply fill in the data record
for the future period of the scenario. We can orientate
on historical “highs and lows”, and include expert know-
ledge, as mentioned before if the expert knows of signed
contracts, the additional available capacity in the year of
expected operation is entered as data. Next step (2) is
computing the predictive densities for the scenario

Table 2 Fictitious evaluation of scenario representation for My-model

BMA model-dependent variable Influences Relevance of influence (PIP) Influence modelled in My-model

Unconventional natural gas production Natural gas price 0.99 Yes

Oil price 0.85 Yes

Conventional natural gas production 0.84 No

Electricity consumption 0.62 Yes

LNG infrastructure investment 0.59 No

Gas storage capacity 0.45 Yes

Fig. 2 Schematic illustration of the reasoning for consistent
scenario construction
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phenomenon. Given the stipulated values, we compute

the numerical value of the scenario phenomenon. In
doing so, we can explicitly explain both the numerical
value of the scenario phenomenon (due to observed re-
lations) and the representation quality of the scenario in
the energy model, as captured in the input variable(s).
Finally, (3) communicate a complete and transparent
documentation of the scenario construction.
An exemplary communication for a scenario con-

structed according to case (b) BMA scenario construc-

tion for an adapted energy model is available in the
Appendix.

Discussion and limits of the approach

In this section, I would like to discuss the limitations of
the approach and address difficulties I experienced when
carrying out the method. However, I may be unaware of
some problems and limitations, so I do not claim this
discussion to be exhaustive.
A practical limitation of the approach is its extensive

use of statistical data. This naturally involves both access
to statistical data and availability of statistical data in the
first place. Today, many statistical data are freely avail-
able from official sources, for instance, Eurostat or
USA.gov, and often data can be bought. Researchers en-
tertaining energy models are likely to already dispose of
a significant amount of relevant data for calibration pur-
poses. Efforts made to improve access to statistical data
often prove to be advantageous in more respects than
consistent scenario construction. It is my opinion that fi-
nancial burdens for subscriptions, in particular for re-
search collaborations or larger scientific institutions, are
vindicated by the potential impact scenario studies can
have, if used for decision support.
Data availability is different from data access. Unprece-

dented phenomena may have no data record at all. In this
case, it is indispensable to transparently communicate that
the scenario is incommensurable to any known energy
system state. The response of the energy system to a com-
pletely unprecedented scenario phenomenon is highly un-
certain as the assumption of well-established and
long-standing observable relations to hold is uncertain. In
less dramatic cases, some methods may be useful. The
first method is indirect phenomenon description with dif-
ferent influences data so that as many suspected data gen-
erating processes as possible are included in the analysis.
Phenomena described with statistical data of various sci-
entific disciplines allow for a multi-dimensional descrip-
tion of the phenomenon if researchers are not primarily
focussed on their scientific discipline.
Another method applicable in some contexts is data

scaling. Scaling is not suitable for data known to depend
on spatial or temporal relations in the system where they
are collected, unless that system is the target system of

the scenario modelling. For example, data of energy effi-
ciency improvements of a technology product are scal-
able, because the data are regionally independent, i.e. the
same technology product would have the same technical
efficiency everywhere in the world. In contrast, data of
consumer behaviour of a region are not suitable for scal-
ing, because the data depend on regional aspects such as
income, social system, political stability, or any cultural
aspects of that region, to name just a few.
A third method is data generation. The applicability of

data generation is dependent on the phenomena of
interest. Consistent scenario construction provides a
guideline to survey design, as we can find potentially
relevant phenomena for the scenario by statistical evi-
dence. Say, a city wants a scenario of residential CO2

emission reduction, but the data of the city is lacking.
Based on a BMA analysis with data of a comparable city,
we find what phenomena are statistically most relevant
and hence what data are of primary interest in the city.
A survey designed to generate the data for the scenario
then contains questions regarding the influence with
highest relevance in terms of PIP (e.g. primary heating
fuel in the residential housing sector) and questions on
statistically relevant data in terms of high PIP (e.g. heat-
ing technology efficiency). Of course, other data sus-
pected to be relevant, say as a particularity of the city,
should also be generated. If data are partially available,
the survey design should account for relevant influences
additionally to or for in-depth surveys. Lastly, a method
to increase the data availability is open source policy of
anonymised data-managing enterprises or research insti-
tutions. However, this is more a political question than a
method a researcher can apply ad hoc. Nonetheless, it is
important to mention it and engage in the discussion.
Some experts hold that some phenomena simply cannot

be represented statistically, and expert judgement is the
only way to evaluate such phenomena. Human psycho-
logical phenomena or socially arising phenomena are typ-
ical examples showcased. I agree with sincere reservations.
Take the example of Weimer-Jehle in [37] “world tensions”.
An expert evaluating the impact of world tensions may sub-
jectively have a clear idea of what is meant. However, differ-
ent experts are likely to have different interpretations of
“world tensions” due to the vague definition that may lead
to the incommensurability of expert opinions.
I contend that for many psychological or social phe-

nomena, there are statistical data with a precise definition
of what is evaluated by the statistic and how the data are
generated. Using such data enables recipients of scenario
studies and modellers to understand how a phenomenon
is interpreted in a scenario. Statistical data, for example,
national warfare expenditure [44] or arms trade data8 [45],
or the United Nations Office for Disarmament Affaires
UNODA databases, can provide, in my opinion, a suitable
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statistical representation of “world tensions”. In addition
to the data for armed conflicts [46, 47], corruption indices
such as the Corruption Perceptions Index (CPI) by Trans-
parency International [48] or the World Bank’s CPIA
database [49] are available, to name just a few. Let us
suppose we construct a scenario, and the influence “world
tensions” were expressed in statistics. We could combine
corruption data and warfare expenditures of relevant na-
tions for the scenario. Let us say for an exemplary scenario
in Nicastan, the country imports weapons from Germany.
We could consult the United Nations register [50] and
find out how many weapons were exported in the past
years to Nicastan. Our scenario is constructed such that
the meaning of “world tensions” corresponds, for example,
to an increase of arms imports from Germany by four
times the mean over the last years. We can even specify
which weapons we include in our assumption and what
scope our assumption has (e.g. “transfers between UN
member states”). To me, this is a storyline understandable
to recipients of scenario studies, and significantly less am-
biguous than the CIB evaluation “strong”, “moderate”, or
“weak” world tensions p. 339 [37]. For psychological and
social phenomena, a large variety of data are available, for
example, the World Values Survey “is a global network of
social scientists studying changing values and their impact
on social and political life” [51]. OECD social databases
[52] document and allow access to social data, as well as
the United Nations Statistics Division UNDATA databases
[53], or research institutions hosting databases [54].
To reduce practical limitations computing “milestone

years” and interpolating between those may sometimes be
suitable. However, it is an advantage of a BMA consistent
scenario construction that the scenario design can signifi-
cantly differ from linear paths. This is possible because the
computation of the corresponding numerical value of the
scenario phenomenon (predictive density) takes stipulated
numerical values for influences into account. Stipulated
values of influences can represent any “shock” or atypical
development, in consonance or individually, and the result
of the best BMA model will represent the expected value
of the scenario phenomenon based on the relations ob-
served in the historical period considered. In this sense,
intuitive scenario design has its place in BMA scenarios,
as well as expert opinion.
I would like to emphasise that using statistical data for

social and psychological phenomena does not mean that
constructed scenarios are identical to past phenomena.
Stipulating the numerical values of relevant influences al-
lows for full creativity and exploration of hypothetical pos-
sibilities. Using the BMA model to compute the predictive
density means that interrelations and impacts in the past
are the basis of expectations for the future. Evaluating the
bearing of an influences’ hypothetical value on other phe-
nomena is always based on system relation assumptions—

be it in the form of expert opinion or observation record.
Statistical data are evidentially confirmed system relations
(and provable possible) what renders scenario construction
(1) consistent with what we observed, (2) intersubjective,
(3) systematic, (4) understandable, and (5) comparable. I
am aware that statistics can be manipulated and may not
mirror the “true” state of the world. Nonetheless, I am con-
vinced that they are a better record of fact than subjective
observations. In any case, the data are clearly explicable in
contrast to ambiguous classifications (“high”, “low”, etc.) ex-
perts can commit to.
Today, scenario studies typically present storylines, but

lack of (1) transparent documentation of scenario assump-
tions and implicit assumptions; (2) a (energy) model as-
sessment of scenario adequacy, i.e. input variable aptitude
to represent the scenario; and (3) scenario assumption
evaluation (stipulation of numerical values). Omitting
communication of that information averts scrutinising the
representation quality of the scenario for a given (energy)
model and the degree of confirmation for a scenario
(proven possible or unprecedented hypothetical). In my
view, providing that information is the (energy) scenario
modeller’s assignment because a scenario study recipient
has no means to retrieve that information from (energy)
model results or a storyline narrative.
The BMA method allows for the inclusion of any stake-

holder choices statistically evident. The behaviour of society
members, consumers, the industry, or the government, is
statistically recorded in a non-discriminatory way in a multi-
tude of dimensions, for instance, periodicity in time, geo-
graphic area, social and cultural categories, or economic
benchmarks. The pedigree of these data, their collection,
post-processing, financing, hosting, and availability are meth-
odologically rigorous, transparent, and non-discriminative.
Scenario construction by the BMA method does not oblige
the scenario constructor to claim “expert knowledge” or have
skills superior to any person capable of handling statistical
data. Some programs suitable to carry out a BMA scenario
construction are available without charges, for example, R
statistical software package BMS [43]. The scenario
constructor need not belong to some exclusive group of
“experts”, where the quotes indicate the ambiguous status of
such an appointment, as there are no transparent quality
criteria for being an expert.
The opinion of a scenario constructor can be included

by numerical value stipulation. Opinion is systematically
and methodologically levelled in the light of statistical
data. In other words, the advantage of BMA over judg-
mental scenario construction techniques is the embedding

of opinions in the relevant context’s empirical record.
That levelling helps to alleviate psychological effects re-
ported in the literature. In the BMA method, expert judge-
ment is needed to choose the data of the phenomena
suspected to be influential, decide computational
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procedures (e.g. birth-death-sampler), define priors, and
pre- and post-process data (e.g. outlier elimination, reduc-
tion of results for interest groups). These choices are con-
testable facts (not a “feeling”), subject to criticisms, and
produce testable results; if the expert changes her judge-
ment and say another sampler routine, the result of BMA
changes.
Lastly, the BMA scenario construction method can

better account for the real-world complexity of phe-
nomena interactions than the limited cognitive capacity
of human reasoners. However, statistical analyses are
limited in their capability of detecting relationships.
Considering the evaluated uncertainty for scenarios as
a lower bound expresses that awareness; an uncertainty
of at least x% corresponds to the best case of actually
acknowledging the relevant relations of phenomena.
The BMA analysis must not be considered as a tool
completely characterising the phenomena present and
(variably) interacting in the target system. Rather, the
method provides an additional “view” of the target sys-
tem beneficial for scenario design.
The distinction between provable possible assumptions

(based on statistical evidence) and hypothetical assump-
tions is a novelty and significantly improves the scenario
study recipients’ aptitude to evaluate the future scenarios
on their part. The presentation of scenarios referencing
tangible storylines (e.g. the assumption for the gas price
in the first year of projection is the mean of the statis-
tical data period from 1995 to 2015), is in my view, more
comprehensible than storylines referencing abstract as-
sumptions as for example moderate world tensions,
medium borrowing industrial countries, and strong co-
hesion of OPEC, cf. [37]). So, perhaps the most import-
ant novelty of the approach is the possibility to
communicate to decision-makers the associated uncer-
tainty in easily understandable terms.

Conclusion and further research

I would like to conclude the discussion by briefly
highlighting the advantages and disadvantages of the pro-
posed approach. The motivation to advance a systematic
scenario construction technique for quantitative models is
vested in the current practice of opaque scenario design in
many disciplines, including energy-economic modelling.
Models used in decision support generally aim to repre-

sent the target system and the relations of phenomena ob-
servable in the world, yet they fall short in assessing their
representative quality for scenarios.
Scenarios based on intuitive expert opinion or based on

mutual agreement of (energy) modellers and sponsors, risk
being an inadequate representation of the scenario
phenomenon, and most importantly, they defy evaluating
their empirical adequacy. This poses a problem for

recipients of energy scenario studies, because the results of
scenarios depend on a thorough design representing the
phenomena of interest, in particular, if the results figure in
decision support.
The advantages of the presented BMA approach for

consistent model design are:

– Transparent scenario assumption documentation

– Evaluation of the empirical adequacy of assumptions

via an uncertainty assessment

– Evaluation of scenario assumptions as statistically

confirmed or hypothetical

– Methodological rigour independent of subjective

expertise of the scenario constructor, although with

the possible inclusion of expert opinion and creativity

– Adaptability for individual energy models (specific

input variables, time resolution, geographic scope)

– Formulation of apprehensible scenarios referring to the

observed phenomena, e.g. “an economically flourishing

period as observed in the years 2003–2005”, rather

than general formulations as “high economic growth”

– A clear indication of phenomena influencing the

scenario phenomenon in the target system (using PIP’s)

– A clear indication of efficient adaption of an energy

model with the aim of increased quality of scenario

representation (using PMP’s)

– The possibility to construct scenarios in a

straightforward sense with concurrent evaluation of

the scenario phenomenon’s numerical value and its

probability based on empirical evidence (stipulation

of numerical values of influences and consequent

calculation of the predictive density for a BMA

model with given PMP)

– Inclusion of expert opinion (via prior distribution

and stipulation of influence values in the projection

period) and statistical evidence (via statistical data of

the historical period considered)

Opposed to these advantages are practical and concep-
tual limitations of BMA scenarios. Completeness of this
list of limitations is not claimed.
The prerequisites of the presented BMA approach for

consistent scenario construction are:

– The need to conceptually embrace that assessing the

empirical adequacy of scenarios is important

– Statistical data gathering, handling, or generation,

dependent on the phenomenon of interest for a scenario

– Basic understanding of ready-to-use software solu-

tions for BMA, or programming requirements to de-

velop BMA routines

– A clear definition of the primary scenario-phenomena

– Creative and interdisciplinary selection of possible

influences on the scenario phenomena
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– Adaption and/or adjustment of a quantitative

(energy) model if the relevant influences (as

evaluated by PIP) are not yet part of the energy

model. The necessary workload for adaptions can be

weighed against increased representation quality. In

any case, the actual representation quality of a given

energy model should be communicated via the

uncertainty assessment.

The tangible performance edge of Bayesian model aver-
aging for decision-makers (and all recipients of outlooks
based on scenario technique) is the possibility of tracing
back results to assumptions and communicate the as-
sumptions’ statistical confirmation. But we should not take
my word for it, so I return to the criteria introduced by
Goodwin for a “formal strategy evaluation process within
scenario planning” [25] and assess the BMA method for
consistent scenario construction in these respects.
The BMA method meets the transparency criterion (“the

derivation of results can be understood”) both on methodo-
logical and result levels. The result of the consistent scenario
construction is an explicit lower bound of uncertainty and
an assessment of the lower bound’s legitimacy, in particular
for hypothetical assumptions. Data sources, assumption
value stipulations, and BMA technical choices leading to the
lower bound can be communicated. In my view, BMA is
more transparent than expert judgement, though it could be
perceived as a “black-box algorithmic procedure” p. 13 [25]
by non-statisticians. However, the algorithmic procedures
themselves are transparent, well-documented, mathematic-
ally sound, and understandable with due effort. In contrast,
expert judgement remains the virtue of the expert, her ex-
perience, knowledge, associations, and her applied heuristics.
The criterion ease of judgement (“holistic judgements

or decomposed judgements”) is met by the uncertainty
statement, the identification of relevant influences, and
the assessment of the (energy) model’s representation
quality. The “difficult task of estimating probabilities for
states of nature that might prevail in the long term” p.13
is, in contrast to Goodwin and Wright’s approach, expli-
citly not avoided. That estimation is highly valuable for
recipients basing a decision on scenario results! The esti-
mation of probabilities for states prevailing in the long
term is exactly the uncertainty derived from the poster-
ior BMA model probability.
Criterion versatility (“evaluate financial and

non-financial objectives”) is met by the high number of in-
fluences the BMA method can accommodate in the form
of statistical data of any kind. The flexibility criterion
(“changes in perspective for different participants of the
decision-making process”) is met under the condition that
the model space is constructed mindful of different per-
spectives, i.e. including data of various scientific disci-
plines. In other words, the influences suspected to impact

the dependent variable should account for diverse back-
grounds, e.g. social, economic, and technological ones.
Lastly, the theoretical correctness criterion defined as

“congruency of the strategic options suggested by the
method is consistent with the judgments of decision
makers” is not met, and I am pleased it does not satisfy
theoretical correctness defined as such. I entertain the
view that it is not the task of decision support to create
scenarios anticipating or parroting a decision-maker’s
judgement nor is it the task of a scenario designer to in-
fluence a decision-maker by a strategic choice of phe-
nomena to mirror “consequences” according to experts
(and their backgrounds and interests). Including
scenario-based information in decisions is sensible with
due prudence, or not at all, whatever facilitates the
decision-makers competency to make a deliberate, inde-
pendent, and autonomous choice.

Endnotes
1Their five main categories of BMA usage are discus-

sion, model choice, estimation, prediction, revision.
2Correspondingly, an assumption propensity to repre-

sent empirically adequate personal opinion is subjective
confirmation.

3For example, the gross domestic product (GDP) of a
country is the statistical data representing “an aggregate
measure of production, GDP is equal to the sum of the
gross value added of all resident institutional units (i.e.
industries) engaged in production, plus any taxes, and
minus any subsidies, on products not included in the
value of their outputs.” in the database of Eurostat [40].

4Statistical data on stakeholder responses [71] to con-
struction scenarios can in addition account for observ-
able stakeholder interests.

5I refrain from discussing the opaque nature of how
experts translate their “feeling” into categorical opinion
in a given scale, say “+ 2”, what is obviously an individual
choice and renders a “+ 2” incommensurable with the
“+ 2” quantification of another expert. Yet, in the ar-
rangement of scenarios, the “+ 2” judgements are treated
equivalently what means that different judgements are
expressed in the same number.

6For example, [72] defines the industrial production
index (IPI) (a kind of ordinal categorical data) with re-
spect to GDP (a kind of quantitative data) as follows:
“The IPI is a monthly series that measures output in
manufacturing, mining, and electric and gas utilities:
Federal Reserve Statistical Release G17. Individual in-
dexes of industrial production are constructed from two
types of source data: (1) output measured in physical
units and (2) inputs used in the production process (e.g.
production worker hours). GDP is a quarterly series that
measures the market value of the goods and services
produced by labour and property located in the USA.
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The aggregate GDP measure that corresponds most
closely to the IPI is a GDP for goods measure that con-
sists of durable and nondurable goods within personal
consumption expenditures, fixed investment, change in
private inventories, and net exports. GDP value produc-
tion in terms of purchasers’ prices, the final prices paid
by consumers and by other final demand sectors. The
IPI value production in terms of producers’ prices paid
to manufacturers by wholesalers, by retailers, and, in the
case of direct sales, by consumers.”

7Discussions concerning the effect of flat priors or
non-informative priors are provided in particular by [73]
and also [74, 75]. However, I do not engage in this dis-
cussion here, as I do not interpret the subjective nature
of prior specification as disadvantageous in the context
of scenario construction.

8Providing for example “the total trend-indicator value
(TIV) of a country or rebel group’s arms imports or ex-
ports, broken down by supplier, recipient or type of
weapon system.” [45]

Appendix
An exemplary communication for a scenario constructed
according to case (b) BMA scenario construction for an

adapted energy model, could say the following (all num-
bers and “facts” are fictitious):

Scenario construction quality—scenario uncertainty

The scenario is constructed based on statistical data of
the period 1995–2015 in a yearly time resolution that
can be found in the accompanying data bases freely
available on [example.ex]. A precise description of the
data is available with the cited source. My-Model is
a LP with economic optimisation in a yearly time
resolution for Nicastan, the scenarios concern the next
20 years. All scenario statements are conditional on the

data used. That means the reader should add in mind
to every sentence the extension “According to the
statistical data used.”

Scenarios for unconventional gas

production—assessment for My-model

In the historical period considered, the amount of un-
conventional gas produced was, of all influences sus-
pected to be relevant, most influenced by the natural gas
price, the oil price, the conventional natural gas produc-
tion, the electricity consumption, the LNG infrastructure
investment, and gas storage capacity. The best BMA
model representing the bearing of these phenomena on
the unconventional gas production has a probability of
16% (PMP). Due to the significance of the phenomenon
“conventional natural gas production”, we adapted the
energy model for the representation of the scenario. The
impact in the past of “LNG infrastructure” was relevant;

however, we decided not to include that phenomenon in
My-model in a trade-off for increased uncertainty by 3%
compared to the best performing BMA model. The
model can describe the scenarios for unconventional gas
with an uncertainty 87%. Based on the empirical evi-

dence used, it is uncertain by at least 87% that any of

the unconventional gas production scenarios presented

hereafter is described with My-model.

Assessment of the hypothetical scenario assumptions

We consider two scenarios. The “stable increase” scenario
represents moderate but stable growth of natural gas pro-
duction in the next 10 years. The assumption for the gas
price is in the first year of projection and is the mean of the
statistical data period 1995–2015. We increase the natural
gas price linearly until it amounts to half of the maximal
natural gas price observed in the historical period by the
end of the projection period. We proceed alike for the oil
price. The assumption for electricity consumption is mod-
erate growth, expressed numerically by a yearly increase in
electricity consumption of 2%, representing a growth rate
well within the observations of the historical data. The stip-
ulated value for gas storage capacity is increased once after
5 years, numerically comparable to the additional storage
capacity that became available with the launch of the stor-
age facility “South” in Nicastan in 1999. Based on these as-
sumptions, with an uncertainty of at least 87%, the scenario
models have an expected annual unconventional gas pro-
duction per year of 4.47 MMBtu (SD 0.4) in 2015, of
4.53 MMBtu (SD 0.8) in 2016, [….].The values presented
are conditional expected values the standard deviations are
indicated in brackets.
All scenario assumptions are within the empirically

confirmed possible values so that we would adopt the
lower bound of uncertainty for the projection. However,
we intentionally do not infer any statement about the ac-
tual cause-effect relations in the target system from our
analysis. We refrain from an economic or social analysis
as to why the relations observed in the historical period
emerged. The phenomena we include in our analysis are
limited (18 influences) and biased towards a supposed
relevance for the energy system in Nicastan. To make a
meaningful statement about the actual causes of the var-
iables’ values observed other system aspects, of which
we are ignorant, may prove to be relevant.
The “steep increase and sharp decline” scenario is

constructed using hypothetical assumptions, Table 3.
The values we assume exceed the range of values ob-
served in the historical period in some cases. The
value of the unconventional gas production increases
in the first 10 years of the projection period steeply,
followed by a steep decline towards the 20th year. The
peak after 10 years amounts to a production of
12.8 MMBtu in 2025, and the decline settles at the

Culka Energy, Sustainability and Society  (2018) 8:22 Page 18 of 21



lowest value for unconventional gas production in the
historical period (0.3 MMBtu). In the My-model, this
scenario is represented by the following hypothetical
assumptions.
Not all scenario assumptions of the “steep increase

and sharp decline” are within the empirically confirmed
possible values. We entertain the view that uncertainty
is higher than the lower bound of uncertainty for the
projection. Both scenarios presuppose a stable bearing of
the statistically relevant phenomena on each other (and
in compound), as observable in the target system in the
past. In the “stable increase” scenario, all values are
within the range of empirical possibility of the statistical
observation period. That is, we know that these values
can occur. However, we do not know whether the spe-
cific combination of the values assumed in the “stable
increase” scenario can occur. If they do occur, the prob-
ability that the unconventional gas production has the
values as represented in the scenario is max. 13%.
Some assumptions of the “steep increase and sharp de-

cline” scenario are hypothetical, i.e. unprecedented in
the data record considered. The stability assumption ba-
sically amounts to supposing the interaction of phenom-
ena in the target system as observed in the past
continues. We assess the interaction solely in terms of
increase or decrease (sign) and the strength of the influ-
ence (coefficient estimate) on the scenario phenomenon.
We are not adopting the lower bound of uncertainty for
the steep increase and sharp decline scenario due to a
low sign of certainty for the variable “electricity con-
sumption”. This indicates that the phenomenon electri-
city consumption is relevant and can explain both
increase and decrease of the unconventional gas produc-
tion. The interaction does not seem to be sufficiently
stable based on the data employed for the analysis for
unprecedented states of the world (hypothetical assump-
tions). Interactions with other phenomena of the target
system we are ignorant of may be involved on whose ac-
count the stability assumption may be untenable. We
are too sceptical to assume stability for the relation in
unprecedented states of the energy system, as modelled
in this scenario. We adopt a prudent position and

evaluate the scenario’s uncertainty to be higher than the
lower bound of 87%.
Values of all input variables not explicitly discussed in

this scenario construction document are set to the last
available value statistically confirmed. This represents
the situation as observed in 2015 and “locates” the sce-
narios in the past relative to the publication of this
document. Due to data availability restrictions, it is not
possible to represent a more recent situation of the
Nicastan energy system without loss of representation
quality. This implies that all scenarios represent an “al-
ternative” to the actual development in the years up to
date if the observable values are not in consonance with
the input assumptions.
All results computed with My-model for these two

scenarios are uncertain to represent a response of the
energy system to the scenario assumptions by at least
87%, where the steep increase and sharp decline scenario
is considered not to meet the lower bound.
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Acknowledgements

The author acknowledges the support of Deutsche Forschungsgemeinschaft
and Open Access Publishing Fund of Karlsruhe Institute of Technology. I
thank the anonymous reviewers and Ms. Fiedler in particular for their
suggestions and criticisms that substantially improved the paper.

Funding

This work was supported by NICA the New Interdisciplinary Collaboration
Association. This work was developed with the support of the Institute of
Philosophy and the ITAS of Karlsruhe Institute of Technology (KIT) [Helmholtz
School on Energy Scenarios]. Publication charges were kindly covered by KIT
open access fund.

Availability of data and materials

Examples presented are used to illustrate the methodology and are not
based on explicit datasets.

Authors’ contributions

The author read and approved the final manuscript.

Consent for publication

Not applicable. No personal data used.

Table 3 Scenario presentation example for My-model

My-model input variable Hypothetical assumption

Natural gas price Linear increase towards the 10th year. The initial value (2015) is the mean price level of the historical period.
The peak price is twice as high as the historical max. value. Linear decrease towards the 20th year to the initial
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Oil price Equal to natural gas price.
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Electricity consumption Flat increase by nearly 0.4% over the projection period.

Storage capacity Similar to “stable increase scenario”.
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