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Quantitative simulation of temperature-dependent magnetization dynamics and equilibrium
properties of elemental ferromagnets
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Atomistic spin model simulations are immensely useful in determining temperature-dependent magnetic
properties but are known to give the incorrect dependence of the magnetization on temperature compared to
experiment owing to their classical origin. We find a single-parameter rescaling of thermal fluctuations which
gives quantitative agreement of the temperature-dependent magnetization between atomistic simulations and
experiment for the elemental ferromagnets Ni, Fe, Co, and Gd. Simulating the subpicosecond magnetization
dynamics of Ni under the action of a laser pulse, we also find quantitative agreement with experiment in the
ultrafast regime. This enables the quantitative determination of temperature-dependent magnetic properties,
allowing for accurate simulations of magnetic materials at all temperatures.
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I. INTRODUCTION

Magnetic materials are used in a wide range of technologies
with applications in power generation [1], data storage [2,3],
data processing [4], and cancer therapy [5]. All of these
magnetic technologies operate at a wide range of tempera-
tures, where microscopic thermal fluctuations determine the
thermodynamics of the macroscopic magnetic properties.
Recently, thermal fluctuations in the magnetization have been
shown to drive not only a number of phenomena of great
fundamental interest, for example, ultrafast demagnetiza-
tion [6], thermally induced magnetic switching [7,8], and spin
caloritronics [9], but also next-generation technologies, such
as heat-assisted magnetic recording [10] and thermally assisted
magnetic random access memory [11]. Design requirements
for magnetic devices typically require complex combinations
of sample geometry, tuned material properties, and dynamic
behavior to optimize their performance. Understanding the
complex interaction of these physical effects often requires
numerical simulations such as those provided by micromag-
netics [12–14] or atomistic spin models [15]. Micromagnetic
simulations at elevated temperatures [16,17] in addition need
the temperature dependence of the main parameters [18],
such as the magnetization, micromagnetic exchange [19], and
effective anisotropy [20]. Although analytical approximations
for these parameters exist, multiscale ab initio/atomistic
simulations [18,21] have been shown to more accurately
determine them.

With atomistic simulations the disparity between the
simulated and experimental temperature-dependent mag-
netization curves arises due to the classical nature
of the atomistic spin model [22]. At the macroscopic level
the temperature-dependent magnetization is well fitted by
the phenomenological equation proposed by Kuz’min [22].
However, the Kuz’min equation merely describes the form of
the curve with little relation to the microscopic interactions
within the material which determine fundamental properties
such as the Curie temperature. Ideally, one would perform ab

*richard.evans@york.ac.uk

initio three-dimensional (3D) quantum Monte Carlo simula-
tions [23]. Although this is possible for a small number of
atoms, for larger ensembles the multiscale approach using
atomistic models parameterized with ab initio information
remains the only feasible way to connect the quantum and ther-
modynamic worlds. At the same time there is a pressing need to
match parameters determined from the multiscale model to ex-
periment to understand complex temperature-dependent phe-
nomena and magnetization dynamics. Atomistic models also
provide a natural way to model nonequilibrium temperature
effects such as ultrafast laser-induced magnetization dynamics
[6–8] or quasiequilibrium properties such as the Spin-Seebeck
effect created by temperature gradients [9,24]. Alternative
numerical [25,26] and analytical [27,28] approaches have been
used to successfully describe the low-temperature behavior
but add significant complexity compared to simple classical
simulations.

In this work we present a single-parameter rescaling of
thermal fluctuations within the classical Heisenberg model
which correctly describes the equilibrium magnetization at all
temperatures. Since the temperature dependence of important
magnetic properties such as anisotropy and exchange often
arises due to fluctuations of the magnetization, this rescaling
can also be used to accurately calculate their temperature
variation. Furthermore, we show that this rescaling is capable
of quantitatively describing ultrafast magnetization dynamics
in Ni. The quantitative agreement of the magnetic properties
between theory and experiment enables the next generation
of computer models of magnetic materials to be accurate for
all temperatures and marks a fundamental step forward in
magnetic materials design.

II. FORM OF THE TEMPERATURE-DEPENDENT
MAGNETIZATION

We first consider the physics behind the form of M(T ).
Atomistic spin dynamics (ASD) considers localized classical
atomic spins Si = μssi , where μs is the magnetic moment;
that is, the spin operator Si at each lattice site takes unrestricted
values on the unit sphere surface |si | = 1, whereas in the
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quantum case it is restricted to its particular eigenvalues.
However, when calculating the macroscopic thermodynamic
properties of a many-spin system, as ASD eventually does,
this distinction is not apparent since the mean value of
〈S〉 = M(T ) is not restricted to quantized values within the
quantum description.

A direct consequence of the distinction between classical
and quantum models is manifest in the particular statistical
properties of each approach. As is well known, thermal
excitation of the spin waves in ferromagnets leads to a decrease
of the macroscopic magnetization M(T ) as temperature
increases [29]. In the limit of low temperatures, m(T ) =
M(T )/M(0) can be calculated as m = 1 − ρ(T ), where
ρ(T ) = (1/N )

∑
k nk is the sum over the wave vector k of the

spin-wave occupation number in the Brillouin zone [30,31].
The occupation number of a spin wave of energy εk

corresponds to the high-temperature limit of the Boltzmann
law in reciprocal space [30], nk = kBT /εk, where T is
the temperature and kB is the Boltzmann constant, while
quantum spin waves follow the Bose-Einstein distribution
{nk = 1/[exp(εk/kBT ) − 1]}. Different forms of m(T ) are
expected due to the specific nk used in each picture.

Given that the spin-wave energies εk are the same in both
the quantum and classical models, the difference in the form
of the M(T ) curve comes solely from the different statistics.
We can illustrate the difference in the statistics by considering
the simplest possible ferromagnet described by a quantum
and classical spin Heisenberg Hamiltonian. To do so, we
consider the anisotropy and external magnetic fields to be
small contributions to the Hamiltonian in comparison to the
exchange interaction energy. Thus, the energy can be written
as εk = J0(1 − γk), where γk = (1/z)

∑
j J0j exp (−ikr0j ),

r0j = r0 − rj , with r0j being the relative position of the z

nearest neighbors.
The integral ρ(T ) = (1/N )

∑
k nk at low temperatures for

both quantum and classical statistics is a very well known
result [30]. For the classical statistics

mc(T ) = 1 − kBT

J0

1

N
∑

k

1

1 − γk
≈ 1 − 1

3

T

Tc
, (1)

where Tc is the Curie temperature and we have used the
random-phase approximation (RPA) [32] relation to relate W

and Tc (J cl
0 /3 ≈ WkBTc; exact for the spherical model [33]),

where W = (1/N
∑

k
1

1−γk
) is the Watson integral.

Under the same conditions, in the quantum Heisenberg case
one obtains the T 3/2 Bloch law,

mq(T ) = 1 − 1

3
s

(
T

Tc

)3/2

, (2)

where s is a slope factor given by

s = S1/2(2πW )−3/2ζ (3/2), (3)

where S is the spin-integer spin quantum number, ζ (x) is
the well-known Riemann ζ function, and the RPA relation
for a quantum model (3kBT

q
c = J

q
0 S2/W ) has been used. We

note that if one wants to have T
q
c = T cl

c , then the well-known
identification J

q
0 S2 = J cl

0 is necessary [30]. We also note that
Kuz’min [22] utilized semiclassical linear spin-wave theory to
determine s, so we use the experimentally measured magnetic

moment and avoid the well-known problem of choosing a
value of S for the studied metals.

Mapping between the classical and quantum m(T ) expres-
sions is done simply by equating Eqs. (1) and (2), yielding τcl =
sτ

3/2
q , where τ = T/Tc for classical and quantum statistics,

respectively. This expression therefore relates the thermal fluc-
tuations between the classical and quantum Heisenberg models
at low temperatures. At higher temperatures more terms are
required to describe m(T ) for both approaches, making the
simple identification between temperatures cumbersome. At
temperatures close to and above Tc, εk/kBT → 0 is small, and
thus, the thermal Bose distribution 1/{exp[εk/kBT ] − 1} ≈
εk/kBT tends to the Boltzmann distribution; thus, the effect of
the spin quantization is negligible here. For this temperature
region, a power law is expected, m(τ ) ≈ (1 − τ )β , where
β ≈ 1/3 for the Heisenberg model in both cases.

The existence of a simple relation between classical
and quantum temperature-dependent magnetization at low
temperatures leads to the question, Does a similar scaling
quantitatively describe the behavior of elemental ferromagnets
for the whole range of temperatures? Our starting point is
to represent the temperature-dependent magnetization in the
simplest form arising from a straightforward interpolation of
the Bloch law [29] and critical behavior [34] given by the
Curie-Bloch equation

m(τ ) = (1 − τα)β, (4)

where α is an empirical constant and β ≈ 1/3 is the critical
exponent. We will demonstrate that this simple expression is
sufficient to describe the temperature-dependent magnetiza-
tion in elemental ferromagnets with a single fitting parameter
α. An alternative to the Curie-Bloch equation was proposed
by Kuz’min [22] and has the form

m(τ ) = [1 − sτ 3/2 − (1 − s)τp]β. (5)

The parameters s and p are taken as fitting parameters, where
it was found that p = 5/2 for all ferromagnets except for Fe
and s relates to the form of the m(T ) curve and corresponds
to the extent that the magnetization follows Bloch’s law at
low temperatures. In the case of a pure Bloch ferromagnet
where s = 1, p = 3/2, and α = p, Eqs. (4) and (5) are
identical, demonstrating the same physical origin of these
phenomenological equations.

While Kuz’min’s equation quantitatively describes the form
of the magnetization curve, it does not link the macroscopic
Curie temperature to microscopic exchange interactions which
can be conveniently determined by ab initio first-principles
calculations [35]. Exchange interactions calculated from first
principles are often long ranged and oscillatory in nature, so
analytical determination of the Curie temperature can be done
with a number of different standard approaches such as the
mean-field approximation (MFA) or RPA, neither of which
is particularly accurate due to the approximations involved.
A much more successful method is incorporating the micro-
scopic exchange interactions into a multiscale atomistic spin
model which has been shown to yield Curie temperatures much
closer to experiment [21]. The clear advantage of this approach
is the direct linking of electronic-scale calculated parameters to
macroscopic thermodynamic magnetic properties such as the
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Curie temperature. What is interesting is that the classical spin
fluctuations give the correct Tc for a wide range of magnetic
materials [21,35], suggesting that the particular value of the
exchange parameters and the form of the m(T ) curve are
largely independent quantities. The difficulty with the classical
model is that the form of the curve is intrinsically wrong when
compared to experiment.

III. ATOMISTIC SPIN MODEL

To determine the classical temperature-dependent magne-
tization for the elemental ferromagnets Co, Fe, Ni, and Gd
we proceed to simulate them using the classical atomistic
spin model. The energetics of the system are described by
the classical spin Hamiltonian [15] of the form

H = −
∑
i<j

Jij Si · Sj , (6)

where Si and Sj are unit vectors describing the direction of the
local and nearest-neighbor magnetic moments at each atomic

site and Jij is the nearest-neighbor exchange energy, given
by [32]

Jij = 3kBTc

γ z
, (7)

where γ (W ) gives a correction factor from the MFA, γ = 1/W

for RPA, and the value of Tc is taken from experiment.
The numerical calculations have been carried out using
the VAMPIRE software package [36]. The simulated system
for Co, Ni, Fe, and Gd consists of a cube (20 nm)3 in
size with periodic boundary conditions applied to reduce
finite-size effects by eliminating the surface. The equilibrium
temperature-dependent properties of the system are calculated
using the Hinzke-Nowak Monte Carlo algorithm [15,37] using
20 000 equilibration steps and 20 000 averaging steps, resulting
in the calculated temperature-dependent magnetization curves
for each element shown in Fig. 1. For a classical spin
model it is known that the simulated temperature-dependent
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FIG. 1. (Color online) Temperature-dependent magnetization for the elemental ferromagnets (a) Co, (b) Fe, (c) Ni, and (d) Gd. Circles give
the simulated mean magnetization, and dark solid lines show the corresponding fit according to Eq. (4) for the classical case α = 1. Light solid
lines give the experimentally measured temperature-dependent magnetization as fitted by Kuz’min’s equation. Triangles give the simulated data
after the temperature rescaling has been applied, showing excellent agreement with the experimentally measured magnetizations for all studied
materials. Insets are plots of the relative error of the rescaled magnetization compared to Kuz’min’s fit to the experimental data, showing less
than 3% error for all materials in the whole temperature range (a more restrictive 1% error is shown by the shaded region). The final fitting
parameters are listed in Table I.
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magnetization is well fitted by the function [15]

m(T ) =
(

1 − T

Tc

)β

. (8)

We note that Eqs. (4) and (8) are identical for the case of α = 1.
Fitting the simulated temperature-dependent magnetization
for Fe, Co, Ni, and Gd to Eq. (8) in our case yields an
apparently universal critical exponent of β = 0.340 ± 0.001
and a good estimate of the Curie temperature Tc within 1%
of the experimental values. In general β depends on both the
system size and the form of the spin Hamiltonian [38], hence
our use of a large system size and many averaging Monte
Carlo steps. We note that our calculated critical exponent
in all cases is closer to 0.34 as found experimentally for
Ni [39] rather than the 1/3 normally expected [22]. The
simulations confirm the ability of the atomistic spin model to
relate microscopic exchange interactions to the macroscopic
Curie temperature. However, as is evident from the Kuz’min
fits to the experimental data (see Fig. 1), the form of the
magnetization curve is seriously in error.

IV. TEMPERATURE RESCALING

To resolve the disparity in the temperature-dependent mag-
netization between the classical simulation and experiment
we proceed by implementing temperature rescaling to map the
simulations onto experiment in a quantitative manner. Similar
to Kuz’min [22], we assume in our fitting that the critical
exponent β is universal and thus the same for both the classical
simulation and experiment, so the only free fitting parameter is
α. Due to the limited availability of raw experimental data, we
use the equation proposed by Kuz’min as a substitute for the
experimental data since they agree extremely well [22]. This
also has the advantage of smoothing any errors in experimental
data. We proceed by fitting the Curie-Bloch equation given
by Eq. (4) to the Kuz’min equation given by Eq. (5),
where the parameters s and p are known fitting parameters
(determined from experimental data by Kuz’min [22]) and β �
0.34 and Tc are determined from the atomistic simulations.
The determined value of α then conveniently relates the result
of the classical simulation to the experimental data, allowing a
simple mapping as follows. The (internal) simulation tempera-
ture Tsim is rescaled so that for the input experimental (external)
temperature Texp the equilibrium magnetization agrees with the
experimental result. Tsim and Texp are related by the expression

Tsim

Tc
=

(
Texp

Tc

)α

. (9)

Thus, for a desired real temperature Texp, the simulation
will use an effective temperature within the Monte Carlo
or Langevin dynamics simulation of Texp, where for α > 1,
Tsim < Texp, leading to an effective reduction of the thermal
fluctuations in the simulation. The physical interpretation of
the rescaling is that at low temperatures the allowed spin
fluctuations in the classical limit are overestimated and so
this corresponds to a higher effective temperature than given
in the simulation. This is illustrated schematically in Fig. 2.

Clearly, different values of α in Eq. (9) lead to different
mappings between the experimental temperature and the
internal simulation temperature. Larger values of α lead to

Texp = 300 K

Simulation
Tsim = 50 K

Universe

msim = 0.9

mexp = 0.9

FIG. 2. Schematic diagram of the rescaling applied to the
simulation of a magnetic material. The universe has a temperature
Texp = 300 K, which for an experimental sample has a macroscopic
magnetization length of mexp = M/M0

s = 0.9. Using the temperature
rescaling, this leads to an internal simulation temperature of Tsim =
50 K, which leads to a simulated equilibrium magnetization of
msim = 0.9. Therefore, macroscopically, mexp ≡ msim.

reduced thermal fluctuations in the spin model simulations,
owing to quantum mechanical “stiffness.” A plot of the
simulation temperature Tsim as a function of the input exper-
imental temperature Texp for different values of the rescaling
exponent α is shown in Fig. 3. Above Tc it is assumed that
Tsim = Texp due to the absence of magnetic order. For Monte
Carlo simulations the reduced simulation temperature appears
directly in the acceptance criteria P = exp(−�E/kBTsim)
for individual trial moves, thus reducing the probability of
acceptance and resulting in a larger magnetization length for
the system.

We now apply the temperature rescaling to the simulated
temperature-dependent magnetization for Fe, Co, Ni, and Gd
and directly compare the result to the experimental curve,
as shown by the corrected simulation data in Fig. 1, where
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FIG. 3. (Color online) Plot of reduced simulation temperature
τ = Tsim/Tc as a function of the reduced input experimental tem-
perature τ̃ = Texp/Tc for different values of the rescaling exponent α.
Higher values of α correspond to a lower effective temperature and
reduced fluctuations in the simulation.
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TABLE I. Fitting parameters for the temperature-dependent
magnetization derived from the classical spin model simulations by
fitting to Eq. (4) for α = 1 (Tc and β) and by secondary fitting to
Eq. (5) to obtain the rescaling factor α.

Co Fe Ni Gd

Tc (K) 1395 1049 635 294
β 0.340 0.339 0.341 0.339
α 2.369 2.876 2.322 1.278

the final fitted parameters are given in Table I. For Co, Ni,
and Gd the agreement between the rescaled simulation data
and the experimental measurement is remarkable given the
simplicity of the approach. The fit for Fe is not as good as
for the others due to the peculiarity of the experimentally
measured magnetization curve, as noted by Kuz’min [22].
However, the simple rescaling presented here is accurate to a
few percent over the whole temperature range, and if greater
accuracy is required, then a nonanalytic temperature rescaling
can be used to give exact agreement with the experimental data.

The ability of direct interpolation of Bloch’s law with
critical scaling to describe the temperature-dependent magne-
tization is significant for two reasons. First, it provides a simple
way to parametrize experimentally measured temperature-
dependent magnetization in terms of only three parameters
via Eq. (4). Second, it allows a direct and more accurate deter-
mination of the temperature dependence of all the parameters
needed for numerical micromagnetics at elevated temperatures
from first principles when combined with atomistic spin
model simulations [18–20]. We also expect the same form
is applicable to other technologically important composite
magnets such as CoFeB, NdFeB, or FePt alloys.

V. DYNAMIC TEMPERATURE RESCALING

We now proceed to demonstrate the power of the rescaling
method by considering magnetization dynamics using a
Langevin dynamics approach [15] with temperature rescaling.
The temperature rescaling can be used not only for equilib-
rium simulations at constant temperature but also dynamic
simulations where the temperature changes continuously. The
latter is particularly important for simulating the effects of
laser heating and also spin caloritronics with dynamic heating.
As an example, we simulate the laser-induced subpicosec-
ond demagnetization of Ni first observed experimentally by
Beaurepaire et al. [6]. The energetics of our Ni model are
given by the Heisenberg spin Hamiltonian

H = −
∑
i<j

Jij Si · Sj −
∑

i

kuS
2
i,z, (10)

where Jij = 2.757 × 10−21 J/link is the exchange energy
between nearest-neighboring Ni spins, Si and Sj are unit
vectors describing the direction of the local and neighboring
spin moments, respectively, and ku = 5.47 × 10−26 J/atom.

The dynamics of each atomic spin is given by the
stochastic Landau-Lifshitz-Gilbert (sLLG) equation applied
at the atomistic level, given by

∂Si

∂t
= − γe

(1 + λ2)

[
Si × Hi

eff + λSi × (
Si × Hi

eff

)]
, (11)

where γe = 1.76 × 1011 J T−1 s−1 is the gyromagnetic
ratio, λ = 0.001 is the phenomenological Gilbert damping
parameter, and Hi

eff is the net magnetic field on each atomic
spin. The sLLG equation describes the interaction of an
atomic spin moment i with an effective magnetic field, which
is obtained from the derivative of the spin Hamiltonian and the
addition of a Langevin thermal term, giving a total effective
field on each spin

Hi
eff = − 1

μs

∂H

∂Si

+ Hi
th, (12)

where μs = 0.606μB is the atomic spin moment. The thermal
field in each spatial dimension is represented by a normal
distribution �(t) with a standard deviation of 1 and mean of
zero. The thermal field is given by

Hi
th = �(t)

√
2λkBTsim

γeμs�t
, (13)

where kB is the Boltzmann constant, �t is the integration
time step, and Tsim is the rescaled simulation temperature
from Eq. (9). As with the Monte Carlo simulations, this
reduces the thermal fluctuations in the sLLG and leads to
a higher equilibrium magnetization length compared to the
usual classical simulations. However, unlike Monte Carlo
simulations, the explicit time scale in the sLLG equation
allows the simulation of dynamic processes, particularly with
dynamic changes in the temperature associated with ultrafast
laser heating. In this case the temporal evolution of the electron
temperature can be calculated using a two-temperature
model [40], considering the dynamic response of the electron
(T exp

e ) and lattice (T exp
l ) temperatures. To be explicit, when

including the temperature rescaling, the two-temperature
model always refers to the real, or experimental, temperature
Texp; here Tsim applies only to the magnetic part
of the simulation where the thermal fluctuations are
included. The time evolution of T

exp
e and T

exp
l is given by [40]

Ce

∂T
exp
e

∂t
= −G

(
T exp

e − T
exp
l

) + S(t), (14)

Cl

∂T
exp
l

∂t
= −G

(
T

exp
l − T exp

e

)
, (15)

where Ce and Cl are the electron and lattice heat capacities,
G is the electron-lattice coupling factor, and S(t) is a
time-dependent Gaussian pulse with a FWHM of 60 fs which
adds energy to the electron system representing the laser
pulse. The time evolution of the electron temperature is solved
numerically using a simple Euler scheme. The parameters used
are representative of Ni [41], with G = 12 × 1017 W m−3 K−1,
Ce = 8 × 102 J m−3 K−1, and Cl = 4 × 106 J m−3 K−1. The
sLLG is solved numerically using the time-dependent electron
temperature rescaled using Eq. (9) with the Heun numerical
scheme [15] and a time step of �t = 1 × 10−16 s.

To simulate the effects of a laser pulse on Ni, we model
a small system of (8 nm)3 which is first equilibrated at
Texp = 300 K for 20 ps, sufficient to thermalize the system.
The temperature of the spin system is linked to the electron
temperature, so a simulated laser pulse leads to a transient
increase of the temperature, inducing ultrafast magnetization
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FIG. 4. (Color online) Simulated demagnetization of Ni compar-
ing classical and rescaled models with experimental data from [6].
The rescaled dynamic simulations show quantitative agreement with
experiment from an atomic level model.

dynamics. After a few picoseconds the energy is transferred
to the lattice where T

exp
e = T

exp
l . The classical and rescaled

dynamics are calculated for identical parameters except that
α = 1 is used for the classical simulation since no rescaling
is used. The simulated magnetization dynamics and the
experimental results are shown in Fig. 4, where the laser
pulse arrives at t = 0. As expected, the standard classical
model shows poor agreement with experiment because of the
incorrect m(T ). However, after applying dynamic temperature
rescaling, quantitative agreement is found between the atom-
istic model and experiment. This result exemplifies the validity
of our approach by demonstrating the ability to describe both
equilibrium and dynamic properties of magnetic materials at
all temperatures.

VI. DISCUSSION AND CONCLUSION

In conclusion, we have performed atomistic spin model
simulations of the temperature-dependent magnetization of

the elemental ferromagnets Ni, Fe, Co, and Gd to determine
the Curie temperature directly from the microscopic exchange
interactions. Using a simple temperature rescaling considering
classical and quantum spin-wave fluctuations, we find quan-
titative agreement between the simulations and experiment
for the temperature-dependent magnetization. By rescaling
the temperature in this way it is now possible to derive
all temperature-dependent magnetic properties in quantitative
agreement with experiment from a microscopic atomistic
model. In addition we have shown the applicability of the
approach to modeling ultrafast magnetization dynamics, also
in quantitative agreement with experiment. This approach
now enables accurate temperature-dependent simulations of
magnetic materials suitable for a wide range of materials of
practical and fundamental interest.

Finally, it is interesting to ponder what the physical origin
of the exponent α is. From the elements studied in this paper,
there is no correlation between α and the crystallographic
structure or the Curie temperature or, by extension, the
strength of the interatomic exchange constant. The rescaling is
independent of temperature, so the origin must be an intrinsic
property of the system with a quantum mechanical origin,
as suggested by Eq. (3). In the simplistic picture it should
relate to the availability of spin states in the vicinity of
the ground state, with the fewer available states, the more
Bloch-like the temperature-dependent magnetization will be.
However, it would be interesting to apply detailed ab initio
calculations to try and delineate the origin of this effect in
simple ferromagnets.
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