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on ES cells, and hypothalamic and cortical primary neurons). During 
reverse transcription, each cDNA molecule was tagged with a  
5-bp random sequence serving as UMI (Fig. 1a and 
Supplementary Fig. 2). We counted cDNA molecules by enu-
merating the total number of distinct UMIs aligned to each posi-
tion (Fig. 1b). Mouse embryonic fibroblasts and damaged ES cells 
were removed on the basis of criteria established after sequencing 
(Supplementary Note).

UMIs will reflect molecule counts only if the number of distinct 
labels is substantially larger than the typical number of identical 
molecules. Approximately 105–106 mRNA molecules are present 
in a typical single mammalian cell, and up to 10,000 different 
genes may be expressed. However, many genes are expressed from 
multiple promoters (Supplementary Fig. 3) or have promoters 
with diffuse transcription start sites (Supplementary Fig. 4),  
so that the number of identical mRNA molecules is expected to 
be <100 for most genes. We therefore expected our 5-bp UMI, 
capable of distinguishing up to 1,024 molecules, to be sufficient. 
To confirm this, we determined the number of distinct UMIs that 
we could observe for each unique combination of sample barcode 
(i.e., cell) and genomic position (Fig. 1c). As expected, the vast 
majority of cases were represented by only a small number of 
UMIs (corresponding to a small number of cDNA molecules), 
and we did not find a single case of a fully saturated position.  
To obtain more accurate estimates of molecule counts at high 
expression levels, we corrected for the collision probability of 
UMIs (see Online Methods).

To ensure that successfully generated cDNA molecules are 
sequenced, it is crucial to sequence to a sufficient depth after 
amplification. We typically observed each UMI multiple times 
(Fig. 1b). Across all genes, the average number of reads per mol-
ecule was nine, with a distribution consistent with oversampling 
of most molecules (Supplementary Fig. 5).

To further demonstrate that UMIs labeled individual cDNA 
molecules, we examined genes containing a heterozygous single 
nucleotide polymorphism (SNP). If UMIs worked as intended, 
each UMI would be derived from a single molecule and therefore 
from a single allele. As a consequence, all reads derived from 
this UMI would carry the same allele. Indeed, the observed allele 
distribution confirmed that UMIs had correctly labeled single 
cDNA molecules derived from single alleles (Fig. 1d). In total, 
we found 47 informative SNPs, of which all showed the expected 
monoallelic pattern across UMIs.

To improve cDNA synthesis efficiency, we implemented our 
protocol on a commercially available microfluidic platform 
(Fluidigm C1 AutoPrep) and carefully optimized the conditions 
for this device (Online Methods). To directly measure the effi-
ciency of reverse transcription, we introduced a known number 
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single-cell rna sequencing (rna-seq) is a powerful tool to 
reveal cellular heterogeneity, discover new cell types and 
characterize tumor microevolution. however, losses in cdna 
synthesis and bias in cdna amplification lead to severe 
quantitative errors. We show that molecular labels—random 
sequences that label individual molecules—can nearly 
eliminate amplification noise, and that microfluidic sample 
preparation and optimized reagents produce a fivefold 
improvement in mrna capture efficiency.

RNA-seq has become the method of choice for transcriptome 
analysis in tissues1–3 and in single cells4–7. The two main chal-
lenges in single-cell RNA-seq are the efficiency of cDNA synthe-
sis (which sets the limit of detection) and the amplification bias 
(which reduces quantitative accuracy). Published protocols have 
been reported to have limits of detection of between five and 
ten mRNA molecules5–7, corresponding to a capture efficiency 
of around 10%, and all current methods use amplification, either 
by PCR or by in vitro transcription.

To correct for amplification bias, we8 and others9–11 have 
described how molecules can be directly counted through the use 
of unique molecular identifiers (UMIs). For single-cell RNA-seq, 
UMIs have been used as an internal validation control12 but have 
not yet been explored as a direct, quantitative measure of gene 
expression. Molecule counting corrects for PCR-induced artifacts 
(Supplementary Fig. 1) and provides an absolute scale of mea-
surement with a defined zero level. In contrast, standard RNA-seq 
uses relative measures such as reads per kilobase per million reads 
(RPKM), which mask differences in total mRNA content. For 
example, a gene may be ‘upregulated’ in terms of RPKM and have 
a decrease in absolute expression level if the total mRNA content 
also changes. Thus an absolute scale of measurement is crucial for 
interpreting transcriptional dynamics in single cells.

We applied molecule counting to mouse embryonic stem (ES) 
cells and used spike-in controls to monitor technical perform-
ance (similar results were obtained in independent experiments  
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of External RNA Controls Consortium 
(ERCC) control RNA molecules to each 
well. Counting the resulting number of 
detected cDNA molecules, we found 
an efficiency of 48 ± 5% s.d. (Fig. 2 and 
Supplementary Fig. 6), a fivefold improve-
ment over our previously published protocol5. We attribute the 
improvement both to the use of an integrated microfluidic device 
(reducing losses and minimizing background reactions) and to 
more optimized reagents, in particular the template-switching 
oligo design. Interestingly, using a separate set of optimizations, 

the recently published Smart-seq2 method achieved similarly 
improved capture effiency13, suggesting that even higher efficien-
cies could be achieved by combining the protocols.

Next, we asked how the use of UMIs affected the overall 
quantification of gene expression in single cells and controls. 

For comparison, we analyzed the same 
data sets both using UMIs (count-
ing molecules) and using reads in the  
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figure 1 | Molecule counting using UMIs.  
(a) Overview of tagging single mRNA molecules 
with UMIs. Two cells are shown (top) containing 
mRNAs from different genes represented by 
distinct colors. UMIs are represented by colored 
boxes (middle and bottom); untagged mRNA 
molecules (gray, middle) were not reverse 
transcribed (bottom). (b) UMI alignment and 
mRNA molecule counting on a hypothetical 
example of reads aligned to Tubb2b. (c) Number 
of genomic positions that were assigned the 
given numbers of distinct UMIs. (d) UMIs 
observed in single ES cells for the Exosc1 gene, 
which contained a SNP (rs13483630). Stacked 
bars indicate the number of reads carrying each 
possible UMI sequence, colored according to the 
allele observed in the read. Four distinct UMIs 
were observed, all monoallelic. Horizontal axis 
indicates the numbers of each UMI counted. 
Ref, reference allele.
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figure 2 | Reproducibility of molecule 
counting. (a,b) Pairwise correlation coefficients 
calculated for ERCC spike-in control RNA (a) or 
endogenous genes (b), using molecule counts 
(n = 41) and prepared with (187ds) and without 
(187ss) nine additional cycles of library PCR. 
(c) Pairwise correlation coefficients as in b but 
counting reads instead of molecules (n = 41).  
(d) Scatterplot showing the pairwise comparison  
of two wells indicated in a. Red squares and 
blue dots show comparisons within and between 
libraries, respectively. (e) Scatterplot showing 
the two cells indicated in b based on molecule 
counts. (f) Scatterplot as in e but using reads 
instead of molecules. (g) Scatterplot as in d  
but using reads instead of molecules.  
(h) Distribution of molecule counts for a single 
ERCC spike-in transcript (gray dots) compared 
with the cumulative density function of the 
Poisson distribution (red line). (i) mRNA 
capture efficiency shown as observed molecule 
counts versus number of spiked-in molecules for 
ERCC control RNA transcripts. The shaded bands 
indicate efficiencies above (dark gray) and 
below (light gray) 20%. Each red dot represents 
the average of a single ERCC RNA across 96 
wells. Similar results were obtained in one 
replicate experiment.
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conventional manner. We determined the pairwise correla-
tion coefficients (Fig. 2a–c) and visualized typical examples as  
scatterplots (Fig. 2d,e,g,h). As expected, the quantitative preci-
sion was improved, especially at low molecule counts. The techni-
cal reproducibility was excellent, as demonstrated by correlation 
coefficients >0.95 for ERCC spike-in control RNA (Fig. 2a).

An important consequence of counting molecules is that the 
data can be displayed on an absolute and biologically meaningful 
scale, with a defined zero. The scales for read-count scatterplots 
(Fig. 2g,h) are arbitrary, as the total number of reads differs 
between wells (and could be increased arbitrarily through addi-
tional sequencing runs). Normalizing to reads per million (RPM) 
amounts only to scaling by a constant factor, and affects neither 
correlation coefficients nor scatterplots. (Normalizing to RPKM 
would distort the results, as we sequenced only the 5′ end of each 
mRNA, and thus read number was not proportional to gene length; 
Supplementary Fig. 7). In contrast, scales for molecule-counting 
scatterplots (Fig. 2d,e) are absolute and would not change appreci-
ably if the number of reads were increased. We observed a smooth 
distribution of the number of counted molecules, consistent with 
accurate counting and approaching the theoretically optimal 
Poisson distribution (Fig. 2h and Supplementary Fig. 8).

Examining noise as a function of mRNA abundance, we found 
that the ERCC spike-in controls closely tracked the expected 
Poisson distribution (Fig. 3a). However, at low levels of expres-
sion, the capture efficiency limited our power to detect noise.  
This can be seen in the difference between the ERCC spike-in 
controls and the curve for a fully lossless and perfectly accurate 
measurement (Poisson). Nevertheless, this result demonstrates 
that little noise above that caused by inefficient reverse transcrip-
tion was introduced during sample preparation.

Next, we examined endogenous transcriptional noise in ES cells. 
We would expect noise across these measurements to include the 
sampling noise introduced by reverse transcription as well as bio-
logical noise due to stochastic or bursty transcription and to oscil-
latory and regulated gene expression. We were surprised to find that 
most genes were expressed at noise levels approaching the Poisson 
limit (Fig. 3a). At all levels of expression, the noise measured as 
coefficient of variation (s.d. divided by the mean) closely tracked 

the predicted Poisson limit, but with a slight excess above the tech-
nical noise (compare ERCC controls with endogenous genes).

Although most genes showed low levels of noise, using a 
conservative threshold (see Online Methods) we found a set of 
118 significantly noisy genes in ES cells (P = 0.05; Fig. 3a and 
Supplementary Table 1). Interestingly, several of these noisy 
genes have been previously demonstrated to show heterogeneous 
(Zfp42, also known as Rex)14 or oscillatory (Hes1)15 expression 
in ES cells. Nanog was also heterogeneously expressed (P < 0.05), 
as expected16, but was excluded by our stringent noise criterion. 
Furthermore, pathway analysis identified an over-representation 
of genes involved in the transforming growth factor–β signaling 
pathway (Id2, Id3, Fst, Lefty1 and Lefty2), which has recently been 
shown to regulate ES cell heterogeneity and self-renewal17. These 
results directly validate our approach and suggest that the noisy 
genes we discovered were not simply affected by stochastic tran-
scription but reflect more complex biological heterogeneity.

We hypothesized that noisy expression partially reflected a kind 
of ‘resonant state’ between pluripotency and early differentiation. 
In agreement with this idea, the genes encoding keratins 8, 18 and 
19 (Krt8, Krt18 and Krt19)—which are known to be expressed at 
low levels in mouse ES cells but highly induced upon embryoid 
body formation and in epiblast stem cells18—were among the noisy 
genes and were coexpressed in a small subset of cells (Fig. 3b).  
Using Krt8 to separate these cellular substates, we found that cells 
ranged between two extreme states characterized by high expres-
sion of Hes1, Krt8 and Krt18 (epiblast-like state) and Zfp42 and 
Lefty1 (pluripotent-like state), respectively. Thus the observed 
variations in these genes reflect a stochastic distribution of ES 
cells in regulatory substates rather than intrinsic fluctuations in 
transcription. A more detailed analysis of these findings will be 
published elsewhere.

The finding that the majority of genes expressed in ES cells had 
low levels of noise contrasts with some previous findings of large 
and widespread intrinsic transcriptional noise19,20. It is plausible  
that the discrepancy in findings can be partly explained by metho-
dological differences. It is difficult to estimate the contribution of 
technical noise in imaging-based methods, and previous authors 
have generally assumed that all observed noise was of a biological 

0

200

100

600

500

400

300

700

1 10 100 1,000 10,000

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
(%

)

Average mRNA count (number of molecules)

Endogenous genes

ERCC control RNA

Lossy Poisson (fit)

Poisson (100%)

a

Zfp42
Dppa5a

Lefty1

Dqx1

Sprr2b

Fst

b

Krt8 mRNA molecules per cell

m
R

N
A

 m
ol

ec
ul

es
 p

er
 c

el
l

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700 Zfp42

Lefty1

Hes1

Krt18

figure 3 | Transcriptional noise in ES cells. (a) The coefficient of variation as a function of the mean number of mRNA molecules detected, for genes 
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origin. On the other hand, we lost some mRNA molecules during 
cDNA synthesis, which would mask some biological noise, espe-
cially at low expression levels. Nevertheless, the notion that gene 
expression in general is extremely bursty seems to be incompat-
ible with the levels of noise that we observed.

In conclusion, we have shown that quantitatively accurate single- 
cell RNA-seq can uncover oscillatory and heterogeneous gene 
expression within a single cell type. We anticipate that accurate 
molecule counting will be an important approach for future single- 
cell transcriptome analyses.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Gene Expression Omnibus: supplementary data 
are available under accession code GSE46980.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Cell culture. R1 mouse ES cells (not authenticated by short tan-
dem repeat profiling but routinely used for successful genera-
tion of chimeras and tested for mycoplasma contamination) were 
grown in ES1 medium on irradiated mouse embryonic fibroblast 
feeder cells and harvested at confluency. After trypsinization, 
the feeder cells were given time to settle to obtain a pure R1 ES 
cell suspension. To reduce contamination with dead and dying 
cells, dead cells were subsequently stained with Red Fixable Dead 
Cell Stain (Life Technologies) and dead and early apoptotic cells 
were depleted with annexin V–conjugated microbeads (Miltenyi 
Biotec). The cells were resuspended at a concentration of  
400 cells per microliter in ES1 medium with 10% DMSO, divided 
into aliquots and frozen at −80 °C.

Cell capture and imaging. A 30-µL aliquot of ~12,000 cells 
was thawed, and 20 µL C1 Suspension Reagent was added  
(all ‘C1’ reagents were from Fluidigm, Inc.). Five microliters of 
this mix were loaded according to the manufacturer’s protocol on  
a C1 Single-Cell AutoPrep IFC microfluidic chip designed for 
10- to 17-µm cells, and the chip was then processed on a Fluidigm 
C1 instrument using the ‘mRNA Seq: Cell Load (1772x/1773x)’ 
script. This captured one cell in each of up to 96 capture chambers 
and took ~30 min. The plate was then transferred to an automated 
microscope (Nikon TE2000E), and an image was acquired from 
each site using µManager (http://micro-manager.org/), which 
took <15 min.

Lysis, reverse transcription and PCR. The plate was returned to 
the lab and 20 µL lysis buffer (0.15% Triton X-100, 1 U/µL TaKaRa 
RNase inhibitor, 4 µM reverse transcription primer C1-P1-T31, 
5% C1 Loading Reagent and 1:50,000 Life Technologies ERCC 
Spike-In Mix 1), reverse transcription mix (1× SuperScript II First-
Strand Buffer supplemented with 3 mM MgCl2, 1.5 mM dNTP,  
4 mM DTT, 3.3% C1 Loading Reagent, 1.8 µM template-switching 
oligo C1-P1-RNA-TSO, 1.5 U/µL TaKaRa RNase inhibitor and  
18 U/µL Life Technologies Superscript II reverse transcriptase) and 
PCR mix (1.1× Clontech Advantage2 PCR buffer, 440 µM dNTP, 
530 nM PCR primer C1-P1-PCR-2 (Supplementary Table 2), 5% 
C1 Loading Reagent and 2× Advantage2 Polymerase Mix) were  
added to the designated wells according to the manufacturer’s 
instructions, but using the indicated mixes in place of the corres-
ponding commercial reagents. The plate was then returned to 
the Fluidigm C1 and the ‘mRNA Seq: RT + Amp (1772x/1773x)’ 
script was executed, which took ~8.5 h and included lysis, reverse 
transcription and 21 cycles of PCR. When the run finished, the 
amplified cDNA was harvested in a total of 13 µL C1 Harvesting 
Reagent and quantified on an Agilent BioAnalyzer. The typical 
yield was 1 ng per microliter (Supplementary Fig. 9).

Tagmentation and isolation of 5′ fragments. Amplified cDNA 
was simultaneously fragmented and barcoded by ‘tagmentation’, 
i.e., using Tn5 DNA transposase to transfer adaptors to the tar-
get DNA. Ninety-six different 10× transposome stocks (6.25 µM 
barcoded adaptor C1-TN5-x, 40% glycerol, 6.25 µM Tn5 trans-
posase, where x denotes a well-specific barcode) were prepared, 
each with a different barcode sequence (Supplementary Table 2).  
Six microliters of harvested cDNA was mixed with 5 µL tagmen-
tation buffer (50 mM TAPS-NaOH, pH 8.5, 25 mM MgCl2 and 

50% DMF), 11.5 µL nuclease-free water and 2.5 µL 10× trans-
posome stock. The mix was incubated for 5 min at 55 °C then 
cooled on ice. Dynabeads MyOne Streptavidin C1 beads (100 µL) 
were washed in 2× BWT (10 mM Tris-HCl, pH 7.5, 1 mM EDTA,  
2 M NaCl, 0.02% Tween-20) then resuspended in 2 mL 2× BWT. 
Twenty microliters of beads were added to each well and incubated 
at room temperature for 5 min. All fractions were pooled,  
the beads were immobilized and the supernatant removed (thus 
removing all internal fragments and retaining only the 5′- and 
3′-most fragments). The beads were then resuspended in 100 µL 
TNT (20 mM Tris, pH 7.5, 50 mM NaCl, 0.02% Tween), washed 
in 100 µL Qiagen Qiaquick PB, then washed twice in 100 µL 
TNT. The beads were then resuspended in 100 µL restriction mix  
(1× NEB NEBuffer 4, 0.4 U/µL PvuI-HF enzyme), designed to 
cleave 3′ fragments carrying the PvuI recognition site. The mix 
was incubated for 1 h at 37 °C, then washed three times in TNT. 
Finally, the single-stranded library was eluted by resuspension of 
the beads in 100 µL 100 mM NaOH, incubation for 5 min, removal 
of the beads and addition of 100 µL 100 mM HCl and 50 µL  
neutralization buffer (200 mM Tris, pH 7.5, 0.05% Tween-20). At 
this point, the typical yield was 1–5 nM single-stranded library. 
Optionally (but not recommended), the library was further ampli-
fied for nine cycles as previously described21. This additional 
amplification was used only for the 187ds sample (Fig. 2).

Illumina high-throughput sequencing. The library was 
quantified by quantitative PCRusing KAPA Library Quant 
(Kapa Biosystems) and then sequenced on an Illumina HiSeq 
2000 instrument using C1-P1-PCR-2 as the read 1 primer, 
and C1-TN5-U as the index read primer. Reads of 50 bp were 
generated along with 8-bp index reads corresponding to the  
cell-specific barcode. Reagent costs were reduced more than four-
fold compared to commercial kits (Supplementary Fig. 10).

Data analysis. Every read that was considered valid by the 
Illumina HiSeq control software was processed and filtered as 
follows: (i) any 3′ bases with a quality score of B were removed; 
(ii) the well-identifying barcode was extracted from the 5′ end of 
the read; (iii) if the read ended in a poly(A) sequence leaving <25 
transcript-derived bases, the read was discarded; (iv) the UMI was 
extracted, and if any of the UMI bases had a Phred score <17, the 
read was discarded; (v) a maximum of nine template-switching 
generated Gs were removed from the 5′ end of the transcript-
derived sequence; (vi) if the remaining sequence consisted of 
fewer than six non-A bases or a dinucleotide repeat with fewer 
than six other bases at either end, the read was discarded.

After filtering, the reads were aligned to the genome using the 
Bowtie aligner22, allowing for up to three mismatches and up 
to 24 alternative mappings for each read. The genome included 
an artificial chromosome, containing a concatamer of the  
ERCC control sequences. Any reads with no alignments were 
realigned against another artificial chromosome, containing all 
possible splice junctions arising from the exons defined by the 
known transcript variants. Reads mapping within these splice 
junctions were translated back to the corresponding actual 
genomic positions.

The UCSC transcript models23 were used for the expression 
level calculation. If a locus had several transcript variants, the 
exons of these were merged to a combined model that represented 
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all expression from the locus. To account for incomplete cap site 
knowledge, the 5′ ends of all models were extended by 100 bases, 
but not beyond the 3′ end of any upstream nearby exon of another 
gene of the same orientation.

The annotation step was performed barcode by barcode. 
For every unique mapping (genomic position and strand) the 
number of reads in each UMI was counted. Any multiread that 
had one or more repeat mappings that was outside exons was 
assigned randomly as one of these repeats and contributed to the  
summarized read count of that repeat class. Else, if it had one 
or more mappings to exons, it was assigned at the exon where it 
was closest to the transcript model 5′ end, even if the sequence 
was repeat-like. If it had no exon mapping, it was assigned  
randomly at one of the mappings. After assigning reads, the 
number of molecules at each mapping position was determined 
by the number of distinct UMIs observed. To account for UMIs 
that stem from PCR-induced mutations or sequencing errors, any 
UMI that had fewer reads than 1/100 of the average of the nonzero 
UMIs was excluded. The raw UMI count was corrected for the 
UMI collision probability (important only at high UMI counts) 
as described10. The expression level of each transcript model 
was calculated as the total number of molecules assigned to all its  
possible mapping positions. MEFs and damaged cells were removed 
on the basis of quality control criteria (Supplementary Note and  
Supplementary Figs. 11–13).

Detecting noisy genes. We searched for noisy genes by selecting 
genes whose noise (measured as CV) was high compared to the 
pure Poisson distribution (Fig. 3a, dashed line), i.e., where

s sGene Poisson> +3 7 0 3. .

The rationale for this selection was twofold: first, that 4 s.d. was 
enough to exclude all spike-in controls, thus minimizing the false 
discovery rate; second, that there remained a residual 30% noise 
even at high molecule counts (for example, compare endogenous 

genes with the spike-in molecules at >1,000 molecules per cell in 
Fig. 3a). We found 167 such noisy genes in total.

To validate the findings, we performed the following statistical 
test. We noted that the technical noise distribution (Fig. 3) closely 
followed that of a Poisson, but its CV was inflated by a constant 
factor. This can be modeled as a loss factor f, such that only a frac-
tion f of the molecules are actually observed, which inflates the 
CV from 1/ l  to 1/ f l  as f approaches zero. To determine the 
loss factor, we used maximum likelihood to fit the CV = 1/ f l  
function to the ERCC spike-in controls, as indicated in Figure 3a, 
and found f = 0.20. Note that the loss factor combines the effect of 
actual losses with all other sources of noise, such as differences in 
reaction conditions, sequencing depth and pipetting errors.

We then analyzed each gene in comparison with the ERCC 
controls, with the null hypothesis that the observed CVobs of the 
gene was equal to that of a hypothetical ERCC control with the 
same mean expression. We obtained an expected distribution of 
CVs by repeatedly (500 times) calculating the CV of 41 (equal to 
the number of cells) random samples from the Poisson distribu-
tion with mean fλ (where f = 0.20). We then verified by Pearson’s 
chi-square goodness-of-fit test that the sampled CVs were nor-
mally distributed (omitting genes where P < 0.05 for this test). 
Finally, we fit a normal distribution to the sampled CVs and used 
its cumulative density function to calculate the P value of CVobs 
along this distribution, applying a Bonferroni correction to con-
trol for multiple testing. We considered a gene noisy when its 
corrected significance was α < 0.05.

On the basis of these criteria, we found a total of 118 noisy 
genes in ES cells (Supplementary Table 1). We performed gene 
set enrichment analysis using DAVID24.

21. Islam, S. et al. Nat. Protoc. 7, 813–828 (2012).
22. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Genome Biol. 10, R25 

(2009).
23. Meyer, L.R. et al. Nucleic Acids Res. 41, D64–D69 (2013).
24. Huang, D.W. Nat. Protoc. 4, 44–57 (2009).
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