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QUANTITATIVE STABILITY OF VARIATIONAL SYSTEMS:
I. THE EPIGRAPHICAL DISTANCE

HEDY ATTOUCH AND ROGER J.-B. WETS

Abstract. This paper proposes a global measure for the distance between the
elements of a variational system (parametrized families of optimization prob-
lems).

1. Preliminaries

The study of the stability of the solutions of optimization problems is a cen-
tral theme in the optimization literature. It has implications in model formula-
tion, optimality characterizations, approximation theory (especially for infinite-
dimensional problems), and in particular for numerical procedures. Most of the
existing stability results are topological in nature, i.e., it is shown that under the
appropriate conditions the minimum value function, or the set of optimal solu-
tions, possesses some type of (semi)continuity. Although there are a few results
of a quantitative nature, they are mostly limited to very specific transformations
(perturbations) of a restricted class of problems. One of the reasons that there
are essentially no "global" results is that there did not seem to exist a good met-
ric, i.e., one with the appropriate theoretical properties and reasonably easy to
compute, that could be used to measure the distance between two optimization
problems.

In this paper, we study the epi-distance and show that it has many desir-
able properties. We then use it, in two subsequent papers [9, 10], to derive
Hölderian and Lipschitzian properties for the optimal and e-optimal solutions
of optimization problems. The framework that serves as background to our
study is that of variational systems as defined in Rockafellar and Wets [20],
the stress being put on the global dependence of optimization problems on pa-
rameters that could affect the data that determines the objective as well as the
constraints, even the structure of the problem itself.

Although optimization problems, in particular in infinite-dimensional spaces,
have been our major motivation, one should point out that the results obtained
for the epi-distance also have many implications in the convergence theory for
operators. This theme is only developed to some extend in this paper, but the
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696 HEDY ATT0UCH AND R. J.-B. WETS

reader could get an idea of the possibilities from the observations made in §2
and the results in §5. Also, the results derived here in a functional framework
have their counterparts for sets by specializing them to indicator functions. We
illustrate this in just one case. In §3, we reformulate Theorem 3.7 in terms of
sets. Similar types of corollaries could be worked out for most other theorems
and propositions.

After the definition of the epi-distance in §1, §2 provides a useful criterion
for the evaluation of the epi-distance in many practical situations. §3 makes
a comparison between the epi-distance and other notions of distance based on
epigraphical regularization (obtained with kernels of the type (pX)~x\\ ■ \\p). §4
consists of a few basic observations about the topology induced by the epi-
distance, and §5 considers the related convergence notion for monotone opera-
tors and relates the distance between the graphs of the subgradient mappings to
the epi-distance. We conclude with a few results about an epigraphical calculus.

To begin with, let us review some notations and definitions. Unless specif-
ically mentioned otherwise, we always denote by (A", || ■ ||) a normed linear
space and by d the distance function generated by the norm. For any subset
C of X,

d(x, C) := inf ||x -y||
yec

denotes the distance from x to C ; if C = 0 we set d(x, C) = oo . For any
p > 0, pB denotes the ball of radius p and for any set C,

Cp := C n pB.

For C, D c X, the excess of C on D is defined as

e(C, D) := sup d(x, D),
xec

with the (natural) convention that e = 0 if C = 0. Note that the definition
implies e = oo if C is nonempty and D is empty. For any p > 0, the
p-(Hausdorfif-)distance between C and D is given by

hausse, D) = max{e(Cp, D), e(Dp, C)}.

Definition 1.1. For p > 0, the p-epi-distance between two extended real valued
functions /, g defined on X is

haus/)(/, g) := hausp(epi/, epig),

where the unit ball of XxR is the set B := lXxK = {(x, a): \\x\\ < 1, |a| < 1}.

One could trace this definition to the one used by Walkup and Wets [24] to
measure the distance between convex cones, or that suggested by Mosco [18]
to measure the distance between convex sets. But neither one of those earlier
papers studies the properties of the epi-distance, or mentions its potential as a
tool to obtain quantitative stability (convergence rates).
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QUANTITATIVE STABILITY OF VARIATIONAL SYSTEMS 697

Proposition 1.2. Let f (i = 1, 2, 3) be extended real valued functions defined
on a normed linear space X. For any p > 0,

(i) nonnegativity: hausp(fx, f2) > 0 ;
(ii) symmetry: haus^/;, f2) = haus^/.,, /,) ;

(iii) triangle inequality: for any p > inf^n^ f(x)   (i = 1, 2, 3),

hausp(fx, fj< haus3p(fx, f2) + hausip(f2, fj .

Moreover, if fx and f2 are lower semicontinuous, then
(iv) for all p>0, haus^ , f2) = 0 if and only if fx= f2.

Note that the condition in (iii) is equivalent to p > d(0, (epi f.) ).

Proof. Properties (i), (ii), and (iv) are self-evident. Proving (iii) is equivalent
to showing that

haus^C;, CJ < haus3p(Cx, C2) + hausJp(C2 ,CJ,

where C; = epi/¡-   (i = 1,2,3) are subsets of the normed linear space (XT =
XxR, ||(x, a)|L := max{||x||, \a\}). Let us prove that the above inequality
holds with Cx, C2, C3 any subsets of a normed linear space Y. For C,
D c Y and p > 0, let

ÔAC,D)= sup \d(y,C)-d(y,D)\,
P \\y\\<P

where ô  = oo if either C and/or D is empty. Since pB D C ,

Sp(C, D) > sup[d(y ,D):y£Cp] = e(Cp, D),

and hence

(1.1) ôp(C, D) > hausp(C,D).

Conversely, for all p > max[||y||, d(0, C)],

d(y, C)<d(0,C) + p<2p,
and thus d(y, C) = d(y, C3 ). It follows that

sup{ei(y, D) - d(y, C) : \\y\\ < p} < sup{ef(y, D) - d(y, C,p)} < e(Cip , D).

With the symmetric inequality, obtained when interchanging the roles of C and
D, this becomes

(1.2) <yC, F>)<haus3/,(C,Z>).

Since ô   clearly satisfies the triangle inequality, (1.1) and (1.2) imply

haus^C,, C3) < Sp(Cx, CJ < ôp(Cx, C2) + Sp(C2, CJ
< hausip(Cx ,C2) + haus3p(C2, CJ,

provided p>d(0,C¡)  (i =1,2, 3).   D
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698 HEDY ATTOUCH AND R. J.-B. WETS

Rather than defining the epi-distance as done here, one could have considered
the Hausdorff distance between the intersection of both epi / and epi g with
the />ball, as done in Salinetti and Wets [21]. In general, this distance does
not fill our needs, because it does not induce epi-convergence. However, in the
convex case it would not matter, since it induces the same uniform structure
as the epi-distance as we show next. We begin with a couple of preliminary
results.

Lemma 1.3. Let X be a normed linear space and C a closed convex set such
that C   ¿0. Then for any p > pQ and « > 0

haus(Cp+n, CJ < [(p + pj/(p - pj] ■ n,
which implies that the map n h-> haus(C     , C ) is Lipschitzian on R+ .

Proof. The argument is based on duality. From Hörmander's classical formula
(see [6, §3], for example),

haus(Cp+l¡, CJ = sup{\s(Cp+l], x*) -s(Cp, x*)\: \\x*\\ < 1},

when s(D, x*) = sup{(x*, x): x £ D} is the support function of D. Note
that s(C , ■) = (ôc + S J*, where ôc is the indicator function of the set C.
Moreover, S B is continuous at a point of the domain of Sc—because C is
nonempty and p > p0—which means that

(1.3) s(Cp, x*) = mm{s(C, y*) + p\\x*-y*\\ : y  £ X*}

with the minimum attained at some point y*. Thus,

s(Cp+rj,x*)-s(Cp,x*)

< {s(C,y*J + (p + n)\\x* -y*p\\} - {s(C, y*J + p\\x* -y*p\\}
= y ■ \\x* - y*p\\ •

The proof is completed by showing that ||x* - y*\\ < (p + pj(p - pj~ ||x*||.
Indeed,

(1-4) P\\y]\\ - p\\x*\\ < p\\x* -yp\\< p\\x*\\ + pü\\yp\\,

where the last inequality from (1.3) with the observations

s(C , x*) < s(pM, x*) = p\\x*\\,

s(C,y*J<(y*p,x0)>-pQ\\y*p\\,

with x0 any point in C . Thus, ||y*|| < 2p(p - pj~ \\x*\\, which combined
with the last relation in (1.4) yields the asserted inequality; recall that ||x*|| <
1.   G

In connection with this lemma, let us observe that (p + pj/(p - pj the
constant used to bound the Hausdorff distance between C      and C   goes to
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QUANTITATIVE STABILITY OF VARIATIONAL SYSTEMS 699

1 (resp. oo ) as p goes to oo (resp. pj is not necessarily the best possible
constant that could be obtained to obtain this estimate. The best constant
depends on the geometry of the space (X, || • ||). For example, if X is a Hubert

1 /2space, we can replace (p + p0)/(p - pj by [(p + pj/(p - pj] . To see this,
we calculate a bound for e(C , CJ . Let p0 be the projection of the origin
on the set C. Then \\p0\\ < p0 since C + 0. Pick x G C \ C and let
L = {p0+X(x-p0)\X > 0} be the half-line rooted at p0 and passing through x .
We are looking for an upper bound on d(x, C J and to do this we can restrict
ourselves to the plane that includes L and {0}. With y £ L n bdypl and
z G L(l(bdy(p + n)M), d(x, C)< \\y-z\\. Because of the Hubert geometry of
the space, ||j; - z\\ is maximal when the angle between the line that includes L
and the line passing through 0 and p0 is n/2. From the Pythagorean Theorem

it follows that e(C     , CJ < J(p + n)2 - p\-\lp1 - p\ . A simple calculation
i iinow shows that this quantity is bounded above by [(p + pj/(p - pj]    n, given

that n < 1.

Proposition 1.4. Let C and D be two closed subsets of a normed linear space
X such that Cn   and D    are nonempty. Then for all p > pn

hausp(C,D)<haus(Cp,DJ.

Moreover, if C and D are convex, then for p > p0

haus^, DJ < -^— haus (C, D).
"    "o

Proof. The first inequality is self-evident.   The second one follows from the
"triangle inequality" for the excess function, e(R, T) < e(R, S) + e(S, T), for
any sets R, S, and T. It implies that haus(C , DJ < ßx+ ß2, where for any
n>0,

ßx:=max[e(Dp,Cp+J,e(Cp,Dp+J],
ß2:=max[e(Cp+^,CJ,e(Dp+ri,DJ].

When C and D are convex, we use Lemma 1.3 to obtain

ß2<[(p + pjl(p- pj\n-
With n = hausp(C,D),

^Cp,Dp+J = e(Cp,D)    and    e(Dp, Cp+J = e(Dp, C),
i.e., ßx = haus (C, D). This, with the preceding bound for ß2, yields the
estimate.   D

Corollary 1.5. Let X be a normed linear space and f and g two proper ex-
tended real valued lower semicontinuous functions defined on X. Let p0 > 0 be
suchthat (epi/)     and (epi,?)     are nonempty. Then for all p>p0,

haus^/, g) < haus((epi f)p, (epig)J.
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700 HEDY ATTOUCH AND R. J.-B. WETS

Moreover, if the functions are also convex, for p > pQ

haus((epi ñ  , (epi?) ) < _£_haus (/, g).
P     Po

Proof. Simply apply the proposition to the closed epigraphs of / and g.   D

2. The Kenmochi conditions

The Kenmochi conditions provide a practical criterion for computing, or at
least estimating, the epi-distance between two functions.

Theorem 2.1. Suppose f, g are proper extended real valued functions defined
on a normed linear space X, both minorized by -a0\\-\\p -ax for some a0 > 0,
a. £ R, and p > 1.   Let pn > 0 be such that (epif)n   and (epi?)„   are

1 u "o "o
nonempty.

(a) Then the following conditions—to be called the Kenmochi conditions—
hold: for all p > p0 and x £ domf such that \\x\\ < p, \f(x)\ < p, for every
e > 0 there exists some xe £ domg that satisfies

(2.1) \\x-xe\\< hausp(f, g) + s,        g(xj < f(x)+ hausp(f, g)+ e

as well as a symmetric condition with the roles of f and g interchanged.
(b) Conversely, assuming that for all p > p0 > 0 there exists a "constant"

n(p) G R+, depending on p, such that for all x g dorn/ with ||x|| < p,
l/MI < P, there exists x £ domg that satisfies

(2.2) \\x - x\\ < n(p),        g(x) < f(x) + n(p),
and the symmetric condition (interchanging the roles of f and g), then with
px := p + a0pp + \ax\,

(2.3) hausp(f, g) < n(px).
Proof. It suffices to observe that

(i) haus (epi/, epi?) < 6 if and only if for every e > 0

(epi/^cepi^-HÖ + e)!    and    (epi?)^ c epi/+(f? + e)B;

(ii) these inclusions yield exactly the Kenmochi conditions (2.1) if one re-
members that epi g is an epigraph;

(iii) estimate (2.3) is obtained by calculating an upper bound for 6 in terms
of p and n(p). That is done next.

Given any (x, p) £ (epif)p, i.e., ||x|| < p, \p\ < p, p > f(x), we have
that |/(x) < px . By (2.2) there exists some x G dorn? with ||x - x|| < n(px)
such that

g(x) < f{x) + n(px )<p + n(px ).
There remains only to observe that if g(x) > p, then \p - g(x)\ = g(x) - p <
n(px), and

d((x, p), epig)<d((x,p), (x, g(x))) < n(pj.
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On the other hand, if p > g(x), then (x, p) e epi? and consequently

d((x, p),epig) <d((x,p), (x,p))<n(px).   D

Remark 2.2. Theorem 2.1 tells us that in order to compute haus (/, g) we have
to find the best constant n(p) for which the condition (2.2) holds. This condi-
tion had been introduced by Kenmochi [16] (see also Attouch and Damlamian
[4]) to study the existence of strong solutions for evolution problems of the
following type:

0£^ + df(t,u(t));    u(0) = u0.

The time dependence of / with respect to t, in our terminology, can now be
expressed as an absolute continuity property of the map t i-> f(t). It can be
formulated as follows: there exist b £ C([0, T];H)r\ Wx'2([0, T]; H) and
a, an increasing function, such that:

V0<i<i<r, Vxg dorn f(s, •),  3x G dom/(í, •) such that
||x-x|| < \b(t)-b(s)\-(\ + \\x\\),

f{t, x) < fis, x) + (a(t) - a(s))(\f(s, x)| + ||x||2 + 1).

Thus, Vx G dorn/(s, •) with ||x|| < p, \f(s, -)| < p, we have the existence of
some x G dorn f(t. •) such that

||x-x|| < (I + p)\b(t) - b(s)\,
f(t,x)<f(s,x) + (l+p + p2)(a(t) - ais)).

Taking n(p) = max{(l + p)\b(t) -b(s)\, (l + p + p )(a(t) -a(s))} , we see that
condition (2.2) is satisfied.    D

3. Comparison with the d, „-distancesK,p

This section is devoted to the relationship between the epi-distance and the
distances introduced in Attouch and Wets [6, 7], based on epigraphical regular-
izations. Although one can envisage more general kernels (see Wets [25] and
Attouch, Azé, and Wets [3, Propositions 3.1 and 3.2]), for simplicity's sake we
shall restrict ourselves to regularizations with respect to kernels k : R+ —» R+ of
the type

k(r) = ^/     for some 1 < p < oo.

The epigraphical regularization fx of parameter X > 0 of a function /:I-»R
(with X a normed linear space) is defined by

fx:=f+eX-xk(\\-\\),

where +e denotes epigraphical sum (inf-convolution):

fJx)=infx{f(u) + ¡-p\\x-u\\p}.
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702 HEDY ATTOUCH AND R. J.-B. WETS

With p = 1, fx is called the Baire-Wijsman approximate, and with p = 2, the
Moreau-Yosida approximate of / (cf. [6]). Assume that /-r-adH^-l-l) > 0 for
some a > 0, then for 0 < X < (ap)~ 2 ~p , fx is a continuous locally Lipschitz
function on X, as will be shown below.

Now fixing the parameter p in the kernel k once and for all, we can define
the following distance between two functions / and ? :

dx „(/,?)= sup \fx(x)-gx(x)\.
\\A\<f>

Assuming that / and g are proper, this quantity is well defined since both
fx and gx are then bounded on bounded sets. These distance functions in-
duce epi-convergence, and in [6, Theorem 2.33 and Corollary 2.42], we obtain
quantitative stability results in terms of the resolvents of the Moreau-Yosida
approximations.

We start with some basic properties of fx .

Lemma 3.1. Let p £ [1, oo), q0 > 0, and a, el. Suppose f ^ oo is an
extended real valued function defined on (X, \\-\\) suchthat f+a0\\-\\p+ax >0.
Then fx is finite valued for all X £ (0, (a^y 2 ~p). Moreover, for all x0 G X
and ß £ R

fx(x + x0) + ß = (/(• + x0) + ß)x(x).
Proof. The inequality

fx(x) > inf[-a0\\x - u\f + (pX)-X\\uf] -ax> -a02"_1 ||xf - a,

follows from ||x-m||p < 2P~ (||M||p + ||Jt|rD) and X < (a0p)~ 2 ~p. For an upper
bound, let x0 be such that /(x0) is finite; then

fx(x)<f(xJ + (pX)-X\\x-x0f-
Finally,

(/(• + xJ + ß)x(x) = inf[/(w + x0) + ß + (pX)~X \\x - uf]

= inf[f(v) + (pX)-x\\x + x0-vf] + ß.   D

The next lemma extends Theorems 2.64 of Attouch [1] to epigraphical regu-
larizations involving any kernel of the type (Xp)~ \\-\\p for p > 1 .

Lemma 3.2. Let f ^ oo be an extended real valued function defined on iX, \\-\\)
such that for some a0 > 0 and a, G R, / + a0|| • \\p + a, > 0 for given p > 1.
Then for any 0 < X < iaQp)~ 2 ~p,

fx = f+eipl)~l\\-f
is locally Lipschitz, i.e.,

\fJx)-fx(y)\<X-XK\\x-y\\,
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QUANTITATIVE STABILITY OF VARIATIONAL SYSTEMS 703

where the Lipschitz constant k depends continuously on \\x\\, ||x-y||, a0, X,
and p ; it depends on f only through the value f(xj and the norm \\xÁ\ at a
point x, at which f is finite.
Proof. We have already established that under these assumptions fx is finite
valued. To simplify the calculations, let us first suppose that /(0) = 0. Now
from the definition of fx, it follows that for all x £ X and e > 0, there exists
ux such that

fjx) < f(ux) + (pX)~x\\x - ux\f < fx(x) + e,
and thus, since / is minorized by -a0|| • \\p - ax ,

-aQ\\uex\\" -ax + (pXyx\\x - uxf < fx(x) + e < (pXyx\\x\f + e,

where the last inequality comes from the upper bound

hix) < fiO) + (pXfx \\x - Of = ipX)~x\\x\\p.
Since \\ux\\p < 2p~x(\\x - ux\\p + \\x\\p), it follows that

||* - ujfiipXy1 - a02p-X) < iipXy1 + a02p-X)\\x\\p + ax+e.

With a := a^p p~  , this yields

e ,.p _ 1 + a X..   ,,p        pX     , .
\\x - ux\\p <-^||x|r + 7-^T(ai + £) •1 - a X 1 - a X

For any y £ X, we have

fxiy)<fiuJ + ipX)-X\\y-ux\\p
<fk(x) + e + X-x[\\\y-ux\\p-l\\x-uEx\\p].

we use the convexity of t •-► p~ f on R+ , and the subgradient inequality to
obtain

I(||j; - x|| + ||x - uj\)p - I||x - ux\\p < (\\y - x\\ + \\x - <||)P"'||x - y||,

and since \\y - x\\ + \\x - ux\\ > \\y - ux\\, it follows that

fjy) - fjx) < e + rl\\y -x\\(\\y - x|| + ||x - uj\)p-x.
We now use the estimate we have for ||x - w^|| and let e go to zero. This yields

f^-f^KX^Kjy-xW,
where

Kx =\\\y- XW +
I + a X..   ,.p        pX
-t\\x\\   H-—-¡-a,l-a'r \-a'X   l

i/P\ P-i

is a "constant" that depends only on ||x||, \\y - x\\, a0 , p , X. Interchanging
the roles of x and y in the above, we obtain a similar inequality with a constant
k . Setting k = max[Kx, k ] yields the desired inequality.
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704 HEDY ATTOUCH AND R. J.-B. WETS

If /(0) ^ 0, let x0 be such that f(xj £ R. Then /(• + x0) - /(x0) is a
function that takes on the value 0 at x = 0, and moreover (cf. Lemma 3.1),

(/(• + *o) - /(*o))a = fx(- + xo) - f(xo) ■
From our earlier argument and this last identity, it follows that

\f,iy)-fJx)\<{-K\\y-x\\,
where in the definition of kx the term ||x||p is replaced by ||x - x0||p and
similarly in k   and a, is replaced by a, -/(x0).   D

Lemmea 3.3. Let X be a normed linear space, and f and g two extended real
valued proper functions defined on X such that for some a0 > 0 and a, G R,

f+a0\\-\\p + ax >0, g + a0\\-\f + ax >0.

Then for 1 < p < oo, any 0 < X < ia^y 2 ~p, and p > max[fxiO), gx(0)],
we have

(3.1) n™spifx > Sx) ̂  haus//> g).

where the constant y, that depends on p, is defined by (3.3).
Proof. There is nothing to prove if hausy(/, ?) = oo, so let us assume that
haus},(/, ?) is finite; note also that /, ? proper implies that epi/ and epi?
are nonempty, and that p > max[fx(0), gJO)] implies that haus (fx, gj is
finite. To have haus (/, g) < n means that

(epi f)y c niepi g)    and    (epi g)y c w(epi /),

where nD := {x|ö?(x , D) < n} is the ^-fattening of D. From this, it follows

iepif)y + epiipXyX\\ ■ f C niepig) + epi(pA)-'|| • \\p ,

and this inclusion, with epi? + epi(Ap)- || • \\p c epi?A, yields (epi/)y +
epiipX)~l\\ ■ \\" c niepi gx). Since

epis / + epiJpXy11| • ||p = epi5 fx,
where epish := {(x, a)\a > fix)} is the strict epigraph of «, it suffices to
prove that y can be chosen so that

(3.2) (epi^ + epi^r'll • f)p c (epi/),, + epi(Ap)_,|| • \f.
Indeed, the last three identities would imply ^((epi^) , epi?A) < w, or still,
for all e > 0 and for all n > hausy(/, ?), eüepi fx)p_e, epi gj < n + £ . The
asserted inequality (3.1) now follows from the fact that fx is locally Lipschitz
(Lemma 3.2), and that / and ? have symmetric roles.

We turn to (3.2). Let (x, a) £ (epi5^)  . By definition of fx, there exists

ux £ X such that a > fiuj + ipX)~ ||x - ux\\p. Moreover, since (x, a) =
iux, fiuj) + (x - ux, a - fiuj) and a - fiuj > ipX)~ \\x - ux\\p , it suffices
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to show that there exists y such that \\uj\ < y and 1/(^)1 < y ■ From |a| < p
and / + a0|| • \\p + a, > 0, it follows that

-ao\\ux\f ~a\ + (^r'u* - ux\f ^ p ■
The same calculation as in Lemma 3.2 yields

\\ux\\" < (21_p - a0Xp)~X(/ + pXp + pXaJ := y,(/?).

From a > fiuj , we obtain |/(m )| < sup{p ; a0\\ux\\p + a,} , and thus we can
define y as

(3.3) y = yip):=sup{p;yxpX/p;a0yxip) + ax}.   D

Theorem 3.4. Suppose f and g are two extended real valued functions defined
on a normed linear space iX, \\ • ||) such that f > -aQ\\ • \\p - a, and g >
~ao\\ ' \\P ~ a\ for some P € [1, oo), q0 > 0, and a, G R. Then for all
0<X< ia0p)~x2x~p and p>0,

dXiPif, g)<ßi*-, p)hausy(Xp)if, g),

with the "constants'" y and ß, in the case when f and g are not identically
oo, depending only on p, a0, ax, X, p, and fixj, gixj, \\xj\, \\x\\,
where x, and x   are arbitrary points in dorn / and dorn g.
Proof. Excluding the cases / = oo or/and ? = oo, when the inequality is
trivially satisfied, the functions fx and gx are finite valued, in fact equi-locally
Lipschtiz (cf. Lemma 3.2). This can be used to conclude that whenever ||x|| <
p, both fx(x) and gx(x) are bounded in absolute value by

p > max{|/A(0) ± \Kpp\, \gx(0) ± \Kpp\},

where k is the Lipschitz constant calculated in Lemma 3.2 that depends on p,
ao> ^' P> f(xf)> SixJ, \[Xj\, \\xj\. Note that also fJO) can be bounded
by constants that depend only on a0, ax , the norm of xf, and analogously
for gJO). Setting pxiX, p) = px := max[p, p], let us estimate gjx) - fjx)
when ||x|| < p. By the above and Kenmochi's conditions (2.1), for all e > 0
there exists y such that

||x -y\\ < haus/>iifx,gj + e,        gjy) < fjx) + haus^(/A, gx) + e,

since ||x|| < px and \fjx)\ < px . Because gjx) - fjx) = (?A(x) - gjy)) +
iSxiy) - fxix)), it follows that

gkix) - fjx) < (/)/l)"1/c/)J|x-v||-r-haus/71(/A, gx) + e

<ßhauspiifx,gx) + ße,

where ß := ß{X, p) = ipX)~XKp^ + 1 and p2:= p+ hausp¡ifx, gj + I ; k^ is
the Lipschitz constant coming from Lemma 3.2, valid for both / and ?, when
x = 0 and ||y|| < p2. All these quantities depend only on p, a0, ax , X, p,
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fix A , ?(x ), ||xJ, and ||x ||. With an analogous inequality obtained when
the roles of / and ? are interchanged, and after letting e go to 0, this yields

dx Af, g) = sup \fjx) - gjx)\ < /ihaus  ifx, gx) < /5haus (/, ?),
\\x\\<p Pl

where the last inequality follows from Lemma 3.3; the constant y is that ob-
tained when replacing p by px in formula (3.3).   D

The arguments that we have used in the proof of Theorem 3.4 are geometric
in nature, we give another proof in the Appendix that is of analytic type. It yields
a more direct calculation of the Lipschitz constant, but does not explicitly bring
to the fore the properties of regularized functions (Lemmas 3.1 and 3.2), and
the useful inequality in Lemma 3.3.

Our next task is to derive an appropriate bound for haus„ in terms of d,p á> p
Again we start with some preparatory lemmas that are of independent interest.

Lemma 3.5. Let X be a normed space. Suppose f and g are proper, extended
real valued functions defined on X. Then for all X > 0 and p >0,

te™p(fx'Sj<dXpif,g).
Proof. If p > gjx), ||x|| < p, and \p\ < p, then p > fx(x) - dXpif', g).
This implies that ip + dx   if, g), x) £ epifx, and thus

eiiepi g J p, epi fx)<dXpif,g).   D
Lemma 3.6. Let X be a normed linear space, and f a proper extended real
valued function defined on X, minorized by -aQ\\ ■ \\p - ax for some p > 1,
a0 > 0, and ax £ R. Then, for any 0 < X < (qqP)- 2 ~p and p > 0,

hauspifx,f)<XX/p
piaQ2p  lpp + p + axJ

1 - aopX2p-
Proof. Since fx< f, e((epif) , epi fx) = 0.  To calculate an upper bound
for e((epi fjp, epi/), let (x, p) £ (epi fjp , with ||x|| < p, \p\<p,andp>
fjx), and denote by ux an element such that e + p > f(ueJ + (pX)~ \\x-ux\\p .
Note that (ux , e + p) £ epi /, and thus

d((x, p), epi/) < max[!|x-4||, \e + p- p\].
It thus suffices to obtain a bound on ||x - m^|| . From the minorization of /,
and \p\ < p, it follows that

1
e + p >-a0\\ux\\   -ax + —\\x-uxe up |l v.      ,,E \\P

pX
£ \\P  ^ ^¡>~xl\\^\\P   i   II..«       v\\P\We rely on the inequalities ||«.J|   < 2     (\\x\\   + \\ux - x\\ ), ||x|| < p, and

(Xp)~  - aJ2p~  > 0, to obtain

II* - ux\\" < iiXPyX - a02p-XyXia02p-Xp" + p + ax),
which yields the asserted bound.   D
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Theorem 3.7. Suppose X is a normed linear space and f and g are proper,
extended real valued functions defined on X such that for given p > 1, and
some aQ > 0, ax £ R,

/ + Qoll ' l|P+ Qi > 0    and    ?-r-a0||-"'

Then, for all X satisfying 0 < X < iaap)~ 2 "p and

+ ax > 0.

p > max[u?(0, epi /), ¿/(0, epi ?)],

we have

Mp a()2p-Xi9p)p + 9p + ax

WX2P
-i

i/p
hauspif,g)<dX9pif,g) + 2iXpY

Proof. From Proposition 1.2, it follows that

haus^/, ?) < haus9p(/, fj + haus9/,(/A, gx) + haus9/)(?/l, ?).

A direct application of the preceding lemmas yields the upper bound.   D

The question of the optimality of the bounds obtained in Theorems 3.4 and
3.7 is important in the derivation of the conditioning number to be associated
with a nonlinear optimization problem. This is under investigation by Attouch,
Azé, and Peralba [2].

As mentioned in the Introduction, all the results obtained in this section have
their counterpart for sets; note however that the constants obtained here may not
always be the best possible. Let us consider the case when C, D are nonempty
subsets of X. Let / = ôc and ? = SD be the indicator functions of C and
D. Then haus^, ÔJ = haus^C, D). If p = 1, then (Sc)x = X~x rf(-, C),
and

lX,p C,D) = X     sup \dix,C)-dix,D)\.
\\x\\<P

With aQ = a, = 0 and

(18/?)      sup   \dix, C)-dix,D)\
\\x\\<9p

1/2

we obtain the following corollary of Theorem 3.7:

Corollary 3.8. Suppose C, D are nonempty subsets of a normed linear space
X. Then

1/2

(18/7)  sup   \dix, C)-dix,D)haus^C, D)< 2
\\x\\<9p

We conclude this section with some remarks concerning the distance

h,p\d: Af,g) = sup       \f*ix,v)-g*xix,v)\,
\\x\\<p,\\v\\<p
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where
„# , . .    „      .,,    , . 1   .. ,.n . .+ {v,x)/ (x ,v) = inf f(u) - (v , U) + —r||x- U\\"px

=   (if-{v,-) A' ~\\ -if) (*) + <*.*)
In [7], we introduced these distances to extend some of the results obtained in
[6] for dx when X is a Hubert space to the situation when X is a reflexive
Banach space. To begin with, note that

d¡p(f,g)>  sup |jf(x,0)-?A#(x, 0)\ = dx   (/,?),
\\x\\<p

and thus from Theorem 3.7 it follows that with the same conditions on /, ?,
p, and X,

J/p 'hauspif,g)<dl,pif,g) + 2iXp)i a'i9p)p + 9p + ax
1 - pXa

where a = ajlp . On the other hand, since ffix, v) = if - (v, -))Jx) +
iv , x), it follows that for v fixed the properties of jji-, v) are essentially the
same as those of fx (cf. Lemmas 3.1 and 3.2). Moreover, the same arguments
as those in the second proof of Theorem 3.4 (in the Appendix) show that for
any e > 0, for ||x|| < p, and \\v\\t < p

\fx(x,v)-g*Jx,v)\ < njl + p + X~x(p + y + njp~x],
where ne and y = y(X, p) are the same quantities as those that appear in that
proof. Hence,

dlpif,g)<ß*iX,p)hausy{Xp)if,g)
with ß , the constant ß calculated in the proof of Theorem 3.4 plus p. We
summarize this in the next statement.

Theorem 3.9. Suppose X is a normed linear space, and f and g are proper,
extended real valued functions defined on X such that for given p > 1, and
some a0 > 0, a{ £ R,

/ + "oll ' llP + Qi - °    and    £ + Qoll ' II" + Qi - °-
Then for 0 < X < (a^p)- 2 ~p and p > max[ti(0, epi/), ¿(0, epi?)], there
exist constants ß , y, k , that depend on X and p, such that

<,(/, ?) < /haus,//, ?) < ß*d*X9Jf, g) + K,
where for fixed p, k can be made arbitrarily small by letting X go to 0.

4. The epi-distance topology

We limit ourselves to a few basic facts about the topology induced by the
pseudo-distances {haus , p > 0} on the space of extended real functions (for
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more about this consult [5]). Our major concern is the relationship between
the epi-distance topology and that of epi-convergence. We know that epi-
convergence provides the natural conditions, minimal in some sense, under
which one can guarantee the convergence of the optimal solutions (see, in par-
ticular, [20, §3; 1, §2.2]). Index sets will generally be denoted by tV (tV = N
in the case of a sequence) with ^ a filter a N (X is the Fréchet filter in the
case of a sequence).

_xDefinition 4.1. Let R    be the space of extended real valued functions defined
_xon the normed linear space X. The topology on R generated by the pseudo-

distances {haus , p > 0} is called the epi-distance topology. In other words,
for a filtered family {f , v g N} with tY an arbitrary (but filtered) index set,

f = (epi-dist)-lim/' & lim haus„(/ , /) = 0   Vp > 0.

Let us begin by observing that the epi-distance topology only depends on the
topology of the underlying space X, not on the specific metric that generates
this topology. To be convinced of this, it suffices to return to § 1, in particular
Definition 1.1, and observe that the excess of a set C on a set D calculated
with a specific norm can always be bounded (below or above) by the excess of
C„   on D calculated with another equivalent norm for some p. > 0.

P\ •
We begin by showing that in finite dimension, a collection of functions epi-

converges if and only if it converges with respect to the epi-distance. Recall that
{f : Rn —► R, v G tY} , a filtered family of functions, is said to epi-converge to
/ if for all x G R" :

whenever /-»x, liming fix") > fix) ; and
there exists x" —► x such that limsup^ fix") < fix).

Theorem 4.2. Suppose X (= R") is finite dimensional. Then the epi-distance
topology is the epi-topology, i.e., the topology of epi-convergence.

The proof is a direct consequence of the lemma that follows, the reverse
implication is immediate. We extend Theorem 2.2v of Salinetti and Wets [22] to
the case of an arbitrary filtered index set. Recall that a filtered family {f , u £
N} epi-converges to / if and only if

epi / = lim sup(epi f ) = lim inf(epi f ),
V v

where, for a family of sets {Cv c X, v £ N} with index set tY filtered by ?V,

lim sup C„ = {x|V(ß G yfix) ,H£<T),3v£Hs.t.CunQ^0},

liminfCI> = {x|VßG^(x),3//GXs.t. Vi/G i/,  Cv n Q # 0} ;

here y^(x) denotes the neighborhood system of x with respect to the topology
on X.
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Lemma 4.3. Let X = Rn, and {Cv,v £ N} be a family of subsets of X filtered
by &. Then, for all p > 0,

(4.1) Mrne((CJp,\imsupCJ = 0,
(4.2) Mme((\iminfCJ     CJ = 0.

If C = liminf, C = limsupy Cv , then lim^haus (Cv , C) = 0 for p > 0.
Proof. Let LS = lim supy Cv , and LI = lim inf^ Cv . There is nothing to prove
if LS = 0, since then, for any p > 0, there always exists H G %? such that
(CJ   =0 for all v £ H. Let us thus assume that LS ^ 0. If (4.1) does not
hold, there exist e > 0 and ffeJ* (the grill of ¿F) such that for all v g H,
e((CJ , LS) > e, or equivalently for v in H, there exists y" £ (CJ such
that d(yv, LS) > e. The collection {yv, v g H} c pM admits at least one
cluster point, say y £ pM, which also belongs to LS. For this y , we have that

lim_ d(yv , LS) = d(y, LS) > e > 0,
yu->y

which of course would contradict the fact that y £ (LS)  .
Again if (LI) = 0, there is nothing to prove because then e((LI) , CJ = 0

for whatever Cv . Otherwise, simply observe that (LI) c LI, that e(C , D) <
e(C, D), and that lim e(LI, CJ = 0 as follows from the definition of the
liminf of a collection of sets.   D

Let us now turn our attention to the infinite-dimensional case, more exactly
the case when X is a reflexive Banach space, and epi-limits are defined in terms
of Mosco-convergence, i.e., epi-convergence with respect to both the strong and
the weak topology on X. Let {/" : X —> R, i/eN} be a sequence of functions.
We say that / is the Mosco-epi-limit of this sequence, if for all x in X :

whenever {x" , v £ N} converges weakly to x , then

liminf/V)>/(x);
and there exists {xv , v £ N} converging strongly to x such that

lim sup f{xv) < fix).

Since every Mosco-epi-limit is necessarily weakly lower semicontinuous in in-
finite dimensions, we are naturally led to focus our attention to the subspace
of convex functions. It is then rather easy to see that the convergence of the
epi-distances implies Mosco-epi-convergence. Actually, in this setting, the epi-
distance topology is strictly finer than the Mosco-epi-topology. We demonstrate
all of this in what follows. Also, in the context provided by the important
applications of epi-convergence in infinite dimensions, whenever a sequence
Mosco-epi-converges to / it also converges with respect to the epi-distance
topology.

To begin with let us record an important consequence of Theorems 3.4, 3.7,
and 3.9.
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_X
Theorem 4.4. The topology induced on the space of functions R defined on
the normed linear space X by the pseudo-distance {dx    ; X > 0, p > 0} or
{dx    ; X > 0, p > 0} is the epi-distance topology.

In the Hubert case, we know of one more collection of pseudo-distances
{dx ; X > 0, p > 0} that induces the same topology on the space of proper
lower semicontinuous functions on X. This follows from the preceding theo-
rem and [6, Theorem 2.33]. The distance dx is computed as the supremum
on /?-balls of the distance between the resolvents of the Moreau-Yosida approx-
imates of parameter X. This equivalence is exploited in the proofs of Theorem
5.2 and Proposition 5.4.

In view of this, there appears to be two important topologies that can be de-
fined on the space of proper lower semicontinuous convex functions defined on
a reflexive Banach space: the Mosco-epi-topology and the epi-distance topology.
The question of knowing when they are equivalent goes begging. One verifies
readily that the Mosco-epi-topology is coarser. The example below shows that
sometimes it is strictly coarser.

Proposition 4.5. Suppose X is a reflexive Banach space, and {f;fv,v£N}
is a collection of proper, extended real valued, lower semicontinuous, convex
functions defined on X. Whenever

lim haus (/, f) = 0
v—>oo P

for all p sufficiently large, then

f = Mosco-epi-lim f .
v—*oo

Proof. Simply use Theorem 3.4 combined with Theorem 8 of [7].   D

Example 4.6. Let X be the Hilbert space L (Í2, R),

fiu) = ^lavix)uix)dx,        i/gN,
L Jn

and
1 r 2

/(«) = - I aix)u ix)dx.
2 Ja

We consider the Moreau-Yosida approximates

/»= (/+e¿IHI2)(")

= U-l^-2u2dx + ±fu2(l
IJnJ+XaJ2 2A7n     V

= - I -,—-,— u dx.
2 Jçi 1 + Xav

_J_
1 +Xa, dx

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



712 HEDY ATTOUCH AND R. J.-B. WETS

Hence,

dxlif,f) = sup   \fx iu) - fju)\
\U\\L2<\

=    sup
Nl¿,< /i Ja

a a.
I +Xa     1 + Xa. v dx

1 + Xa     1 + Xa..

Now, take Í2 = [0, 1], ajx) = x

1 1

{¡V

l+X -\¡v + x

, and a(x) = 1

1

Then

1+A=<MA/>.

which does not go to 0. Thus, the f do not converge in the epi-distance
topology to /, but they do Mosco-epi-converge. Simply observe that for all
X > 0, the sequence {fx , v g N} is increasing, and pointwise converges to fx,
which implies Mosco-epi-convergence (see [1, Theorem 3.26]).   D

Usually, however, one is in the situation covered by the next theorem.

Theorem 4.7. Suppose X and H are two Hubert space and X «-» H is a
continuous compact embedding. Then for any collection {f;f,v £ N} of
proper, equi-coercive, lower semicontinuous convex functions defined on X, the
following statements are equivalent:

(i) / = Mosco-epi-lim¡/_>oo/I/ on H;
(ii) for all p sufficiently large, lim^^haus^/, f) = 0;

where the epi-distance is defined in terms of the norm on H.   ( The collection
{f, v £ N}  is equi-coercive if there exists a function 0 : R+ -» [0, oo)  with
lim,_oo 0(O = °° such matf°r all v £N, fix) > ö(||x||) for all x £ X.)
Proof. The assertion follows from [6, Theorem 2.55] and Theorems 3.4 and
3.7.    D

We note that the distance dx and dx have been defined here in terms
of epigraphical regularizations obtained by taking the epigraphical sum with a
polynomial kernel. One can reasonably conjecture that distances defined by
epigraphical regularization with respect to a much wider class of kernels are
going to be equivalent to the epi-distance. A complete description would be
useful; it is an open question.

By relying on the relation between dx (/, ?) and dx if*, ?*) derived in
[7, Theorem 5], the next result is obtained as an immediate consequence of
Theorem 3.9.

Theorem 4.8. When X is a reflexive Banach space, the Legendre-Fenchel trans-
form

f^f: plc-fcn(X) -> plc-fcn(X*)
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is continuous for the epi-distance topology, where plc-fcn(Z) and plc-fcn(X * )
are the spaces of proper, extended real valued, lower semicontinuous convex func-
tions defined on X and X*. In fact, it is uniformly continuous for the uniform
structure associated with the pseudo-distance {haus , p > 0}.

Of course, the epi-distance topology is metrizable. Simply use the pseudo-
distances {dx , X > 0, p > 0} to construct the metric in the standard way.
The next result shows that it is also complete, under some restrictions.

Proposition 4.9. The space of extended real valued functions defined on a normed
linear space X equipped with the uniform structure generated by the pseudo-
distances {haus ; p > 0} is complete in the two following situations:

(i) X is a finite-dimensional space,
(i) X is a reflexive Banach space and the functions are lower semicontinu-

ous, convex and equi-proper, by which we shall mean that all functions
are larger than -oo and there is at least one point at which all are finite
valued.

i
Proof. Let {f ; v £ N} be a Cauchy sequence, i.e., for all p > 0, haus if , f )
—► 0 as v , v —> oo . From Theorems 3.4 and 3.7, this is equivalent to:

V/> > 0, VA > 0, dXpif , f') -^ 0    as v , v -> oo,

where dXpif ,f) = sup{\if)Jx) - if )Jx)\ | ||x|| < p} and if)x is com-
puted for some kernel k of the form /c(-) = £|| • \\p . We choose to work with
k = j || • || to simplify the calculations. Hence, for every p > 0 and X > 0,
{if)x; v £ N} is on pB, is a Cauchy sequence for the distance of uniform
convergence. Therefore, for every X > 0, there exists some function / such
that for all p > 0,

if)x —» /      uniformly on pB.

The crucial step is to show that the family {/ ; X > 0} is the epigraphical
regularization of a certain function f. If such a function exists it is necessarily
given by the formula

/:=sup/.
X>0

e 2Let us compute (/) = /+ (l/2/t)|| • || for p > 0 and prove that in case (i)
or (ii) the equality

if), = f
holds, which will clearly imply the assertion. We first observe that given any
extended real valued function ? on X, X being only assumed to be a normed
linear space, the epigraphical regularizations of ? for various indices are con-
nected by the resolvent equation [6, (2.5)]: V/l, p > 0, igx)   = gx+  ■ We apply
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this with g = f , and pass to the limit as v goes to oo . Noticing that

((A)„w = ûrf[(A(M) + (1/2/OH* -«in
=   inf.R[(A(«) +(1/2/011*-w||2]

for some /?0 > 0 independent of v, as follows from the uniform conver-
gence of if)x to / on bounded balls in X, we have that Vx, if) Ax) =
lim^^Cf^yx). Since

(( A)„ = ( A+„ - /^     » *-»«>,
we can conclude that for all A, p > 0, (/ )   = / +ß . Given /¿ > 0, let us take
the supremum with respect to X > 0 in this formula. Clearly 6 <-> fix) is an
increasing locally Lipschitz function from R+ into R. Hence, supA>0(/A)   =

f . The only assertion that remains to be established is that supA>0(/ )   = f .
Observing that / increases to / as X { 0, we are in the following situation:
given f î / does

,»f{rW + ¿l|.-»l|!}tmf{/(lí) + ¿||x-rf}?
This is clearly satisfied in situations (i) and (ii). In case (ii) just note that the
sequence {f ; v £ N} Mosco-epi-converges to / and that the set of mini-
mizers of the above expressions is clearly bounded and thus relatively weakly
compact.   G

5. Maximal monotone operators and subgradient mappings

As for functions, we are interested in a notion of distance between operators
that is consistent with a notion of convergence that induces the convergence of
the solutions of systems of equations or inclusions defined by these operators.
We are referring to graph-convergence, i.e., convergence of the graphs (see [15]
for recent developments). Here we restrict our attention to maximal monotone
operators defined on a Hilbert space X, but the definition that we introduce
can be utilized in a more general context, of course. Let

gph A := {(x,y)EXx X\y g Aix)}

denote the graph of the operator A : X =t X, possibly multivalued (set-valued)
and not necessarily defined everywhere. The operator A is maximal monotone
if it is monotone, i.e.,

(y2-yi>x2~xi) ^°   v(*i> J'i) egph.4, (x2,y2)Ggph.4,

and gph ,4 is a maximal (with respect to inclusion) among all operators that
satisfy the preceding condition. From Minty's theorem, we know that this is
the case if and only if rge(/ + A), the range of the operator / + A , is the whole
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space. The resolvent of the parameter X > 0 is the operator Jx := (/ + XA)~
defined on the (effective) domain of A, and the Yosida approximate of A is
the operator Ax = X~ (/ - Jx).

Let A and B be two maximal monotone operators defined on a Hilbert
space X. The p-graph distance between A and ß , denoted haus (A, B), is
the /7-Hausdorff distance between their graphs, i.e.,

hausJA,B) := sup[eügphA)p, gphß), eü%phB)p, %phA)].

We are going to show that these distances are related to the distances dx that
measure the distance between operators in terms of their associated resolvents.
For all X > 0 and p > 0, let

dx   (A, B) := sup \\J¡ x - Jx xM./A'1' ") ■-   ""V   IIO ■*-      ox
\\x\\<P

denote the "dx   "-distance between the two operators A and B .
We begin by deriving a bound for the dx     in terms of the haus AA, B)

for some p  > 0.  Let us assume gph A n p0B ^ 0 and gph B n pQB ̂  0.
Pick p > p0 and some x in pB. From the definition of Jx , it follows that
iJx x, Axx) £ gph A for (x0, yj £ gph AC\pJB we have that x0 = 7^(x0-r-Ay0),
and because the resolvent is a contraction

\\JxAx-x0\\ < ||x-(x0 + Ay0)|| <p + p0il+X),

which in turn implies that \\JX x\\ < p + /?0(2 + X). Thus,

||^*|| = A_1||x - 7^*|| < X'X[2p + p0i2 + X)] < 2X~Xip + pj + p0.

Let p = max[/> + p0i2 + X), 2X~ (/? + pj + p0]. By definition of the /7-graph
distance there exists (w, v) £ gphß so that

/A *|| < haus <(/4, 5), ||t, - ^

Jx zx and v = Bxzx

u- Jx x\\ < haus0-(/l, B), \\v - Axx\\ < haus0-(/l, B).

With z, = u + Xv , u = J¡ z¡ and v = Bizi. Since

zx - *|| < II" + Xv - x\\ = \\u - Jx x - XiAxx - v)
< haus^.iA, B) + Xhaus^iA, B),

and since Jx   is a contraction,

\\JBxzx-JBxx\\ < \\zx-x\\ < J+X)hausp,iA,B).

Combining this with the fact that u was chosen so that

II" - Jx x\\ < haus AA, B),

it follows that
A B

\\JX x - Jx x|| < (2 + X) haus » iA, B).
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Since x is any point in pB, we have dx   (A, B) < (2 + X) haus ,(A, B).
Next, we are going to show that the /)-graph distance between two maximal

monotone operators A and B is bounded in terms of the distance between
their resolvents. We are going to show that with every (u, v) £ (gphB) and
X > 0, we can associate a pair in gph A such that their distance is bounded
by X' dx iX+X)AA, B), where X' = max[l, X~x].   Since this would imply that
eiigphB) , gphyl) < X'dx ,M)piA, B), a symmetric argument with the roles
of A and B interchanged would enable us to assert that

hauspiA,B)<X'dJX(X+X)piA,B).

So, let («, v) £ (gph B) and define zx = u+Xv . We again have that u = Jx zx

and v = Bxzx . Since ||zj < (1 +X)p, \\JX zx - Jxzx\\ < dx (X+X)AA, B). Also,
iJxzx, AJxzJ clearly belongs to gph^4 , and thus to prove the assertion it will
suffice to show that \\AJAzx - v\\ < X~x dx ,x+x, (A, B). This follows from the
simple identity

(/ + lA)Jxzx = zx = Jxzx + Xv ,
which tells us that

\\AJxzx - v|| = X~X\\Jxzx - Jxzx\\,

which with the above yields the desired inequality.
The next theorem collects the results of the preceding argument.

Theorem 5.1. Let X be a Hubert space and A, B two maximal monotone
operators defined on X. Suppose that for some p0 > 0, the closed ball p0B
meets both gph A and gph B. Then for all p > p0 and X > 0, we have that

dJXpiA,B)<i2 + X)hausp,iA,B),

and
hauspiA,B)<X'dJX{x+X)piA,B),

where p = max[p + /?0(2 + X), 2X'xip + p0) + p0] and X' = max[l, X~l].

Because graph-convergence for a sequence of operators (defined on a reflexive
Banach space) is equivalent to the strong convergence of the associated resol-
vents for all X > 0 [1, Proposition 3.60], and convergence with respect to the
dx -distances for all p larger than some p0 > 0 implies the strong conver-
gence of the resolvents, the preceding theorem implies among other things that
for maximal monotone operators defined on a Hubert space, convergence with
respect to the /»-graph distances implies graph-convergence.

Because the subgradient mapping (the subdifferential) of a convex function
is a maximal monotone operator, we expect a close relationship between the
convergence rates (in terms of the epi-distance) of convex functions and the
convergence rates (in terms of the /7-graph distances) of their subdifferentials.
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As a matter of fact, various estimates can already be obtained by relying on
the preceding theorem, the results derived in [6, §2], and the basic theorems
of §3. This means that we would exploit the results obtained for the dx -
distance (operators) and dx -distance (functions), based on regularizations,
to derive the relationship between the /7-graph distance and the epi-distance.
Because of its properties, in particular the characterization provided by the
Kenmochi conditions (2.1), the epi-distance is relatively easy to calculate or to
estimate in most applications. On the other hand, the distances dx (or dx J
are better suited for theoretical investigations; for example, one can show that
the Legendre-Fenchel transform is an isometry for those distances [6]. One
of the major consequences of Theorems 3.4, 3.7, and 3.9 is that they give us
the flexibility to use either one in our calculation. The proof of our next result
illustrates this point. By df we denote the subgradient mapping, also called the
subdifferential, associated with a convex function / [14]. Let / be a proper
convex function with fx its Moreau-Yosida approximate of index X > 0. The■y
coercivity of || • ||   guarantees the existence of a unique point

Jxfix):=Jxdfix) = iI + Xdfyxix),

i.e., the resolvent (of parameter X) of the operator df at x, such that

Jx (x) = argmin

The function x i-> j(ix) is sometimes called the proximal map. The pseudo-
distance d[  if, g) between two (convex) functions / and ? based on the
distance between resolvents (introduced in [5]) is the same as the dx -distance
between the operators A = df and B = dg. In the convex context, the two
expressions dx   (/, ?) and dx Adf, dg) refer to the same quantity.

Theorem 5.2. Suppose X is a Hubert space, and f and g are proper, extended
real valued, lower semicontinuous convex functions defined on X. To any p >
max[<af(0, epi/), ú?(0, epi?)] there correspond constants y and k ithat depend
on p) such that

hauspidf,dg)<K[hausyif,g)]X/2.

Proof. As suggested above, we are going to use an intermediate result that is
available for the distance dx computed in terms of the Moreau-Yosida ap-
proximates of / and ? :

r /•  , e  i n    ii2 , e  i n    ,,2fx = f+ ill-II ,     g¿ = g+ ill-II ;
the kernel {-\\-\\   is particularly well adapted to the Hubert space setting.

Observe that (x, y) £ gphdf implies that ix + y) G (/ + 9/)(*), and hence

x = (/ + df)~x(x +y) = j{ix + y),       y = ix + y)- j{ix + y).

fiu) + YÀ\\x
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With z = x + y , this yields
gphô/={(/1/(z),2-/1/(z)):zG/f}.

Since J[  is a contraction, it follows that gph df is a Lipschitzian manifold
(cf. Brezis [14] and Rockafellar [19]). In particular,

(gphö/)^ c {iJfxiz), z - j(iz)): \\z\\ < 2p}.
Similarly,

Thus,
gphÖ? = {(71/(z),z-/f(z)):zG7V}.

eiizphdf)p,gphdg)<   sup   \\J iz)-J iz)
l|z||<2/>

Theorem 2.33 of [6] gives us the inequality

dJl2p(f>8)= sup IIJ'(*WÍ(*)II<kVi/(/.*)]1/2
'  V \\z\\<lp '7

with k = 2\f2 and y = Ap + ||//"(0)|| + ||/* (0)||. In turn this, with Theorem
3.4, yields,

eiigphdf)p, gphÖ?) < K[hausyif, ?)] 1/2

where the constants k and y depend on p and are the same quantities as
those that appear in the calculation in the proof of Theorem 3.4; we note that
because / and ? are proper convex functions there always exist a0 > 0 and
ax £ R such that -a0|| • ||   - a, minorizes / and ? .   G

Note that the inequality ¿"((gphd/^gphd?) < sup||z||<2íJ71/(z) - Jfiz)\\
used in the proof of the theorem also follows directly from Theorem 5.1; more
precisely from haus (A, B) < X' dx ,X+X)AA, B), with X = 1 , A = df, and
B = dg.
Remark 5.3. This last theorem improves a result of Schultz [23] obtained when
X = R" , and / and ? are the sum of two continuous convex functions with
the same indicator function of a closed convex set. Also, note that the exponent
1/2 is optimal. Simply consider X = R, fit) = §|r|, and ?(i) = ||/ - a\ for
some a > 0. Then, for p > 0, haus (/, ?) = \a   and haus (9/, dg) = a.

Proposition 5.4. Suppose X is a Hubert space, and f and g are proper, ex-
tended real valued, lower semicontinuous, convex functions defined on X. Then,
for all p > 0 and X > 0,

dXtPif, g) < (2 + X)X-Xphausy(df, dg) + ax(f, ?),

where y = y(X, p) := sup{\\Jxf0\\ + p; X~x(2p + ||//0||)} and axif, g) :=
l/A(0)-gA(0)|.
Proof. With the same notations as in Theorem 5.2, let us start from the in-
equality [6, Proposition 2.30]

dx<pif, g) < X~Xpd[ Jf, g) + ajf, g),
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with ajf, g) as defined above, and

d{ „(/,?)= sup ||//x - Jxx\\,
\\x\\<p

fJx x = argmin
u

fl \ ,   ! II        II2f(u) + —\\x-u\\

The remainder of the proof shows that dx (f, ?) < (2 + X)hausy(df, dg).
(Note that an inequality of the same type can be obtained by applying Theorem
5.1 to the operators df and dg.)

From the optimality conditions for //x in the expression above (if necessary
f       — i fsee [14, p. 39] for details), (Jxx, X   (x-Jxx)) £ gphdf. Moreover, assuming

that ||x|| < p, from the contraction properties of Jx   it follows that

\\Jfxx\\ < ||//o|| + />,
\\X-xix-Jfxx)\\<X-x\p+\\JfxO\\ + p\.

Hence, (//*, X (x - Jxx)) £ (gphdf) , with y as defined in the statement
of the proposition. If hausy(9/, dg) < n, then there exists iy, v) G gphô?
such that

\\y - Jxx\\ <n,        \\v - X~ (x - //*)|| < n.

When u = y+Xv (cf. the proof of Theorem 5.2), y = Jfu, v = X iue-Jxu),
we have

\\Jfxx-Jxsu\\n,       X~x\\iu-x)-iJx8u-Jfxx)\\ <n.

The last two inequalities imply

||w-x|| < \\Jxu- j[x\\ +Xn < (1 +X)n.

We now use: (i) the triangle inequality,

||//* - //x|| < H//* - //w|| + ||//w - //x||,

(ii) the fact that // is a contraction to bound \\JX u - Jxgx\\, and (iii) the
bounds on ||w - x|| and ||//x - Jxu\\ to conclude

||//*-//*|| < i2 + X)n.

Taking the supremum over pB yields dx   (/, ?) < (2 + X)n.   G

Corollary 5.5. Under the same assumptions as in Proposition 5.4, and with a0 >
0 and ax £ R such that -q0|| • || - ax minorizes f and g, then for all
0 < X < (4a0)_1 and p > max[i/(0, epi/), ¿(0, epi?)],

hauS/)(/, ?) < 9i2 + X)X~Xphausyidf, dg) + K,
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where k = ajf, g) + 4\/I(162a0/?2 + 9p + q,)1/2(1 - 4a0X) x/2, and ax and
y = yiX, 9p) are the constants defined in Proposition 5.4.

6. Epi-distance CALCULUS

In most applications of epigraphical analysis one has to consider extended
real-valued functions that have been obtained as the result of various operations
involving more elementary functions such as: sums, epi-additions, scalar or epi-
multiples, suprema, etc. For example, / = f0 + Sc , where <5C is the indicator
function of a set C determined by constraints. Or, for an averaged problem,
f = v *E (/ +e —l_e f") ' where each /' may itself result from the composition
of other functions; *e denotes epigraphical multiplication: for X > 0, X *e / =
XfiX~ •). Here we shall restrict our attention mostly to sums, epi-additions,
and epi-multiplications of functions.

Theorem 6.1. Let X be a normed linear space, and f , g , f , g extended
real valued functions defined on X, bounded below by ß g R, and satisfying
the following conditions: for every p > 0, and 9 > 0, there exists a constant
y := y(0, p) > 0 such that

(6 1} if\u) + g\v) <6, ||«+ t;|| <p)=> (||«|| <y, \\v\\ < y),
ifiu) + g2iv) < 6, \\u + v\\ < p =* (||u|| <y,\\v\\<y).

Then

(6.2) haus//1 +e ?', f +e ?2) < haus,, if , f) + haus,, (?', ?2)

with p' := max[yip + 2\ß\ + 1) ;   yip + 2\ß\) ;   p + 3\ß\ + 1].
Proof. Pick x g (dom(/1 +e gl))p  such that  |(/' +e ?')(x)| < p.   By the

definition of / +e ? , for every 0 < e < 1  there exists uE £ dom/   and
v£ £ dom ?   such that u£ + v£ = x and

(6.3) fiuj + gXivJ -£<(/' +e ?')(x) <p.

It follows that

fXiuJ + gXivJ<p+l,        \\uE + ve\\<p.

From the assumptions, it then follows that ||«J < yip + 1, p) and \\vg\\ <
yip + 1, p) ; moreover, ß < fiuj < p + 1 - ß . Set p" := max[yip + 1, p) ;
p + 1 4- \ß\]; then ||«£|| < p" and \f iuj\ < p". Kenmochi's conditions
(Theorem 2.1(a)) then imply the existence of ue 2 £ dom/   such that

K-"e,2ll <haus,„(/',/2)-r-e,

/2K, 2) <f\uj + haus,,, if,f) + e.
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Similarly, there exists v£ 2 £ dom ?   such that

IK-U£,2ll <haus,„(?', ?2) + e,

?2(^£i2) <?V£)+haus,„(?', g2) + e.

From these last pairs of inequalities and (6.3), we have

f\uE2) + g\v£2) < if +e ?')(*) + 3e + haus,„(/', f) + haus,„(?', ?2).

With xe2 = ue2 + ve2,

(f2+eg2)(x£f<f2iu£t2) + g2iv£J

< f f gl)ix) + 3e + haus,„(/', f) + haus,„(?1, ?2),

and

\\Xe,2-X\\ = \\(Ue,2 + VS,2)-(Ue + Ve)W

<WUE,2-Us\\ + \\Ve,2-VeW

< haus,,, (/', f) + haus,,, (?', ?2) + 2e.

Now we use these inequalities, and a symmetric pair obtained when the roles of
i y 1 Jf and / and ? and ? are interchanged, in conjunction with the Kenmochi

conditions (Theorem 2.1(b)) to obtain

(6.2) haus//1 +e ?', f +e ?2) < haus,,(/', f2) + haus,,(?', ?2)

with p := n\ax[yip + 2\ß\ + 1) ; yip + 2\ß\) ; p + 3\ß\ + 1] ; note that the
functions / +e ?   and / +e ?   are bounded below by 2ß .   G

Corollary 6.2. In the same setting as in Theorem 6.1, conditions (6.1) are satisfied
11 7 Jif either f or g is coercive, and at the same time, either f or g is coercive.

Proof. Indeed if /(u) + ?(u) < 6 and ||m + v\\ < p, then fu) < 6 - ß and
hence ||w|| < /c~'(0 - ß), where k is the coercivity factor, i.e., /(«) > rc(||w||).
Moreover, \\v\\ < \\u-\-v\\ + \\u\\ < p + k~xid - ß). Now let y(0, p) := p +
K~xi6-ß).   O

Theorem 6.1 and its corollary provide us with the means to estimate the
convergence rates of epi-additions; it allows us to write down a quantitative
version of the convergence result for epi-additions in [8, Proposition 4.2]. Our
next task is to derive a version of Theorem 6.1 for the dx distances. We begin
with a general (and very useful) lemma.

Lemma 6.3. Suppose f and g are extended real-valued functions defined on
a normed linear space X, and, for X > 0, fx and gx are the Moreau- Yosida
approximates of parameter X. Then

if+eg)x = fxfgx-
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Proof. Observe that iffg)x = iffg)fi2Xyx\\-\\L. Because of the convexity
of (2A)_1||-||2,

,~n-lM    „2       1    e / 1  „    „2  ,e   1  „    ,.2\M   11-11 =r {Yx\\-\\ + all-||J.
Therefore,

(/+e^ = (/+e*)+e(¿l|-H2+e¿l|-H2)-

Associativity (of the episum) now yields the desired identity:

i r  . e     \ / r  , e    1   m    ii2\   , e /       , e    1   „    M2\ r   , e _(/ + g)x=[f+ 2JÜ-II j+  (* + 2jll'llJ=/,+ ^.   o
1 1 2 ?Theorem 6.4. Lei X be a normed linear space, and f , g , f , g extended

real valued proper functions defined on X, bounded below by ß £ R, and satis-
fying the following condition: for every p > 0 and 6 > 0, there exists a constant
y := y(0, p) > 0 such that

(61) (f\u) + gx(v)<e, ||« + v || </>)=» (||«|| <7, \\v\\<y),
(f2(u) + g\v) <d,\\u + v\\<p)=* (||u|| < y, \\v\\ < y).

Let p0 be large enough so that the epigraphs of all four functions meet the "ball"
p0Bx x [-p0, pj. Then, for any X > 0 and p > p0, there exists a constant a
idepending on X and p) such that

(6-4) dXpif f gX, f2 f g2) < dxjf , f) + dxJgX, g2) ;
the constant a is calculated in the proof of the theorem.
Proof. Suppose p > p0, X > 0, and * G pB. Let u := ux x £ and v := vx x £
be such that u + v = x and

(6.5) (/' +e g\ix) = (// +e ?,')(*) > //(u) + gXxiv) -e.

If we can show that there exists a = a(A, p) such that both u and v belong
to aB, then from the definition of the pseudo-distances dx , it would follow
that

//(«) > f}(u)-dxjf , f),        gXJv) > g¡iv)-dxJgX, g2),
which combined with the above would yield

(/' +e g\ix) > fliu) + g2Jv) - dXaif , f2) - dxJgx ,g2)-e
> ifx +e gî)(x) - dxjf , f2) - dxJgx ,g2)-e
>if2+eg2)xix)-dxjf,f2)-dxJgx,g2)-e.

12 12Interchanging the roles of / and / and ? and ? , letting e go to 0, and
taking suprema with respect to x G pB yields (6.4).
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So we only need to prove that there exists an a such that ||u|| < a and
\\v\\ < a. On one hand, we have that

(/1+e?')/lW<(/1+e?1)(5) + (2A)-1||x-5||2   VsgX,

< f\r) + g\s) + i2XyX\\x - ir + s)\\2   Vs, r £ X,
and hence

(6.6) if f gX)xix) < 2p0 + i2XyXip + 2pJ2.
On the other hand, for every e > 0, there exists u := ux    and v := vx    such
that

fxiu) >f iü) + i2Xy \\u-u\\  -e,
g¡iv) >?'(«) + i2Xyx\\v-v\\  -e,

and thus

//(u) + ?>) > fiû) + gXiv) + i2XyX\\u - û\\2 + i2XyX\\v - v\\2 - 2s.
This with (6.5) and (6.6) yields the inequality

2/>0 + (2Ar1(/7 + 2/>0)2>/1(M) + ?1(7j) + 2(A)"1 ||w - U||2 + (2A)-111*7-73||2-3e,

which implies that

p:=2p0 + i2XyXip + 2p0)2 + 3>fiû) + gXiv),

2p0 + i2X)~Xip + 2pJ2 + 3 - 2/J > (2A)"1(||u - M||2 + ||v - v\\2).

Since

||u + v\\ < ||u + v - (u + v)|| + ||u + u|| < ||u - m|| + \\v - v\\ + p,

with the above this yields

II" + «|| < / := [4A(2/90 + i2XyXip + 2pJ2 + 3 - 2ß)]X/2.

The assumptions (6.1) with what precedes yields the following estimates:

\\u\\<yip,p1), ll«l|<y(0,/),
||u - fi|| < [2Xip - 2ß)]xß ,       ||v - «|| < [2Xip - 2ß)]x'2,

and hence
(6.7) ]|u|| < yip, p*) + [2Xip - 2ß)]X/2 := a(A, p),

and similarly for ||w||.    G

Note that the "constant" a calculated in the proof of the preceding theorem
depends continuously on X, p, p0, and p ; it tends to oo when either X J. 0
or p î oo .

Our next result will be a "dual" version of Theorem 6.4 involving the sum of
(convex) functions rather than their epi-sum. In what follows X is a Hubert

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



724 HEDY ATTOUCH AND R. J.-B. WETS

space, and plc-fcn iX) will denote the space of proper, lower semicontinuous
convex functions defined on X with values in R U {00} . For / G plc-fcn(X),
its conjugate is the function:

f iv) = sup{(v , x) - fx)}.
xex

The mapping that associates its conjugate to each member of plc-fcn iX) also in
plc-fcn iX), is called the Legendre-Fenchel transform. In [5, §2], we showed that
the Legendre-Fenchel transform is an isometry for the dx pseudo-distances.
More generally, for all /, ? G plc-fcn (.Y) and all X > 0, p > 0,

dx,pif,g) = dx-,pX->if,g*).
Lemma 6.5. Suppose f, ? G plc-fcn(X) satisfy the following condition:

there exists some p0 such that pQB c dom/ - dom? and for
every x £ p0B there exists u £ dom / and v g dom ? such
that for some a := aipj :

z = u-v     and     max[||u||, ||i7||,/(«), giv)] < a.

Then, f and g* satisfy the condition (0/ Theorem 6.1): for every p > 0 and
p>0, there exists a "constant" y > 0 such that

(6.8) ifiu) + g*iv)<p, \\u + v\\ </>)=> (||u|| <y, \\v\\ < y),
with the "constant" y depending continuously on p, p, and a.
Proof. Let us assume that / and ? satisfy the assumptions. Pick p > 0,
p > 0, and ü, v £ X such that

f(U) + g*iv) <p, \\U + v\\<p.
By assumption, for all z G p0B there exists u £ dom / and v £ dom ? such
that z = u - v . We then observe that

(u, z) = (ü, u - v) = (U, u) + (v , v) - (iï + v , v)

< (ÏÏ, v) + (v, v) + \\ü+v\\ ■ \\v\\
< /(") + /*(") + giv) + g*iv) + ||ïï + F|| • ||u||
<p + fiu) + giv) + p\\v\\.

The condition satisfied by / and ? now implies that

ll"||<— [p + i2 + p)a] := yip, p)."0

A symmetric argument with v instead of ü completes the proof.   D
112 2Theorem 6.6. Let X be a Hubert space and f ,  g ,  f ,  g   £ plc-fcn(X).

11 2 2Suppose that both pairs f   and g , and f   and g   satisfy the condition of
Lemma 6.5, that

11 2 20 G dom / n dom ? ,        0 G dom / n dom ? ,
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and that there exists p0>0 and x0 such that f > (*0, •) - pQ, and similarly
1 2 2for g , f   and g . Then for any X > 0 and p>0, we have

dx,pifX + gX, f + g2) <dXßf , f) + dXßigx, g2),
with ß = ßiX, p) calculated in the proof.
Proof. Fot i =1,2, set «' = (/')*, /' = (?')*. Since p0B c dorn/1-dom/2,
(/'+?')* = hx+elx (cf. [11]). Moreover, -/1(0) = infA1 >-oo, and similarly

2 12 IIfor / , ? , and ? . From the preceding lemma it follows that « , / , as well
as h2, I2, satisfy (6.8) with yip,p) = p^X[p + (2 + p)aipj]. Moreover,
/ > {x0, •)-p0 implies that / (x0) < p0 with ||x0|| < p0 . Thus, we can apply
Theorem 6.4 to obtain

4r' .W' +e ¡i> h* +e /2) S dx-> Jhx, h2) + </,- Jlx, I2),

where a := a(A_ , pX~ ) is the quantity defined by relation (6.7) (when the
first argument is X~ and the second one pX~ ). From the isometry of the
Legendre-Fenchel transform for these pseudo-distances [6], it follows that

dk,,<f +e gl, f2 +e g2) < dXMif , f2) dXMigx, g2),

and that is the assertion of the theorem, with ß = Xa(X~ , pX~ ) ; more pre-
cisely,

/^maxtO,/1^),/2^),?1^),?2^)],

/ = yju-\2pl + \XipX~x + 2p*J2 + 3 + 2pJ,

p = 2p0 + \XipX~  + 2pJ  + 3,
ßiX, p) = X[p + (2 + p*)aip0)]/p*0 + [2Xip + 2pJ]X/2,

using here the constants calculated in Theorem 6.4.   G

Remark 6.7. One could relax the assumptions in Lemma 6.5 and Theorem 6.6
by letting the "constant" a also depend on the point z . The conclusion would
still hold thanks to the Banach-Steinhaus theorem.

The preceding theorem can be compared to a result of D. Azé [11, Chapitre
6, Proposition 2.3]. A similar result expressed in terms of the epi-distances has
recently been obtained by Azé and Penot. We record it here for the convenience
of the reader.

Proposition 6.8 [ 13]. Let X be a Banach space, and consider functions if,
i = 1,... , «) and (?(, i = 1, ... , «) in plc-fcn(X). Assume that these
functions are minorized by —a(|| • || + 1) for some a > 0 and that for some
y > 0 and a > 0,

n

(aB)" c diagr n (yB)" - naeV;),,
,=i
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where " - " is the Minkowski operation, diagX" := {(x, ... , x)|x G X}, and
\evyf := {*|/(*) < y}. Then, whenever £*=, haus,i (/, ?,.) < o,

(n n       \ n

Ylfi^Si) <CT~Xiny + o + p)J2nau&Plifi^ g¡)   Vp>ny + o,
i=i       1=1    / i=i

where px = p + (n + l)[a(/> + ff + 1) + o].

We conclude with a result about epi-multiplication. Recall that if /: X —> R
with X a normed linear space, and X > 0, then

A epi/ = epi(A *e /),      where (A *e /)(x) = XfiX~ x).

Moreover, (X *e /)* = Xf , i.e., *e is the conjugate operation of the standard
scalar multiplication (by positive scalars).

Proposition 6.9. Suppose f, g: X —> R U {oo} are both minorized by -a0\\ • \\p
- ax for some aQ > 0, a, G R, and 1 < p < oo. Then, for X > 0, p > 0, and
every p > 0,

haus,(/Ue/, p* g)

< max[A', p] • \X - p\p + sup{p haus,,A,(/, ?) ; Ahaus,,,, (/, ?)},

where p := p + aQpp + a,  and X' = X~  , p = p~  . In particular, if p = X,

haus,(A*e f,X*e g) <Xhausp,x,if, ?).

Proof. Pick x £ pB with |(A *e /)(x)| < p. Then |/(A_,*)| < pX~x and
||A_1x|| < pX~x. It follows from Kenmochi's conditions (Theorem 2.1(a)) that
for every e > 0 there exists some y£ £ dom g that satisfies

\\ye-X~xx\\ <haus,A-,(/, ?) + £,        giyj < fX~Xx) + haus,A-,(/, g) + e.

From this it follows that

Pg[-y) <Pf(x ]x) + pha\ Pr

1 v-^  _1_   // hone
Pr<XfX  Xx) + ip-X)fX Xx) + phaus ,-,(/, g) + pe.

Similarly, one obtains
px

fiyi: </ihaus,A-,(/, g) + pe.

Hence,

ip *e g)ipyj < (X *e f)(x) + \p - X\pX  ' +phauspX-t(f, g) + pe,

\\pye-x\\ < |1 -pX~X\p + hauspX-,(f, g) + pe.

The assertion now follows from the Kenmochi's conditions (Theorem 2.1).
G
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Appendix

Second proof of Theorem 3.4. As in the proof of Theorem 3.4, we only need to
consider the case when / and ? are proper. Pick x G X, 0 < X < (a^p)" 2~ ,
and let us calculate an upper bound for fx(x) - gx(x). For 0 < e < 1, let u£
be such that

g(u£) + (Xp)~X\\x - u£\\p < gx(x) + e,
i.e., u£ attains, up to e, the infimum in the definition of gx . Then

(A.1)   fx(x) - gx(x) < inf{/(u) - giuj + iXPyxi\\x - u\\p - ||x - uf)} + e.

Let us begin by deriving an estimate for \\u£\\. From the minorization of ?, it
follows that (with a := max[a0, a,]).

-a(||uef + 1) + j-\\x - u£\\p < gjx) + e < ?(«0) + iXp)~X\\x - u0\f + e,

where «0 is some arbitrary point in dom ? . Hence,

(^)"1||x-u£||,'<a(l+2;;-1||M£-x|r + 2p-1||xf) + ?(u0) + (^)_1||x-u0ir + e,

lk-"£ir<((^)"1-a2p"1)"1[a(l+2p"1||x|r) + ?(Mo) + (Ap)_1||x-Uo||p + e],
and since \\u£\\p < 2P~ i\\u£ - x\\p + \\x\\p), when ||x|| < p :

\\uf < 2p~X[pP + iiXpy1 - a2p-XyX[ai\ + 2p~Xpp)

+ giu0) + iXpyxi\\u0\\ + p)p + e]].

This means that \\u£\\ is bounded above by a constant that depends on p,
\\uQ\\, giuj, a, and X. We are interested in the dependence on X and p,
and express this by writing ||u£|| < yx(X, p). Next, we calculate an estimate for
giuj. We have

giuj >-aj+ \\uf)>-aj+ yxiX,p)p).
Also

giuj < gxix) + e< giuj + iXp)~x ||x - uQ\\p + s.
Hence,

\giuj\ < max[a(l + y,(A, p)p); giuj + iXp)~X\\x - u0\\p + 1] =: y2(A, p).

Thus, with yiX, p) := max[yxiX, p); y2iX, p)], we have that (u£, giuj) £
BxeE(0, y(A, p)). By Theorem 2.1, more precisely by the Kenmochi condi-
tions (2.1), we know that there exists v£ such that

||77£-w£||<haus7(/li,)(/,?) + e=:«£

fivj < giuj + hausy(A_,)(/, ?) + e = giuj + n£.

From (A.l), it follows that

fxix) - gxM < /(«,) + (Ap)"1 ||x - vf - giuj - iXPyx\\x - uf + e,
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which combined with the preceding inequalities yields

fjx) - gjx) < n£ + X~X\\X - V£f _1||U£ - V£\\ + £,
<riE[l+X-xip + yiX,p) + nJp-X] + e.

Because this holds for all £ > 0, and because a similar inequality holds when
the role of / and ? are interchanged, we have

\fjx) - gjx)\ < hausy(/l_,,(/, ?)[1 + X~xip + yiX, p)+ hausy{Xp)if, g)p~x)]

^ hauSy(A./.)(/' g)ß(*> P)-

This completes the proof, since x is an arbitrary point in pB.   G
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