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Abstract 

Quantitative measures of image quality and reliability are critical for both qualitative interpretation 

and quantitative analysis of medical images. While, in theory, it is possible to analyze reconstructed 

images by means of Monte Carlo simulations using a large number of noise realizations, the as-

sociated computational burden makes this approach impractical. Additionally, this approach is less 

meaningful in clinical scenarios, where multiple noise realizations are generally unavailable. The 

practical alternative is to compute closed-form analytical expressions for image quality measures. 

The objective of this paper is to review statistical analysis techniques that enable us to compute 

two key metrics: resolution (determined from the local impulse response) and covariance. The 

underlying methods include fixed-point approaches, which compute these metrics at a fixed point 

(the unique and stable solution) independent of the iterative algorithm employed, and itera-

tion-based approaches, which yield results that are dependent on the algorithm, initialization, and 

number of iterations. We also explore extensions of some of these methods to a range of special 

contexts, including dynamic and motion-compensated image reconstruction. While most of the 

discussed techniques were developed for emission tomography, the general methods are exten-

sible to other imaging modalities as well. In addition to enabling image characterization, these 

analysis techniques allow us to control and enhance imaging system performance. We review 

practical applications where performance improvement is achieved by applying these ideas to the 

contexts of both hardware (optimizing scanner design) and image reconstruction (designing reg-

ularization functions that produce uniform resolution or maximize task-specific figures of merit). 

Key words: tomography, image quality metrics, local impulse response, resolution, variance. 

Introduction 

Medical image reconstruction methods seek to 
estimate images representing some physical signal in 
the 3D or 2D spatial domain from data belonging to a 
different physical domain of observation. Since these 
estimates are functions of noisy data, there is some 
inherent uncertainty in them. Apart from the noisy 
data, the final reconstructed image quality also de-
pends on parameters associated with the system 
model and the reconstruction method. Commercial 

imaging systems usually generate only the recon-
structed images without providing quantitative met-
rics representing their quality and reliability. These 
metrics, which can facilitate both qualitative inter-
pretation and quantitative analysis, are just as critical 
as the actual image estimate. In view of the para-
mount importance of quantitative image quality 
measures, this review surveys a range of techniques to 
compute such metrics for reconstructed images. While 
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the primary emphasis here is on emission tomogra-
phy, including positron emission tomography (PET) 
and single photon emission computed tomography 
(SPECT), we will discuss parallel efforts in computed 
tomography (CT) and magnetic resonance imaging 
(MRI). For the reader's convenience, an alphabetical 
list of the acronyms used in the text is provided in 
Table 1. 
 

Table 1. List of abbreviations. 

Acronym Expanded form 

CHO Channelized Hotelling observer 

CNR Contrast-to-noise ratio 

CRC  Contrast recovery coefficient 

CRLB Cramér-Rao lower bound 

CT Computed tomography 

EM Expectation maximization 

EMSE Ensemble mean squared error 

FWHM Full width at half maximum 

ICA Iterative coordinate ascent 

LIR Local impulse response 

LPR Local perturbation response 

LS Least squares 

MAP Maximum a posteriori 

MAPEM Maximum a posteriori expectation maximization 

MCIR Motion-compensated image reconstruction 

ML Maximum likelihood 

MLEM Maximum likelihood expectation maximization 

MR  Magnetic resonance 

MRI Magnetic resonance imaging 

NPW Non-prewhitening 

OSEM Ordered subsets expectation maximization 

OSL One-step-late 

PCG Preconditioned conjugate gradient 

PET Positron emission tomography 

PSF Point spread function 

QPLS Quadratically penalized least squares 

ROC Receiver operating characteristic 

ROI Region of interest 

SNR Signal-to-noise ratio 

SPECT Single photon emission computed tomography 

UQP Uniform quadratic penalty 

WLS Weighted least squares 

 

 
Reconstruction methods fall into two main cat-

egories: analytical techniques and model-based itera-
tive techniques. Analytical approaches offer a direct, 
closed-form solution to estimate the unknown image. 
In comparison, model-based iterative approaches use 
numerical techniques to generate an image that can be 
deemed as the “best” choice in terms of some suitable 
figure of merit. These methods, while slower and 

more complex, generate enhanced image quality [1] 
through improved modeling of both the physical 
processes that yield the measured data and the statis-
tical noise therein. For linear analytical approaches 
such as filtered backprojection [ 2 ], it is relatively 
straightforward to characterize reconstructed image 
noise and to compute closed-form expressions for 
image quality metrics [3,4]. The task is far more in-
volved for iterative methods that incorporate more 
complex nonlinear formulations. Iterative approaches 
have become ubiquitous in PET and SPECT, for which 
these methods have been shown to offer tremendous 
image quality improvement relative to analytical 
methods. While analytical methods continue to dom-
inate the CT and MR arenas, iterative methods are 
steadily gaining popularity for applications such as 
low-dose CT and fast MRI, where the margin of image 
quality improvement these methods yield relative to 
analytical methods is more significant. Multiple 
strategies for characterizing iteratively reconstructed 
images have emerged in the recent past. 

In the absence of closed-form expressions, qual-
ity measures for reconstructed images can be com-
puted using a Monte Carlo approach, which generates 
sample means derived from a large number of noise 
realizations of the data. However, the utility of this 
brute force approach is limited due to the presence of 
tuning parameters associated with iterative recon-
struction schemes. Examples of these tuning parame-
ters include the cutoff frequency of the filter in filtered 
backprojection, the stopping criterion for methods 
belonging to the expectation-maximization (EM) fam-
ily, and the regularization parameter for maximum a 
posteriori (MAP) estimation. The choice of these pa-
rameters influences the properties of the final recon-
structed image and hence also the values of the image 
quality metrics. Complete characterization of recon-
struction approaches would entail repeated computa-
tion of these metrics for multiple choices of the tuning 
parameters, which is a prohibitively expensive prop-
osition. Furthermore, in clinical applications, usually 
only one data set is available. As a result, techniques 
that compute image quality metrics from multiple 
noise realizations have limited clinical utility.  

To circumvent this problem, multiple ap-
proaches presenting approximate closed-form ex-
pressions for different metrics have emerged over the 
last two decades. These fall under two major catego-
ries: fixed-point and iteration-based analysis. The first 
category assumes that the iterative algorithm used for 
reconstruction has converged at a unique and stable 
solution allowing us to compute image statistics, in-
dependent of the iteration number. This is applicable 
to gradient and preconditioned gradient based algo-
rithms when used to optimize well-behaved objective 
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functions [5,6,7]. Numerical optimization algorithms, 
if iterated until convergence, matter only when it 
comes to computational cost, in terms of reconstruc-
tion time and memory usage. If, however, an algo-
rithm is terminated before convergence, the iteration 
number affects the final image quality. In certain cas-
es, early termination is an accepted way to control the 
noise in the reconstructed image. For example, in 
clinical PET imaging, it is a common practice to stop 
the OSEM (ordered subsets expectation maximiza-
tion) algorithm after only a few iterations, before the 
images become unacceptably noisy. The second cate-
gory of noise analysis techniques, therefore, focuses 
on algorithms which either are terminated before 
convergence to control the noise in the final recon-
structed images [8,9] or fail to converge to a unique 
and stable solution [10,11]. The statistics computed for 
these methods, therefore, are functions of iteration 
number [12,13,14]. In this paper, we will review es-
tablished image reconstruction schemes, describe 
some key mathematical techniques developed for 
analyzing reconstructed images, explore extensions of 
some of these methods to a range of contexts (in-
cluding nonquadratic penalties, dynamic imaging, 
and motion compensation), and finally discuss ways 
to utilize our knowledge of image statistics to enhance 
image quality either by optimizing regularization or 
by optimizing instrumentation.  

Background 

Iterative Reconstruction Approaches 

Throughout this paper, the 3D (or 2D) unknown 
image is discretized and represented by a 3D (or 2D) 
array of voxels (or pixels), which is then lexicograph-
ically reordered and denoted by a column vector  . 
Boldface notation is used to distinguish a vector 
quantity from a scalar. The physical connotation of 
this unknown image depends on the imaging modal-

ity in question. For PET and SPECT, it is the spatial 
distribution of a radiotracer. For CT, it is a spatial map 
of attenuation coefficients. For MRI, it is a spatial map 
of transverse magnetization resulting from the inter-
play between radiofrequency signals and hydrogen 
nuclei in tissue in the presence of a strong DC mag-
netic field. The data is represented by another column 
vector  . For PET, SPECT, and CT, the data vector is a 
lexicographically reordered version of projection data. 
For MRI, the data vector consists of sample points in 
k-space, which is the spatial Fourier transform of the 
unknown image. All model-based reconstruction 
schemes rely on a forward model that maps the image 
space to the data space. In other words, for a given 
image  , the forward model predicts a data vector 
 ̅    as a function of the image. When the mapping 
from the image domain to the data domain is a linear 
transformation (as is the case in PET, SPECT, CT, and 
MRI), the forward model can be described using a 
matrix   such that  ̅      . The reconstruction 
routine seeks to solve the corresponding inverse prob-
lem of determining an estimate,  ̂, of the unknown 
image as some explicit or implicit function of the ob-
served noisy data, say  ̂      .  

 Figure 1 summarizes the model-based iterative 
reconstruction procedure. All model-based iterative 
reconstruction methods begin with an initial estimate 
  ̂  of the unknown image and update this estimate 
based on the similarity (or difference) between the 
data predicted by the forward model,  ̅  ̂  , and the 
measured data,  , and on any prior knowledge one 
might have about the image. This procedure is re-
peated or “iterated” generating a sequence of succes-
sive estimates   ̂    ̂

     ̂   till some stopping crite-
rion is satisfied. Iterative reconstruction techniques 
have two key components, an objective function and 
an optimization algorithm, as described below: 

 
Figure 1. Schematic illustrating the model-based iterative reconstruction procedure. The forward model predicts the data,  ̅   , as a function of the image  . The 

reconstruction routine seeks to determine the unknown image as some explicit or implicit function,  ̂      , of the data. For iterative reconstruction, this function 

is an implicit function given by the maximum of some objective function:  ̂                    . The objective function,       , depends on both the 

goodness of fit between the predicted and measured data and on prior information about the unknown image. At the end of each iteration, the current image   ̂   is 

replaced by an updated estimate   ̂    until some stopping criterion is reached.  
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I. Objective Function 

The objective function (or the cost function) is a 
figure of merit for image reconstruction. The final 
reconstructed image should maximize (or minimize) 
this figure of merit. The chief constituent of the objec-
tive function is a data fidelity or goodness of fit term, 
which quantifies the discrepancy between the meas-
ured data and the predicted data. The sum of squared 
residuals, ∑      ̅      

 , and the weighted sum, 
∑        ̅      

 , are examples of the goodness of fit 
used in the ordinary least squares (LS) and weighted 
least squares (WLS) techniques respectively. Alterna-
tively, if the measured data   is modeled as a random 
vector with a conditional probability density function 
      , then the likelihood        or the log likeli-
hood           can be used as a measure of the 
goodness of fit. This is the basis for likelihood-based 
reconstruction methods, including maximum likeli-
hood (ML). From this statistical perspective, the for-
ward model  ̅    represents       , the mean or ex-
pectation of the data vector conditioned on (and hence 
parameterized by) the given image,  . The two most 
widely used probability distributions in medical im-
aging are the Gaussian and Poisson distributions. If 
the data is contaminated with independent identically 
distributed Gaussian noise, then the log likelihood 
reduces to a negative LS formulation,  ∑      

 ̅      . If the Gaussian noise is independent but het-
eroscedastic, that is,                 for    , then 

the log likelihood leads to the negative WLS formula-
tion,  ∑        ̅      

 
 where             . If the 

data    are independent Poisson random variables 
whose means are  ̅    , then the log likelihood can be 
written as ∑       ̅      ̅     . This Poisson likeli-
hood model is widely used in PET and SPECT.  

Most medical imaging inverse problems are 
ill-conditioned. This means a large change (usually in 
the higher spatial frequency components) in the im-
age   may elicit only a small change in the data  . 
Such small changes may be virtually indistinguisha-
ble from noise. In such cases, attempts to maximize 
the goodness of fit by enforcing strict agreement with 
the noisy data may cause noise amplification in the 
reconstructed images, a phenomenon known as over-
fitting. This is a commonly acknowledged problem 
with the ML image estimate in emission tomography. 
Two common approaches used to alleviate this prob-
lem are early termination and regularization. 
Post-reconstruction filtering, in combination with 
early termination, is also frequently used [15]. Early 
termination will be discussed subsequently in the 
context of the EM family of optimization algorithms. 
Regularization techniques augment the objective 
function by a regularizer function, which serves to 

encourage or penalize certain characteristics in  , 
based solely on prior knowledge and not on the data. 
This leads to the class of methods referred to as max-
imum a posteriori (MAP) or penalized maximum likelihood 
in medical imaging literature. From an algebraic per-
spective, this function could be viewed as a penalty 
function that constrains the search space based on 
additional knowledge concerning the nature of the 
solution and thereby facilitates convergence and eases 
the task for the optimization algorithm. From a statis-
tical perspective, this function could be viewed as a 
prior probability distribution for the random vector  . 
In essence, the reconstructed image should now 
maximize the posterior probability, given by 
                      , or, more commonly, its 
logarithm. The relative contributions of the da-
ta-fitting and regularization components of the re-
sulting objective function are determined by a tuning 
parameter usually referred to as a regularization pa-
rameter or a hyperparameter. Quantitative metrics for 
reconstructed image quality are functions of this pa-
rameter. 

II. Optimization Algorithm 

The numerical optimization algorithm is a recipe 
which generates the image that maximizes the se-
lected objective function. An iterative algorithm may 
not be required if a closed-form solution to the inverse 
problem exists or, in other words, if  ̂       is an 
explicit function. However, this is not the case for the 
highly nonlinear Poisson likelihood function. Also, 
even when closed-form solutions exist, they often 
require a matrix inversion step that carries a large 
computation cost. Therefore, an iterative algorithm is 
usually the ultimate resort for most large-scale re-
al-world problems. Consequently, state-of-the-art PET 
and SPECT reconstruction methods are iterative in 
nature. The expectation maximization (EM) family [8,9] 
represents a popular class of iterative algorithms. The 
EM algorithm, developed as a numerical tool for ML 
estimation [16], is based on the notion of unobservable 
data. This algorithm iterates by alternating between 
an expectation (E) step and a maximization (M) step. 
The E-step computes the expectation of the com-
plete-data log likelihood function conditioned on the 
current estimate of the image,  ̂ , and observed data, 
 ; this is equivalent to calculating the mean of the 
unobserved (latent) variables conditioned on the cur-
rent estimate and observed data when the com-
plete-data probability distribution is from an expo-
nential family. The M-step computes the unknown 
image,  ̂   , which maximizes this log likelihood 
function.  While MLEM, in theory, should ultimately 
converge to the ML estimate, its convergence is slow 
for the Poisson likelihood [17]. The ordered subsets 
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EM (OSEM) method [10] is a modification of the EM 
algorithm which divides the data into a number of 
groups and bases each update on only the subset of 
data belonging to one group at a time. OSEM is the 
current standard for clinical PET and SPECT scanners 
since this technique and its variants [11,18,19] signif-
icantly accelerate convergence rate. However, its ma-
jor limitation is that it does not converge to a stable 
solution. Due to the absence of a regularization term, 
MLEM and its OS version typically produce high 
noise levels for a large number of iterations. The gen-
eral practice, therefore, is to terminate these methods 
early to limit noise amplification caused by overfitting 
[20,21]. When early termination is exercised, the final 
image depends on the initial image,  ̂ , the algorith-
mic details, and the final iteration number. The statis-
tical properties of this final image must therefore be 
derived as function of these quantities. This leads us 
to what is referred to as iteration-based analysis in this 
paper.   

A variety of generic gradient-based optimization 
schemes have also been used to maximize the MAP 
objective function. Specifically, the preconditioned 
conjugate gradient (PCG) [5,6,7] and iterative coor-
dinate ascent (ICA) [ 22 , 23 ] algorithms have been 
shown to yield speedy convergence. Unlike the ML 
case, the inverse problem for the MAP objective func-
tion is less ill-conditioned and, hence, more 
well-behaved. For a large enough regularization pa-
rameter, these algorithms can actually be iterated to 
convergence without the previously mentioned noise 
amplification and overfitting problems. The ad-
vantage of this approach is that, as long as an algo-
rithm is globally convergent, i.e., it converges to a fixed 
point regardless of initialization, the final recon-
structed image is independent of the initial image, the 
iteration number, the algorithm type, and algorithmic 
parameters, such as the step size. In this case, it is 
sufficient to characterize the statistical properties at 
the point of convergence, leading to fixed-point analysis 
methods. While the point of convergence is inde-
pendent of the algorithm, it continues to depend on 
the objective function and, therefore, on the choice of 
the regularization parameter. 

Image Quality Measures 

The choice of statistical measures of image qual-
ity depends on the goal of the imaging procedure. If 
the sole objective is to tell whether a cancerous lesion 
is present or absent in the image, the task at hand is a 
statistical detection task. In contrast, a variety of on-
cological and pharmacokinetic studies seek to quan-
tify the tracer uptake in each voxel or inside a region 
of interest spanning several voxels. From a statistical 
perspective, this is an estimation task. Computing 

image quality measures for a given image reconstruc-
tion scheme then boils down to characterizing the 
underlying statistical estimation scheme. The Cra-
mér-Rao lower bound (CRLB) offers one way to 
characterize an estimator. Hero et al. [24] examined 
delta-sigma tradeoff curves (plots of the bias gradient 
norm   against the standard deviation  ) that were 
generated using the uniform CRLB. Meng and 
Clinthorne [25] extended this approach to derive a 
modified uniform CRLB, which they used to charac-
terize SPECT scanner designs in terms of achievable 
resolution and variance. While CRLB-based ap-
proaches are significant, in this paper, we focus on an 
alternative (and more popular) class of techniques 
which seek to characterize reconstruction methods 
using resolution and covariance measures, as de-
scribed below:  

I. Covariance 

For any image reconstruction method, the esti-
mated image  ̂ is some explicit or implicit function, 
 ̂      , of the noisy data  . By virtue of this func-
tional dependence, if   is a random vector with a 
probability density function       , parameterized by 
the true image  ,  ̂ should also be a random vector 
with a probability density function parameterized by 
 . Noise in the reconstructed images can therefore be 
characterized by the covariance matrix      ̂   . The 
diagonal elements of this matrix represent the en-
semble variance at each voxel of the reconstructed 
image, while the off-diagonal elements represent the 
correlation between the voxels when they are nor-
malized. As an example, let us consider the quadrati-
cally penalized least squares objective function 
(QPLS), which is obtained by augmenting the LS ob-
jective function,  ∑      ̅      

 , by a quadratic reg-
ularization term of the form  ∑ ∑          . When no 

nonnegativity constraint is imposed, the reconstruc-
tion operator   for the QPLS objective function is 
linear. If the data noise is additive white Gaussian, 
then the covariance matrix      ̂    of the recon-
structed image is independent of the true image  . 
However, this does not apply to more general cases. 
When the data noise is Poisson distributed (as is the 
case in emission and transmission tomography), 
     ̂    has a strong dependence on  . We will sur-
vey a range of noise analysis techniques that derive 
approximate closed-form expressions for      ̂    
addressing its dependence on the true image  . 

II. Resolution 

It is customary to assess estimators in terms of 
the inherent tradeoff between their bias and variance. 
Regularized reconstruction techniques reduce image 
variance at the cost of added image bias. For 
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smoothing regularizers, this bias largely manifests as 
a spatial blur or, in other words, as a reduction in 
image resolution. Image resolution is a quantitative 
measure that characterizes the degree of blurring a 
sharp structure (such as a spatial impulse function) 
undergoes and is dependent on both the physical and 
the statistical model of the system and on any tuning 
parameters associated with the reconstruction meth-
od. Even for unregularized objective functions, early 
termination of the optimization algorithm could 
produce bias. When initialized by a uniform intensity 
image, as is the usual case with OSEM reconstruction 
of clinical PET images, early termination tends to bias 
the image toward uniformity causing a spatial blur. It 
is therefore widely accepted to assess image recon-
struction methods by their resolution-covariance 
characteristics as a surrogate for their bias-variance 
characteristics. Thus, along with image covariance, 
image resolution is a critical image quality measure.  

Linear shift-invariant systems produce a blur-
ring effect that is independent of voxel location. The 
resolution for such systems can be determined from a 
global impulse response or a point spread function (PSF), 
which is the result obtained when the original image 
is an impulse function in space. This measure is useful 
for linear analytical reconstruction approaches, such 
as filtered backprojection. For model-based iterative 
reconstruction methods that are nonlinear, the reso-
lution of the reconstructed images is spatially varying 
and can depend on the true image. To quantify the 
resolution properties for such cases, one can analyze 
the local impulse response (LIR) [26,27] at a given voxel 
i, which can be computed as: 

    ̂       
   

    ̂           ̂      

         ̂    

where    denotes a unit impulse at voxel  , or, in other 
words, an image vector with a value of one at the  th 
spatial location and zeros elsewhere. The LIR 
measures the change in the mean reconstructed image 
caused by an infinitesimal perturbation at a particular 
location (voxel  ) in the true image  . The location 
dependence of this metric ensures that it captures the 
spatially varying nature of a nonlinear estimation 
technique. The dependence of the LIR on the true 
image ensures that it captures the object dependent 
nature of a nonlinear estimation technique.  

Statistical Analysis Techniques 

Fixed-Point Analysis 

In this section, we will outline some methods to 

compute approximate closed-form expressions for the 
covariance and local impulse response of reconstruc-
tion methods that converge at a unique and stable 
fixed point. These fixed-point methods can be based 
on either discrete space or continuous space ap-
proaches. Both approaches are popular and have been 
adapted for a range of specialized imaging applica-
tions encompassing different imaging modalities. 

I. Discrete Space Methods 

For ML and MAP estimates based on the Poisson 
likelihood, explicit analytical functional forms are 
unavailable. Instead, these estimators are implicit 
functions of the data   defined as the maximum of 
some objective function,       :  

 ̂             
 

       

While a closed-form expression for  ̂    may not ex-
ist, Fessler [28] showed that approximate expressions 
for the mean and covariance of  ̂    can be obtained 

utilizing Taylor series truncation along with the chain 
rule of differentiation. The necessary condition for 
optimality requires that this maximum correspond to 
a stationary point, defined as a point where the gradi-
ent with respect to   is the zero vector. Stated in 
mathematical notation, this means:  

      ̂         

Here     represents the column gradient opera-
tor with respect to the first argument of the function  
      . By using a first order Taylor series approxi-
mation centered at the mean data  ̅ , this implicit 
function can be approximated as:  

 ̂     ̂  ̅    ̂  ̅     ̅  

where   ̂  ̅  denotes the Jacobian matrix (the matrix 
of all the first-order partial derivatives). The corre-
sponding approximation for the covariance is:  

     ̂         ̂         ̂  ̅            ̂  ̅    

where      represents the matrix or vector transpose. 
Even though  ̂  ̅  is unknown,   ̂  ̅  can be ap-
proximately computed by applying the chain rule of 
differentiation to the stationarity condition, yielding:  

  ̂  ̅          ̂  ̅              ̂  ̅      

where     denotes the Hessian of        with respect 
to the first argument and     represents a composition 
of the column gradient operator with respect to the 
first argument and the row gradient operator with 
respect to the second argument. The covariance can 
then be computed in closed form as:  

     ̂            ̂  ̅              ̂  ̅                     ̂  ̅              ̂  ̅        
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A comparison between the covariance predicted 
by the above approach and that obtained using Monte 
Carlo simulations is shown in Figure 2, which pre-
sents the results of a 2D simulation study similar to 
that shown in Figure 7 of [28]. This study demon-
strates that the analytical and Monte Carlo approach-
es exhibit good agreement for data with high counts 
(i.e., low noise). The corresponding variance images 
are shown in Figure 3.  

Fessler [28] also provided a second-order Taylor 
series approximation for the mean of the unknown 
estimator,    ̂   , which can be used to analyze the 
bias and resolution. However, unlike the covariance, 
the approximation for    ̂    cannot be written in a 
simple matrix form. Its utility is therefore limited to 
applications involving fewer parameters. A less ac-
curate but more tractable alternative widely used in 
literature is a zeroth order approximation for the 
mean,    ̂       ̂          ̂  ̅    . In this ap-
proximation, the ensemble mean of an estimator is 
approximated by the noiseless estimate.  

 
Figure 2. Comparison of predicted standard deviation from an analytical 

expression given in [28] and sample standard deviation calculated from Monte 

Carlo simulations as in Figure 7 of [28]. The standard deviation was calculated at 

the central pixel indicated by a (+) symbol inside the 2D digital phantom image 

in the inset. The image size was 128 by 64 pixels with pixel size 4.5 mm, and the 

sinogram size was 192 radial bins by 96 angular bins with a radial bin spacing of 

4.5 mm. The emission activity was 3 in the hot region (black), 2 in the back-

ground (dark gray), and 1 in the cold region (light gray). The attenuation 

coefficient was 0.013/mm in the hot region, 0.0096/mm in the background, and 

0.003/mm in the cold region. The simulated photon counts were 0.25M, 1M, 

4M, and 16M. The background events such as randoms and scatter were 

simulated as a uniform field with 10% of true events. For each photon count, 100 

data sets contaminated by Poisson noise were generated. For each data set, a 

quadratically penalized likelihood image was reconstructed using 20 iterations 

of an ordered subset version of De Pierro’s modified EM [29] with 8 subsets. 

The regularization parameter was chosen to be proportional to the total count 

as in [28]. The standard errors of the standard deviation were computed by 

bootstrapping. 

 
 

 
Figure 3. Variance images from the simulation study in Figure 2. The left column shows empirical estimates obtained from Monte Carlo simulations with 100 noise 

realizations. The right column shows the predicted variance from a single noise realization using the analytical approach in [28]. The rows correspond to the following 

photon count/regularization parameter combinations: 0.25M/0.0156, 1M/0.0625, 4M/0.25, 16M/1. 
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These mean and covariance computation meth-
ods preclude inequality constraints and stopping 
rules (for early termination). Fortunately, since 
nonnegativity constraints have minimal influence on 
the nonzero voxel intensities, mean and variance 
values for unconstrained and constrained estimators 
are approximately equal for high intensity regions 
[30]. An approach that accounts for the effect of the 
nonnegativity constraint on the variance using a 
truncated Gaussian model can be found in [31]. 

To study the resolution properties of  ̂   , Fess-
ler and Rogers [27] derived approximate expressions 
for the linearized LIR by applying a technique based 
on Taylor series truncation around  ̅ and the chain 
rule of differentiation, similar to that used for the co-
variance approximation: 

    ̂            ̂  ̅   ̅           ̂  ̅   ̅        ̅    

Consider the penalized likelihood objective for emis-
sion tomography: 

                    

Here        represents the Poisson log likelihood 
function,   is the regularization parameter, and 

     
 

 
     

 

 
∑ ∑           is a quadratic penalty 

function, where the matrix   is the Hessian for     . 
Since most medical images of interest tend to be spa-
tially smooth, the quadratic penalty function is set to 
compute the sum of squared intensity differences 
between neighboring voxel pairs in the image  : 
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where     is a nonnegative weight. Usually     is 

chosen to be inversely proportional to the distance 
between voxels   and  . In this case, the elements of 
the matrix    are given by                  
  ∑                                     and           when 

voxels   and   are neighbors and        otherwise. 

This penalty function with spatially invariant weights 
   , in common parlance, is referred to as the uniform 

quadratic penalty (UQP). Penalization of quadratic dif-
ferences in intensity essentially enforces spatial 
smoothness in the reconstructed image. From a statis-
tical perspective, this class of penalty functions cor-
responds to a Gaussian prior probability distribution. 
Quadratic penalties are relatively straightforward to 
analyze since they have a constant second derivative 
and therefore remain exact under the Taylor series 
truncation procedure described earlier. Adapting the 
linearized LIR to this estimation problem, Fessler and 
Rogers [27] derived a fundamental result for emission 
tomography. They demonstrated that standard spa-

tially invariant regularizing functions, such as the 
UQP, produce spatially varying resolution in the re-
constructed image. This is a key observation since the 
nonuniformity of spatial resolution in the images di-
rectly impacts their quantitative interpretation. As an 
example of the effect of nonuniform spatial resolution, 
consider a scenario where a reconstructed PET image 
shows two lesions at two locations with two different 
local full widths at half maximum (FWHMs). At the 
location where the FWHM is higher (resolution is 
poorer), the lesion will be smeared over several voxels 
yielding a smaller value for radiotracer uptake than 
that observed for the location with lower FWHM 
(higher resolution). The lesion at the first location will 
therefore appear less threatening than it actually is. 

For the quadratically penalized objective, the 
local impulse response and covariance can be ap-
proximated as: 

    ̂                

     ̂                      

where   is the Fisher information matrix for the 
Poisson likelihood model and    is a unit impulse at 
voxel  . These equations, which are a direct outcome 
of the methods in [27] and [28], involve prohibitively 
expensive matrix operations and therefore are not 
practical for standard-sized 3D medical images. In 
light of their intractability, these expressions were 
further simplified by Qi and Leahy [32,31] using a 
Fourier domain approach [33] yielding the following 
closed-form expressions for the local impulse re-
sponse and variance: 

    ̂          
           

          , 

      ̂      
        

           
            

where       ̂    represents the  th column of the co-
variance matrix      ̂   ,   and    represent the 
Kronecker forms of the 3D Fourier transform and 3D 

inverse Fourier transform respectively,     represents 
the 3D Fourier transform of the  th column of a scaled, 

approximate data-independent version of  ,     rep-
resents the 3D Fourier transform of the  th column of 
 , and   , referred to as an aggregate certainty meas-

ure [27], is computed such that   
  is an approximation 

for the  th diagonal element of  . A method to accu-
rately estimate the certainty measure from noisy data 
particularly for very low counts can be found in [34]. 
To facilitate interpretation, one could resort to scalar 
measures derived from the above expressions. Since it 
may be tedious to compute the full covariance matrix, 
one option is to focus on its diagonal which represents 
individual voxel-wise variances. Instead of compu-
ting the LIR for each voxel, one could look at the LIR 
contrast recovery coefficient (CRC), which is defined 
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as the peak of the LIR [31,32]. The CRC is an accepted 
alternative to the FWHM as a measure of resolution. 
Simplified expressions for both of these quantities are 
provided in [31].  

II. Continuous Space Methods 

Discrete space approaches, though reasonably 
accurate, are computationally expensive, since they 
typically require the inversion of large Hessian ma-
trices.  Even with Fourier-based approaches that use 
circulant approximations for the Hessian matrices, 
these methods are computationally demanding. 
Fessler [35] developed a faster alternative which re-
places the usual discrete system model with locally 
shift-invariant, continuous space approximations. 
This approach starts with a discrete formulation, 
switches to the continuous domain for some interme-
diate steps, and then reverts back to the discrete do-
main. The underlying approximate expressions for 
the LIR and covariance are the same as those used for 
discrete space fixed-point analysis: 

    ̂                

     ̂                      

But in order to avoid expensive matrix manipu-
lations, the matrices   and   are replaced by contin-
uous space operators. The approximation for   is 
based on the Radon transform, a view-independent, 
radially shift-invariant blur, and an analytical meas-
ure of the effective certainty for a given voxel and a 
given detector angle or line of response. The ap-
proximation for   is based on the continuous space 
representation of the quadratic penalty, ∫‖  ‖  
where   is a continuous space version of the image. 
Although the accuracy of continuous space methods 
is limited by the simplistic nature of the system model 
used, they are useful because of their speed. These 
methods have been applied to both 2D and 3D CT and 
PET [36,37,38].  

III. Nonquadratic Regularizers 

One limitation of quadratic penalties is that they 
tend to oversmooth edges in reconstructed images. To 
overcome this problem, a number of nonquadratic 
penalties with edge-preserving properties have been 
proposed. Most edge-preserving nonquadratic pen-
alty functions impose smaller penalties for large dif-
ferences between neighboring voxel intensities, which 
are likely to be real edges, while imposing heavier 
penalties to small differences, which are likely to be 
caused by noise. Nonquadratic penalties are more 
difficult to analyze since Taylor truncation may lead 
to inaccuracies as, unlike quadratic penalties, these 
may have non-zero higher-order derivatives. Ahn and 
Leahy [39] provided a detailed statistical analysis for 

an edge-preserving nonquadratic prior. To quantify 
resolution, the authors used a local perturbation re-
sponse (LPR), which is a generalized version of the 
LIR. The LPR looks at a signal of interest embedded in 
a background image. In the special case when the 
signal of interest is an impulse with infinitesimal am-
plitude, the LPR reduces to the LIR. The LIR is useful 
when the principle of superposition holds, which is 
not true for nonquadratic regularizers. The approxi-
mate expressions derived for the linearized LPR and 
variance in [39] showed good agreement with Monte 
Carlo simulations.  

IV. Dynamic PET Imaging 

An extension of these image analysis techniques 
to dynamic PET imaging was presented by Asma and 
Leahy [40]. Dynamic PET reveals information about 
both the temporal kinetics and the spatial distribution 
of radiotracers. Tracer kinetic behavior is commonly 
described using compartment models. The latter can 
be represented mathematically using a set of coupled 
partial differential equations. Parametric fitting pro-
cedures are applied to estimate either kinetic micro-
parameters, (the rate constants associated with these 
differential equations) or kinetic macroparameters (some 
physiologically meaningful functions of the micro-
parameters), which are very useful for quantitation 
[41]. Since some of these parametric fitting routines 
involve solving highly nonlinear inverse problems, 
prior knowledge of the uncertainties associated with 
each spatiotemporal location in the 4D PET image can 
greatly enhance the accuracy of these procedures. 
Asma and Leahy [40] used a list-mode reconstruction 
scheme in which the time activity curves were mod-
eled as inhomogeneous Poisson processes, with the 
rate functions represented using a cubic B-spline ba-
sis. Their work was based on a MAP framework 
which seeks to retrieve a set of voxel-wise weight 
vectors representing basis coefficients and penalizes 
quadratic differences between these weights. Ap-
proximate expressions for the mean and variance of 
dynamic average and instantaneous rate estimates 
were derived. To circumvent expensive matrix inver-
sions required for computing the covariance matrix, a 
fast Fourier transform based diagonalization tech-
nique similar to [31] was employed. While the 
closed-form expressions reported show generally 
good agreement with Monte Carlo results, some er-
rors creep in at the endpoints of the time series, where 
the circulant approximations employed are less ac-
curate.  

V. Motion-Compensated PET Imaging 

Respiratory and cardiac motion introduces blur-
ring artifacts in PET images of the thorax and upper 
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abdomen resulting in the underestimation of lesion 
activity or overestimation of lesion volume [42]. Mo-
tion-compensated image reconstruction (MCIR) for 
PET enables reduction of motion-induced blurring 
artifacts without sacrificing signal-to-noise ratio 
(SNR). To compensate for motion, PET data is usually 
divided into a number of groups (usually referred to 
as gates) each corresponding to a different phase of 
motion. If the temporal extent of each gate is suffi-
ciently small, it can be assumed that the motion 
within each gate is negligible. Photon emission events 
can be assigned to different gates based either on a 
temporal trigger signal (e.g. using ECG for cardiac 
motion and pneumatic bellows for respiratory motion 
[43]) or on simultaneously acquired anatomical in-
formation (e.g. using a navigator-based MR pulse 
sequence [44]). Motion compensation could be per-
formed either by means of a post-registration step 
after reconstructing individual gated PET images or 
directly incorporated into the reconstruction frame-
work. The statistical properties of the final recon-
structed image are dependent on the specific recon-
struction method employed. Systematic studies of the 
resolution and noise properties of different motion 
compensation techniques were first reported using a 
continuous space fixed-point approach in [45 ,46 ]. 
Approximate expressions for the LIR and covariance 
were derived for different MCIR techniques in [45] 
and [46] respectively. It is shown that non-rigid mo-
tion can lead to nonuniform and anisotropic spatial 
resolution when conventional spatially invariant 
quadratic penalties are used. Another interesting 
outcome of this analysis is a formal quantitative rela-
tionship between different MCIR techniques, estab-
lishing each method as either a scalar-weighted or a 
matrix-weighted sum of the individual motion-free 
gated images.  

VI. Dynamic MR Imaging 

While the methods discussed so far largely per-
tain to emission and transmission tomography, simi-
lar concepts have been applied to characterize MR 
images as well. MRI experiment design involves a 
tradeoff between acquisition time, SNR, and resolu-
tion. Unlike PET, SPECT, and CT, MRI uses a Fourier 
transform-based system model which yields a spa-
tially invariant response owing to its circulant nature. 
When a spatially invariant penalty function such as 
the quadratic penalty is used, the achieved spatial 
resolution remains spatially invariant. In this case, it 
suffices to compute a global PSF to determine the 
system resolution. Haldar and Liang [ 47 ] used 
PSF-based expressions for resolution and analytical 
noise estimates to compare and evaluate different 
 -space sampling strategies. This convenient assump-

tion of shift invariance, however, breaks down under 
certain conditions. For dynamic MR imaging proto-
cols where the trajectories may vary from one time 
point to another, the shift-invariant nature is lost. To 
understand the statistical properties of such images, 
one must resort to the techniques discussed earlier. 
An example of shift-varying MR reconstruction can be 
found in [48]. The formulation described in this paper 
uses both spatial and temporal regularization for dy-
namic MR reconstruction. Because the sampled 
 -space locations were different for every time point, 
an LIR was computed. Derivation of an approximate 
closed-form expression that allows fast computation 
of the LIR enabled evaluation of resolution properties 
as a function of the spatial and temporal regulariza-
tion parameters.  

Iteration-Based Analysis 

Iteration-based analysis techniques, which com-
prise the second broad category of statistical analysis 
techniques, are geared toward reconstruction schemes 
that are nonconvergent (e.g. some ordered subsets 
type methods, which offer speedup but do not con-
verge to a stable and unique stationary point) or are 
terminated early to control noise (e.g. methods seek-
ing to solve an ill-conditioned inverse problem with 
an unregularized objective function). Unlike 
fixed-point approaches, for which the stationary point 
is only dependent on the objective function, for itera-
tion-based approaches, the final reconstructed image 
is dependent on the objective function, the iterative 
algorithm used, the image used to initialize the itera-
tive procedure, and the iteration number at which the 
algorithm is terminated. One of earliest and most sig-
nificant efforts in this direction was reported by Bar-
rett et al. [12]. This work considers the special case 
where the EM algorithm is employed to maximize the 
(unregularized) Poisson likelihood. Denoting the 
forward model matrix as   and the noise in the data 
vector as   , the measured data can be represented as: 

   ̅           

The MLEM technique uses an iterative update form 
that is multiplicative in nature:  

 ̂ 
    ( ̂ 

 ∑    ⁄ )∑    ∑     ̂ 
 ⁄       

Here  ̂ 
  and  ̂ 

    are the estimates for the  th 
voxel intensity at the  th and      th iterations re-
spectively and     is the      th element of  . To 

study the statistics, the multiplicative update is con-
verted to an additive update by taking logarithms:  
    ̂      ̅    , where  ̅  denotes the mean value 

of the estimate  ̂  at the  th iteration and    repre-
sents the corresponding noise vector corrupting the 
 th estimate. The first key approximation used in this 
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paper rests on the assumption that the noise in the 
logarithm of the reconstruction is small. In other 
words: 

 ̂   ̅          ̅        

The second major approximation is based on the 
assumption that the projection of the mean value of 
the current estimate is very close to the projection of 

the true image. In other words,   ̂    . Using these 
two approximations, the noise in the  th image esti-
mate can be described by the action of a linear opera-
tor    on the original data noise vector: 

       

where    can be computed from the recursion rela-
tion: 

                 

Here   is the identity matrix while the matrices 
   and    can be computed from the system forward 
model matrix and the full sequence of noiseless iter-
ates   ̅   ̅     ̅  . To derive the statistical properties 
of   , it is assumed that   follows a multivariate 
Gaussian distribution by virtue of the central limit 
theorem. This assumption is reasonable for PET and 
SPECT images if the photon count is high enough. 
Since    is the result of a linear transformation of  , it 
must also follow a multivariate Gaussian distribution. 
It is therefore possible to derive a closed-form expres-
sion for          , the covariance of   . The mean and 
variance of the  th image estimate can then be com-
puted as: 

   ̂      ̅  

     ̂ 
       ̅ 

                 

where the notation       denotes the  th diagonal ele-
ment of a matrix. These approximate expressions for 
the mean and variance for MLEM were subsequently 
compared with Monte Carlo simulation results by 
Wilson et al. [49]. This study showed that the two 
approaches have good agreement for high data 
counts, both for a small number of iterations (corre-
sponding to typical stopping points for MLEM) and 
for a larger number of iterations.  

Similar techniques were applied in [13] to study 
MAPEM reconstruction, where the EM algorithm is 
applied to maximize a regularized objective function. 
Two specific cases were explored in this paper: a 
MAPEM algorithm for maximizing the Poisson like-
lihood function augmented by an independent gam-
ma prior and a one-step-late (OSL) version of a 
MAPEM algorithm incorporating a multivariate 
Gaussian prior (a more generalized version of the 
UQP). Monte Carlo validation showed that the ap-
proximate expressions for mean and variance agree 

well with the simulation results if the noise is low 
(photon counts are high) and bias is low (the regular-
ization parameter is not too large). Similar theoretical 
derivations were also provided for block-iterative 
versions of the EM algorithm, including the popular 
OSEM, in [50].  

The utility of the iteration-based approaches de-
scribed above is limited by the fact that they are algo-
rithm specific. Algorithmic modifications would en-
tail derivation of the expressions for the mean and the 
variance from scratch. Additionally, the mathematical 
procedure described above only applies to algorithms 
that perform an explicit multiplicative update. Qi [14] 
developed a more general framework to analyze noise 
propagation in images from iteration to iteration. The 
results are applicable to most gradient-based algo-
rithms and include MLEM, MAPEM, and OSEM as 
special cases. The framework assumes an additive 
update equation of the form: 

 ̂      ̂       ̂         ̂          ̂    

where     is a fixed step size,     ̂   is a positive 
definite preconditioner matrix, and        and       
denote the log likelihood and regularization functions 
respectively. The noisy data is represented by 
   ̅     , where  ̅    is the noiseless data vector 
and   is the noise vector. The  th iterate is given by 
 ̂   ̅    , where  ̅  is the noiseless or mean value 
of this estimate and    is the noise corrupting it. Using 
methods similar to [12], a recursive expression can be 
derived for the noise vector   , which, in turn, can be 
used to compute expressions for the mean and co-
variance. Unlike fixed-point analysis techniques, this 
“unified” framework does not require the algorithm 
to be iterated to convergence and therefore is appli-
cable both to algorithms that converge to a fixed point 
and those that do not. Using this framework Qi [14] 
demonstrated consistency between fixed-point and 
iteration-based results. A number of special cases 
were discussed. These include adaptation of this 
framework for use with a range of preconditioners 
(including data-dependent ones). In addition, the re-
sults generated by this unified approach were com-
pared with those obtained by iteration-based analysis 
for MLEM [12], OSL MAPEM [13], and OSEM [10], 
and any observed discrepancies were explained. Qi 
[51] further extended this framework to include ex-
plicit modeling of line searches and demonstrated 
improvement in accuracy, especially at early itera-
tions. One limitation of this framework is that it re-
quires the algorithm to have an explicit gradient as-
cent type update equation. The MAPEM algorithm 
with the UQP, for example, does not have such an 
explicit update form. Li [52] developed a unified noise 
analysis framework that addresses this limitation 
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providing analytical expressions for the mean and 
covariance matrices for iterative algorithms with im-
plicit update equations.  

Applications 

Uniform Resolution  

For emission tomographic reconstruction, the 
UQP, although itself spatially invariant, leads to 
nonuniform resolution, that (paradoxically) is poorer 
in high-count regions. This is because, for Poisson 
statistics, high count regions (which have a high mean 
activity) also have high variance, which leads to low 
statistical weights and a relatively large contribution 
of the penalty. The UQP tends to oversmooth these 
regions, thereby worsening the local spatial resolu-
tion. Uniform resolution is essential for the quantita-
tive interpretation of the reconstructed image and 
therefore critical for many clinical tasks. To mitigate 
resolution nonuniformity, a spatially weighted 
quadratic penalty function was proposed in [27]. The 
spatially varying weights were data dependent and 
were computed from approximations for the diagonal 
elements of the Fisher information matrix for the sys-
tem. Figure 4 illustrates the improvement in resolu-

tion uniformity achieved using this spatially weighted 
penalty function. The basic approach described in [27] 
has since been extended for a range of special appli-
cations. In [53], a modified version of this method was 
demonstrated to exhibit count-independent resolu-
tion. Perfectly uniform resolution is a lofty goal to 
strive for due to computational costs. 
Count-independent resolution seeks to eliminate res-
olution nonuniformities caused by the spatially var-
ying nature of the activity alone, while nonuniformi-
ties due to geometrical and physical factors are al-
lowed to persist. Nevertheless this is a practical and 
useful technique since the reduction in nonuniformity 
is significant. A similar technique was reported in [54] 
for motion-compensated reconstruction. In this case, 
the resultant spatially varying regularizer was shown 
to reduce the influence of spatial variation in both 
activity and degree of deformation on the resolution. 
In [39], a similar method was described for nonquad-
ratic penalties. Since the LIR is less meaningful for 
nonquadratic penalties, the focus here is to achieve 
spatially uniform dependence of the linearized LPR 
on the applied perturbation.  

 
Figure 4.  Horizontal and vertical profiles (concatenated left to right) through the linearized LIRs at the three locations indicated by red, blue, and green markers in 

the digital phantom (top row). This figure compares the UQP (middle row) and the modified quadratic penalty with spatially modulated weights based on aggregate 

certainty measures as proposed in [27] (bottom row). Details about the simulated system are provided in the caption for Figure 2. With the UQP, the resolution 

worsens with increasing activity (from left to right) as revealed by both the horizontal and vertical profiles. The modified penalty mitigates this degradation in 

resolution. This study is similar to that shown in Figure 4 of [27]. It must be noted that, while Figure 4 of [27] also compares the results of eqs. (6) (circles) and (10) 

(solid lines), our results are based only on eq. (10). 
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While the aforementioned techniques reduce the 
spatial variation in resolution, the achieved resolution 
is not truly uniform. A more powerful and sophisti-
cated method which accepts any given spatially in-
variant LIR as an input parameter and generates a 
customized spatially varying quadratic penalty that 
leads to the desired LIR was presented in [55] for 
shift-invariant PET systems, in [56] for shift-variant 
PET systems, and in [57] for shift-variant SPECT sys-
tems. In other words, the objective of the method was 
to design a matrix   such that the quadratic penalty 

     
 

 
     would produce the desired LIR. The 

way this is done is by starting with a parametric rep-
resentation for   in terms of some basis functions and 
using it to parameterize the LIR. The next step is to 
perform a least-squares fit of this parameterized LIR 
to the desired shift-invariant LIR. A computationally 
efficient Fourier domain approach (based on circulant 
approximations) was used to determine the basis co-
efficients for this formulation. Unlike the simpler ap-
proach used in [27] which yielded highly anisotropic 
LIRs, this technique reports uniform and isotropic 
resolution.  

Another important technique that leads to uni-
form resolution is presented in [31]. As mentioned in 
the context of fixed-point analysis, this paper reports 
simple and useful closed-form expressions for the 
CRC and the variance. The authors took these find-
ings one step further and utilized the expression for 
the CRC to determine spatial weights for the quad-
ratic penalty that generate a spatially uniform CRC (a 
measure of resolution). To determine the spatially 
varying regularization parameter values that lead to 
uniform resolution, a separate numerical optimization 
problem had to be solved prior to reconstruction. To 
accelerate this procedure, the authors proposed a 
lookup table approach that can significantly alleviate 
this computational burden, making the technique 
useful for practical applications.  

A simple and effective alternative for generating 
isotropic resolution based on a continuous space ap-
proach was described in [35]. The regularizer design 
problem is first solved in continuous space and then 
the solution is discretized for practical implementa-
tion. This method for determining spatially varying 
regularizer weights was intended for a parallel beam 
emission tomography setup. Several extensions of this 
method have been reported. These techniques achieve 
isotropic resolution in 2D fan-beam CT [37], 3D mul-
ti-slice axial CT [58], 3D cylindrical PET [38], and mo-
tion-compensated PET [45].   

Task-Specific Evaluation and Penalty Design  

While image quality measures like bias, vari-
ance, and resolution are essential for assessing the 

quantitative accuracy of a reconstruction method, 
they are not as directly meaningful when the ultimate 
goal is a specific clinical task. Instead, these image 
quality measures can be indirectly employed to 
compute figures of merit which characterize the task 
of interest. Furthermore, it is possible to use the re-
sultant theoretical analysis to tune reconstruction 
methods so as to maximize the figure of merit associ-
ated with the task of interest. 

One common clinical task in PET and SPECT is 
to quantify the absolute tracer uptake in a given re-
gion of interest (ROI). A theoretical analysis of ROI 
quantitation based on MAP reconstruction is pro-
vided in [59]. The derivation of analytical expressions 
for bias, variance, and ensemble mean squared error 
(EMSE) for ROI quantitation was based on the Fourier 
domain approach with circulant approximations de-
scribed in [31,55,56]. There was generally good 
agreement between the EMSE values obtained using 
the analytical expressions and those generated by 
Monte Carlo simulations. Based on the theoretical 
approximations, a strategy for selecting the optimum 
regularization parameter that minimizes the theoret-
ically predicted EMSE was proposed. Wang and Qi 
[60] further extended these ideas to the context of 
dynamic PET imaging. The error propagation into 
kinetic micro- and macroparameters within a given 
ROI was studied, and approximate analytical expres-
sions for the bias, variance, and EMSE corresponding 
to these parameters were derived. Once again, this 
theoretical framework allowed tuning of the regular-
ization parameter so as to minimize the EMSE for the 
kinetic parameters. 

Another common application of PET and SPECT 
is to ascertain whether a cancerous lesion is present or 
absent, which is a statistical detection task. The 
standard tool for quantifying lesion detectability is the 
receiver operating characteristic (ROC) curve [61,62], 
which plots the true positive rate against the false 
positive rate. ROC studies based on human observers, 
however, can be extremely time-consuming. Com-
puter observers, which employ mathematical models 
to mimic human performance at a given classification 
task and offer tremendous savings in time, have 
therefore become increasingly popular for lesion de-
tection tasks [63,64]. The computational speed enables 
fast task-based evaluation of different reconstruction 
schemes. A closed-form expression for the channel-
ized Hotelling observer (CHO) statistic was presented 
in [65]. The underlying analysis was for MAP recon-
struction and utilized the mean and covariance ap-
proximations from [32]. Qi and Huesman [66] pro-
vided a similar theoretical framework comparing 
MAP reconstruction with filtered backprojection and 
deriving closed-form expressions for the SNR for two 
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linear observers, the prewhitening observer and the 
non-prewhitening (NPW) observer. As humans are 
not capable of prewhitening the noise in an image 
[67], the NPW observer is known to better mimic 
human observer performance than a prewhitening 
observer. The test statistic SNR for the NPW observer 
requires an estimate of the noise variance in the image 
of interest. The derived expressions for the NPW ob-
server SNR in [66] therefore utilized the fixed-point 
analysis based closed-form variance estimate derived 
in [31]. A method for designing a shift-invariant 
quadratic penalty function that maximizes the test 
statistic SNR for a lesion at a known location using the 
CHO was presented in [68]. Using both derived ana-
lytical expressions and Monte Carlo simulations, it 
was shown that this method offers improved lesion 
detectability compared to the UQP and a penalty 
function that generates isotropic resolution. This 
method was extended to optimize regularization for 
lesions at unknown locations in [ 69 ]. Theoretical 
analyses for the performance of linear observer mod-
els were performed in [70] for lesions at known loca-
tions and in [71] for lesions at unknown locations. 
These works conclude that, when the lesion location is 
known, the margin of improvement in detectability 
offered by optimized regularization over no regular-
ization improves with increasing prewhitening defi-
ciency of the observer.   

Optimal Scanner Design 

Another critical area where closed-form image 
quality metrics are beneficial is scanner design opti-
mization. Commonly used figures of merit for scanner 
design such as spatial resolution, noise equivalent 
count rate, and noise equivalent sensitivity do not 
have a direct relationship with the clinical tasks, such 
as lesion detection, that are often the ultimate goal. A 
method for optimizing PET scanner design for lesion 
detection tasks was presented by Qi [72]. The goal of 
this paper was to determine scanner design parame-
ters that yield the maximum SNR for the NPW ob-
server. The SNR measure from [66] was the basis for 
the optimization procedure used in [72], which stud-
ied the variation in the test statistic SNR with respect 
to several scanner design parameters for different 
radial positions for the lesion. Based on the observed 
SNRs, the author suggested optimal ways to choose 
the scanner ring diameter, detector transaxial size, 
and detector radial length. 

A method for optimizing the design of a mul-
tipinhole SPECT scanner is presented in [73] based on 
image analysis results for post-smoothed MLEM re-
construction [15, 74 ]. Post-smoothing for MLEM is 
usually performed using a Gaussian smoothing filter. 
The image quality measure used as the figure of merit 

for optimizing the scanner parameters in this paper is 
the contrast-to-noise ratio (CNR), defined as the ratio 
of the CRC over the variance. The CRC and variance 
were computed using approximate expressions de-
rived from fixed-point analysis. For a predefined tar-
get resolution, CNR values were computed for prac-
tical ranges of values for all the design parameters. 
Based on this analysis, optimal values were deter-
mined for a wide array of parameters, including ge-
neric pinhole parameters such as aperture diameter, 
distance between the apertures and the ax-
is-of-rotation, focal distance, and the acceptance angle 
as well as multipinhole-specific parameters such as 
pin radius, focusing distance, and number of pin-
holes. 

Adaptive Systems 

Adaptive imaging systems are capable of alter-
ing the system hardware configuration in an ob-
ject-dependent fashion so as to maximize some figure 
of merit, which is some objective or task-based meas-
ure of image quality. The main image acquisition on 
such systems is preceded by an initial scout image 
acquisition. Image quality metrics derived from this 
scout image are used to adjust the configuration for 
the main scan. Two adaptive small animal pinhole 
SPECT systems were described in [75]. Two linear 
observers, the Hotelling observer and the Wiener ob-
server, were considered for task-based image quality 
measures. The controllable hardware parameters un-
der consideration included the pinhole diameter, the 
distance of the object center to the pinhole plane, the 
distance from the pinhole plane to the detector, pro-
jection angles, and pinhole pattern in a multiple pin-
hole configuration.  

An adaptive zoom-in PET system was described 
in [76]. The design of the underlying system, which 
consisted of a high-resolution detector integrated into 
a microPET scanner was analyzed in detail in [77]. 
This design enables high-resolution and 
high-sensitivity imaging in a small region close to the 
high-resolution detector. The system model and the 
data vector for this setup include both the lines of 
response between the original low-resolution PET 
detectors and the lines of response between the orig-
inal PET detectors and the high-resolution detector. 
Since the positioning of the high-resolution detector 
can greatly impact localized task performance, the 
position was set adaptively using a task-based figure 
of merit. Performance at a lesion detection task was 
evaluated using the prewhitening observer and the 
CHO.  

Discussion 

In this paper, we surveyed quantitative tech-
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niques that have been developed for assessing the 
quality and reliability of iteratively reconstructed 
images. In spite of the rapid strides made, most of 
these methods have not reached the clinic. This is be-
cause these resources remain largely unexploited in 
commercially available imaging systems. For com-
mercial systems, the speed of image reconstruction 
and post-processing steps is of utmost importance. 
With the limited computer hardware that usually ac-
companies a typical commercial system today, the 
computation of a full image covariance matrix or LIRs 
for each voxel location may be a time-consuming 
procedure. With the rising popularity of graphical 
processing units (GPUs) in the image reconstruction 
and processing communities, computing power will 
be less of a hurdle in the near future, and thus it 
would be feasible to assimilate many of the methods 
discussed herein into onboard data processing rou-
tines. 

With current computing capabilities, the 
voxel-wise variance and CRC measures discussed 
earlier can be computed in a reasonable amount of 
time. These measures can have a profound impact on 
quantitation for practical imaging applications. One 
common scenario where CRC estimates would be 
helpful is a longitudinal study, where a patient is 
scanned repeatedly (for example, to monitor disease 
progression), and tracer uptake at a location (e.g., a 
lesion) is compared across scans. Based on CRC esti-
mates, image reconstruction or post-smoothing steps 
can be adjusted to ensure the locations of interest have 
the same local spatial resolution so that these com-
parisons are meaningful. The same ideology also ap-
plies to studies that involve a population of patients. 
Voxel-wise variance estimates are critical for quanti-
tative post-processing steps. Pharmacokinetic studies, 
for example, often rely on accurate estimation of 
compartment model parameters from dynamic PET 
scans. The accuracy of these parameters can be greatly 
improved using accurate voxel-wise variance esti-
mates for the PET images. Even for routine clinical 
PET scans, voxel-wise variance estimates would ena-
ble improved filter design for post-smoothing of the 
images. Making these quantitative techniques availa-
ble for more clinical and preclinical imaging applica-
tions will greatly facilitate both qualitative interpreta-
tion and quantitative analysis of medical images. 
Whether the application is diagnostics or therapeu-
tics, improved quantitation in medical imaging will 
ultimately translate to improvement in the quality of 
life and longevity of patients. 
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