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Quantitative Structural Steganalysis of Jsteg
Jan Kodovský and Jessica Fridrich, Member, IEEE

Abstract—Quantitative steganalysis strives to estimate the
change rate defined as the relative number of embedding changes
introduced by steganography. In this paper, we propose two
new classes of quantitative steganalysis methods for the stegano-
graphic algorithm Jsteg. The first class obtains the change-
rate estimate using a maximum likelihood estimator equipped
with a precover model. While this approach provides better
accuracy than existing structural attacks, it becomes compu-
tationally intractable with increasing complexity of the cover
model. The second class of methods computes the change-rate
estimate by minimizing an objective function constructed from a
heuristically-formed zero message hypothesis. The advantage of
this heuristic approach is a low implementation complexity and
modular architecture that allows flexible incorporation of higher-
order statistics of DCT coefficients. The proposed methods are
experimentally compared with current state-of-the-art methods.

I. INTRODUCTION

Steganography is the art and science of secret communica-

tion between two parties through a public channel. With to-

day’s advances in technology and networking and with an ever

increasing data traffic over the Internet, the number of com-

munication channels that may be exploited by steganography

is rapidly increasing. Progress in steganography usually elicits

a corresponding development in steganalysis, whose goal is to

establish the existence of steganographic communication. This

paper focuses on quantitative steganalysis, which outputs an

estimate of the number of embedding changes instead of the

binary decision of whether or not the object under investigation

contains secret data [1], [2], [3].

Out of more than four hundred data hiding programs avail-

able to public today, over a half of them can hide messages

in digital images [4]. The first steganographic algorithm for

JPEG images, called Jsteg, was developed in 1993 by Up-

ham [5]. Jsteg embeds messages by decompressing the JPEG

bit stream to individual quantized DCT coefficients and re-

placing their Least Significant Bits (LSBs) with message bits.

This embedding operation is often being referred to as LSB

replacement. In color images, the message is embedded in both

the luminance and chrominance components. Jsteg does not

embed in coefficients equal to 0 or 1 because too many non-

zero coefficients would appear in higher frequencies, which
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would lead to perceptible and statistically detectable artifacts.

The first version of Jsteg embedded individual secret data bits

sequentially, which turned out to be accurately detectable by

the histogram attack [6] capable of estimating the message

length as well. An improved version of Jsteg embeds data

along a pseudo-random path generated from a secret stego

key. In this paper, only this randomized version of Jsteg is

considered and will be referred to as Jsteg.

Due to its simplicity and high embedding capacity, the LSB

embedding paradigm of Jsteg is the most common embedding

principle utilized by creators of steganography software today.

Therefore, steganalysis of LSB replacement in DCT domain

is of interest to law enforcement and forensic analysts. In

particular, it is of interest to detect small payloads that might

otherwise go undetected.

The first quantitative attack on Jsteg was described by

Zhang and Ping [7]. The authors employed the symmetry of

the histogram of DCT coefficients in natural images, which

is disturbed by the asymmetric nature of Jsteg embedding

operation. Another histogram-based attack was proposed by

Yu et al. [8]. Currently, the most accurate structural detector

of Jsteg is the category attack proposed by Lee et al. [9]1. Its

generalized version [11] has been reported to perform better

only on double-compressed images [10]. Even though the cat-

egory attack outputs a non-negative real value whose expected

value on cover images is zero, a direct connection of this

test statistics to the message length has not been established.

Therefore, this attack is technically not quantitative.

In [12], Westfeld showed that existing quantitative attacks

on LSB replacement in the spatial domain2 can be applied to

the array of quantized DCT coefficients to estimate the change

rate for Jsteg as well. The explanation of why spatial-domain

LSB-replacement detectors work in the frequency domain was

provided in [10].

A rather general methodology for constructing quantitative

attacks was proposed in [2]. The idea is to model images

using a feature vector as in blind steganalysis and capture the

relationship between the change in the feature vector to the

change rate using regression. According to the reported results,

Support Vector Regression (SVR) produced the most accurate

quantitative detector of Jsteg today. The disadvantage of this

approach is that a large database of images is needed in order

to train the regressor. On the other hand, the aforementioned

structural detectors operate solely on the image under inves-

tigation and do not require any training phase, which might

potentially be a problem as the detector might be “overtrained”

to a specific source of cover images.

1This claim is taken from [10].
2For example RS analysis [13], sample pairs analysis [14], or pairs

analysis [15].
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Apart from feature-based regressors and structural attacks

that employ the impact of Jsteg on individual LSB pairs, there

exist other approaches for constructing LSB detectors that are

based on the Maximum Likelihood (ML) principle [16], [17].

Although ML detectors are more statistically rigorous, their

performance is usually weak due to lack of accurate models

for cover images3. To address this problem, Ker introduced

the concept of a precover [18] and proposed a framework that

combines the power of structural attacks with the theoretically

well-founded ML principle. This idea put existing structural

methods on a firmer theoretical ground and outlined possible

avenues for their improvement by allowing deviations from

model assumptions they were based on.

This paper builds upon the ideas introduced previously,

namely the aforementioned concept of precover and least

squares steganalysis [18] and introduces a new class of quan-

titative structural attacks on Jsteg with improved accuracy.

The effort begins by investigating the ML approach with

precover in Section II, where several new extensions are

described. Because the ML approach becomes impractical with

increasing complexity of the features, in Section III we explore

an alternative direction based on the concept of a zero message

hypothesis, a concept introduced already in [13]. Although

statistically less rigorous, this heuristic method has some

important advantages over the ML approach in terms of low

implementation complexity and flexibility. In Section IV, all

proposed methods are experimentally evaluated and compared

to existing quantitative attacks. The paper is summarized in

Section V.

II. MAXIMUM LIKELIHOOD FRAMEWORK

In this section, we formulate the problem of change-rate

estimation in terms of the maximum likelihood principle. The

change rate, which will be denoted β, is defined as the relative

portion of modified DCT coefficients, with respect to the

number of DCT coefficients in the image that are not equal to

zero or one. We represent each cover image using a feature

vector x ∈ R
d and assume that it was drawn from some

prior distribution Px(x). For a fixed β and x, the process

of embedding is modeled with the conditional probability

P (xβ |x, β), where xβ is the feature vector of the stego image

affected with change rate β. Here, xβ is a random variable

over the (pseudo) random selection of embedding changes in

the cover image x. Assuming the cover image and the change

rate β are independent of each other,4 and denoting the stego

feature vector y,

P (y, β) =

ˆ

Rd

P (x,y, β)dx =

ˆ

Rd

P (y|x, β)P (x, β)dx

=

ˆ

Rd

P (y|x, β)Px(x)P (β)dx,

which leads to the following ML estimator of β:

3This claim appeared in [18].
4We make this assumption as it simplifies the analysis while acknowledging

that it can be challenged as in reality the sender may adjust the payload size
to the cover.

β̂ = argmax
β≥0

P (y|β) = argmax
β≥0

ˆ

Rd

P (y|x, β)Px(x)dx.

(1)

Practical implementation of this estimator, however, leads to

the following complications. While modeling P (xβ |x, β) is

usually tractable,5 Px(x) may be rather difficult to obtain.

Fortunately, we have an important side-information in the

form of the stego image that permits us to eliminate certain

image features x from our consideration, for example, by

realizing that Jsteg embedding preserves the number of DCT

coefficients equal to zero or one. The presence of embedding

invariants lead the author of [18] to introduce the concept of a

precover, which is a hypothetical source the cover is thought of

being generated from, given the stego image. The precover is

a heuristic and highly feature-dependent concept. It is a means

for incorporating into the prior Px(x) the cover assumptions

and the side-information in the form of the observed stego

image with its embedding invariants.

The choice of the features has a crucial impact on the ac-

curacy of the resulting estimator. Obviously, we are interested

in feature vectors that are predictably changed by embedding

and, at the same time, that can be modeled for typical covers,

obtaining thus P (xβ |x, β) and Px(x), respectively. In this

section, we consider three different feature vectors x and use

them, together with the idea of a precover, to construct ML

estimators of the form (1). We show that this way, estimators

can be built with a comparable or better performance than

existing structural attacks.

In the rest of this paper, to avoid repeating the same

argument multiple times, all binomial distributions will be

approximated with the Gaussian distribution. This is, indeed,

justified due to the fact that typical JPEG images contain a

large number of DCT coefficients.

A. Features of Zhang and Ping

Let us consider the following three-dimensional feature

vector:

x = [x1, x2, x3] , [f0, f1 − h1, h1], (2)

where

f0 =
∑

k>0

h2k +
∑

k<0

h2k+1, (3)

f1 =
∑

k≥0

h2k+1 +
∑

k<0

h2k, (4)

where hi is the number of all quantized DCT coefficients

in the JPEG image equal to i (the ith histogram bin). The

quantities (3) and (4) were introduced in [7], together with

the Jsteg change-rate estimator6

β̂ =
f1 − f0
2h1

, (5)

5The features are often selected so that P (xβ |x, β) is easily obtained. In
fact, in many structural attacks P (xβ |x, β) = δ(xβ − E[xβ ]).

6In the original publication, the authors estimated the relative payload under
the tacit assumption that no matrix embedding is used. In this case, the
expected value of the payload is 2β, which explains the additional 2 in the
denominator of (5).
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which we will further refer to as the estimator of Zhang and

Ping, or shortly ZP estimator.

We now apply the ML framework for the feature vector

defined by (2). Denoting the stego feature

xβ =
[

xβ
1 , x

β
2 , x

β
3

]

,

due to the properties of LSB replacement, xβ
1 is obtained by

drawing from x1 with probability 1 − β and from x2 with

probability β. Thus, xβ
1 follows a binomial distribution with

mean and variance

µ1 = (1− 2β)x1 + βC, (6)

σ2
1 = β(1− β)C, (7)

where

C = x1 + x2. (8)

Note that the values of C and x3 do not change during

embedding and C + x3 is the total number of non-zero

coefficients. We will approximate the binomial distribution

with a Gaussian ϕ(x;µ1, σ
2
1), where

ϕ(x;µ, σ2) =
1√
2πσ2

exp

{

− (x− µ)2

2σ2

}

.

Because the probability P (xβ |x, β) can be expressed as

P (xβ |x, β) = P (xβ
3 |xβ

2 , x
β
1 ,x, β)·P (xβ

2 |xβ
1 ,x, β)·P (xβ

1 |x, β),

due to the embedding invariants

P (xβ
3 |xβ

2 , x
β
1 ,x, β) = δ(xβ

3 = x3),

P (xβ
2 |xβ

1 ,x, β) = δ(xβ
2 = C − xβ

1 ),

we can write

P (xβ |x, β) = ϕ
(

xβ
1 ;µ1, σ

2
1

)

(9)

for all xβ that satisfy xβ
3 = x3 and xβ

2 = C − xβ
1 , and

P (xβ |x, β) = 0 otherwise. We will use this trick of reduc-

ing the dimensionality of a distribution by incorporating the

knowledge of embedding invariants a few more times further

in this paper. For this purpose, we introduce the symbol
ei
=

meaning that the equality holds only when all the embedding

invariants are preserved and the probability density is equal

to zero otherwise. With this notation, Equation (9) can be

rewritten as

P (xβ |x, β) ei
= ϕ

(

xβ
1 ;µ1, σ

2
1

)

, (10)

without any additional comments on the values of xβ
2 and xβ

3 .

The prior Px(x) will be obtained from a hypothetical

precover. Inspired by the equiprobable properties of Ker’s pre-

cover in [18] and by the reasonable cover assumption f0=f1
used in [7], due to the symmetry of definitions (3) and (4),

our precover source will be emitting DCT coefficients from

f0 or f1 independently and equiprobably. In Appendix A-A,

this precover model was verified by testing for normality of

x1 across images. The conclusion is that x1 is Gaussian only

when x1 is computed from histogram bins hk, |k| ≥ 3. To

avoid a significant loss of data and being aware of the model

mismatch, we nevertheless assume x1 ∼ N(µ2, σ
2
2), with

µ2 = 1
2 (C + x3) and σ2

2 = 1
4 (C + x3),

Px(x)
ei
= ϕ

(

x1;µ2, σ
2
2

)

. (11)

Note that in our model for Px(x), we are essentially using

the knowledge of the structure of Jsteg embedding by setting

Px(x) = 0 to all images that cannot be covers for the stego

image under investigation.

The ML estimator is obtained by substituting (10) and (11)

into (1). (The formula can be simplified because the involved

integral can be evaluated analytically). We refrain from in-

cluding further details of this change-rate estimator because

its performance turned out to be essentially identical to the

original ZP estimator. The value of this exposition is in the

following two comments.

By adopting an additional simplifying assumption that the

stego feature xβ
1 is equal to its expectation,

xβ
1 = (1− 2β)x1 + βC, (12)

the integration in (1) degenerates to a multiplication and the

ML estimator reduces to the ZP estimator (5). Second, the

quality of estimators that use the histogram symmetry, such as

the ZP estimator, may vary significantly depending on whether

we count the DC terms when computing the histogram (see

Figure 3 in Section IV). Excluding the DC term improves

the accuracy because the statistical distribution of DC terms

heavily depends on the content and is far from symmetric

around zero, which violates the assumption of the detector of

Zhang and Ping.

B. First-Order Statistics

In this section, the histogram truncated to the range

[−2L, . . . , 2R+ 1] is used as the feature vector,

x , [h−2L, . . . , h2R+1]. (13)

Since the embedding changes in individual LSB pairs are

independent, one can factorize P (xβ |x, β):

P (xβ |x, β) = P
(

xβ
0 |x0, β

)

· P
(

xβ
1 |x1, β

)

· (14)

·
∏

k∈I

P
(

xβ
2k, x

β
2k+1|x2k, x2k+1, β

)

,

where I = {−L, . . . , R}\{0}. From embedding invariants:

xβ
k = xk for k ∈ {0, 1}, (15)

xβ
2k + xβ

2k+1 = x2k + x2k+1 , C2k for k ∈ I, (16)

the distribution (14) can be simplified to

P (xβ |x, β) ei
=
∏

k∈I

P
(

xβ
2k|x

β
2k+1, x2k, x2k+1, β

)

.

Approximating the binomial distribution of xβ
2k with a Gaus-

sian, P (xβ
2k|x

β
2k+1, x2k, x2k+1, β) = ϕ(xβ

2k;µ2k, σ
2
2k) with

µ2k = (1− 2β)x2k + βC2k,

σ2
2k = β(1− β)C2k,
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results in

P (xβ |x, β) ei
=
∏

k∈I

ϕ(xβ
2k;µ2k, σ

2
2k). (17)

The distribution Px(x) is obtained again using the idea

of a precover. First, it is assumed that the unquantized DCT

coefficients are i.i.d. realizations of a random variable ξ that

follows a generalized Cauchy distribution:

g(x) =
p− 1

2s

(∣

∣

∣

x

s

∣

∣

∣+ 1
)−p

. (18)

This model gave us better results than generalized Gaussian

which accords with the results of [8]. The generalized Cauchy

distribution is one of many distributions commonly used

for modeling the distribution of AC DCT coefficients (see,

e.g., [19]). The positive parameters p and s were obtained

from the stego image using an ML estimator, given the

embedding invariants (15) and (16) as integrals of g(x) over

the corresponding regions. Here, we intentionally excluded

zeros (the invariant
´ 0.5

−0.5
g(x)dx = h0 was ignored) because

the quality of the fit at zero is irrelevant and would only lead

to a bias in the other LSB pairs.

The precover is formed by assuming that the histogram

bin x2k is obtained by making C2k independent draws with

probability g2k , P (ξ ∈ [2k − 0.5, 2k + 0.5] | ξ ∈ [2k −
0.5, 2k + 1.5]), or using the pdf of ξ:

g2k =

[

ˆ 2k+1.5

2k−0.5

g(x)dx

]−1

·
ˆ 2k+0.5

2k−0.5

g(x)dx.

We approximate the binomial distribution with a Gaussian,

x2k ∼ N(µ̄2k, σ̄
2
2k), with

µ̄2k = C2kg2k, (19)

σ̄2
2k = C2kg2k(1− g2k). (20)

The precover model was verified for LSB pairs [x2k, x2k+1]
with |k| ≥ 2 (see Appendix A-B). Again, we adopt the model

for all bins to avoid loss of statistical data. Finally,

Px(x)
ei
=

∏

k∈I

ϕ(x2k; µ̄2k, σ̄
2
2k). (21)

After substituting (17) and (21) into (1), the maximum

is found numerically. The computational complexity of this

estimator is low because all the involved integrals can be

evaluated analytically.

We would like point out the difference between the proposed

procedure and the attack of Yu et al. [8]. In [8], authors also

use a generalized Cauchy fit as a cover model, but instead of

solving the ML equation (1), their estimator is realized using

the chi-square test.

C. Second-Order Statistics

The accuracy of the ML estimator could be further improved

by realizing that DCT coefficients are not i.i.d. but exhibit

additional dependencies. In this section, we discuss various

complications that one encounters when attempting to utilize

higher-order statistics of DCT coefficients in the framework

based on ML estimation with precover. Even though this

direction is not developed further to construct the estimators,

the discussions, terminology, and notation will be used in

Section III where an alternative approach to change-rate esti-

mation is pursued. The approach resembles the sample pairs

analysis of [14] designed for the spatial domain but is different

in due to our usage of the ML framework.

We capture inter-block dependencies among DCT coeffi-

cients using an adjacency matrix. Formally, for an image with

N ×M pixels, let us denote the array of DCT coefficients as

Du,v(k, l), where (k, l), k, l ∈ {0, . . . , 7}, is a DCT mode in

block (u, v), u ∈ {0, . . . , ⌈M/8⌉}, v ∈ {0, . . . , ⌈N/8⌉}. The

feature vector is the adjacency matrix A = {aij}:

aij =
∣

∣

∣{(u, v, k, l)|Du,v(k, l) = i,Du,v+1(k, l) = j}
∣

∣

∣. (22)

Due to the structure of LSB replacement and since Jsteg

does not embed into zeros and ones, A naturally decomposes

into disjoint groups of k coefficient pairs, k ∈ {1, 2, 4} (see

Figure 1) called k-nodes. Note that Jsteg embedding can move

pairs freely within each node but not among the nodes. The

Jsteg embedding transition probabilities for all three k-node

types are shown in Figure 2.
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Figure 1. Graphical illustration of the matrix A = {aij} defined by (22).
Shaded regions represent 1-nodes, 2-nodes, and 4-nodes.

The next step is to derive the model for P (Aβ |A, β) and

adopt a model for Px(A). Following Figure 1, the probabil-

ity P (Aβ |A, β) can be factorized into embedding transition

probabilities over individual k-nodes. The probability for 1-

nodes is always equal to 1. The situation for 2-nodes is

similar to LSB pairs in a one-dimensional histogram. From

the embedding transition probabilities shown in Figure 2 (left),

a stego 4-node will follow a multinomial distribution that

will be approximated by a multivariate Gaussian distribution.

Furthermore, because the sum of occurrences of all four pairs

in each 4-node is an embedding invariant, the dimension

of the multivariate Gaussian distribution is reduced by one,
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b1

1− β

b2

β

β

1− β

a
1

c2

(1− β)2

c1

(1− β)2
β(1− β)

c3

(1− β)2

β(1− β)
β2

c4

(1− β)2

β(1− β)

β(1− β)
β2

Figure 2. Embedding transition probabilities for all three k-node types. Left: 4-node [c1, c2, c3, c4], Middle: 2-node [b1, b2], Right: 1-node [a].

resulting in a three-dimensional Gaussian distribution with

an appropriate mean and covariance matrix. This way, it is

possible to analytically express P (Aβ |A, β) as a product of

low-dimensional distributions.

The complications that make this approach to change-rate

estimation problematic arise when one attempts to model

Px(A). Similarly to the one-dimensional case, the knowledge

of embedding invariants can be reflected in Px(A) through

the precover. After factorizing Px(A) into the probabilities

over individual k-nodes, the problem reduces to finding a

good parametric model for the (unquantized) cover matrix

A, given the integrals over the regions corresponding to the

individual k-nodes. However, this is rather difficult because

we need to reflect the dependencies between DCT coefficients

into the model, otherwise we fundamentally cannot obtain

a more accurate detector than in the one-dimensional case.

The matrix A will exhibit three ridges – one along each

axis caused by the fact that coefficients with small absolute

value are more frequent than larger ones, and one along

the main diagonal, reflecting inter-block dependence of co-

efficients. Capturing this complicated structure requires using

more complex models and estimating more parameters, which

increases the complexity of the estimator substantially because

this modeling process has to be executed for each analyzed

stego image.

Let g(A) be the statistical model for unquantized coefficient

pairs on covers. The precover model assigns the pairs in

every k-node proportionally to the integrals of g(A) over their

corresponding regions. All 2-nodes and 4-nodes will follow

a binomial and multinomial distributions, respectively, while

1-nodes will be fully determined by g(A). In principle, we

can again utilize Gaussian approximations with dimensionality

reduced by one thanks to the embedding invariants.

Finally, the model for P (Aβ |A, β) and Px(A) can be sub-

stituted into the ML estimator (1), carrying out the maximiza-

tion numerically. Unfortunately, unlike in the one-dimensional

case, in every step of the maximization procedure we need

to numerically evaluate three-dimensional integrals for all 4-

nodes, which further increases the complexity.

To summarize our insight, the complexity of the ML

procedure rapidly increases once we start taking into ac-

count dependencies among DCT coefficients. Furthermore, the

difficulties with modeling Px(A), estimating its parameters

from the embedding invariants, and solving (1) motivated us

to investigate alternative strategies for building quantitative

steganalysis detectors.

III. ZERO MESSAGE HYPOTHESIS

In this section, we introduce a simple heuristic change-rate

estimating methodology. Even though it was inspired by the

ML framework, we leave the probabilistic point of view in

favor of a simpler and faster implementation.

A. The Proposed Concept

In steganalysis, it is often assumed that the effect of em-

bedding is equal to its expectation [20], [1], [21], [22], which

essentially means that the within-image error is ignored. We

make this assumption as well:

y = E[xβ ] , Emb(x, β). (23)

Provided Emb is invertible, (1) reduces to

β̂ = argmax
β≥0

Px(Emb−1(y, β)), (24)

To remove the remaining difficulty of having to model the

cover feature statistics Px(x), instead of maximizing the prob-

ability (24), we will minimize a penalty x evokes. This heuris-

tic measure transforms the problem of modeling Px(x) into

a much simpler task, namely finding an appropriate penalty

function z(x) ≥ 0 that returns zero on cover features and

nonzero otherwise. The change-rate estimator (24) becomes:

β̂ = argmin
β≥0

z(Emb−1(y, β)). (25)

The functional z(x) is usually obtained from a Zero Mes-

sage Hypothesis (ZMH) that expresses some key property

of covers. The proposed change-rate estimating procedure is

summarized as follows:

1) Identify a feature vector x to be further considered.

2) Obtain the inverse embedding operation Emb−1(y, β).
3) Identify a ZMH and a penalty functional z(x) ≥ 0.

4) Determine β̂ using formula (25).

When designing an estimator, one needs to identify a good

feature vector x, together with the appropriate ZMH and a

penalty functional z(x) so that the inverse embedding function

Emb−1(y, β) can be easily constructed. The minimization



6

in (25) can be carried out either analytically or numerically

by implementing a one-dimensional search over β.

Even though this framework is less fundamental when

compared to the ML-based methods, its modularity, low

computational complexity, and ability to easily incorporate

higher-order statistical properties of covers make it appealing.

Moreover, it can be used to convert some targeted attacks

to quantitative ones. Most importantly, as reported in the

experimental Section IV, this approach leads to some of the

most accurate change-rate estimators for Jsteg today.

B. ZP Estimator Revisited

For pedagogical reasons, we first apply the ZMH framework

to the feature vector (2). The map Emb

xβ = Emb(x, β) = [(1− β)x1 + βx2, (1− β)x2 + βx1, x3],

can be inverted for every 0 ≤ β < 1/2:

x = Emb−1(xβ , β) =

[

xβ
1 − βC

1− 2β
,
xβ
2 − βC

1− 2β
, xβ

3

]

, (26)

where C is an embedding invariant (8)7. The ZMH f0 ≈ f1
can be captured, for example, using

z(x) = (f0 − f1)
2 , (x1 − x2 − x3)

2. (27)

After substituting (26) into (27), the minimization w.r.t. β can

be carried out analytically and leads exactly to the estimator

of Zhang and Ping (5).

C. Category Attack

We show in this section how to use the proposed frame-

work to convert the category attack to a quantitative one by

considering the histogram (13) as a feature vector. For every

LSB pair [x2k, x2k+1], k ∈ I , the embedding operation can

be expressed as
(

xβ
2k

xβ
2k+1

)

=

(

1− β β
β 1− β

)(

x2k

x2k+1

)

(28)

with its inversion
(

x2k

x2k+1

)

=
1

1− 2β

(

xβ
2k − βC2k

xβ
2k+1 − βC2k

)

, (29)

where the embedding invariants C2k are defined in (16).

The next step is the formulation of the ZMH. Using a similar

notation as in the original publication [9], the category attack

uses the function S(x) = (χ2
shi − χ2

ind)/(χ
2
shi + χ2

ind), where

χ2
ind =

1

2

∑

k∈I

(x2k − x2k+1)
2

x2k + x2k+1
, (30)

χ2
shi =

1

2

∑

k∈I

(x2k − xΦ(2k−1))
2

x2k + x2k−1
, (31)

7When β = 1/2, the embedding cannot be inverted and xβ
1 = xβ

2 ,

indicating that a full payload was embedded (β̂ = 1/2). Covers satisfying
x1 = x2 will lead to a false positive because in this case LSB replacement
does not change the feature vector (2). However, x1 = x2 is unlikely to hold
for natural images.

with Φ(1) = −1 and Φ(x) = x, otherwise. During embedding,

χ2
shi increases and χ2

ind decreases. For cover images, χ2
shi ≈

χ2
ind or S ≈ 0. This ZMH can be captured using the following

penalty function:

zcat(x) = (S(x))
2
. (32)

Minimizing (32) w.r.t. β leads to the quantitative version of

the category attack. To the best of our knowledge, the quan-

titative version of the category attack has not been published

yet.

D. Histogram Symmetry

Keeping the DCT histogram (13) as a feature vector, we can

exploit its natural symmetry,8 xk ≈ x−k, using the following

square penalty function:

zsym(x) =
∑

k>0

wk(xk − x−k)
2, (33)

where the weights wk ≥ 0 are chosen to minimize the variance

of the change-rate estimator with penalty function (33). The

summation in 33 goes to B , min{2L, 2R+1} as we consider

only the truncated histogram [h−2L, . . . , h2R+1]. Since our

next steps are essentially identical to Ker’s derivation of

optimal weighting for least-squares steganalysis [23], [24], we

include here only a brief description of the key elements.

In particular, the estimator variance is minimized only for

stego images with zero payload (covers) under the (precover)

assumption that xk follows a binomial distribution with size

xk + x−k and probability 1/2, or xk ∼ N(µ̂k, σ̂
2
k), where

µ̂k = (xk + x−k)/2 and σ̂2
k = (xk + x−k)/4. This precover

model is verified in Appendix A-C. The weights wk that

minimize the variance of zsym(x) over cover images are

wk =
1

xk + x−k

. (34)

We note that the weights (34) are optimal only for cover

images (for zero payload) and at least close to optimal

for small payloads with no optimality guarantee for larger

payloads because in general xβ
k is a poor estimate of xk.

Nevertheless, being aware of these facts and keeping in mind

that the derived weights (34) can be further improved, nothing

prevents us from using them in our framework with the penalty

function

zsym(x) =
∑

k>0

(xk − x−k)
2

xk + x−k

. (35)

E. Adjacency Attack

In this section, we consider the feature vector formed by the

adjacency matrix (22), which captures higher-order statistics

between DCT coefficients of the same spatial frequency from

two horizontally neighboring 8 × 8 blocks. In Section II-C,

we discussed the difficulties when pursuing the ML approach

with this feature vector. Apart from a high complexity, the

8The DC terms are excluded from histogram calculation in this section as
their distribution is not symmetrical.
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key difficulty was finding a good cover model Px(A). By

switching to estimation using the ZMH, we only need to

identify a property of a typical cover matrix A that is disturbed

by embedding, which is much easier.

First, we quantify the effect of embedding and find the

inverse embedding function Emb−1(Aβ , β). The embedding

operation can be studied separately for different types of k-

nodes (follow Figure 2):

• 1-nodes:

aβ = a,

• 2-nodes:

(

bβ1
bβ2

)

=

(

γ β
β γ

)

·
(

b1
b2

)

,

• 4-nodes:











cβ1
cβ2
cβ3
cβ4











=









γ2 βγ βγ β2

βγ γ2 β2 βγ
βγ β2 γ2 βγ
β2 βγ βγ γ2









·









c1
c2
c3
c4









.

Above, we used γ = 1− β. Provided 0 ≤ β < 1/2, all three

embedding functions are linear mappings with a non-singular

matrix and thus can be easily inverted, which gives us the

inverse mapping Emb−1(Aβ , β).
To find an appropriate functional z(A), we inspect the

diagonals denoted D1 and D2 in Figure 1. The cover matrix

A is symmetrical about both diagonals: ai,j ≈ aj,i (the order

of DCT coefficients does not matter) and ai,j ≈ a−j,−i (the

sign does not matter either).

Because the distribution of DCT coefficients is unimodal

with a peak at zero, there are two major ridges in A that

correspond to the column and row passing through the origin9.

Note that both ridges are symmetric about both D1 and D2.

The matrix A has one more, less pronounced, ridge along D1

due to a small positive correlation between coefficients from

neighboring blocks.

Since the symmetry about D2 is disturbed by embedding

(note the asymmetrical placement of k-nodes w.r.t. D2 in Fig-

ure 1), it will be employed for structural steganalysis through

the ZMH framework using the penalty functional expressed

again as a weighted sum of square precover deviations:

zadj(A) =

B
∑

i,j=−B

(āi,j − ā−i,−j)
2

āi,j + ā−i,−j

. (36)

In (36), B = min{2L, 2R + 1} determines the size of the

largest square submatrix of A centered at a00 and āi,j =
ai,j+aj,i. The functional (36) is a two-dimensional analogy to

the previously introduced optimally weighted one-dimensional

penalty function (35). Instead of the histogram symmetry, here

we exploit the symmetry of the adjacency matrix along the

diagonal D2. The optimality of weights in (36) relies on

9For higher quality factors, the distribution may not be precisely unimodal,
however the coefficients around zero will be more frequent than coefficients
with higher absolute values which will again form two ridges in A.

the following precover assumption: ai,j follows a binomial

distribution with size ai,j +a−j,−i and probability 1/2, which

is to be simplified as ai,j ∼ N(µi,j , σ
2
i,j) with

µi,j =
1

2
(ai,j + a−j,−i),

σ2
i,j =

1

4
(ai,j + a−j,−i).

This is verified in Appendix A-D. Because the symmetry

ai,j ≈ aj,i is preserved under embedding, adding ai,j and aj,i
to form a new variable āi,j increases the statistical sample and

improves the performance.

IV. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate all estimators

proposed in this paper and compare their performance with

current state-of-the-art estimators. The accuracy will be eval-

uated for change rates ranging from 0 to 0.2. In practice,

an image with a negative change rate estimate should be

interpreted as cover. To make the results more informative, we

do not round negative estimates to zero and instead always

perform the minimization in the ZMH framework in the

interval [−1/2, 1/2].
Because a quantitative steganalysis technique can only es-

timate the change rate rather than the message length, we

used a simulation of Jsteg embedding by directly visiting DCT

coefficients (along a pseudo-random path) and flipping a fixed

portion β of them. Consequently, the estimation error due to

random correlations of the message with the cover elements

(e.g., see [3]) is not present in our results.

All experiments were performed on two image databases

of small and large images obtained from a mother database of

6, 500 JPEG images acquired by 22 different digital cameras at

full resolution in a raw format and then converted to grayscale.

The size of the images ranged from 1.5 to 6.0 megapixels with

a median size of 3.4 megapixels. The first image database of

large images was obtained by compressing the images with

the JPEG quality factor 75. The second database of small

images was obtained by resizing the images before the JPEG

compression with quality factor 75. The resizing was carried

out using bilinear interpolation so that the smaller side after

resizing was 512 pixels (aspect ratio preserved).

Both image datasets were further randomly divided into two

equal parts, each consisting of 3, 250 images. The first part was

used for training of the SVR-based estimator. All remaining

methods were then tested on the second part, regardless of

the fact of whether or not they required the first half for

training. This way, all methods were evaluated on the same

set of images, ensuring thus a fair comparison.

In Section IV-A, we present an overall performance com-

parison by simulating Jsteg on every test image once and

analyzing the compound error. In Section IV-B, we analyze the

within-image and between-image error for one fixed change

rate and two methods.

A. Overall Performance

The accuracy of all estimators is reported using the follow-

ing measures:
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• Median absolute error (mAE)

mediani

{∣

∣

∣β̂i − β
∣

∣

∣

}

,

• Median bias

mediani

{

β̂i − β
}

,

• Interquartile Range (IQR)

iqri

{

β̂i

}

.

We additionally calculated the Mean Absolute Error (MAE)

but do not report it because both MAE and mAE lead to the

same algorithm ranking. We observed that MAE was always

proportionally higher than the mAE due to the asymmetric

heavy tails. The biggest difference between them was observed

for WB and ZP detectors, which indicates that these two

estimators have more outliers.

The following quantitative steganalyzers were analyzed:

the estimator of Zhang and Ping (5) with and without the

DC terms, the histogram-based ML approach described in

Section II-B, the Weighted nonsteganographic Borders attack

(WB) introduced in [12],10 the category attack converted to a

quantitative one using the ZMH framework, the ZMH-based

attack using histograms with zsym(x) and using the adja-

cency matrix with zadj(A), and the quantitative steganalyzer

introduced in [2]. Table I conveniently lists all quantitative

steganalyzers involved in the test, together with our choices

of parameters L, R or B = min{2L, 2R+1}. The results for

both small and large images are shown in Figure 3.

The following conclusions can be drawn from the experi-

ments:

1) The results on both databases are consistent in the sense

that the ordering of estimators by their performance is

the same on both databases. The estimates on larger

images are generally better, which is to be expected due

to the square-root law [26].

2) In agreement with the results presented in [2], the WB

attack has the worst performance.

3) The ML approach based on first-order statistics has

a comparable performance to the quantitative category

attack, but has a larger median bias.

4) Among histogram-based attacks, the ZMH method us-

ing zsym(x) performs the best. In general, the ZMH

approach turned out to be very accurate in spite of its

heuristic construction.

5) Overall, the best experimental performance was achieved

using the SVR-based estimator and the ZMH framework

with zadj(A). Remarkably, despite the fact that both

methods work completely differently, they exhibit very

similar accuracy in terms of all three performance mea-

sures. The advantage of the proposed ZMH framework

over the SVR is that it does not need an expensive

training phase – it works solely on an image-by-image

basis.

10Even though we also tested the Jpairs attack [12], the results are not
included in Figure 3 because this method exhibited a markedly worse accuracy
compared to the other methods and by including the results in the graphs, their
visual clarity would be negatively affected.

B. Error Analysis

In this section, we investigate the within-image error EW

and the between-image error EB for two selected methods

(ZMH-adj and ZP-noDC) on the database of small images.

Since the change rate β was fixed to β = 0.05, instead of a

real payload, the error caused by random correlations of the

message with cover elements was eliminated. This error is

unavoidable and the same for every steganalyzer.

To estimate both errors, we used the procedure described

in [3], [12], [2]. For every cover image, we define the so-

called cell as a collection of 200 independent realizations

of Jsteg embedding (each with a different stego-key). In

order to analyze the tails of the EW distribution, one image

was randomly selected and we plotted the log-log empirical

cumulative distribution function (cdf) [27] of the estimates

β̂ together with their Gaussian fits – Figure 5 (left column).

Overall, the Gaussian fits the collected data well.

In order to study the between-image error EB , we remove

the normally distributed within-image error component by

averaging the estimates over individual cells. The log-log

empirical cdf plots of the resulting 3, 250 change-rate cell

averages are shown in Figure 5 (right column). This time, we

provide ML fits with a Gaussian distribution and the Student’s

t-distribution,11 separately for right and left tails. Unlike EW ,

the between-image error EB has thicker tails than the Gaussian

fit – they seem to follow the Student’s t-distribution. These

findings are in agreement with previously-published studies

of both error sources [3], [2].

V. CONCLUSIONS

This paper focuses on the steganographic algorithm Jsteg

as an archetype of methods that hide message bits in LSBs

of quantized DCT coefficients. Two different paradigms for

constructing quantitative steganalysis attacks are described

and further explored. The first one is a maximum likelihood

approach, in which the cover model is derived for each

stego image from a hypothetical precover source formed

from embedding invariants. While this approach is statistically

rigorous, its disadvantage is a rapidly-growing complexity

when incorporating higher-order cover models.

In an attempt to address the complexity issue, an alternative

heuristic methodology was introduced based on the concept

of a zero message hypothesis (ZMH). Instead of modeling

the cover source, all that is required is specifying a non-

negative penalty function that is approximately zero on covers

and that increases with embedding. The change rate is then

estimated by minimizing the penalty function using a simple

one-dimensional search. This approach is computationally

inexpensive and allows easy incorporation of even complicated

higher-order properties of covers. The modular architecture

also allows reformulating existing targeted (but not quantita-

tive) attacks in terms of the ZMH and, in doing so, convert

these attacks to quantitative ones. This was demonstrated

on the example of the category attack. Moreover, when the

penalty function is a weighted sum of squares of deviations

11The ML algorithm was performed w.r.t. both the scale and the degree-
of-freedom.
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Figure 3. Median absolute error (top), median bias (middle), and interquartile range (bottom) for all methods listed in Table I. The left column corresponds
to the database of small images and the right column to large images.



10

Method Description

ZP - Estimator of Zhang and Ping – formula (5). DC terms included.

ZP-noDC - Estimator of Zhang and Ping – formula (5) when DC terms are excluded.

ML - Histogram-based ML approach described in Section II-B. L = 3, R = 2

WB - Weighted Nonsteganographic Borders Attack [12]. We used author’s code written in R.

ZMH-Cat - Histogram-based ZMH framework using ZMH zcat(x) defined by (32). DC terms excluded. L = R = 4

ZMH-Sym - Histogram-based ZMH framework using ZMH zsym(x) defined by (35). DC terms excluded. L = R = 4

ZMH-Adj - ZMH framework based on the adjacency matrix (22) and zadj(A) defined in Section III-E. B = 3

SVR - Support vector regression [2] with 548 Cartesian-calibrated Pevný features [25].

Table I
LIST OF ALL QUANTITATIVE STEGANALYZERS INVOLVED IN EXPERIMENTS.
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Figure 4. Log-log empirical cdf plot of n1 (39). Left: n1 calculated from the whole histogram, Right: n1 calculated from the histogram after removing the
bins h

−4, h−3, . . . , h3, h4 around zero. Both tails are shown separately. The solid line represents the standard Gaussian distribution.

from the precover model, it is possible to optimize the penalty

function by leveraging upon the results derived for optimally-

weighted least squares steganalysis [23].

All quantitative steganalysis methods proposed in this paper

were experimentally evaluated on a database of 3,250 images

and compared to existing attacks. The accuracy of two selected

attacks was analyzed in more detail by estimating the between-

image and within-image error. The error distributions are

compatible with results previously published in the literature.

Overall, the heuristic approach based on ZMH provided better

results than the maximum likelihood method with a precover.

The most accurate estimator was obtained from a ZMH

that incorporated the adjacency matrix of DCT coefficients.

Its accuracy was comparable to the current state-of-the-art

method constructed using support vector regression with a

548-dimensional feature vector. Because the ZMH estimate

is only a function of the given stego image, this method

offers a much simpler implementation without the need for

a potentially expensive training phase.

Among future directions, we mention the possibility to

further improve the estimator accuracy by utilizing both intra-

block and inter-block dependencies between DCT coefficients

by modeling the relationship with Markov chains as in [28].

The fact that such models in their sampled form indeed lead

to more accurate blind steganalysis offers reasonable hope that

the same quantities and an appropriate ZMH will be useful for

quantitative steganalysis of Jsteg as well.

APPENDIX A

VERIFICATION OF PRECOVER ASSUMPTIONS

The purpose of this appendix is to verify four different

precover assumptions made in this paper. In all four cases,

the task is to confirm whether a sequence of samples s(i)

obtained across different images indexed by i are realizations

of a Gaussian random variable with known mean and variance:

s(i) ∼ N(µ(i), (σ(i))2). (37)

Provided hypothesis (37) is a valid statistical descriptor of s(i),
then n ∼ N(0, 1), where

n =
s(i) − µ(i)

σ(i)
. (38)

This normality assumption was tested on the database of 6, 500
(small) cover JPEG images described in Section IV using the

Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) test.

The former emphasizes the mid-values, while the latter puts
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Figure 5. Log-log empirical cdf plots of the within-image error EW (left column) and the between-image error EB (right column), together with their
Gaussian and Student’s t ML fits (for both right and left tails separately). The selected methods were the ZMH-Adj (top), ZP-noDC (bottom). All experiments
were conducted on the database of small images.

emphasis on the tails of the distribution. We also observed

log-log empirical cdf plots of n in order to visually verify the

Gaussianity of the tails.

A. Features of Zhang and Ping

The precover hypothesis states that the feature x1 follows

N(µ2, σ
2
2) with µ2 = 1

2 (C + x3) and σ2
2 = 1

4 (C + x3) (see

Section II-A). Applying the procedure described above, we

test whether

n1 =
x1 − µ2

σ2
∼ N(0, 1) (39)

across all 6, 500 images12. Figure 4 (left) shows a log-log

empirical cdf plot of n1, together with the reference standard

normal distribution. Figure 4 (right) shows the results of the

same experiment when the original quantities f0 and f1 (and

thus n1) were computed only from histogram bins away from

zero,. . . , h−k−2, h−k−1, hk+1, hk+2, . . . with k = 4. We will

12DC terms were excluded when calculating f0 and f1 (and thus n1), since
they violate histogram symmetry.

call this preprocessing operation as a histogram cut with

parameter k. The results indicate that the precover assumption

holds for bins farther from zero, while it does not hold when

all histogram bins are included.
In Figure 6, we show the p-values for K-S and A-D nor-

mality tests as a function of the histogram cut k = 0, . . . , 30,

together with the 0.05 confidence threshold. Both statistical

tests confirm the precover assumption for histogram cuts

with k ≥ 3. Note that normality cannot be confirmed for

cuts with k ≥ 25 due to lack of data. Figure 7 shows the

sample means and variances of n1, confirming further that (39)

follows a standard normal distribution. The see-saw character

of the sample mean indicates that natural images contain

more positive DCT coefficients than negative ones. This rather

strange phenomenon is explained by the presence of downward

vertical gradient in blue sky often present in outdoor images.

B. First-Order Statistics

In Section II-B, the precover assumption about the cover

DCT coefficients in an LSB pair [h2k, h2k+1] was formulated
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as h2k ∼ N(µ̄2k, σ̄
2
2k) with the parameters determined by (19)

and (20). Provided this model is a valid statistical description

of cover LSB pairs,

n2k =
h2k − µ̄2k

σ̄2k
∼ N(0, 1). (40)

This hypothesis was verified using the same methodology as

in the previous section and quantified using the K-S and A-D

normality tests applied to samples n2k for k ∈ {±1, . . . ,±15}.

The resulting p-values are shown in Figure 8. We conclude

that the precover hypothesis holds for pairs [h2k, h2k+1] with

|k| ≥ 2, at least as measured by the K-S test, while the A-D

test indicated non-Gaussianity for some values of k.

C. Histogram Symmetry

The precover assumption related to the cover-histogram

symmetry that appeared in Section III-D is

xk ∼ N
(

µ̂k, σ̂
2
k

)

.

The empirical verification of this hypothesis in terms of

the p-values of K-S and A-D tests (applied to its normalized

version) are shown in Figure 9. We conclude that even though

xk has an overall shape similar to Gaussian, it failed the
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Figure 8. P-values of two normality tests for n2k as a function of k ∈
{±1, . . . ,±15}.
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Figure 9. P-values for two normality tests of xk (after proper normalization),
where k = 1, . . . , 30.

Gaussianity test. For small values of k, xk failed the A-D

test (Gaussianity of tails), while for larger values of k, xk

failed the K-S test (Gaussianity of the mid-values).

D. Second-Order Assumption

The precover assumption for adjacency matrix coefficients

ai,j in Section III-E can be stated as ai,j ∼ N(µi,j , σ
2
i,j), with

its normalized version

ni,j =
ai,j − µi,j

σi,j

∼ N(0, 1). (41)

Again, the normality of ni,j was verified using the K-S and

A-D normality tests. The resulting p-values are shown in

Figure 10. While ni,j passed the K-S test for most of the

values from the considered area, it often failed the A-D test.

Therefore we cannot confirm Gaussianity, even though the

shape of mid-values is very close to the Gaussian distribution

(K-S test). Furthermore, we note that the coefficients lying on

the diagonal D1 = {ai,i} did not pass any of the two normality

tests. Being aware of the model mismatch, we nevertheless

adopt the model for all the coefficients in the considered area,

including those lying on D1. This is to avoid a significant loss

of data as the neighborhood of diagonal D1 contains a large

portion of DCT coefficients due to inter-block correlation.
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Figure 10. P-values of ni,j shown as shades of gray for i, j ∈ {−3, . . . , 3}. Left: K-S, Right: A-D test. Values smaller than 0.05 (in black) correspond to
rejecting the hypothesis (41). The crossed coefficients are not part of the precover assumption.
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