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Abstract

Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large,

diverse rodent toxicity endpoints. In this study, a comprehensive dataset of 7,385 compounds with

their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR

approach has been employed to develop robust and predictive models of acute toxicity in rats caused

by oral exposure to chemicals. To enable fair comparison between the predictive power of models

generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by

Komputer Assisted Technology), a modeling subset of the entire dataset was selected that included

all 3,472 compounds used in the TOPKAT’s training set. The remaining 3,913 compounds, which

were not present in the TOPKAT training set, were used as the external validation set. QSAR models

of five different types were developed for the modeling set. The prediction accuracy for the external

validation set was estimated by determination coefficient R2 of linear regression between actual and

predicted LD50 values. The use of the applicability domain threshold implemented in most models

generally improved the external prediction accuracy but expectedly led to the decrease in chemical

space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70.

Ultimately, several consensus models were developed by averaging the predicted LD50 for every

compound using all 5 models. The consensus models afforded higher prediction accuracy for the

external validation dataset with the higher coverage as compared to individual constituent models.

The validated consensus LD50 models developed in this study can be used as reliable computational

predictors of in vivo acute toxicity.

Keywords

acute toxicity; computational toxicology; LD50; oral exposure; QSAR; rat

1. Introduction

Chemical toxicity can be associated with many hazardous biological effects such as gene

damage, carcinogenicity, or induction of lethal rodent or human diseases. It is important to

evaluate the toxicity of all commercial chemicals, especially the High Production Volume

(HPV)1 compounds as well as drugs or drug candidates, since these compounds could directly
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affect human health. To address this need, standard experimental protocols have been

established by chemical industry, pharmaceutical companies, and government agencies to test

chemicals for their toxic potential. For example, a so called “Standard Battery for Genotoxicity

Test” was established by the International Conference on Harmonization, U. S. Environmental

Protection Administration (EPA), U. S. Food and Drug Administration (FDA) and other

regulatory agencies. This test includes one bacterial reverse mutation assay (e.g. Salmonella

typhimurium mutation test), one mammalian cell gene mutation assay (e.g., mouse lymphoma

cell mutation test) and one in vivo micronucleus test. The test battery varies slightly for

pharmaceutical compounds, industrial compounds, and pesticides. The current strategies and

guidelines for toxicity testing were described in a recent review (1).

Although the experimental protocols for toxicity testing have been developed for many years

and the cost of compound testing has been reduced significantly, computational chemical

toxicology continues to be a viable approach to reduce both the amount of effort and the cost

of experimental toxicity assessment (2). Significant savings could be achieved if accurate

predictions of potential toxicity could be used to prioritize compound selection for

experimental testing, especially for testing in vivo.

Many Quantitative Structure Activity Relationship (QSAR) models have been developed for

different toxicity endpoints to address this challenge (3–6). The summary of several models

reported in earlier publications on acute rodent toxicity are given in Table 1. There are several

shortcomings of earlier toxicity QSAR models that should be pointed out. Most of these studies

included a relatively small number of congeneric compounds and as a result, they had limited

applicability for compounds outside of the modeling set. Very few successful QSAR models

have been reported for predicting in vivo toxicity endpoints that are applicable to the diverse

compounds of environmental interest (5,7,8). For instance, Enslein and coworkers (9,10)

developed multi-linear regression models using large, diverse training sets (425 and 1851

chemicals, respectively) but these models had relatively poor external prediction power,

yielding an R2 value of 0.33 for the large test set.

Indeed, accurate prediction of toxicity for compounds that were not used for model

development is a very challenging problem. QSAR models are generally more applicable for

the analysis of small datasets of similar compounds with a simple mechanism of action (e.g.,

congeneric molecules binding to the same receptor or inhibiting the same enzyme) and less

accurate for larger dataset of compounds with complex mechanisms of action. Toxicity

prediction is a hard problem because there are multiple underlying mechanisms of action, and

the datasets studied in the context of a general end point (e.g., rat LD50) are large and chemically

diverse. Furthermore, QSAR models are developed by interpolating the training set data and

therefore they inherently have limited applicability outside of the training set. At the same time,

any external prediction implies inherent, and frequently, excessive extrapolation of the training

1Abbreviations:
AD, Applicability Domain;
HPV, High Production Volume;
kNN, k Nearest Neighbors;
LOO-CV, Leave-One-Out Cross-Validated;
MAE, Mean Absolute Error;
NIH, National Institutes of Health;
NIEHS, National Institute of Environmental Health Sciences;
NTP, National Toxicology Program;
QSAR, Quantitative Structure-Activity Relationship;
R2, coefficient of determination;
RF, Random Forest;
TOPKAT, Toxicity Prediction by Komputer Assisted Technology;
US EPA, U. S. Environmental Protection Agency;
US FDA, U. S. Food and Drug Administration;

Zhu et al. Page 2

Chem Res Toxicol. Author manuscript; available in PMC 2010 December 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



set models. Poor external predictive power of QSAR models could be due to the lack of or

incorrect use of external validation during the modeling process. Each statistical method used

in QSAR studies has its particular advantages, weaknesses, and practical constraints so it is

important to select the most suitable QSAR methodology for a specific toxicity endpoint. Thus,

the toxicity prediction challenge should be addressed very carefully using rigorous modeling

approaches and extensive model validation procedures.

Our recent studies of aquatic toxicity offered potential solutions to some of the above problems

(11). A combinatorial QSAR approach was applied to study an aquatic toxicity dataset

containing 983 diverse organic compounds tested against Tetrahymena pyriformis (11). To

explain our choice of methodology and terminology, any QSAR modeling effort requires a set

of chemical descriptors and a statistical optimization approach to develop the best correlation

between values of descriptors and those of biological activity. For any dataset there are several

sets of descriptors that could be calculated using different available software packages.

Similarly, there are multiple statistical modeling approaches that could be employed with any

of the descriptor sets. In the practice of QSAR modeling, there is no standard combination of

the descriptor type and model optimization approach that works best for all datasets. In addition

different QSAR methods usually use different definitions of applicability domain (or in most

cases do not use the applicability domain at all). Combinatorial QSAR modeling implies that

for a given experimental dataset we calculate several sets of descriptors and employ several

statistical modeling approaches forming all-against-all pairwise combinations of descriptor

sets and modeling techniques to develop multiple types of QSAR models. We require that each

model must satisfy certain validation criteria. As we demonstrated in the earlier study (11), the

consensus models had the highest external prediction power as compared to any individual

model used in the consensus prediction. Since the individual models can have differently

defined applicability domains, the consensus method can also afford greater chemical space

coverage as well.

In this paper, a similar combinatorial QSAR workflow was employed to study a much larger

and more chemically diverse dataset (arguably, the largest and most diverse in vivo toxicity

dataset ever reported in the public domain) containing 7,385 unique organic compounds with

experimentally determined oral rat acute toxicity. We have explored various QSAR approaches

in terms of their ability to develop robust and externally predictive models. The consensus

prediction integrating all validated individual models was found to be the most accurate (using

an external prediction set) when compared both to each individual model used in the consensus

approach and to a popular commercial software, TOPKAT. The consensus models developed

in this study could be used as reliable predictors of rodent acute toxicity for chemical

compounds. The models will be made available through the ChemBench web portal maintained

in our laboratory (http://chembench.mml.unc.edu).

2. Methods

2.1. Datasets

The rat LD50 data were collected from difference sources (12) to form a dataset including more

than 8,000 compounds. The structures of those compounds were verified using the approach

discussed by Young’s group (13). The quality of the data has been extensively reviewed over

the past several years. After removing inorganic and organometallic compounds, salts, and

compound mixtures, the final acute toxicity dataset included 7,385 unique organic compounds.

The original values of LD50 for each compound were expressed as mol/kg; these were

converted to log(1/(mol/kg)) values according to standard QSAR practices. Chemical

structures of all compounds and their experimental LD50 values used in this study are available

from the authors upon request.

Zhu et al. Page 3

Chem Res Toxicol. Author manuscript; available in PMC 2010 December 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://chembench.mml.unc.edu


This dataset was compared with the training set used to develop the rat acute toxicity predictor

available from the commercial Toxicity Prediction by Komputer Assisted Technology

(TOPKAT) software. It was found that 3,472 out of 7,385 compounds were included in the

TOPKAT rat LD50 training database. To enable direct comparison of external predictive power

for models generated in our studies vs. TOPKAT), these 3,472 compounds were used as the

modeling set and the remaining 3,913 compounds as the external validation set.

2.2. QSAR Modeling Approaches

2.2.1. Descriptors—Rat LD50 models for the 3,472 modeling set compounds were

developed with various types of chemical descriptors, including those from the Dragon

software v5.4 (14) and a set of descriptors developed previously by Martin and coworkers at

the US EPA (15). The latter set consisted of more than 800 descriptors in the following classes:

E-state values and E-state counts, constitutional descriptors, topological descriptors, walk and

path counts, connectivity, information content, 2D autocorrelation, Burden eigenvalues,

molecular properties (such as the octanol-water partition coefficient), Kappa, hydrogen bond

acceptor/donor counts, molecular distance edge, and molecular fragment counts. There were

overlaps between Dragon and EPA descriptors but both included unique types of descriptors

as well. The Dragon descriptors were used for the kNN and random forest methods and the

EPA descriptors were used for the hierarchical clustering, FDA MDL QSAR, and nearest

neighbor QSAR methods.

Initial use of Dragon yielded more than a thousand of chemical descriptors for the training set,

which were processed as follows. First, we removed all descriptors that had zero values or zero

variance for all modeling set compounds. Furthermore, redundant descriptors were identified

by analyzing correlation coefficients between all pairs of descriptors and if the correlation

coefficient between two descriptor types for all modeling set compounds was higher than 0.95,

one of them was removed. As a result, the total number of Dragon descriptors used for model

building was reduced to 454. The number of EPA descriptors used for model building (for the

hierarchical clustering and FDA MDL QSAR methods) varied depending on the size and

composition of the training set molecules that were used for model building.

2.2.2. kNN—The kNN QSAR method (16) employs the kNN classification principle and a

variable (i.e., descriptor) selection procedure. Briefly, a subset of nvar (number of selected

descriptors) descriptors is selected randomly at the onset of the calculations. The nvar is set to

different values and the training set models are developed with leave-one-out cross-validation,

where each compound is eliminated from the training set and its LD50 value is predicted as the

average activity of k most similar molecules, where the value of k is optimized as well (k = 1

to 5). The similarity is characterized by Euclidean distance between compounds in

multidimensional descriptor space. A method of simulated annealing with the Metropolis-like

acceptance criteria is used to optimize the selection of descriptors. The objective of this method

is to optimize nvar and k values to obtain the best leave-one-out cross-validated q2
abs, i.e.,

q2 with the intercept set to zero, possible by optimizing the nvar and k. The additional details

of the method can be found elsewhere (16).

In developing kNN QSAR models we followed our general predictive QSAR modeling

workflow methodology (17), that places special emphasis on model validation. Briefly, we

start by dividing the original dataset randomly into a (bigger) modeling set and a (smaller)

external validation set; the latter is not used for model development at all and the former is

designated as a modeling set. The modeling set compounds are divided multiple times into

training/test sets using the Sphere Exclusion approach (18) that ensures that both training and

test sets are chemically diverse The models are developed using training set data and their

performance is characterized with the standard leave-one-out cross-validated (LOO-CV) R2
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(q2) for the training sets and the conventional coefficient of determination R2 for the test sets;

this coefficient is determined for a regression that is forced through the origin of the

experimental vs. calculated LD50 plot. The model acceptability threshold values of the LOO-

CV accuracy of the training sets and the prediction accuracy for test sets were both set at no

less than 0.5. Models that did not meet both training and test set cutoff criteria were discarded.

Models that passed these threshold criteria were used to predict LD50 values of the external

validation set to assure their external predictive power as discussed in the Results section. The

detailed discussion of the workflow used to develop validated QSAR models can be found in

a recent review (19).

2.2.3. Random Forest—In machine learning, a random forest is a predictor that consists of

many decision trees and outputs the prediction that combines outputs from individual trees.

The algorithm for inducing a random forest was developed by Breiman and Cutler (20). In this

study, the implementation of the random forest algorithm available in R.2.7.1 (21) was used.

In the random forest modeling procedure, n samples are randomly drawn from the original

data. These samples were used to construct n training sets and to build n trees. For each node

of the tree, m descriptors were randomly chosen from the total 454 Dragon descriptors. The

best data split was calculated using these m descriptors for each training set. In this study, only

the defined parameters (n = 500 and m = 13) were used for the model development.

2.2.4. Hierarchical Clustering—The hierarchical clustering method utilizes a variation of

the Ward’s Minimum Variance Clustering Method (22) to produce a series of clusters from

the initial training set. For a training set of n chemicals, initially there will be n clusters. At

each step in the clustering process, two clusters are combined so that the increase in variance

over all the clusters in the system is minimized. The change in variance caused by combining

clusters j and k is as follows:

[1]

where nj = number of chemicals in cluster j, Cj,i is the centroid (or average value) for descriptor

i for cluster j, and d is the number of descriptors in the EPA pool of descriptors (~800) (15).

The process of combining clusters while minimizing variance continues until all of the

chemicals are lumped into a single cluster. After the clustering is complete, each cluster is

analyzed to determine if an acceptable QSAR model can be developed. A genetic algorithm

technique is used to select descriptors to build a multi-linear regression model for each cluster

(15). Similar to the kNN approach, each model must achieve a LOO-CV accuracy of 0.5 to be

used in making predictions. The predicted value for a given test chemical is calculated using

the equally weighted average of the model predictions from the closest cluster from each step

in the hierarchical clustering. This method was previously shown to yield the best results for

another acute toxicity endpoint, IGC50 (50% inhibitory concentration of population growth)

of Tetrahymena pyriformis (15).

2.2.5. FDA MDL QSAR Method—A QSAR methodology (denoted here as the FDA MDL

QSAR method) based on the studies of Contrera et al. (23) was developed earlier (15). For

each test chemical, a cluster is constructed using the thirty most similar chemicals from the

training set as defined by the cosine similarity coefficient, SCi,k, which is calculated as follows
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[2]

where xij is the value of the jth normalized descriptor for chemical i (normalized with respect

to all the chemicals in the original training set) and xkj is the value of the jth descriptor for

chemical k. The entire pool of approximately 800 EPA descriptors is used to calculate the

similarity coefficient in equation 2. A multiple linear regression model is then built for the new

cluster using a genetic algorithm based method and the toxicity is predicted.

2.2.6. Nearest Neighbor Method—The nearest neighbor method is a simplification of the

variable selection kNN approach described above. In the nearest neighbor method, the toxicity

is simply predicted as the average of the toxicity of the three most similar chemicals from the

training set. The similarity is defined in terms of the cosine similarity coefficient (Equation 2).

In the nearest neighbor method, the entire available descriptor pool is used to characterize

molecular similarity (as opposed to a subset of the descriptor pool as in the descriptor selection

kNN method). In order to make a prediction, each of the neighbors in the training set must

exceed a minimum cosine similarity coefficient of 0.5.

2.3. Identification of Outliers in the Dataset

A common problem for most QSAR studies is the existence of compounds that are highly

dissimilar to all other compounds in the dataset. These compounds are regarded as outliers in

the descriptor space and are likely to present problems in establishing SAR trends, which is

critical to QSAR modeling. In this study, we have identified and excluded the structural outliers

from the modeling at the beginning of the modeling procedure.

For kNN and random forest modeling procedures, we have developed a method to detect

outliers that are dissimilar to other compounds of the dataset in the descriptor space. This

procedure included the following steps. 1) calculation of the distance or similarity matrix based

on the Dragon descriptors of compounds in the descriptor space; 2) finding the nearest

neighbors for all compounds in the dataset based on a predefined similarity threshold; 3)

identifying those compounds that have no nearest neighbors as outliers.

In order to measure similarity, each compound i is represented by a point in the M-dimensional

descriptor space (where M is the total number of descriptors) with the coordinates Xi1, Xi2, …,

XiM, where Xis (s=1 ,…,M) are the values of individual descriptors. The molecular dissimilarity

between any two molecules i and j is characterized by the Euclidean distance between their

representative points. The Euclidean distance dij between points i and j in M-dimensional space

can be calculated as follows (Eq. 3):

[3]

Compounds with the smallest distance between them are considered to have the highest

similarity. The distances (dissimilarity) of compounds in our modeling set are compiled to

produce a chemical similarity threshold DT, calculated as follows (Eq.4):
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[4]

Here, ȳ is the average Euclidean distance between all compounds and their k nearest neighbors

(k was set to 1 in this procedure) of each compound within the modeling set, σ is the standard

deviation of these Euclidean distances, and Z is an arbitrary parameter to control the threshold

level and was set to 0.5 in this study. The DT threshold is used to identify outliers as follows.

If the distance of a compound to its nearest neighbor in the modeling set exceeds this threshold,

this compound is considered an “outlier” and excluded from the modeling set. After excluding

997 structural outliers, the remaining 2,475 modeling set compounds were compiled as a new

reduced modeling set to develop kNN and random forest toxicity models.

It is important to point out that the identification and exclusion of outliers is based only on

consideration of chemical similarity but not activity. Thus, the removal of structural outliers

could be regarded as a pre-treatment of the modeling set using objective chemometric

approaches.

For the hierarchical and FDA MDL QSAR methods, a chemical is removed from a cluster if

it is both an influential data point (determined by at least two statistical tests, e.g. DFFITS,

leverage, Cook’s distance, and covariance ratio) and an outlier (determined from studentized

deleted residual). The details of these procedures are given elsewhere (24).

2.4. Model Applicability Domains

Defining model Applicability Domains (AD) is an active area of modern QSAR research

(25,26). Every QSAR model can formally predict the relevant target property for any compound

for which chemical descriptors can be calculated. However, since each model is developed

using compounds in the training set only (that cover only a small fraction of the entire chemistry

(i.e., descriptor) space) the special applicability domain for each model should always be

defined. As a consequence, only a certain fraction of compounds in any external dataset is

expected to fall within the AD. This fraction is therefore referred to as the dataset coverage.

There are several discussions about model AD in a recent publication (27). In this study, we

present a detailed discussion concerning the effect of the AD on model predictivity using much

larger modeling/validation sets than any other reported in the literature including our own

previous publications.

2.4.1. Applicability Domain of kNN and Random Forest—The AD of kNN and

Random Forest models is calculated from the distribution of similarities between each

compound and its k nearest neighbors in the training set (similarities are computed as Euclidean

distances between compounds represented by their multiple chemical descriptors). Based on

the previous studies, the standard cutoff value to define the applicability domain for a QSAR

model places its boundary at one-half of the standard deviation calculated for the distribution

of distances between each compound in the training set and its k nearest neighbors in the same

set. Thus, if the distance of the test compound from any of its k nearest neighbors in the training

set exceeds the threshold, the prediction is considered unreliable. The detailed description of

the algorithm to define this AD is given elsewhere (18,28).

2.4.2. Applicability Domain of the Hierarchical method—Before any cluster model

can be used to make a prediction for a test chemical, it must be determined whether the test

chemical falls within the AD for the model. The first constraint, the model ellipsoid constraint,

checks if the test chemical is within the multidimensional ellipsoid defined by the ranges of

descriptor values for the chemicals in the cluster (for the descriptors appearing the cluster

model). The model ellipsoid constraint is satisfied if the leverage of the test compound (h00)
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is less than the maximum leverage value for all the compounds used in the model (29). The

second constraint, the Rmax constraint, checks if the distance from the test chemical to the

centroid of the cluster is less than the maximum distance for any chemical in the cluster to the

cluster centroid. The final constraint, the fragment constraint, stipulates that the chemicals in

the cluster must contain at least one example of each of the fragments that are present in the

test chemical (15).

2.4.3. Applicability Domain of the FDA MDL QSAR method—For the prediction from

the cluster model to be valid, several constraints must be met. The first two constraints are the

model ellipsoid and fragment constraints described above. The final constraint is that the

predicted toxicity value must be within the range of experimental toxicity values for the

chemicals used to build the model (15).

2.4.4. Applicability Domain of the Nearest Neighbor Method—For a prediction from

the nearest neighbor method to be made, there must be three chemicals in the training set which

are sufficiently similar to the test chemical (the similarity coefficient between each chemical

and the test chemical in equation 1 must exceed 0.5).

3. Results and Discussions

3.1. Individual LD50 Models

The statistical parameters of predictions for the external validation set obtained from all five

QSAR models developed in this study as well as using TOPKAT are shown in Table 2. It is

difficult to compare all models side by side because the underlying approaches used different

definitions of AD and therefore the statistical results are shown for external datasets of different

sizes. Indeed, these initial results suggest that the prediction accuracy and chemical space

coverage are tightly interlinked and in general, as expected, higher accuracy is obtained for

smaller external datasets within the AD of each model. Models with the most liberally defined

AD (and consequently, the highest coverage), i.e., NN and FDA MDL QSAR had the lowest

R2 and the highest MAE followed by TOPKAT and Hierarchical Clustering that had

progressively higher R2 values (although similar MAE) and smaller coverage. Nevertheless,

for these four models the absolute R2 values were relatively low, i.e., under 0.5. Only two

models (kNN and RF) afforded R2 higher than 0.50 and MAE lower than 0.50 for the external

validation set but the external dataset coverage of these two models is the lowest (19%) among

all models. It could be argued that for this dataset (and perhaps for any large and diverse dataset)

it is critical to define a rather restrictive AD in order to achieve most accurate predictions as

discussed in more detail below.

3.2. Effect of the Model Applicability Domain

All five QSAR approaches implemented method-specific AD except kNN and RF models,

which used the same definition of AD. On average, the use of AD improved the performance

of individual models although the improvement came at the expense of the lower chemical

space coverage. The direct comparison between individual models appears difficult due to

different definitions of AD and different interplay between coverage and accuracy for relevant

models.

Figure 1 shows the distribution of MAE values for the prediction of external validation set for

TOPKAT, five individual models and consensus model developed in this study (see additional

discussion of the consensus model below) that used the AD for three compound sets: all external

compounds; those located within the AD of each model; and those outside of AD. Notably, all

models showed similar predictivity when applied to the entire external set but the effect of AD

was indeed model-specific. Six (TOPKAT, kNN, RF, Hierarchical Clustering, FDA MDL
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QSAR and consensus) out of seven QSAR models that used the AD showed the improvement

in the prediction accuracy for external validation set as a result of excluding those compounds

outside of the AD. The result of NN practically did not change after applying the AD criteria.

This is not surprising given that there were only very few compounds that were outside of the

structural AD in this model.

The different predictivity of the external validation set obtained from five QSAR models does

not necessarily indicate that statistical approaches or descriptors used to develop these models

have greatly different predictive power for this specific toxicity endpoint. It is noticeable that

the resulting predictive accuracy strongly correlates to the model coverage that is decided by

the model applicability domain. Once a more restrictive AD was applied, the predictive

accuracy improved significantly (Table 2). For this reason, it is interesting to study the

performance of each model when the same model applicability domain was implemented.

Since only a small number of compounds were out of the ADs of NN and FDA MDL QSAR

models, the remaining two model applicability domains (ADs of Hierarchical Clustering and

kNN/RF) and the AD of TOPKAT were used to study the prediction accuracy of each model

under the same prediction coverage (Table 3).

When using the same model applicability domain, the prediction coverage of the external

prediction set obtained from each individual QSAR models are almost but not exactly the same.

This is because there are some compounds (less than 1% of the total external compounds)

which cannot be predicted using the Hierarchical clustering method even if all the constraints

are relaxed. At similar levels of prediction coverage, the individual predictions using models

generated in this study are similar to each other. Interestingly, the results generated using all

models are approximately the same (in terms of R2 and MAE) when using TOPKAT defined

AD, with kNN method arguably showing slightly better performance. However, somewhat

surprisingly, with the decrease of the chemical space coverage most of the individual models

developed in this study appear increasingly superior to TOPKAT (Table 3). It may be

concluded that the prediction accuracy is not sensitive to the statistical approaches employed

in this paper but strongly depends on the model applicability domain. Again, as noted above,

it could be concluded that the higher accuracy of prediction comes at the expense of reducing

the chemical space coverage.

3.3. Compounds that Can Not Be Correctly Predicted by Individual Models

There are some compounds that could not be predicted accurately by any of the five individual

models. Using MAE > 1.0 as criteria, there are 520 validation set compounds with large

prediction errors for any of the individual models. Some specific chemical scaffolds could be

identified from these 520 compounds. These scaffolds and the comparison between the average

LD50 values of the associated compounds in the modeling set, external validation set and those

validation set compounds that have large prediction errors are listed in Table 4. The average

LD50 value of these compounds is 3.4, and it is much higher than that of the compounds in the

modeling set (2.47). Therefore, the relatively small fraction of compounds with high values of

acute toxicity in the modeling set is a potential reason of the low prediction accuracy for these

520 compounds.

Ten out of 17 steroid-like compounds in the validation set have large prediction errors. As

shown in Table 4, the five steroids in the modeling set have lower acute toxicity (average

LD50 = 2.5) than these ten compounds (average LD50 = 4.6). A similar observation is true for

the esters. Compounds with the same scaffolds and high acute toxicity need to be added into

the modeling set to accurately predict these types of compounds. On the contrary, all five

dioxins in the validation set have much lower toxicity (average LD50 = 5.1) than those three

in the modeling set (average LD50 = 8.2). Therefore, dioxins with lower acute toxicity need to

be added to the modeling set to accurately predict this type of compounds. There is no clear
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difference between the average LD50 value of 49 thiophosphates with large prediction errors

in the validation set and the 285 thiophospates in the modeling set. However, the activity range

of these 49 thiophosphates in the validation set is from 1.2 to 6.3, which is much larger than

the activity range of 285 thiophospates in the modeling set, which is from 1.6 to 5.4. For this

reason, thiophosphates with both high and low acute toxicity values need to be added to the

validation set to improve the model predictivity for this type of compounds. These results

indicate the existing shortcomings of the TOPKAT LD50 modeling set. Apparently, the

modeling set should be balanced not only in terms of chemical diversity of compounds but

also their activity distribution to afford higher external accuracy of models.

3.4. Consensus Modeling

The statistical results obtained with individual models indicate that different modeling

techniques may have different advantages for predicting the rat oral LD50 of organic

compounds. Although the performance of our individual models are comparable or slightly

better than that of TOPKAT, it is difficult to judge which model is better than others and which

model should be chosen to predict rat acute toxicity potential of new compounds. For this

reason, following a strategy that was proven successful in our previous studies (11) a simple

consensus model was developed that integrated all of the individual models. In this approach,

the LD50 value for each compound is predicted as the arithmetic average of all LD50 values

predicted by individual models taking into account the model applicability domains. Note that

additional averaging schemes giving, e.g., different weights to different contributing models

could be used in principle. However, there has not been sufficient research in the QSAR

modeling community into looking for the most optimal scheme for the ensemble QSAR

modeling. Thus, we chose the simplest approach in this study. The detailed comparison

between consensus predictions and those of other models when using the same AD is listed in

Table 3. The data clearly demonstrate that the predictive accuracy of consensus model is higher

than that for any individual model. In addition, we used the Wilcoxon test to calculate the p-

values for the differences in MAEs obtained by consensus prediction vs. individual methods.

Under almost all conditions, the improvement achieved by consensus prediction, compared

with any individual model, is statistically significant (p < 0.01) and the only exception is when

comparing consensus prediction with RF for the 743 compounds in the applicability domain

of RF models (p=0.4).

From the discussion above, it is clear that the AD is an important factor that affects the

predictive accuracy of each individual model. In the consensus prediction, model applicability

domain was implemented by introducing the concept of “consensus prediction fraction”. Since

the consensus prediction is the average of predictions using all five models, the fraction of the

prediction could be defined as the number of individual model predictions that are available

to predict a new compound (due to the AD limitations). Thus, if only one model could predict

a compound, the consensus prediction fraction is 20% for this compound. If all 5 models could

make the prediction, the prediction fraction of the consensus model is 100%. Different cutoff

values for the prediction fraction could be set to get different prediction accuracy (and different

coverage) based on this threshold. Figure 2 shows the change of prediction accuracy of external

set, which is indicated by R2 and MAE, obtained by consensus prediction with different fraction

cutoff values (Figure 2). For comparison, the TOPKAT prediction for the same external

compounds is also shown in the same Figure 2. Increasing the prediction fraction level

increased the prediction accuracy but decreased the prediction coverage. Figure 3 shows the

relationship between experimental and consensus-predicted LD50 values when the prediction

fraction is 80%. The compounds outside of the AD in this consensus prediction are also shown

(Figure 3). Obviously, the removal of outliers improves the correlation. Furthermore, it is also

interesting to compare the prediction coverage and accuracy that is indicated by R2 and

MAE. Figure 4 shows the inverse correlation between the coverage and R2 (or direct correlation
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between the coverage and MAE) for all individual models (including TOPKAT) and consensus

model (including the results of different prediction fractions). It is clear that the prediction

accuracy obtained by this consensus model is higher than that for any individual model under

any conditions (Figure 4).

A further understanding of the predictive ability of the models used in this study can be obtained

by analyzing compounds for which consensus prediction gave higher accuracy than any of the

individual models. It is clear that if all five individual models make similar predictions for a

compound, the value from consensus prediction will be similar to any of those generated with

individual models. The possible improvement of the prediction accuracy due to the use of

consensus prediction could be achieved when the individual predictions are different. Table 5

lists ten compounds, which have the most significant difference between individual predictions.

There are many external validation set compounds (such as #1, #4, #5 and #9 in Table 4) whose

individual LD50 predictions include one value with a large deviation from the others, which is

usually the one that has the largest prediction error. Therefore, by taking the average for

consensus prediction, we could compensate for the large error of such individual result.

On the other hand, the compounds #2, #3, #6, #7, #8 and #10 show large errors for the majority

of their individual predictions. The consensus model is able to make accurate prediction, such

as for compound #8, or prediction with moderate error, as for the remaining compounds in the

Table, because individually predicted LD50 values are both lower and higher than the

experimental LD50 value so that the errors to some extent cancel each other. The differences

in model predictions arise because they use different descriptors and/or different modeling

methods, which could model different aspects of toxicological affects. Thus, the consensus

modeling allows for these different affects to be incorporated into a single (and on average,

more accurate) prediction.

4. Conclusions

Several QSAR approaches have been used to develop toxicity models of the largest available

set of diverse organic compounds tested for the oral acute toxicity in rats. The resulting models

(for the most part incorporating specific applicability domains) were validated by predicting

the toxicity of a large external validation set. It was observed that all models showed somewhat

different but comparable performance for the validation set when compared to the commercial

toxicity predictor TOPKAT. Formally, the highest accuracies were achieved by kNN and RF

approaches (R2 = 0.66 and 0.70, respectively) but this required a decrease in space coverage

(to ca. 19%). However, when the same model applicability domain was implemented, the

individual models showed similar performance as applied to the validation set. Here, the use

of applicability domain improved the prediction accuracy using individual models but

decreased the predictive coverage of the validation set. Notably with the decrease of the

prediction coverage models developed in this study showed slightly higher prediction accuracy

as compared to TOPKAT.

The most significant result of our studies is the demonstrated superior performance of the

consensus modeling approach when all models are used concurrently and predictions from

individual models are averaged (see Figure 1)‥ The predictive accuracy of the consensus

QSAR models was shown to be superior to any individual model when predicting the same set

of external compounds. By using different cutoff values for the prediction fraction, trade-offs

between the accuracy and the coverage of consensus prediction results can easily be seen. The

predictivity of consensus models was found to be superior to that of TOPKAT when predicting

the same external compounds. Finally, these studies indicated that a well organized modeling

set that covers not only a broad chemical space but also broad activity ranges of major chemical
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scaffolds in this chemical space is necessary to develop successful QSAR toxicity predictors.

Additional studies of this dataset are ongoing and will be reported in the future. All successful

models reported in this paper will be made available via the ChemBench web portal

(http://chembench.mml.unc.edu). Meanwhile, interested researchers can send us any

compounds of interest for LD50 prediction.
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Figure 1.

The MAEs of seven QSAR models for the external validation set. The AD of consensus model

was defined when the 80% prediction fraction was applied (see text for additional discussion).
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Figure 2.

The prediction of external compounds by consensus model and TOPKAT with different

consensus prediction fraction levels.
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Figure 3.

The correlation between experimental and consensus-predicted LD50s when the consensus

prediction fraction is 80% (i.e., compounds are within AD of four or more individual models).
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Figure 4.

The relationship between prediction coverage and (a) R2 or (b) MAE for the external

compounds.
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Table 2

Statistical results obtained with all QSAR models for the external validation set of 3913

compounds.

Models
R2 MAE

Coverage
(%)

kNN 0.66 0.44 19

RF 0.70 0.41 19

Hierarchical Clustering 0.41 0.58 66

NN 0.24 0.61 97

FDA MDL QSAR 0.29 0.60 95

TOPKAT 0.35 0.59 74
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