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Abstract: From a series of 50 MK801 derivative molecules, a selected set of 44 compounds 
was submitted to a principal components analysis (PCA), a multiple regression analysis 
(MRA), and a neural network (NN). This study shows that  the compounds' activity 
correlates reasonably well with the selected descriptors encoding the chemical structures. 
The correlation coefficients calculated by MRA and there after by NN, r = 0.986 and r = 
0.974 respectively, are fairly good to evaluate a quantitative model, and to predict activity 
for MK801 derivatives. To test the performance of this model, the activities of the remained 
set of  6 compounds are deduced from the proposed quantitative model, by NN. This study 
proved that the predictive power of this model is relevant. 

Keywords: structure-activity relationships, noncompetitive antagonists, MK801 derivatives, 
NMDA receptor, principal components analysis (PCA), multiple regression analysis 
(MRA), neural network (NN). 

 

Introduction 

The excitatory amino acids' receptors are implicated in the pathology of neurological and 
neurodegenerative disorders such as epilepsy, Huntington’s and Alzheimer's diseases, schizophrenia, 
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etc. [1-3]. Among the attempts to discover neuroprotective agents, one is directed towards the search 
of noncompetitive antagonists of the NMDA receptor. The discovery that MK801 is a selective 
noncompetitive antagonist of the NMDA subclass of receptors, for the excitatory amino acid L-
glutamic acid, in brain tissue, has provided insight into the underlying mechanism of the 
anticonvulsant action [4]. Based on the hypothesis that there exists an active common structure in the 
central nervous system consisting of an aromatic group  and nitrogen atom, several geometric models 
have been proposed. In these models, the receptor sites have been localized and several authors tried to 
describe geometrically the interaction mode [5-12]. In a previous study we have proved that the 
pharmacophore is conform to one of MK801 configurations [13]. 

In this work we attempt to establish a quantitative structure - activity relationship for 
noncompetitive antagonists of NMDA receptor by studying a selected series of 44 MK801 derivatives 
(dibenzo [a,d] cycloalkenimines) from 50 compounds [4]. We accordingly propose a quantitative 
model, and we try to interpret the activity of the compounds relying on the multivariate statistical 
analyses. The principal components analysis (PCA) has served to classify the compounds according to 
their activities and to give an estimation of the values of the pertinent descriptors that govern this 
classification. The multiple regression analysis (MRA) has served to select the descriptors used as the 
input parameters for a back propagation network (NN). This linear method (MRA) has served also to 
predict activities, but when compared with the results given by the NN, we realized that the predictions 
fulfilled by this latter were more effective. To test the performance of this model we have used the 
cross validation method, thereafter, the activities of the remained set of 6 compounds are deduced from 
the proposed quantitative model with NN. 

 
 

Methods and Equipment 

So as to determine a quantitative structure - activity relationship for noncompetitive antagonists of 
NMDA receptor, we achieved our study on a series of 50 molecules that have been synthesized and 
evaluated for their ability to displace MK801from its specific binding site on rat cortical membranes 
(Ki) and for their antagonist activity to the NMDA receptor, as demonstrated by Thompson et al. [4]. 
44 molecules are selected to propose the quantitative model (training set), and 6 compounds that have 
been selected randomly, have served to test the performance of the proposed model (test set). All these 
MK801 derivative molecules (Figure 1) are described by their substituents R1, R2, R3, R4, R5, R6 and 
R7, (Table 1 and Table 5). In reality, Thompson et al. proposed 73 compounds. The remained 
compounds have structures different of that required for this study (Figure 1). 
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Figure 1. The general structure of studied compounds' series (MK801 derivatives). 

 
 
In this work the activity will be expressed in the logarithmic form (logKi). The pharmacological 

activity Ki has been expressed in µM [4]. In the cases where Ki has been given in an interval, we have 

retained the minimum value. Values of logKi are divided into three parts, the activity is considered 
raised, when logKi ranged from -2 to -1, average when logKi ranged from -1 to 0.114, and weak when 
logKi is > 0.114. The study that we have achieved consists of a principal components analysis (PCA) 
with the aid of a software called STATLAB.2 [14], a multiple regression analysis (MRA) available in 
a software called SYSTATW5 [15], and a neural network available in a software called MATLAB 
[16]. 

To describe molecules we have chosen the properties that could have a role in the interaction of a 
molecule with the site receptor. For example the size can be a determinant factor of the activity for a 
molecule; in fact if the size of a molecule is not suitable for the site receptor the interaction with the 
receptor becomes impossible. The hydrogen bonding and the electronegativity are also important for 
the activity because to interact with a receptor, a hydrogen bonding can be formed. An interaction 

between phenyls is also possible using the π electrons of phenyls. The lipophlicity as it is known is an 

important property for the activity. 
The physico-chemical parameters used then to describe molecules are as follow: the molecular 

weight (MW), the Van der Waals volume (VW) [17], the substituent length (L), electronic parameters 
as the electronegativity (EN) [18], the molar refraction (MR) [19], hydrogen bonding acceptor (HBA) 
[20] and donor (HBD) [20], the lipophilicity represented by fragmental constants (fi) [21-23], and 
finally the functionality Fpi [24,25]. These 9 physico-chemical parameters were calculated for the 7 
substituents (R1,…,R7), for each molecule (63 descriptors). Five descriptors, Fpi(R1, R2, R4, R6, and 
R7), having a singular matrix (all their values are null or, are all the same), were eliminated. Overall, 
58 descriptors were exploited to study and explain the structure-activity relation. 
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Table 1. The chemical structure of the studied compounds, the values of observed logKi (logKi-obs) 
corresponding to reference [4], and the values of predicted logKi (logKi-mra and logKi-nn) calculated 
using MRA and NN respectively. 
N° R1 R2 R3 R4 R5 R6 R7 ki. µM logKi-obs logKi-mra logKi-nn 
1 H CH3 CH3 H H H H 0.610 -0.215 -0.004 -0.219 
2 H H CH3 H H H H 0.056 -1.252 -1.605 -1.232 
3 CH3 CH3 CH3 H H H H 0.710 -0.149 -0.210 -0.138 
4 H OH CH3 H H H H 19.000 1.279 1.411 1.279 
5 H H CH2CH3 H H H H 0.045 -1.347 -1.299 -1.200 
6 H CH2CH3 H H H H H 24.000 1.380 1.313 1.375 
7 OH OH CH2CO2ET H H H H 4500.000 3.653 3.525 3.653 
8 OH H CH2CO2ET H H H H 3.600 0.556 0.509 0.735 
9 H H CH2CH2OH H H H H 0.260 -0.585 -0.850 -0.485 
10 H H CH2CO2ET H H H H 0.550 -0.260 -0.263 -0.637 
11 H H CH(OH)CH2OH H H H H 0.320 -0.495 0.288 -0.118 
12 H H CH2OH H H H H 0.350 -0.456 -1.143 -0.580 
13 H H CH2F H H H H 0.160 -0.796 -0.882 -0.590 
14 H H CH2CH2F H H H H 0.174 -0.759 -0.583 -1.005 
15 H H CH2SC6H5 H H H H 73.000 1.863 2.107 1.778 
16 H H CH2S(O)C6H5 H H H H 160.000 2.204 2.101 2.492 
17 OH H CH3 H H H H 0.077 -1.114 -0.833 -0.944 
18 F H CH3 H H H H 0.930 -0.032 -0.195 0.017 
19 H H CH=CH2 H H H H 0.087 -1.060 -1.066 -1.167 
20 OH H CH2CO2H H H H H 280.000 2.447 2.340 2.377 
21 OH H CH2CONH2 H H H H 6.400 0.806 0.892 0.506 
22 Cl H CH2CO2H H H H H 4500.000 3.653 3.710 3.594 
23 Cl H CH2CONH2 H H H H 90.000 1.954 2.262 2.032 
24 H H CH(OH)CO2H H H H H 1000.000 3.000 2.694 2.859 
25 Cl H CH2CH2Cl H H H H 53.000 1.724 1.606 1.671 
26 H H CH3 H H Cl H 0.084 -1.076 -1.260 -1.407 
27 H H CH3 H Cl H H 0.011 -1.959 -1.605 -1.232 
28 H H CH3 H H Br H 0.180 -0.745 -0.815 -0.745 
29 H H CH3 H H OCH3 H 0.036 -1.444 -1.305 -1.407 
30 H H CH3 H H OH H 0.023 -1.638 -1.445 -1.407 
31 H H CH3 H NH2 H H 0.027 -1.569 -1.485 -1.407 
32 H H CH3 H Br H H 0.080 -1.097 -1.605 -1.232 
33 H H CH3 H I H H 0.011 -1.959 -1.605 -1.232 
34 H H CH3 H OCH3 H H 0.046 -1.337 -0.861 -1.406 
35 H H CH3 H OH H H 0.018 -1.745 -1.637 -1.407 
36 H H CH3 H CH2OH H H 0.137 -0.863 -1.113 -1.406 
37 H H CH3 H CH3 H H 0.034 -1.469 -1.233 -1.407 
38 H H CH3 H (CH2)3CH3 H H 1.250 0.097 -0.117 -0.699 
39 H H CH3 H C6H5 H H 0.032 -1.495 -1.491 -0.699 
40 H H CH3 OCH3 H H H 0.610 -0.215 -0.272 -1.232 
41 H H CH3 H H H OCH3 0.033 -1.481 -1.605 -1.232 
42 H H CH3 OH H H H 0.277 -0.558 -0.487 -1.232 
43 H H CH3 H H H OH 0.049 -1.310 -1.605 -1.232 
44 H H CH3 H F F H 0.031 -1.509 -1.425 -1.407 
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Results and Discussion 

Principal Components Analysis 
The totality of the 58 descriptors (variables) coding the 44 molecules was submitted to a principal 

components analysis (PCA). Thirty-five principal components were obtained. The first three axes F1, 
F2, and F3 contributing respectively 25.4%, 15.7% and 13.29% to the total variance, were sufficient to 
describe the information represented by the data set. Table 2 shows the descriptor's contributions to F1, 
F2, and F3. Except for VW(R2) and MR(R2), which do not contributed to any principal component, all 
descriptors contribute to F1. The descriptors of R3, R1, and R5 have the most significant contributions 
to F1. On the other hand, there was no significant difference between descriptors' contributions to F2 
and F3 except for the descriptors of R5 that contribute to F3 but not to F2. 

 
 

Table2. The descriptor's contributions to the first three principal components F1, F2, and F3. The 
contributions are classified in increasing order for F1. 
Descriptor F1 F 2 F 3 Descriptor F 1 F 2 F 3 
EN(R3) 0.073 0.000 0.000 Fi(R5) 0.007 0.000 0.022 
L(R3) 0.069 0.000 0.000 Fpi(R5) 0.006 0.000 0.025 
MW(R3) 0.069 0.000 0.000 MR(R6) 0.006 0.000 0.000 
VW(R3) 0.063 0.000 0.000 MW(R6) 0.006 0.000 0.001 
HBA(R3) 0.062 0.000 0.000 HBA(R7) 0.006 0.090 0.042 
MR(R3) 0.056 0.000 0.000 HBA(R4) 0.006 0.067 0.085 
EN(R1) 0.044 0.000 0.000 EN(R7) 0.005 0.090 0.042 
HBA(R1) 0.043 0.000 0.000 EN(R4) 0.005 0.067 0.065 
VW(R1) 0.037 0.000 0.000 MW(R7) 0.005 0.089 0.041 
MW(R1) 0.035 0.000 0.000 MW(R4) 0.005 0.066 0.085 
Fi(R1) 0.035 0.000 0.000 L(R7) 0.005 0.088 0.041 
HBD(R1) 0.034 0.000 0.000 L(R4) 0.005 0.065 0.064 
L(R1) 0.033 0.000 0.000 VW(R7) 0.005 0.083 0.038 
Fpi(R3) 0.030 0.000 0.000 VW(R4) 0.005 0.061 0.060 
MR(R1) 0.027 0.000 0.000 MR(R7) 0.005 0.079 0.037 
EN(R5) 0.021 0.000 0.055 MR(R4) 0.005 0.058 0.057 
VW(R5) 0.020 0.000 0.055 L(R6) 0.004 0.000 0.000 
MR(R5) 0.017 0.000 0.055 HBD(R5) 0.003 0.000 0.004 
HBD(R3) 0.017 0.000 0.000 HBD(R7) 0.002 0.030 0.014 
MW(R5) 0.012 0.000 0.038 HBD(R4) 0.002 0.022 0.022 
L(R5) 0.008 0.000 0.046 EN(R2) 0.002 0.000 0.000 
Fi(R3) 0.008 0.000 0.000 Fi(R7) 0.002 0.024 0.011 
HBA(R5) 0.008 0.000 0.016 Fi(R4) 0.002 0.017 0.017 
EN(R6) 0.008 0.000 0.001 Fi(R6) 0.002 0.000 0.000 
HBD(R2) 0.008 0.000 0.000 HBD(R6) 0.001 0.000 0.000 
HBA(R2) 0.008 0.000 0.000 MW(R2) 0.001 0.000 0.000 
VW(R6) 0.008 0.000 0.001 L(R2) 0.001 0.000 0.000 
Fi(R2) 0.007 0.000 0.000 VW(R2) 0.000 0.000 0.000 
HBA(R6) 0.007 0.000 0.001 MR(R2) 0.000 0.000 0.000 
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In the projection of the compounds in the plane of the two first axes F1 and F2 (Figure 2), the 
compounds are distributed in three regions. Region 1 contains compounds having a higher activity, 
logKi is included in [-2,-1]. Region 2 contains those having an average activity, logKi is included in 
[-1,0.114]. In region 3 the activity is weak, logKi > 0.0114. The projection of the compounds on the 
first and the third principal components F1-F3, did not add any further or significant information. 

In examining the descriptors evolution in the three regions, we noticed that the size, the 
electronegativity and the lipophilicity governed, with a great precision, the distribution of the 
compounds in each region. Indeed, in region 1 are situated the compounds whose L(R3) lies between 2 
and 3. In this region the activity is higher when EN(R3) is included between 2.54 and 5.62 and fi(R3) 
is included between 0.7 and 2.56 as for compounds 2 and 5 having respectively R3=CH3 and 
R3=CH2-CH3 (Table 1). Otherwise, when fi(R3)<0.7 the activity is average (region 2), and when 
fi(R3)<0.54 the activity becomes weak (region 3). Furthermore, the activity seems to be linked also to 
the electronic nature of the radical R5. Thus when EN(R5)>0 and HBD(R5)>0, the activity is higher 
and when EN(R5)=2.54 and HBD(R5)=0 the activity  declines.   Similarly, for the radical R2,  the size, 

 
 
 

 
Figure 2. The graphic projection of the points representing MK801 derivatives on the first two 
principal components F1-F2. logKi is given into brackets. Region 1, contains compounds having 
higher logKi. Those having average ones are in region 2 and the lower ones are in region 3 
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notably the length, and the electronegativity play a very important role on the activity. So, in region 1, 
are situated only compounds having L(R2)=1 and EN(R2)=0, this means that R2 would be a 
monovalent and non electronegative atom, it is only the hydrogen atom that satisfy these criterions 

(R2=H). However all compounds having L(R2)>1 and EN(R2)>0 (R2≠H), are situated in regions 2 

and 3 as for compound 4 in which R3=CH3 is satisfying for the activity but R2=OH is not, so with an 
electronegative group in this position a molecule looses its activity. 

In attempting to analyze these results we conclude that to predict activity for any molecule, we must 
respect some physico-chemical properties of the substituents. The size, the electronegativity and the 
lipophilicity of R3 seem to be linked to each other. Therefore, in order to obtain increased activity for a 
molecule, we must satisfy, at the same time, the three descriptor's norms and respect their values as it 
is shown above. In Table 2 we have noted that the descriptors of R3 have the largest contributions, so 
it is reasonable to conclude that R3's descriptors have the largest impact on the prediction of the 
activity. The same, we have to respect the electronic nature of R5, and finally, the nitrogen 
substituent's structure (R2), determined by the length and the electronegativity of this substituent. So 

when R2=H the activity is raised and when R2≠H the activity declines. As Thomson et al [4] have 

concluded, the substitution on the ring nitrogen, is not tolerated. We note that the nitrogen atom is 
considered as an essential element for the activity in this receptor, it interacts with the receptor with the 
formation of hydrogen bonding [13]. 

 
Multiple Regression Analysis 
In order to propose a mathematical model and to evaluate quantitatively the substituent's physico-

chemical effects on the pharmacological activity of the totality of the set of these 44 molecules, we 
submitted the data matrix constituted obviously from the 58 physico-chemical variables corresponding 
to the different substituents and the 44 molecules, to a progressive multiple regression analysis. This 
method used the coefficients r, r2, and the t-values to select the best regression performance. The best 
results were obtained with 14 descriptors MW(R1), MW(R6), VW(R1), VW(R2), L(R3), L(R5), 
EN(R2), EN(R3), HBD(R3), HBD(R5), HBA(R4), Fpi(R3), Fpi(R5), fi(R3). 

It results then in the following equation: 
 
LogKi = -0.915 + 0.099MW(R1) + 0.010MW(R6) - 0.155VW(R1) - 0.091VW(R2) -  0.744L(R3) + 

0.372L(R5) + 0.998EN(R2) + 0.285EN(R3) + 2.381HBD(R3) - 0.505HBD(R5) + 0.860HBA(R4) + 
0.132Fpi(R3) - 0.229Fpi(R5) + 0.614fi(R3) 

n = 44   r = 0.986  s = 0.317       (1) 
 

The t-values are shown in Table 3. The values of predicted logKi (logKi-mra) calculated from 
equation (1), and observed logKi values (logKi-obs) [4] are given in Table 1. The correlation of 
predicted logKi and observed logKi are illustrated in figure 3. 
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Table 3. t-values of regression equation (1) (ratio of the parameter's regression coefficient and the  
standard error) 
Descriptor Coefficient Standard error t-value 
MW(R1) 0.099 0.014 7.280 
MW(R6) 0.010 0.004 2.753 
VW(R1) -0.155 0.046 -3.337 
VW(R2) -0.091 0.036 -2.541 
L(R3) -0.744 0.180 -4.135 
L(R5) 0.372 0.073 5.113 
EN(R2) 0.998 0.115 8.665 
EN(R3) 0.285 0.049 5.801 
HBD(R3) 2.381 0.293 8.130 
HBD(R5) -0.505 0.335 -1.506 
HBA(R4) 0.860 0.168 5.132 
Fpi(R3) 0.132 0.063 2.091 
Fpi(R5) -0.229 0.069 -3.311 
Fi(R3) 0.614 0.125 4.911 

 
 
 
 
 
 

 
Figure 3. The correlation of predicted logKi (logKi-mra) calculated using MRA and observed logKi 
(logKi-obs). 
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The correlation coefficient is r = 0.986, the square r2 = 0.972, and the standard error s = 0.317. 
These values are relevant to evaluate the quantitative model. In equation (1) we noticed an important 
contribution of R3, R5 and R2, whose regression coefficients are clearly raised when compared to the 
other  radicals. Electronic parameters and the size of the radical R3 ; notably the factor of hydrogen 
bonding donor HBD(R3), its length  L(R3), and the lipophilicity fi(R3) seem to play a very important 
role in this model. Similarly, for the radicals R2 and R5 electronic factors, HBD (R5) and 
electronegativity EN(R2) have a great impact on activity. This confirms very clearly the notable 
participation of these variables in the distribution of the compounds on F1-F2 plane, and the 
interpretations made with the aid of the PCA. The descriptors proposed in equation (1) by MRA were, 
therefore, used as the input parameters in NN.  

 
Neural Network 
Despite the good results obtained by the Multiple Linear Regression Analysis, notably the good 

correlation coefficient and the best predictions of the logKi shown in figure 3, it is always probable 
that a non linear relation may occur. The Neural Network (NN) is a suitable concept to achieve this 
goal. Several studies of QSAR have indeed been fulfilled using NN[26-29].  

 
Training 
In this work, we submitted the training set to a feed-forward network with three layers and complete 

connections between neurons. The input layer is constituted by the 14 descriptors proposed in equation 
(1), the hidden layer is selected with 2 tansig neurons, and the output layer is a linear neuron (14-2-1). 
The correlation coefficient obtained is 0.995. The number of nodes in the hidden layer is an important 
factor determining the network's performance. It was found that too many nodes cause the network to 
memorize the data set (overfitting). However, networks with few nodes may be insufficient to use all 
the information of the data set (underfitting) and generalization is poor. Previous studies conducted to 

determine the appropriate number of hidden units suggest that ρ, the ratio of the number of data points 

to the number of adjustable weights in the neural network, should have a value between 1.8 and 2.3 

[27,30,31]. For a network with a 14-2-1 configuration, the number of weights is 33, therefore ρ = 1.33, 

far from the optimal values. In the attempt to propose a model with less descriptors than proposed by 
MRA, the elimination of five descriptors (HBD(R3), HBD(R5), HBA(R4), Fpi(R3), Fpi(R5)) allowed 

to an acceptable network with a 9-2-1 architecture, ρ = 1.9. In examining the data matrix of these 

descriptors we found that the majority of their values are null, so we expect that their elimination will 
not have a concrete impact on the model. 

So, the final model was proposed with 9 descriptors (MW(R1), MW(R6), VW(R1), VW(R2), 
L(R3), L(R5), EN(R2), EN(R3), fi(R3)). Values of logKi calculated with 9-2-1 network (logKi-nn) are 
given in table 1 and the correlation obtained is illustrated in figure 4. The correlation coefficient is r = 
0.974, the square r2 = 0.949, the standard error s = 0.226. 
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Figure 4. The correlation of predicted logKi (logKi-nn) calculated using NN and observed logKi 
(logKi-obs). 

 
 
In comparison with  MRA method, the NN method allowed us to propose an acceptable model with 

less descriptors than proposed with MRA (there is not an overfitting), with good correlation coefficient 
and good standard deviation.  

As we have showed above, the elimination of 5 descriptors have not a concrete impact on the model 
proposed and the correlation coefficient remained good, so we can conclude that these 5 descriptors 
(HBD(R3), HBD(R5), HBA(R4), Fpi(R3), Fpi(R5)) are not really pertinent descriptors. In the other 
hand the attempts done with the elimination of one of the 9 descriptors finally proposed, lead to very 
law correlation coefficients, so with these results we conclude that these 9 descriptors (MW(R1), 
MW(R6), VW(R1), VW(R2), L(R3), L(R5), EN(R2), EN(R3), fi(R3)) are the really pertinent 
descriptors. 

 
Test 
We have used the cross validation method with 'leave one out' procedure [32], for the aim of testing 

the performance of the NN and the validity of the choice of our descriptors. The calculated logKi 
values (logKi-cv) are given in table 4, and the correlation obtained is illustrated in figure 5. The cross 
validation coefficient is rcv  = 0.926, the square r2 = 0.857, the standard error s = 0.244. 

In the aim to test the predictive power of our model, the activities of the remained set of 6 
compounds (test set) are deduced from the quantitative model proposed with the 44 molecules 
(training set) by NN. Their structures and the observed and calculated logKi values (logKi-obs and 
logKi-test) are given in table 5. 
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Table 4. Values of observed logKi (logKi-obs) corresponding to reference [4], and values of predicted 
logKi (logKi-cv) calculated using the cross validation method with 'leave one out' procedure. 

N° logKi-obs logKi-cv N° logKi-obs logKi-cv 
1 -0.215 -0.304 23 1.954 3.307 
2 -1.252 -1.334 24 3.000 2.857 
3 -0.149 -0.093 25 1.724 0.600 
4 1.279 1.283 26 -1.076 -1.143 
5 -1.347 -1.177 27 -1.959 -1.295 
6 1.380 1.825 28 -0.745 -0.652 
7 3.653 3.912 29 -1.444 -1.236 
8 0.556 2.012 30 -1.638 -1.374 
9 -0.585 -0.354 31 -1.569 -1.302 
10 -0.260 0.023 32 -1.097 -1.235 
11 -0.495 -0.484 33 -1.959 -1.309 
12 -0.456 -1.142 34 -1.337 -1.293 
13 -0.796 -0.853 35 -1.745 -1.268 
14 -0.759 -0.708 36 -0.863 -1.143 
15 1.863 1.540 37 -1.469 -1.303 
16 2.204 3.383 38 0.097 -1.225 
17 -1.114 -1.261 39 -1.495 -0.172 
18 -0.032 -1.057 40 -0.215 -1.277 
19 -1.060 -1.174 41 -1.481 -1.349 
20 2.447 2.913 42 -0.558 -1.205 
21 0.806 0.117 43 -1.310 -1.265 
22 3.653 3.065 44 -1.509 -1.408 

 
 

 
Figure 5. The correlation of predicted logKi (logKi-cv) Calculated using the cross validation method 
with 'leave one out' procedure and observed logKi (logKi-obs). 
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Table 5. The chemical structure of the 6 tested compounds (test set). Values of observed logKi (logKi-
obs) corresponding to reference [4] and values of predicted logKi (logKi-test) of the 6 compounds, 
calculated using NN. 
Compound 

N° R1 R2 R3 R4 R5 R6 R7 Ki, µM logKi-obs logKi-test 

45 H CH3 H H H H H 12.000 1.081 0.972 

46 H CH2CH2OH H H H H H 71.000 1.854 2.066 

47 H H CH2CH2CH3 H H H H 8.600 0.921 0.750 

48 OH H CH2CH2OH H H H H 0.074 -1.328 -1.229 

49 H H CH(OH)CO2ET H H H H 0.390 -0.408 -0.547 

50 Cl H CH2CH2OH H H H H 0.280 -0.553 -0.542 
 
 
The comparison of the values of logki-test to logki-obs shows that a good prediction has been 

obtained for the 6 compounds. The good results obtained with the cross validation and with the 
prediction of activities of the 6 compounds, shows that the model proposed in this paper is able to 
predict activity with a great performance, and that the selected descriptors are pertinent.  

The model was cross validated using “leave one out” procedure because we have a small set, so we 
have not fit only 6 point data but all the data points (44 compounds) are fitted with the cross validation 
method. With this method we have deduced the activity of each compound of the 44 compounds and 
we have obtained a good correlation (r=0.926). This result is very sufficient to conclude the 
performance of the model. The test done with the 6 compounds confirms the performance of the 
model. Even if it is possible that this good prediction is found by chance (especially that with only 6 
compounds) we can claim that it is a positive result and it is a further confirmation of the results found 
by the cross validation. So, this model could be applied to all MK801 derivatives accordingly to figure 
1 and could add further knowledge in the improvement of the search in the domain of non competitive 
antagonists of NMDA receptor and their interaction with the receptor. 

 

Conclusion 
The statistical analysis that we have undertaken to establish a structure-activity relationship for the 

antagonists of the NMDA receptor, showed that the activity of the MK801 derivatives is closely linked 
to the physico-chemical descriptors of radical R3, R5, and R2. Thus the size, the electronegativity, and 
the lipophilicity are estimated as relevant factors for this model. These descriptors selected 
automatically by MRA showed a high correlation of predicted logKi calculated by NN and observed 
ones. The test of the performance of this quantitative relationship, by the cross validation method (r = 
0.926) and the prediction of activities of 6 compounds (r = 0.992), showed that the model proposed in 
this paper is able to predict activity with a great performance, and that the selected descriptors are 
pertinent. 
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