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Quantitative study of amplitude noise effects on dynamical localization

Daniel A. Steck, Valery Milner, Windell H. Oskay, and Mark G. Raizen
Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081

~Received 16 September 1999!

We study the motion of cold atoms in a pulsed standing wave of light, which constitutes an experimental
realization of the quantum kicked rotor. This system exhibits dynamical localization, where quantum effects
suppress classical momentum diffusion. As we introduce amplitude noise, the coherences that lead to local-
ization are destroyed, resulting in restored diffusion. For high levels of noise, we find that the experiment is
well described by a classical model, suggesting that classical behavior has been restored. We present a detailed
experimental study of this noise-induced transition from quantum to classical behavior.

PACS number~s!: 05.45.Mt, 42.50.Vk, 32.80.Pj
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I. INTRODUCTION

It is well known that quantum effects can suppress cha
motion in systems with chaotic classical limits@1#. Since this
suppression relies on quantum interferences, noise and d
pation can destroy these interferences and restore the
pected classical behavior. The destruction of quantum in
ference, called decoherence, is especially important
reconciling the classical and quantum descriptions of cha
systems, where simple quantum descriptions predict
nonclassical effects appear after only a short time, even
macroscopic systems@2#. Because of the general importan
of decoherence in quantum-classical correspondence, t
has been much theoretical work on this subject@2–9#.

Despite the vast body of theoretical work on the subje
there have been few experiments dealing directly with de
herence in classically nonintegrable systems. The first s
ies in this area considered the effects of noise on Rydb
atom ionization@10–14#. Especially relevant to the work pre
sented here are Refs.@11–13#, where noise added to the m
crowave driving of the Rydberg atoms led to an improv
agreement with classical predictions of ionization thresho
There has also been some work investigating the effect
temperature on conductance fluctuations in mesosc
structures@15#. Finally, there has been preliminary work
atom optics@16,17#, which forms the backdrop for the wor
discussed here.

Although work in chaotic systems has been limited,
should be noted that there have also been some recen
periments on decoherence in linear systems. These ex
ments include spontaneous emission in atom interferom
@18#, decoherence of a coupled Rydberg atom-microw
cavity system@19#, and the decoherence of a superposition
motional states in an ion trap@20#. However, there is much
left to understand, and more experimental work is neede
both linear and nonlinear systems.

Atom optics has emerged as an important testing gro
for ideas in quantum chaos. The initial idea for a quant
chaos experiment in atom optics came in a proposal by G
ham, Schlautmann, and Zoller@21#, which considered an
atomic beam crossing a phase-modulated standing wav
light. An important simplification was made to this bas
scheme when it was experimentally realized in our labo
tory @22,23#, where sodium atoms cooled and confined in
PRE 621063-651X/2000/62~3!/3461~15!/$15.00
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magneto-optic trap~MOT! were subject to a phase
modulated standing wave, with negligible transverse moti
Later, the phase-modulated light was replaced with a pul
standing wave, leading to an atom-optics realization of
kicked rotor @24#, a simpler and more fundamental syste
for the study of quantum chaos. The experiments descri
in this paper are performed on a second-generation app
tus, based on cold cesium atoms, which has several ad
tages that allow for these experiments@25#. In general, atom
optics is an ideal setting for these experiments, because
can directly measure the distribution of atomic momentu
Additionally, one has direct and precise control over ma
experimental parameters, which is especially useful in stu
ing different types of noise and dissipation.

II. THEORETICAL BACKGROUND

A. The kicked rotor in atom optics

The connection between an atom in a standing wave
light and the kicked-rotor problem forms the basis for all t
experiments described here. We begin our discussion of
connection by considering the dynamics of a two-level at
in a standing wave of monochromatic light. The optical fie
is described by a superposition of counterpropagating tra
ing waves,

E~x,t !5 ẑ2E0 cos~kLx!cos~vLt !, ~1!

whereE0 is the field amplitude of a single traveling-wav
component,vL is the frequency of the field, andkL5vL /c.
This field configuration is the linearly polarized, on
dimensional optical lattice that is now commonly used
atom optics. The dipole interaction leads to a spatially
pendent ac Stark shift of the atomic levels. We are interes
in the limit where the laser detuningDLªvL2v0 from the
atomic resonancev0 is large compared to the excited-sta
decay rateG. In this regime, the dipole force due to the Sta
shift can be significant, while incoherent effects such
spontaneous emission and the stochastic dipole force@26#
can be made negligibly small. Furthermore, the atom is
most entirely in the ground state; in fact, since we are int
ested in atomic motion on time scales slow compared
1/DL , we can adiabatically eliminate the excited state of
atom@21#. In this adiabatic approximation, we can ignore t
3461 ©2000 The American Physical Society
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3462 PRE 62STECK, MILNER, OSKAY, AND RAIZEN
internal structure of the atom, and treat it as a point parti
The resulting reduced center-of-mass Hamiltonian is

H~x,p!5
p2

2m
1V0 cos~2kLx!, ~2!

where m is the atomic mass,V0ª\V2/8DL is the ‘‘well
depth’’ of the lattice,Vª22dzE0 /\ is the maximum Rabi
frequency, andd is the atomic dipole moment.~Note that in
writing down this Hamiltonian we have also implicitly in
voked the dipole and rotating-wave approximations.! This
Hamiltonian corresponds to that of the familiar pendulum.
atom optics, this lattice plays the role of a sinusoidal ph
diffraction grating.

So far, we have described a realization of the quant
pendulum, which is an integrable system. A more interes
case arises when the well depth is time dependent, and
dynamics are chaotic. SinceV0 is proportional to the inten-
sity of the optical field, this time dependence is easily p
duced via amplitude modulation of the standing wave. T
kicked rotor corresponds to a potential that is periodica
pulsed in time:

H~x,p,t !5
p2

2m
1V0 cos~2kLx!(

n
F~ t2nT!. ~3!

HereT is the kick period, andF(t) is a pulse function of unit
height and durationtp!T. Thed-kicked rotor corresponds to
the limit of d-function pulses; most theoretical work focus
on this limit because of the tremendous simplification of
equations of motion, as we discuss below. In a physical
periment, however, one can only strive to come as close
possible to this limit by using short, intense laser pulses.

Before proceeding, we can simplify our discussions
transforming to a set of scaled, dimensionless units. If
define

x8ª2kLx,

p8ª~ k–/2\kL!p,

t8ªt/T, ~4!

f ~ t8!ªF~ t !/h,

Kª~ k–/\!hTV0 ,

H8ª~ k–/\!TH,

then we can rewrite the kicked rotor Hamiltonian@Eq. ~3!# as

H~x,p,t !5
p2

2
1K cosx(

n
f ~ t2n!, ~5!

after dropping the primes. In the above transformations,
parameterK is known as thestochasticity parameter; addi-
tionally, we have defined the pulse integralh
ªT21*2`

` F(t)dt}tp @so that*2`
` f (t)dt51# and the con-

stant k–ª8v rT, wherev rª\kL
2/2m is the recoil frequency.

In view of the scaled commutation relation@x,p#5 i k–, we
.

e

m
g
he

-
e
y

e
x-
as

y
e

e

can interpretk– as a scaled Planck constant, which measu
the action scale of the system, normalized to\. Henceforth
we will use these scaled variables, with the main except
being that in the presentation of the data we report mom
tum in multiples of two photon recoils (2\kL). From the
second transformation in Eqs.~4!, we see that this specifica
tion is equivalent to reporting the scaled momentum in m
tiples of k–. This momentum scale is more natural, since
dipole force results from the scattering of a photon from o
traveling wave into the other, and hence the atomic mom
tum can only change by 2\kL at a time. This momentum
ladder also arises naturally from the spatial periodicity of
potential.

One final note is in order, since the cesium atoms we
in the experiment have fairly complicated hyperfine stru
ture, and one may question the accuracy of a two-level a
model. Fortunately, there is a symmetry in the hyperfi
structure that simplifies its treatment significantly. In the
experiments, it is important to optically pump the atoms in
one ground hyperfine level (F54 for our experiments here!,
which itself has a set of~nearly! degenerate magnetic sub
levels. Then, it is important for the detuning to be large,
that the excited-state hyperfine structure is approximately
generate~for our setup,DL must be large compared t
;0.5 GHz). Since the light is linearly polarized, eac
ground-state sublevel is independently coupled to its own
of excited-state sublevels. In this case, the sums over
excited-state couplings turn out to be independent of
ground state sublevel. Hence, in the far-detuned, linearly
larized regime, one can use an effective dipole momentdeff
52.2310229 C m in place ofdz , and employ the two-leve
atom model.

B. Classical dynamics

The d-kicked rotor problem is a paradigm system for t
study of classical and quantum chaos. One reason fo
importance is the simplicity of the corresponding equatio
of motion. Since the motion is dominated at any given tim
by either the kinetic or potential component of the Ham
tonian, Hamilton’s equations can be integrated over one t
poral period, yielding the standard map@27#

xn115xn1pn11 ,
~6!

pn115pn1K sinxn .

Here xn and pn refer to the momentum just before thenth
kick. The simplicity of this mapping has made many analy
as well as numerical studies possible, and much is kno
about the classical dynamics of the kicked rotor.

The most important aspect of the kicked rotor for o
purposes is its global behavior. In our studies, we are in
ested in the regime of largeK ~which in practice meansK
*5), where the phase space is predominantly chaotic
there are no invariant Kolmogorov-Arnold-Moser~KAM !
surfaces that would prevent unbounded motion inp. We will
begin our discussion by considering the mean kinetic ene
of an ensemble of rotors~see Ref.@7# for a similar discus-
sion, although with slightly different notation!. Using the
second equation in the standard map@Eq. ~6!#, we find
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En5
^pn

2&
2

5
1

2 (
m,m850

n21

Cm2m8 , ~7!

where the correlation functionsCm are given by

Cm2m8 ª^K sinxmK sin xm8&. ~8!

The angle brackets denote a uniform average over ph
space, and the correlations depend only on the time dif
ence (m2m8). The sum in Eq.~7! can be easily evaluated
one makes the approximation that the coordinatexn is uni-
form and uncorrelated, as one might expect for very largK
when the phase space is almost entirely chaotic. Doing
allows one to ignore the off-diagonal terms and gives
result

En5
C0

2
n5

K2

4
n. ~9!

The energy growth is hence diffusive~linear in time!, with
diffusion rateDql(K)5K2/4, which is known as thequasi-
linear diffusion rate. In fact, this random-phase approxim
tion is equivalent to assuming that the motion is a rand
walk in momentum, so the momentum distribution is asym
totically Gaussian, with a width;An.

The random-phase approximation is only valid asK→`,
however, and for finiteK the higher-order correlations can
not always be neglected, even for trajectories within the c
otic region of phase space. Nonuniformities in the chao
region, especially in the neighborhood of stability islan
can lead to nonzero correlations, and hence to deviation
the diffusion rate from the quasilinear value. A more gene
expression for the~time-dependent! diffusion rate in terms of
the higher-order correlations is

DnªEn112En5
1

2 (
m52n

n

Cm . ~10!

These corrections to the diffusion rate were treated ana
cally in Refs.@28,29#, where Eq.~10! was shown to be an
asymptotic expansion in powers of Bessel functions ofK.
The result from Ref.@29# is

D~K !5
K2

2 S 1

2
2J2~K !2J1

2~K !1J2
2~K !1J3

2~K ! D ,

~11!

to second order in the Bessel functions. This expression
resents the diffusion rateDn for long timesn and large val-
ues of K; the higher-order terms in the expansion are
sumed at this point to have only a small contribution, sin
they represent higher powers of 1/AK. @Note that it is often
convenient to neglectJ3

2(K)2J1
2(K), which is O(K22),

since for largeK this difference is much smaller thanJ2
2(K),

which is O(K21); however, these terms will be importan
when generalizing this result to account for amplitude no
below.# This result shows thatD(K) oscillates about the qua
silinear value, where the corrections become small compa
to the quasilinear value asK becomes large.

The diffusion calculation leading to Eq.~11! took into
account only the first few correlations. However, long-tim
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correlations can also play an important role in the dynam
In the generic case, there are islands of stability in ph
space~even for arbitrarily largeK), which have boundaries
that are ‘‘sticky’’ in the sense that trajectories that wand
into these sticky regions can remain there for many kic
Hence even initial conditions within the chaotic region
phase space will eventually wander near islands, and
stuck to them for a possibly long time before breaking aw
and continuing to diffuse through the chaotic region. In t
case of the standard map, there are two types of stab
islands: stability islands in the usual sense, which surroun
fixed point of the motion, andaccelerator modes@27,30#,
which are similar to the usual stability islands but a
boosted in momentum on each kick. The accelerator mo
are a peculiarity of the standard map, since the phase s
structure is periodic in momentum~with period 2p); other
systems, including our system with nonzero-duration puls
can exhibitquasiaccelerator modes, which behave like ac-
celerator modes over a bounded region of phase space@30#.
This stickiness leads to Le´vy-flight behavior@31#: the islands
tend to trap trajectories, leading to reduced transp
whereas the accelerator modes lead to streaming~with many
correlated steps in momentum!, and hence to enhanced tran
port. This nondiffusive behavior is referred to as anomalo
diffusion, and leads to momentum transport of the fo
E(t);tm, where the transport exponentmÞ1 for anomalous
diffusion @32–34#. This anomalous diffusion is dramaticall
evident@35,36# when the main family of accelerator mode
is stable, that is, whereK is near 2p j for positive integerj.
@Note that these locations coincide with the peaks of E
~11!.# Since the motion is not strictly diffusive, the prope
framework for the kicked-rotor transport is fractional kine
ics @36–38#. However, since the stable islands in phase sp
are typically small for largeK, it may take many kicks before
the islands cause large deviations from diffusive behav
Hence, for the time scales observed in our experiments~up to
80 kicks!, it is appropriate to describe the classical dynam
as diffusive as long as large accelerator modes are
present. Operationally, Eq.~11! is an excellent approxima
tion away from the main family of accelerator modes.

Since we apply amplitude noise to the interaction pot
tial in our experiment, it is important to consider the effect
this noise on the classical dynamics. In this case, the k
strengthK is replaced byK1dKn , wheredKn is a random
deviation for the amplitude of thenth kick. We consider
exclusively the case of uniform amplitude noise, which
characterized by the probability distribution

P~dK !5H 1/dKp-p, dKP~2dKp-p/2,dKp-p/2!

0 elsewhere,
~12!

where dKp-p is the peak-to-peak deviation of the kic
strength. When we quote the noise level used in our exp
ments, we are quoting the normalized peak-to-peak devia
dKp-p/K. The noise modifies the correlations, and the gen
alization of Eq.~8! is

Cm2m85E d~dKm!•••d~dKm8!P~dKm!•••P~dKm8!

3^~K1dKm!sinxm~K1dKm8!sinxm8&, ~13!
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where there areum2m8u11 integrals over the kick probabil
ity distribution, since the coordinate at the later time depe
on all the kicks after the earlier time. It is difficult to evalua
this expression directly, but fortunately it is straightforwa
to generalize the diffusion result in Ref.@29# to include am-
plitude noise by taking theK associated with each step in th
Fourier paths to be an independent random kick of stren
K1dKn ; then each kick strength must be averaged w
respect to its probability distribution. Doing so, we arrive
the generalization of Eq.~11!:

D~K !5
K21Var~dK !

4
1

K2

2
„2J2~K !2J 1

2~K !

1J 2
2~K !1J 3

2~K !…. ~14!

In this equation, Var(dK) denotes the variance ofP(dK)
@which is simply (dKp-p)

2/12 for uniform noise#, and

Jn~K !ªE
2`

`

P~dK !Jn~K1dK !d~dK !. ~15!

This expression makes it immediately clear how the no
affects the diffusion rate: the integral in Eq.~15! is analogous
to a convolution of the Bessel functions with the noise d
tribution. As the noise level is increased, the Bessel functi
are smoothed out, and the correlations are effectively
stroyed. This is especially true for long-term correlatio
and indeed anomalous diffusion is suppressed in the p
ence of noise. At the same time, there is an increase in
quasilinear diffusion component@the first term in Eq.~14!#,
but this effect is generally small in comparison to the d
struction of the correlations. For illustration, function~14! is
plotted for several different levels of amplitude noise in F
1. Note that for the 100% and 200% noise levels, the co
lations are essentially destroyed, so that these noise le
cannot be considered perturbative; however, these noise
els are still small in the sense that their contribution to
quasilinear diffusion rate is significantly smaller than t
zero-noise component.

FIG. 1. Plot of diffusion expression~14! for several levels of
uniform amplitude noise: no noise~solid line!, 50% noise~dashed
line!, 100% noise~short dashes!, and 200% noise~dot-dashed line!.
The oscillations, which represent short-term correlations,
smoothed out by the noise.
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Finally, we note briefly the effects of nonzero puls
widths, which are inherent in a physical experiment. Ess
tially, the d-kick approximation breaks down when a rotor
moving sufficiently quickly that one cannot neglect its m
tion during the kick. At these speeds, the rotor samples
interval of the sinusoidal potential during the kick, and in
similar manner to the destruction of the correlations
noise, the strength of the potential is effectively reduced. T
worst possible case is when the rotor moves over a perio
the potential during the kick, in which case it experiences
net kick. This effect sets an effective upper momentu
boundary for the dynamics. In our experiments, we can m
mize this effect by choosing a sufficiently short pulse so t
the momentum boundary is far above the highest mome
achieved in the experiments. We will return to this effe
when we discuss the systematic effects in the experim
For a more comprehensive discussion, as well as direct m
surements of the effect on our measured momentum di
butions, see Ref.@25#, as well as the earlier theoretical trea
ment of Ref.@39#.

C. Quantum dynamics

The quantum dynamics of the kicked rotor, first discuss
in the seminal work of Ref.@40#, are strikingly different in
nature from the classical dynamics. In contrast to the dif
sive nature of the classical dynamics, the quantum sys
exhibits diffusive behavior for only a short time, called th
quantum break time, after which the diffusion is suppresse
In fact, this suppression of diffusion is symptomatic of
more fundamental difference between the quantum and c
sical systems, as shown through elegant time-reversal s
lations by Shepelyansky@41#: the quantum dynamics ar
stable~quasiperiodic! and not chaotic, in stark contrast to th
classical dynamics. This stability can also be seen from
~locally! discrete quasienergy spectrum of the kicked ro
@42–44#. Hence it is clear that quantum effects suppress c
sical chaos in the kicked rotor, and this quantum suppres
of chaos is referred to asdynamical localization. Although
much of the theoretical work on this phenomenon has
cused on the kicked-rotor problem, dynamical localizati
also occurs in many other systems@45#.

Fishman, Grempel, and Prange@43–45# made an impor-
tant step forward in the understanding of the quantum kic
rotor by mapping it onto the problem of Anderson localiz
tion. One consequence of this analysis was the realiza
that the quasienergy states~Floquet states! are exponentially
localized in momentum. This result provides a useful cont
for understanding dynamical localization, since the evolut
to a localized state can be viewed as a dephasing of
quasienergy states. An initial momentum distribution tha
narrow compared to a typical quasienergy state must b
coherent superposition of quasienergy states. As t
progresses, the different phase evolutions of the quasien
basis states result in diffusive behavior for short times.
long times, when the basis states have completely depha
the distribution relaxes to an incoherent sum of the expon
tially localized basis states, resulting in an exponentially
calized distribution. For very long times, one also expe
quantum recurrences as the basis states rephase@42#, but
these time scales are far beyond what we can observe ex
mentally. The suppression of diffusion, as well as the ch

e
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acteristic exponential distributions of dynamical localizatio
were observed experimentally in Ref.@24# for the kicked
rotor, and in Refs.@22,23# for a similar system.

The quantum dynamics can also be understood in term
the modification of the correlations due to quantum effec
Shepelyansky showed numerically@41# and analytically@46#
that, whereas the classical correlations drop off quickly w
time ~when any residual stable structures are too smal
affect the dynamics on a short time scale, i.e., away from
accelerator modes!, quantum correlations persist for muc
longer times. In contrast, for cases of smallerK, and hence
more stability, the quantum and classical correlations w
similar after the break time. This difference in the corre
tions is intuitively clear from Eq.~10!; in fact, the long-time
quantum correlations near the break time must be nega
bringing this sum to nearly zero, in order for the system
exhibit localization.

Shepelyansky also made another observation regar
the quantum correlations that is important for our resu
presented here. In particular, he calculated the first few qu
tum correlations, and found that they had the same form
the corresponding classical correlations upon the substitu
@47,46,7#

K→Kqª
sin~ k–/2!

k–/2
K. ~16!

@Note, however, that the correlations used in Ref.@47# were
defined without the factor ofK2 that appears in Eq.~8!.#
Hence a good approximation for the initial quantum diff
sion rate~in the absence of noise! is

D~K, k– !5
K2

2 S 1

2
2J2~Kq!2J1

2~Kq!1J2
2~Kq!1J3

2~Kq! D ,

~17!

where it is assumed that the initial quantum distribution
approximately uniform over a 2p32p unit cell in the clas-
sical phase space. Consequently, there is an oscillatory
pendence of the initial quantum diffusion rate onKq that is
closely related to the underlying classical dynamics. Ho
ever, the oscillations are shifted due to the quantum sca
factor in Eq.~16!. Since the width of the localized distribu
tion ~the localization length! is related to the initial diffusion
rate @47#, the oscillations are also apparent in the long-tim
quantum distributions. This oscillatory structure was o
served, and the quantum scaling was confirmed experim
tally in Ref. @48#, where it was also observed that expone
tially localized distributions do not occur for values ofKq
that lead to maxima in Eq.~17!. The quantum scaling facto
is significant for the data reported in this paper; typically,

use k–52.08, which leads to a quantum shift of the oscil
tions by about 20% inK.

We now turn to the concept of adding noise to t
quantum-kicked rotor. Since the deviation from the class
dynamics is due primarily to long-time correlations, dynam
cal localization should be susceptible to noise and diss
tion, either of which would lead to the destruction of the
correlations. Note that noise and dissipation are fundam
tally different in nature: noise is a unitary process, and
hence reversible in principle, whereas dissipation is an in
,
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action with a very large~i.e., possessing many degrees
freedom! external system~reservoir!, which is an inherently
irreversible process. However, noise has essentially the s
effect, and we chose to implement it in these experime
because of the high degree of experimental control over
interaction potential. The first study of the influence of no
on the quantum kicked rotor appeared in Ref.@41#, where it
was observed that a sufficiently strong random perturba
could restore diffusion at the classical rate. Soon thereafte
more detailed theoretical treatment was presented by
Antonsen, and Hanson@4#, who showed that if the scale
Planck constant is sufficiently small, classical diffusion
restored, even for small amounts of added noise. Some
stored diffusion was observed previously in the kicked ro
in the presence of amplitude noise@16# and in the presence
of spontaneous emission@16,17#, but in these experiments i
was not clear whether the behavior had returned to the c
sical limit.

To reach the classical limit in our experiment, the sho
term correlations must also be modified by the noise, in vi
of the quantum scaling factor in Eq.~16!, which as men-
tioned before is significant for our typical parameter valu
One can generalize the work of Shepelyansky leading to
~17! to include amplitude noise, with the result

D~K, k– !5
K21Var~dK !

4
1

K2

2
„2Q2~Kq!2Q 1

2~Kq!

1Q 2
2~Kq!1Q 3

2~Kq!…, ~18!

where

Qn~Kq!ªE
2`

`

P~dK !Jn~Kq1dKq!d~dK !, ~19!

and dKq5dK sin(k–/2)/(k–/2). Thus the short-time quantum
correlations are washed out in much the same way as
classical correlations, as in Eq.~14!. However, since the lo-
cations of the classical and quantum oscillations inD(K) are
different for our operating parameters, we can immediat
conclude that in order to observe good correspondence
tween quantum and classical evolution, the applied no
must be very strong. In this case, both quantum and class
diffusion will proceed at the quasilinear rate, since the dif
sion oscillations will be destroyed~as in Fig. 1!, and the
global behavior will be the same. For lower levels of nois
one might expect to recover diffusive behavior in the qua
tum system~if the long-time correlations responsible for lo
calization are destroyed!, but possibly at a rate that does n
match the classical prediction.

Finally, we note that amplitude noise is ‘‘ladder preser
ing,’’ which means that atoms can still only change mome
tum by 2\kL at a time. Other types of noise and dissipatio
such as spontaneous emission, can break this ladder sym
try, and possibly lead to more effective destruction of loc
ization @7#.

III. EXPERIMENTAL METHOD

The experimental setup is that of our earlier quant
chaos experiments@16,25,48#, with minor modifications. A
general schematic of the setup is shown in Fig. 2. The
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FIG. 2. Schematic diagram of the experimental setup. Two diode lasers provide the light for the MOT, and a Ti:sapphire laser
the far-detuned standing wave.
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periments are performed on laser-cooled cesium atoms
MOT @49#. Two actively locked, single-mode diode lase
~L1 and L2! at 852 nm are used for cooling, trapping, a
detection of the cesium atoms. The main beam from L1
double passed through a tunable acousto-optic modu
~AOM! that provides fast control over the intensity and d
tuning of the beam. During the trapping stage of the exp
ment, the light from L1 is locked 15 MHz to the red of th
(6S1/2,F54)→(6P3/2,F55) cycling transition. This light
is collimated with a radius of 11 mm, and has a typic
power of 23 mW at the chamber. The light from L1 is sp
into three beams that are retroreflected through the cente
the chamber in a standard six-beam MOT configuration. T
second laser, L2, is locked to the (6S1/2,F53)→(6P3/2,F
53,4) crossover transition, and shifted onto the (6S1/2,F
53)→(6P3/2,F54) resonance with an AOM that also pro
vides fast control over the intensity of the beam. This be
prevents optical pumping into theF53 ground state during
the trapping and detection stages.

After trapping and initial cooling, the intensity of L1 i
reduced for 7 ms, and the detuning is increased to 55 MH
further cool the sample. After this final cooling, the trappi
fields are then turned off. The light from L2 is left o
150 ms longer than the light from L1, to ensure that t
atoms are left in the (6S1/2,F54) ground state. Typically
we trap 106 atoms withsx50.15 mm andsp/2\kL54 ~de-
termined by fitting a simple Gaussian model!. The momen-
tum distribution in the trap is mostly Gaussian, with broa
ened tails. Similar distributions were observed by oth
groups, especially for strong magnetic-field gradients~e.g.,
Refs.@50,51#!. A reasonably good model for this momentu
distribution is an incoherent sum of a Gaussian and an ex
nential distribution:

hg

1

A2psp

expS 2
p2

2sp
2D 1he

1

2jp
expS 2

upu
jp

D . ~20!
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A typical measured distribution is plotted in Fig. 3, alon
with function ~20!. The parameters for the model were d
termined from a best fit; the widths of the components
sp/2\kL53.9 andjp/2\kL513.0, and the relative weight
arehg582% andhe518%. This distribution corresponds t
the initial conditions for all our kicked rotor experiment
We mention this model only to more precisely quantify o
initial conditions. For the simulations described before,
construct the initial conditions directly from the experimen
data. It should be noted that the choice of an exponen
distribution to model the broad tails is purely empirical, a
is in no way related to the exponential localization that
observed after several kicks in the kicked-rotor evolutio
Using a simple Gaussian model for our measured distri

FIG. 3. Plot of the momentum distribution in the MOT~solid
line!, with model distribution~20! ~dotted line!. Most of the atoms
are in the main Gaussian component, while a smaller fraction
contained in the broad, non-Gaussian tails. This distribution co
sponds to the initial conditions of our kicked-rotor experiments.
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tion, we find that 96% of the atoms are accounted for by t
thermal model, with the remaining 4% augmenting the ta
of the momentum profile.

Once the trapping light is off, the interaction potential
turned on. The pulsed standing wave is provided by a st
lized single-mode Ti:sapphire laser~L3!. The light from L3
passes through a third AOM that controls the pulse seque
The linearly polarized beam is spatially filtered, aligned w
the atoms, and retroreflected through the chamber to for
standing wave. The beam has a typical maximum powe
470 mW at the chamber, and a waist of 1.5 mm. For all
experiments described here, this beam is detuned 6.1 GH
the red of the cycling transition, with typical fluctuations
about 100 MHz. The frequency of this laser is monitored
a wavemeter~scanning Michelson interferometer!, which has
a resolution of around 500 MHz; the frequency is also mo
tored on a finer scale~with a resolution of around 10 MHz!
by comparing it to the light from L1 on a scanning Fabr
Perot cavity. The pulse sequence consists of a serie
295-ns~full width at half maximum! pulses with a rise-fall
time of 70 ns, and less than a 3-ns variation in the pu
duration. The pulse period used for these experiments
T520 ms, with variations of less than 4 ns. This perio
corresponds tok–52.08. The detection of momentum is a
complished by letting the atoms drift in the dark for a co
trolled duration~typically 15 ms!. The trapping beams ar
then turned on in zero magnetic field, forming an optic
molasses that freezes the position of the atoms. The ato
position is recorded via fluorescence imaging in a short~10
ms! exposure on a cooled charge-coupled device~CCD!. The
final spatial distribution and the free-drift time enable t
determination of the one-dimensional momentum distri
tion.

We now briefly discuss the dominant systematic unc
tainties in our experiment. The uncertainty in the spatial c
bration of our imaging system leads to an uncertainty of
in the measured momenta, and hence 4% in the meas
energies. The uncertainties in the power meter and b
diameter measurements lead to a 10% systematic uncert
in the mean kick strength. While the locations of the osc
lations in Eq.~17! provide, in principle, anin situ calibration
of the laser intensity, the uncertainty in this method is at
same level, since the effects presented in Sec. IV stron
modify the measured energies, and it is difficult to acco
for these effects in a quantum model of the experiment. E
worse, the kick strength exhibits long-term drifts due
drifts in the laser intensity and detuning, alignment with t
spatial filter, and alignment with respect to the atoms. Th
drifts occur on time scales of minutes to hours, and can ca
systematic shifts in local sections of a data set, since a typ
data run can last many hours. It is particularly important
keep this point in mind when comparing the data to class
models, since the error bars shown with the data repre
statistical scatter among measurements at the same s
parameter values, but they cannot properly account for th
long-term drifts. There are several other effects that imp
the measurements of momentum distributions and distr
tion energies, and we discuss them in detail in Sec. IV
well as describe how we account for them in our analysi

IV. CLASSICAL MODEL OF THE EXPERIMENT

In order to facilitate an accurate comparison of the exp
mental data to the classical limit of the kicked rotor, w
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perform classical Monte Carlo simulations of the expe
ment. In these simulations, a large number~typically
23105) of classical trajectories are computed, each with
distinct realization of amplitude noise; momentum distrib
tions and distribution energies are then extracted from
ensemble. Additionally, we account for several different s
tematic effects that are present in our experiment, in orde
provide the best possible classical baseline for comparis
In the remainder of this section we describe in detail each
the systematic effects that we have accounted for, and
we have included them in the comparison of the data
theory.

The effects that we will describe in this section are illu
trated in Fig. 4. This plot compares the energy evolution
different cases where different corrections are accounted
As each correction is~cumulatively! taken into account, the
resulting energy curve is lower and less linear. Indeed, th
is quite a large difference between the uncorrected, lin
d-kick curve that one might expect to observe and the fu
corrected curve. Hence the importance of this rather tec
cal discussion of experimental details is clear: without ca
fully taking into account these systematic effects, one mi
mistakenly attribute curvature in the experimental ene
data to residual quantum effects. It is also important to e
phasize that although these effects cause a reduction in
dynamic range of the experimental measurements, they
not change the underlying physics in a fundamental w
Finally, we note that most of these systematic effects
such that it is either impractical or impossible to compens
for them with a correction to the experimental data. In th
sense, the ‘‘energies’’ that we use in our comparisons are

FIG. 4. Example of how the systematic effects described in
text can affect the measured energies. Shown are the simu
average energy evolution for typical operating parametersK
511.2, 100% noise level! and typical parameters for the systema
corrections. The solid straight line is the ideal case, correspon
to the d-kicked rotor with no corrections; the successively low
curves represent the cumulative result as each effect is accou
for ~in the order of presentation in the text!: nonzero pulse duration
~dashed line!, MOT ~detection! beam profile~long dot-dashed line!,
clipping due to the width of the CCD chip~dotted line!, profile of
interaction beam and transverse atomic motion~long dashes!, cor-
rection for free-expansion measurement~dot-dashed line!, and
vertical-offset bias~thin solid line!.
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3468 PRE 62STECK, MILNER, OSKAY, AND RAIZEN
true energies, but relatively complicated functions of the t
energies and many experimental parameters. Hence it is
ability to take these effects into account in the classical sim
lations that allows for a quantitative comparison between
experiment and classical theory.

The first, and perhaps most important, effect that we
count for is the detailed pulse shapef (t) of our kicks. The
nonzero temporal width of the pulses leads to an effec
reduction in the kick strength at higher momenta@25#, and so
it is important to accurately model the experimental pulse
order to reproduce the correct tails in the momentum dis
butions. It turns out that our experimental pulses are w
modeled by the function

f ~ t !5
1

2herf
FerfS ~ t2t1!Ap

dt1
D 2erfS ~ t2t2!Ap

dt2
D G , ~21!

where t22t15295 ns is the full width at half maxi-
mum of the pulse,dt1567 ns is the rise time of the puls
~defined such that a straight line going from 0 to 100%
the pulse height in timedt1 matches the slope of th
rising edge at the half-maximum point!, dt2572 ns, erf(x)
ª(2/Ap)*0

xexp(2t2)dt is the error function, andherf is a
normalization factor, which has the valuet22t1 for small
values ofdt1,2/(t22t1). Function~21! is plotted along with a
measured optical pulse in Fig. 5. It should be noted t
although the agreement between the pulse model and
experimentally measured pulses is excellent, Eq.~21! is
merely an empirical model of our observed pulse profiles
the simulations, the classical equations of motion are dire
integrated, using Eq.~21! for the kick profile.

The next effect that we consider is due to the Gauss
profile of the optical molasses laser beams. Recall tha
measure momentum distributions, we image the light s
tered by the atoms from the molasses beams after a
expansion time. Since the light is not uniform over t
atomic cloud, the scattering rate due to atoms with mom
tum p is given by

FIG. 5. Model function@Eq. ~21!# for the experimental pulse
~dashed line! compared to an actual experimental pulse as meas
on a fast photodiode~solid line!. The two curves are nearly indis
tinguishable.
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Rsc5N~p!S G

2 D I ~x!/I sat

114~D/G!21I ~x!/I sat

, ~22!

whereN(p) is the number density of atoms with momentu
p, I (x) is the local intensity at spatial positionx, G is the
excited state decay rate, andI sat is the saturation intensity
(52.70 mW/cm2, assuming isotropic pumping on the tra
ping transition!. Also, in the free expansion measureme
the unscaled variablesx and p are related by x
5v r(p/\kL)tdrift , wherev r53.5 mm/s is the velocity corre
sponding to a single photon recoil, andtdrift is the free drift
time of the momentum measurement. The spatial inten
profile of the six beams is given by

I ~x!52I 0@e22x2/w0
2
12e2(x212z2)/w0

2
#, ~23!

whereI 0 is the intensity at the center of one of the six beam
w0511 mm is the beam radius parameter of the Gauss
beams,z is the vertical position of the atoms~transverse to
the standing wave, in the direction of gravity!, the first term
represents the two vertical beams, and the last term re
sents the four horizontal beams, each at 45° to and in
horizontal plane with the standing wave. Hence, to acco
for this effect, we apply a correction to the classical simu
tion of the form

f mol~x!5
f I~x!

c21 f I~x!
, ~24!

where f I(x)5I (x)/2I 0 is a scaled intensity profile, andc2
5@114(D/G)2#@ I sat/(2I 0)#. The value of c2 was deter-
mined to be 5.94 by fitting correction~24! to a known expo-
nentially localized distribution for various drift times; thi
value is in reasonable agreement with the expected valu
c2 from the laser parameters.

The finite extent of our imaging CCD camera chip al
has an impact on our measurements. We have set up
imaging system such that a typical localized distribution
just contained within the imaged area after a 15-ms dr
However, for strongly noise-driven cases, the moment
distribution can extend significantly past the edges of
imaged area. This effect has little impact on the measu
momentum distributions, since it only restricts the meas
able range of momentum. However, the energies compu
from this momentum distribution are sensitive to this trunc
tion, even if the population in the truncated wings is sma
The result is a systematic reduction in the measured ene
It is straightforward to model this effect in the simulations
rejecting trajectories that fall outside the experimental w
dow.

Another effect we must account for is the transverse
sition of the atoms in the standing-wave beams. Although
spatial size of the beam~with 1/e2 radiusw051.5 mm) is
large compared to the size of the initial MOT cloud (sx
50.15 mm), the variation in kick strength over the atom
distribution must be accounted for, especially as the exp
ment progresses and the atoms move further out transver
Hence each atom ‘‘sees’’ an effective kick strength
Kmax exp@2(y(t)21z(t)2)/w0

2#, where the transverse coord
natesy andz are given in scaled units by

ed
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y~ t !5y01py0t,
~25!

z~ t !5z01pz0t2gt2/2.

In these equations, we have used the scaled gravitati
accelerationg, which is related to the acceleration in physic
units byg52kLT2gphys. In the simulations, each particle
given initial transverse positionsy0 and z0 according to a
Gaussian distribution that matches the measured MOT s
and initial momentapy0 and pz0 that match the momentum
distribution measured along the standing wave. It should
noted that this correction may actually increase or decre
the final energies compared to an uncorrected simulation
ing the mean value ofK, even though the mean value ofK
effectively decreases with time. This is because a subse
the atoms may completely dominate the diffusion if they
located more closely to one of the maxima ofD(K). For our
parameters, there is typically a spread inK of around 5% in
our initial distribution.

Additionally, we must account for a systematic effect th
occurs in our free-expansion measurement technique.
technique relies on allowing the atomic cloud to freely e
pand for 15 ms after the interaction with the standing wa
in order to convert the spatial distribution of the atoms in
an effective momentum distribution. However, the intera
tion with the standing wave lasts as long as 1.6 ms for th
experiments. Since we define the drift time as the time fr
the beginning of the standing-wave interaction to the beg
ning of the camera exposure, the drift time effectively b
comes smaller as the number of kicks in the experiment
creases. There is no simple way to correct for this eff
directly, so we include this effect in our simulations by sim
lating the free-expansion process. The initial spatial distri
tion is chosen~in scaled units! to be uniform in the range
@2p,p), which is extremely small compared to the spat
distribution after the expansion. We do not choose the dis
bution from the MOT spatial distribution to account for co
volution effects; these effects have been approximately
counted for already, since the initial momentum distributi
used in the simulations is the measured momentum distr
tion, which is already convolved with the initial spatial di
tribution. Then the effective momentum of each partic
measured by the free-expansion method is

peff~ t !5x~ t !1S tdrift2t

tdrift
D p~ t !, ~26!

where all quantities are scaled.
The final effect that we account for is due to variations

the background levels measured by our camera. Although
perform background subtraction, which greatly improves
signal-to-noise ratio, the offset levels after the subtraction
generally nonzero, due to fluctuations~from drifts in the
camera electronics! and constant offsets~from physical ef-
fects in the imaging of the atomic cloud!. To enhance the
reproducibility of our data, we use the following procedu
to fix the zero level of our measured distributions: the
lowest points~out of 510 total! in the distribution are aver
aged together and defined to be the zero level. The disad
tage of this technique is that it results in a slight negat
bias in the offset level from the ‘‘true’’ distribution. Fo
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typical measurements of localized distributions, the bulk
the distribution is contained well within the imaged regio
In these cases, the measured values near the edges o
imaged region are small compared to those in the cente

FIG. 6. Plot of experimentally measured energy~points con-
nected by solid lines! and energy from the classical model~dashed
line! as a function of the stochasticity parameterK, for several
different levels of applied amplitude noise. All the plotted energ
are taken at the fixed time of 35 kicks. The oscillations and the s
due to quantum effects, corresponding to Eqs.~11! and ~17! with
k–52.08, are clearly apparent in the case with no applied noise.
average, the experimental energies are lower than their clas
counterparts due to localization effects for small noise levels. Ho
ever, for the strongest noise level shown here~80%!, there is good
agreement between the two energy curves. For this figure, no
justments have been made to the measured values ofK, and the
error bars for the energy values are suppressed, but are typi
smaller than the corresponding dots. Each experimental point i
average over ten realizations of amplitude noise. Two arrows in
zero-noise case mark the locations of detailed study that are
scribed in the following two subsections.
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3470 PRE 62STECK, MILNER, OSKAY, AND RAIZEN
the distribution, and the error in the offset is negligib
However, for strongly noise-driven cases, a significant fr
tion of the distribution can fall outside the imaged region,
noted above. The lowest 40 values are then significantly
ferent from the true zero level, and our procedure can in
duce a significant bias. It is straightforward to mimic th
process in the simulations, but in some data sets it is poss
to restore the correct offset level. For our typical studies
the transition from localized to delocalized behavior, t
only cases that are significantly biased are the strongly no
driven cases, which behave essentially classically~as we will
see later!. Then one can assume that the biased cases ca
modeled as Gaussian distributions, with the MOT beam p
file correction applied to them, and we obtain the corr
offset by fitting the model function to the measured distrib
tion. This ansatz is justified by the essentially perfect fit
the model function whenever its use is appropriate. Us
this idea, we have implemented an automatic procedure
restoring the correct offset in the data sets where the pr
dure is sensible~Figs. 7–12!. In other data~Fig. 6!, such as
measurements of exponentially localized distributions w
very long localization lengths, such a procedure is clea
inappropriate, and this effect is instead accounted for in
corresponding simulations.

There are a few other effects that we do not account
including spontaneous emission, the stochastic dipole fo
@26#, collisions between atoms, and other sources of no
most notably phase jitter in the standing wave. These eff
cause decoherence, but they are sufficiently small that at
levels of applied amplitude noise, quantum effects are ea
observed, and at high amplitude noise levels, the app
noise dominates any effects that these other processes m
have. Thus these effects do not hinder our ability to sea

FIG. 7. Experimentally measured energy~points and solid lines!
and energy from the classical model~dashed line! as the noise leve
is changed, for a fixed time~50 kicks! and stochasticity paramete
~the experimental value isK511.2610%, and the classical simu
lation corresponds toK510.9). At the lowest noise levels, there
a significant difference between the experimental and classica
ergies, due to both localization and differences in short-term co
lations, which disappears for high noise levels. Error bars repre
the statistical scatter among the 18 noise realizations comprise
each point, but do not account for long-term drifts or systema
uncertainties~see the note in the text!. The value ofK used here
corresponds to the rightmost arrow in Fig. 6.
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for quantum-classical correspondence in our system.
We also note that the corrections we have mentioned l

themselves well to classical Monte Carlo simulation
whereas with other methods it would be quite cumberso
to take the many aspects of the experiment into accoun
similar, quantum-mechanical analysis is much more diffic
however, since one would need to average over many w
packets in a Monte Carlo approach to obtain good conv
gence, and the evolution for a single quantum wave pac
requires much more computation than for a single class
particle.

V. DATA AND RESULTS

A. Overview

We have undertaken a detailed experimental study of
quantum kicked rotor dynamics in the presence of amplitu
noise, using the classical model for comparison. An ov
view of our results appears in Fig. 6, where the energies fr
the experiment and classical model are shown as a func
of the kick strengthK, for four different levels of amplitude
noise. The energies are plotted at the fixed time of 35 kic
In the case of no applied noise, one can clearly see the
cillations that correspond to Eqs.~11! and~17!. Additionally,
the shift in the locations of the experimental oscillatio
from their classical counterparts is evident; for the value
k–52.08 used in all the experiments shown here, the shif
20% above the classical value. Although in some locatio
the quantum~experimentally observed! energies are large
than the classical~numerically calculated! energies due to the

n-
e-
nt
in

c

FIG. 8. Experimentally measured energy~points and solid lines!
and energy from the classical model~dashed line! as the noise level
is changed, for a fixed time~50 kicks! and stochasticity paramete
~the experimental value isK58.4610%, and the classical simula
tion corresponds toK58.4). As in the case of Fig. 7, there is a larg
discrepancy between the experimental and classical energies a
lowest noise levels, which disappears for high noise levels. Exp
mental data are averaged over 18 realizations of noise. The valu
K used here corresponds to the leftmost arrow in Fig. 6. Note
larger discrepancy for zero noise in this figure, since the time
played here is later than that used in Fig. 6. Note also that
vertical scale used here is magnified compared to that of Fig. 7
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shift of the oscillations, the experimental energies are sma
on average than the classical energies because of qua
localization effects.

As the noise is added, the oscillations in the energy cur
become washed out, as one expects from Eqs.~14! and~18!.

FIG. 9. Experimentally measured energy~points and solid lines!
and energy from the classical model~dashed line! as a function of
time, for various levels of applied noise. The experimentally m
sured stochasticity parameter isK511.2610%, and the simulation
corresponds toK511.2. The experimental data points are avera
over 15 distinct realizations of amplitude noise, and data for s
cessive noise levels are offset vertically by 200 for clarity. T
agreement between the experimental data and the classical mo
excellent for noise levels of 60% and above. The value ofK used
here corresponds to the rightmost arrow in Fig. 6.
er
um

s

Additionally, the difference between the experimental a
classical curves becomes less apparent, until the hig
noise level~80%!, where there is excellent agreement b
tween the two curves. In accordance with our previous d
cussion, good correspondence only occurs when the n
level is sufficiently large to destroy the short-time quantu

-

s
-

l is

FIG. 10. Experimentally measured energy~points and solid
lines! and energy from the classical model~dashed line! as a func-
tion of time, for various levels of applied noise. The experimenta
measured stochasticity parameter isK58.4610%, and the simula-
tion corresponds toK58.7. The experimental data points are ave
ages over 15 distinct realizations of amplitude noise, and data
successive noise levels are offset vertically by 200 for clarity. T
agreement between the experimental data and the classical mo
again excellent for noise levels of 60% and above. The value oK
used here corresponds to the leftmost arrow in Fig. 6.
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FIG. 11. Evolution of the momentum distributions, for both the experiment~solid! and classical model~dashed!, at various levels of
applied noise. The experimentally measured stochasticity parameter isK511.2610%, and the simulation corresponds toK511.2. The
times shown, in order of increasing width, are 0, 10, 20, 40, and 80 kicks, with the final distributions emphasized in bold. In the ze
case, the contrast between the exponentially localized experimental distribution and the classical Gaussian distribution is eviden
largest three levels of noise shown, the experimental and classical distributions are nearly indistinguishable. The data and s
presented in this figure are the same as those used to calculate the energies in Fig. 9, and the value ofK used here corresponds to th
rightmost arrow in Fig. 6~the ‘‘valley’’ in the experimental curve!.
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and classical correlations, and hence the oscillations in
diffusion curves.

To fill out this picture of the kicked rotor behavior, w
present detailed views of the experimental and classical
e

y-

namics at two values ofK in the following two subsections
The two values ofK in these detailed measurements cor
spond to a minimum and a maximum of the quantum ene
curve in Fig. 6; these locations are indicated as arrows in
ise case,
lassical.
data and

s

FIG. 12. Evolution of the momentum distributions, for both the experiment~solid! and classical model~dashed!, at various levels of
applied noise. The experimentally measured stochasticity parameter isK58.4610%, and the simulation corresponds toK58.7. The times
shown, in order of increasing width, are 0, 10, 20, 40, and 70 kicks, with the final distributions emphasized in bold. In the zero-no
the quantum distribution does not exhibit exponential localization, as observed in previous work, but the behavior is distinctly nonc
For the largest three levels of noise shown, the experimental and classical distributions are again nearly indistinguishable. The
simulations presented in this figure are the same as those used to calculate the energies in Fig. 10, and the value ofK used here correspond
to the leftmost arrow in Fig. 6~the ‘‘peak’’ in the experimental curve!.
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zero-noise plot in this figure. From previous work@48#, we
know that the qualitative dynamics are distinctly different
these two locations. At the minima of the experimental d
fusion curve, exponential localization occurs. However,
the maxima, the late-time distributions that we measure
our experiment are nonexponential; this behavior is a fing
print of the underlying classical anomalous diffusion.

In Figs. 7–12, we contrast the behavior of the experim
tal and classical systems at these two values ofK. The be-
haviors at small noise levels have several interesting dif
ences, but, as we have already seen, the behavior at
noise levels is similar in that there is good corresponde
between the experiment and the classical simulations
Figs. 7 and 8, we show the behaviors of the energies at
minimum and maximum of the experimental diffusion curv
respectively, at a fixed time~50 kicks! as the level of noise
varies. The time evolutions of the energies are shown
Figs. 9 and 10 for the two values ofK at various levels of
noise. Finally, the corresponding evolutions of the mom
tum distributions themselves are shown in Figs. 11 and
We will discuss these results for the two values ofK sepa-
rately in the following two subsections.

Before proceeding, though, we make a few remarks ab
the comparisons between the experiment and the
rescponding classical dynamics performed in this paper.
classical model contains many experimental parameters
yond the two that are really important for the quantu
kicked rotor dynamics (K and k–). For the purposes of com
parison, we emphasize that all the extra parameters are
treated as fitting parameters; instead, they are all fixed
their experimentally measured values. However, the stoc
ticity parameterK, which is by far the largest source of un
certainty in our experiments, is sometimes adjusted by a
percent from its measured value~but well within the experi-
mental uncertainty of610%) in order to obtain better cor
respondence. To be precise about these adjustments
measured values ofK are presented in each figure capti
along with the value used in the classical simulations.
nally, as noted before, although we indicate statistical e
for our energy measurements in each figure, they are of
ited utility in determining the quality of the corresponden
between the experimental results and classical simulati
The main reason for this statement is the long-term opt
alignment and laser drifts that result in long-term drifts inK,
which can result in local systematic shifts in energies
tween different curves~or even points within a curve! in each
figure. This effect is not properly accounted for by either t
statistical error estimates or the simulations, which us
single value ofK for an entire data set. For example, in Fig
9 and 10, it is not possible to distinguish different levels
agreement between the data and simulations for
60–200 % noise levels, although some pairs of curves m
appear to agree more closely than others. Indeed, it is im
tant to realize that the momentum distributions are the m
reliable tool for studying correspondence, since they con
much more information, and tend to be less sensitive to
problems we have mentioned. The energies, on the o
hand, are still valuable as a concise summary of the la
amount of information presented here.
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B. Detailed study: destruction of exponential localization

We now focus on the behavior at the minimum of t
experimental diffusion curve, as indicated by the rightm
arrow in Fig. 6. In this regime, the atoms localize in a
exponential distribution at late times. In Fig. 7, there is
large difference between the experimental and classical
ergies after 50 kicks when no noise is applied. This diff
ence is due to both dynamical localization and the misali
ment of the quantum and classical diffusion oscillation
which gives the classical system a larger initial diffusi
rate. As noise is added, both the experimental data and
classical simulations exhibit increased diffusion, as the sh
time correlations are washed out. The increase in the exp
mental diffusion is larger than the classical diffusion beca
quantum localization is destroyed. At high noise levels,
agreement between experiment and classical simulatio
good. Additionally, both curves exhibit a characteristic dip
the energy around 150% noise levels. This somewhat
prising effect is a result of residual short-time correlation
which persist at noise levels as high as 100%, where t
enhance diffusion slightly above the quasilinear value.

Similar behavior occurs in the time evolution of the ene
gies shown in Fig. 9. When there is no applied noise,
experimental energy grows initially more slowly than th
classical energy, and then saturates and diffuses slowly.
slow diffusion is likely due to residual decohering effects
our experiment, such as phase noise in the standing wave
noise is added, the diffusion is enhanced in both cases,
for high noise levels the energy growth in the experimen
quite similar to that observed in the simulations.

Finally, the transition to classical behavior in the expe
ment is most dramatically evident in the momentum dis
butions shown in Fig. 11. In the zero-noise case, the exp
mental distributions evolves from the initial, nearly Gauss
form to the exponentially localized distribution~shown in
bold!, which is characteristic of dynamical localization. Th
classical distribution, on the other hand, evolves to
broader, Gaussian distribution that one expects from cla
cal physics. When a small amount of noise~20%! is applied,
the final experimental distribution is broader and has
rounded appearance, but is still quite far away from the c
sical Gaussian distribution. With 40% noise, the final expe
mental distribution has made the transition to a Gauss
profile, but the widths still do not quite match the classic
predictions. For the highest levels of noise show
(60–200 %), the evolutions of the experimental and class
distributions are nearly identical, providing strong eviden
that the experiment is behaving classically.

C. Detailed study: regime of classical anomalous diffusion

In this section, we focus on a different regime than in S
V B. Here we consider the behavior at a peak in the exp
mental diffusion curve, indicated by the leftmost arrow
Fig. 6. This location in the diffusion curve corresponds to
regime of classical anomalous diffusion. As in the previo
case, there is a significant difference in the energy after
kicks in the absence of noise, as seen in Fig. 8. The dif
ence in this figure is much larger than in Fig. 6, because
the much later time used in the plot~50 vs 35 kicks!. As
noise is applied, the experimental energy increases. This
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havior is consistent with the breaking of localization, a
though it is not completely clear that localization occurs
this regime, because of the nonexponential form of the lo
time momentum distributions. By contrast, the classical
ergy is initially reduced by the applied noise, due to t
destruction of the classical correlations. Again, for hi
noise levels the behavior in the experiment is well descri
by the classical model.

From the evolution of the energies in Fig. 10, we see t
the differences between the behaviors of the atoms and
classical model are more subtle than in the case of Sec.
When there is no applied noise, the experimental data sho
faster initial diffusion than one would expect classically;
later times, the diffusion seems to saturate, suggesting
localization effects are setting in, and the diffusion proce
more slowly than in the classical model. The energy diff
ence in this case is smaller than one might expect from
8, due to slight differences in the intensity and beam dia
eter of the kicking laser light between the two data runs~note
that this value ofK corresponds to a steeply sloped region
the classical diffusion curve!. As noise is added, the satur
tion is less pronounced, until at 40% noise, where the di
sion occurs more quickly than in the classical model, w
little indication of saturation. Above this level, the expe
ment agrees well with the classical model, and the short-t
correlations are evidently small.

The momentum distributions for this case are shown
Fig. 12. In the zero-noise case, the experimental distribu
after 70 kicks~highlighted in bold! has a characteristic pro
file, rounded and nonexponential in shape. One might
tempted to attribute this shape to the systematic effects
we have discussed, which affect the tails of an exponen
distribution with a very long localization length. Howeve
the region over which the distribution is rounded is w
within the domain where the systematic effects are not
nificant. The final classical distribution also has tails th
extend well beyond those of the experimental measurem
As noise is introduced, the experimental profile becom
more Gaussian, and the classical diffusion rate is redu
slightly. As in Sec. V B, the final experimental distributio
for 40% noise is Gaussian, but the evolution does not q
proceed at the same rate~as one can most readily see fro
the distributions at intermediate times!. The difference,
though, is that the quantum diffusion occurs more quic
than the classical expectation, whereas in Sec. V B the
e
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fusion occurred more slowly than in the classical mod
Again, for the highest levels of noise shown (60–200 %
the experimental evolutions are in excellent agreement w
the classical model, and hence classical behavior is resto

VI. SUMMARY

We have presented a detailed study of the transition
classical behavior in an experimental realization of the qu
tum kicked rotor system. An important component in t
analysis of this transition is a meticulous understanding
how various aspects of the experimental system affect
measured evolution of the atoms. We have observed tha
sufficiently high levels of noise, the global behavior of th
experimental system is in good agreement with a class
model of the experiment, which includes the effects of t
noise as well as the most significant aspects of the exp
mental setup.

There is still much interesting work to be done in th
area, and there are several future directions for this exp
ment that are directly related to the work discussed he
First, it appears that the quantum behavior is relatively
bust to the applied noise, most likely because of the stron
quantum nature of our parameter regime. It would be int
esting to compare the effects of different types of noise in
experiment, to see if the system is especially sensitive to
particular form of noise. Another possibility would be t
operate in a more classical regime~smaller k–), where the
kicked rotor should be more susceptible to noise. In t
regime, it should also be possible to observe quantu
classical correspondence without destroying the short-t
correlations, since there would be little mismatch betwe
the quantum and classical diffusion oscillations. Finally,
will soon have the ability to prepare localized initial cond
tions in phase space, and it will be possible to study
effects of noise on local phase space structures.
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