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Quantitative study of amplitude noise effects on dynamical localization
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We study the motion of cold atoms in a pulsed standing wave of light, which constitutes an experimental
realization of the quantum kicked rotor. This system exhibits dynamical localization, where quantum effects
suppress classical momentum diffusion. As we introduce amplitude noise, the coherences that lead to local-
ization are destroyed, resulting in restored diffusion. For high levels of noise, we find that the experiment is
well described by a classical model, suggesting that classical behavior has been restored. We present a detailed
experimental study of this noise-induced transition from quantum to classical behavior.

PACS numbgs): 05.45.Mt, 42.50.Vk, 32.80.Pj

I. INTRODUCTION magneto-optic trap(MOT) were subject to a phase-
.modulated standing wave, with negligible transverse motion.
L . . ; . . 130UG ater, the phase-modulated light was replaced with a pulsed
motion in systems with chaotic classical limjts. Since this standing wave, leading to an atom-optics realization of the
suppression relies on quantum interferences, noise and dis§ii-ked rotor[24], a simpler and more fundamental system
pation can destroy these interferences and restore the ey, the study of quantum chaos. The experiments described
pected classical behavior. The destruction of quantum intefiy this paper are performed on a second-generation appara-
ference, called decoherence, is especially important ifys, based on cold cesium atoms, which has several advan-
reconciling the classical and quantum descriptions of chaotigages that allow for these experimef$]. In general, atom
systems, where simple quantum descriptions predict thaiptics is an ideal setting for these experiments, because one
nonclassical effects appear after only a short time, even fotan directly measure the distribution of atomic momentum.
macroscopic systenjg]. Because of the general importance Additionally, one has direct and precise control over many
of decoherence in quantum-classical correspondence, theegperimental parameters, which is especially useful in study-

has been much theoretical work on this subj&ct9]. ing different types of noise and dissipation.
Despite the vast body of theoretical work on the subject,
there have been few experiments dealing directly with deco- II. THEORETICAL BACKGROUND

herence in classically nonintegrable systems. The first stud-
ies in this area considered the effects of noise on Rydberg
atom ionizatiorf 10—14. Especially relevant to the work pre- The connection between an atom in a standing wave of
sented here are Refd1-13, where noise added to the mi- light and the kicked-rotor problem forms the basis for all the
crowave driving of the Rydberg atoms led to an improvedexperiments described here. We begin our discussion of this
agreement with classical predictions of ionization thresholdsconnection by considering the dynamics of a two-level atom
There has also been some work investigating the effects dh a standing wave of monochromatic light. The optical field
temperature on conductance fluctuations in mesoscopis described by a superposition of counterpropagating travel-
structureqg 15]. Finally, there has been preliminary work in ing waves,
atom opticq 16,17, which forms the backdrop for the work R
discussed here. E(x,t)=2z2E, cogk x)cog wt), (1)
Although work in chaotic systems has been limited, it
should be noted that there have also been some recent exhereE, is the field amplitude of a single traveling-wave
periments on decoherence in linear systems. These expefiomponentw, is the frequency of the field, and = /c.
ments include spontaneous emission in atom interferometryhis field configuration is the linearly polarized, one-
[18], decoherence of a coupled Rydberg atom-microwavelimensional optical lattice that is now commonly used in
cavity systenj19], and the decoherence of a superposition ofatom optics. The dipole interaction leads to a spatially de-
motional states in an ion trgd20]. However, there is much pendent ac Stark shift of the atomic levels. We are interested
left to understand, and more experimental work is needed iin the limit where the laser detuningy_ :=w, — wg from the
both linear and nonlinear systems. atomic resonancey is large compared to the excited-state
Atom optics has emerged as an important testing groundecay ratd’. In this regime, the dipole force due to the Stark
for ideas in quantum chaos. The initial idea for a quantunshift can be significant, while incoherent effects such as
chaos experiment in atom optics came in a proposal by Graspontaneous emission and the stochastic dipole f(26¢
ham, Schlautmann, and Zoll¢R1], which considered an can be made negligibly small. Furthermore, the atom is al-
atomic beam crossing a phase-modulated standing wave afost entirely in the ground state; in fact, since we are inter-
light. An important simplification was made to this basic ested in atomic motion on time scales slow compared to
scheme when it was experimentally realized in our laborad/A, , we can adiabatically eliminate the excited state of the
tory [22,23, where sodium atoms cooled and confined in aatom[21]. In this adiabatic approximation, we can ignore the

A. The kicked rotor in atom optics
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internal structure of the atom, and treat it as a point particlegg, interpref® as a scaled Planck constant, which measures

The resulting reduced center-of-mass Hamiltonian is the action scale of the system, normalizeditoHenceforth
2 we will use these scaled variables, with the main exception
H(x,p)= p_+V0 cog 2k X), (2)  being that in the presentation of the data we report momen-

2m tum in multiples of two photon recoils ¢X,). From the

second transformation in Eg&l), we see that this specifica-
tion is equivalent to reporting the scaled momentum in mul-
tiples of K. This momentum scale is more natural, since the
- . S —o et dipole force results from the scattering of a photon from one
writing down this Hamiltonian we have also implicitly in- 5\ 6ling wave into the other, and hence the atomic momen-
voked the dipole and rotating-wave approximationshis tum can only change by7, at a time. This momentum

Hamilton!an correqunds to that of the familia}r pen_dulum' INadder also arises naturally from the spatial periodicity of the
atom optics, this lattice plays the role of a sinusoidal phas‘f)otential.

diffraction grating. One final note is in order, since the cesium atoms we use

So far, we have described a realization of the quantumy, yhe experiment have fairly complicated hyperfine struc-
pendulum, which is an integrable system. A more mterestmqure, and one may question the accuracy of a two-level atom

case arises when the well depth is time dependent, and the, e Fortunately, there is a symmetry in the hyperfine
dynamics are chaotic. Sindg, is proportional to the inten-  gcyre that simplifies its treatment significantly. In these

sity of the optical field, this time dependence is easily pro-gneriments, it is important to optically pump the atoms into

duced via amplitude modulation of the standing wave. Thq)ne ground hyperfine leveF(= 4 for our experiments here
kicked rotqr corresponds to a potential that is periodicallywhich itself has a set ofnearly degenerate magnetic sub-
pulsed in time: levels. Then, it is important for the detuning to be large, so
2 that the excited-state hyperfine structure is approximately de-
H(x,p,t):p—+vo coiZka)Z F(t—nT). (3) generate(for our setup,A; must be large compared to
2m n ~0.5 GHz). Since the light is linearly polarized, each

. . , ) ) _ground-state sublevel is independently coupled to its own set
HereT is the kick period, and (t) is a pulse function of unit ¢ excited-state sublevels. In this case, the sums over the

height and duratiof,<T. The 5-kicked rotor corresponds 10 gycited-state couplings turn out to be independent of the
the limit of 5-function pulses; most theoretical work focusesground state sublevel. Hence, in the far-detuned, linearly po-

on this limit because of the tremendous simplification of the3yized regime, one can use an effective dipole mondgpt
equations of motion, as we discuss below. In a physical ex=5 2%« 1072° cmin place ofd,, and employ the two-level
periment, however, one can only strive to come as close agom model.

possible to this limit by using short, intense laser pulses.
Before proceeding, we can simplify our discussions by _ _
transforming to a set of scaled, dimensionless units. If we B. Classical dynamics

define The S-kicked rotor problem is a paradigm system for the
study of classical and quantum chaos. One reason for its

where m is the atomic massy,:=2Q02/8A, is the “well
depth” of the lattice () :=—2d,Ey/% is the maximum Rabi
frequency, andl is the atomic dipole momentNote that in

X" =2k x, importance is the simplicity of the corresponding equations
of motion. Since the motion is dominated at any given time
p'=(K/2hk.)p, by either the kinetic or potential component of the Hamil-
tonian, Hamilton’s equations can be integrated over one tem-
t"=t/T, (4)  poral period, yielding the standard mg2y]
f(t"):=F(t)/ 7, Xn+1=Xn T Pn+1;
(6)

=pytKsinx,.
K==(k/ﬁ)77TVO, Pn+1=Pn n

Here x, and p,, refer to the momentum just before tin¢h
kick. The simplicity of this mapping has made many analytic
as well as numerical studies possible, and much is known
about the classical dynamics of the kicked rotor.
p2 The most important aspect of the kicked rotor for our
H(x,p,t)= 7+ K cosxz f(t—n), (5) purposes is its global behavior. In our studies, we are inter-
n ested in the regime of largé (which in practice meank

. . . =5), where the phase space is predominantly chaotic and
after dropping the primes. In the above transformations, th?here are no invariant Kolmogorov-Arnold-Mos&KAM )

parameterK bk thEStOChaSt'C'ty parameteraddr surfaces that would prevent unbounded motiop.ilVe will
tlon"illlly’w we have deflnecoio the pulse integral begin our discussion by considering the mean kinetic energy
=T 7[Z.F(t)dtecty [so that/ . f(t)dt=1] and the con- ¢ 51y ensemble of rotorésee Ref[7] for a similar discus-
stantk:=8w, T, wherew,:=7k?/2m is the recoil frequency. sion, although with slightly different notationUsing the

In view of the scaled commutation relatig,p]=ik, we  second equation in the standard ni&g. (6)], we find

H':=(K/A)TH,

then we can rewrite the kicked rotor Hamiltonidy. (3)] as
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(p2> 1 "t correlations can also play an important role in the dynamics.
n= 2" =3 Chnem’» (7) In the generic case, there are islands of stability in phase
mm’'=0 space(even for arbitrarily largek), which have boundaries

that are “sticky” in the sense that trajectories that wander
into these sticky regions can remain there for many kicks.
Crnm #=(K SINXnK Sin Xy ). (8  Hence even initial conditions within the chaotic region of
phase space will eventually wander near islands, and be
The angle brackets denote a uniform average over phasauck to them for a possibly long time before breaking away
space, and the correlations depend only on the time differand continuing to diffuse through the chaotic region. In the
ence (n—m’). The sum in Eq(7) can be easily evaluated if case of the standard map, there are two types of stability
one makes the approximation that the coordingtés uni-  islands: stability islands in the usual sense, which surround a
form and uncorrelated, as one might expect for very lagge fixed point of the motion, andgccelerator mode$27,30,

when the phase space is almost entirely chaotic. Doing swhich are similar to the usual stability islands but are
allows one to ignore the off-diagonal terms and gives thédoosted in momentum on each kick. The accelerator modes

where the correlation functiorS,,, are given by

result are a peculiarity of the standard map, since the phase space
structure is periodic in momentuitwith period 2r); other
Co K? systems, including our system with nonzero-duration pulses,
En:7n: Zn' © can exhibitquasiaccelerator modesvhich behave like ac-

celerator modes over a bounded region of phase d2ije
The energy growth is hence diffusiénear in time, with  This stickiness leads to \g-flight behavior{31]: the islands
diffusion rateDq(K)=K?/4, which is known as theuasi- tend to trap trajectories, leading to reduced transport,
linear diffusion rate. In fact, this random-phase approxima-whereas the accelerator modes lead to streaiwiith many
tion is equivalent to assuming that the motion is a randontorrelated steps in momentynand hence to enhanced trans-
walk in momentum, so the momentum distribution is asymp-port. This nondiffusive behavior is referred to as anomalous
totically Gaussian, with a width- y/n. diffusion, and leads to momentum transport of the form
The random-phase approximation is only validkas-,  E(t)~t*, where the transport exponeat- 1 for anomalous
however, and for finitek the higher-order correlations can- diffusion [32—34. This anomalous diffusion is dramatically
not always be neglected, even for trajectories within the chagvident[35,36 when the main family of accelerator modes
otic region of phase space. Nonuniformities in the chaotids stable, that is, wherk is near 27| for positive intege.
region, especially in the neighborhood of stability islands,[Note that these locations coincide with the peaks of Eg.
can lead to nonzero correlations, and hence to deviations ¢11).] Since the motion is not strictly diffusive, the proper
the diffusion rate from the quasilinear value. A more generaframework for the kicked-rotor transport is fractional kinet-
expression for théime-dependentiffusion rate in terms of  ics[36—38. However, since the stable islands in phase space
the higher-order correlations is are typically small for largé, it may take many kicks before
the islands cause large deviations from diffusive behavior.
1 2 Hence, for the time scales observed in our experim@mt$o
Dn=En+1—Ex=5 Z Ch- (10) 80 kicks, it is appropriate to describe the classical dynamics
me-n as diffusive as long as large accelerator modes are not
These corrections to the diffusion rate were treated analytiPr€Sent. Operationally, Eq11) is an excellent approxima-

cally in Refs.[28,29, where Eq.(10) was shown to be an ton away from the main family of accelerator modes.
asymptotic expansion in powers of Bessel functions<of Since we apply amplitude noise to the interaction poten-

The result from Ref[29] is tia_l in our experiment, it .is importan.t to consi_der the effect (_)f
this noise on the classical dynamics. In this case, the kick
K2(1 5 ) ) strengthK is replaced byK + 6K,,, wheresK,, is a random
D(K)=~ 5—Jz(K)—Jl(K)+Jz(K)+J3(K)>, deviation for the amplitude of thath kick. We consider

(11) exclusively the case of uniform amplitude noise, which is
characterized by the probability distribution
to second order in the Bessel functions. This expression rep-
resents the diffusion rat®,, for long timesn and large val- | USKpp,  OKe(— 6Ky y2,0K,2)
ues ofK; the higher-order terms in the expansion are as- (oK)= 0 elsewhere,
sumed at this point to have only a small contribution, since

they represent higher powers Ofg/ﬁ- [Note that it is often  where oK., is the peak-to-peak deviation of the kick
convenient to neglecd;*(K)—J,%(K), which is O('é ), strength. When we quote the noise level used in our experi-
since for largeK this difference is much smaller thda“(K),  ments, we are quoting the normalized peak-to-peak deviation

which is O(K *); however, these terms will be important 5K /K. The noise modifies the correlations, and the gener-
when generalizing this result to account for amplitude noise&lization of Eq.(8) is

below, This result shows thdd (K) oscillates about the qua-

silinear value, where the corrections become small compared

to the quasilinear value a6 becomes large. Cm—m’:f d(oKp,) - - -d( Ky ) P(OKp) - - - P(OK 1)
The diffusion calculation leading to Eql1l) took into

account only the first few correlations. However, long-time X ((K+ 8K ) SinXm(K+ 8Ky )sinXy ), (13)

(12
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140 Finally, we note briefly the effects of nonzero pulse
widths, which are inherent in a physical experiment. Essen-
120 tially, the 5-kick approximation breaks down when a rotor is
moving sufficiently quickly that one cannot neglect its mo-
100 tion during the kick. At these speeds, the rotor samples an
interval of the sinusoidal potential during the kick, and in a
Q 80 similar manner to the destruction of the correlations by
Py €0 noise, the strength of the potential is effectively reduced. The
worst possible case is when the rotor moves over a period of
40 the potential during the kick, in which case it experiences no
net kick. This effect sets an effective upper momentum
20 boundary for the dynamics. In our experiments, we can mini-
mize this effect by choosing a sufficiently short pulse so that
0 the momentum boundary is far above the highest momenta
0 5 10 15 20 achieved in the experiments. We will return to this effect

K when we discuss the systematic effects in the experiment.
For a more comprehensive discussion, as well as direct mea-
surements of the effect on our measured momentum distri-
butions, see Ref25], as well as the earlier theoretical treat-
ement of Ref[39].

FIG. 1. Plot of diffusion expressiofil4) for several levels of
uniform amplitude noise: no noigsolid line), 50% noise(dashed
line), 100% noisgshort dashesand 200% noisédot-dashed ling
The oscillations, which represent short-term correlations, ar
smoothed out by the noise. C. Quantum dynamics
where there arem—m’|+ 1 integrals over the kick probabil-  The quantum dynamics of the kicked rotor, first discussed
ity distribution, since the coordinate at the later time depends the seminal work of Ref[40], are strikingly different in
on all the kicks after the earlier time. It is difficult to evaluate nature from the classical dynamics_ In contrast to the diffu-
this eXpreSSion directly, but fortunately itis Straightforward sive nature of the classical dynamiCS, the guantum system
to generalize the diffusion result in R¢29] to include am-  exhibits diffusive behavior for only a short time, called the
plitude noise by taking thi associated with each step in the quantum break timeafter which the diffusion is suppressed.
Fourier paths to be an independent random kick of strengtih fact, this suppression of diffusion is symptomatic of a
K+0Ky; then each kick strength must be averaged withmore fundamental difference between the quantum and clas-
respect to its probability distribution. Doing S0, We arrive atsjcal systems, as shown through e|egant time-reversal simu-

the generalization of Eq11): lations by Shepelyanskj41]: the quantum dynamics are
2 2 stable(quasiperiodig and not chaotic, in stark contrast to the
K“+Var(6K) K ; ; X .
D(K)= ————+— (= Jo(K) = J13(K) classical dynamics. This stability can also be seen from the
4 2 (locally) discrete quasienergy spectrum of the kicked rotor
+ T,2(K) + T52(K)). (14) [42-44. Hence it is clear that quantum effects suppress clas-

sical chaos in the kicked rotor, and this quantum suppression
In this equation, VargdK) denotes the variance (oK) of chaos is referred to adynamical localization Although

[which is simply (5Kp.p)2/12 for uniform noisé and much of the theoretical work on this phenomenon has fo-
cused on the kicked-rotor problem, dynamical localization

also occurs in many other systef@s].

Fishman, Grempel, and Pranf#3—-459 made an impor-
tant step forward in the understanding of the quantum kicked
This expression makes it immediately clear how the noiseotor by mapping it onto the problem of Anderson localiza-
affects the diffusion rate: the integral in E45) is analogous tion. One consequence of this analysis was the realization
to a convolution of the Bessel functions with the noise dis-that the quasienergy statésloquet statesare exponentially
tribution. As the noise level is increased, the Bessel functionfocalized in momentum. This result provides a useful context
are smoothed out, and the correlations are effectively defor understanding dynamical localization, since the evolution
stroyed. This is especially true for long-term correlations,to a localized state can be viewed as a dephasing of the
and indeed anomalous diffusion is suppressed in the presjuasienergy states. An initial momentum distribution that is
ence of noise. At the same time, there is an increase in thearrow compared to a typical quasienergy state must be a
guasilinear diffusion componefithe first term in Eq(14)], coherent superposition of quasienergy states. As time
but this effect is generally small in comparison to the de-progresses, the different phase evolutions of the quasienergy
struction of the correlations. For illustration, functit) is basis states result in diffusive behavior for short times. At
plotted for several different levels of amplitude noise in Fig.long times, when the basis states have completely dephased,
1. Note that for the 100% and 200% noise levels, the correthe distribution relaxes to an incoherent sum of the exponen-
lations are essentially destroyed, so that these noise leveliglly localized basis states, resulting in an exponentially lo-
cannot be considered perturbative; however, these noise leealized distribution. For very long times, one also expects
els are still small in the sense that their contribution to thequantum recurrences as the basis states repglde but
quasilinear diffusion rate is significantly smaller than thethese time scales are far beyond what we can observe experi-
zero-noise component. mentally. The suppression of diffusion, as well as the char-

©

jn(K)::f _P(3K)J,(K+8K)d(6K). (15)
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acteristic exponential distributions of dynamical localization,action with a very largdi.e., possessing many degrees of
were observed experimentally in Rg¢R4] for the kicked freedon) external systenfreservoiy, which is an inherently
rotor, and in Refs[22,23 for a similar system. irreversible process. However, noise has essentially the same
The quantum dynamics can also be understood in terms afffect, and we chose to implement it in these experiments
the modification of the correlations due to quantum effectsbecause of the high degree of experimental control over the
Shepelyansky showed numericali/l] and analyticall{46] interaction potential. The first study of the influence of noise
that, whereas the classical correlations drop off quickly withon the quantum kicked rotor appeared in Réfl], where it
time (when any residual stable structures are too small tavas observed that a sufficiently strong random perturbation
affect the dynamics on a short time scale, i.e., away from theould restore diffusion at the classical rate. Soon thereafter, a
accelerator modesquantum correlations persist for much more detailed theoretical treatment was presented by Ott,
longer times. In contrast, for cases of smakerand hence Antonsen, and Hansop], who showed that if the scaled
more stability, the quantum and classical correlations wer@lanck constant is sufficiently small, classical diffusion is
similar after the break time. This difference in the correla-restored, even for small amounts of added noise. Some re-
tions is intuitively clear from Eq(10); in fact, the long-time  stored diffusion was observed previously in the kicked rotor
guantum correlations near the break time must be negativén the presence of amplitude noigE6] and in the presence
bringing this sum to nearly zero, in order for the system toof spontaneous emissi¢t6,17], but in these experiments it
exhibit localization. was not clear whether the behavior had returned to the clas-
Shepelyansky also made another observation regardingjcal limit.
the quantum correlations that is important for our results To reach the classical limit in our experiment, the short-
presented here. In particular, he calculated the first few quarterm correlations must also be modified by the noise, in view
tum correlations, and found that they had the same form asf the quantum scaling factor in E¢16), which as men-
the corresponding classical correlations upon the substitutiotioned before is significant for our typical parameter values.
[47,46,1 One can generalize the work of Shepelyansky leading to Eq.
(17) to include amplitude noise, with the result

sin(k/2) ) )
—Kg=—"""K. (16) Ke+Var(6K) K )
K/2 D(K,RK)= ———F———+ 5 (= Qo(Ky) = Q17(Ky)
4 2
[Note, however, that the correlations used in Ré%] were + sz(Kq)+ ng(Kq)), (18)

defined without the factor oK? that appears in Eq(8).]
Hence a good approximation for the initial quantum diffu- where
sion rate(in the absence of noisés

o)

K2(1 Qn(Kq)::f P(0K)J,(Kgt 0Kg)d(K), (19
D(K,K)=— 5—J2<Kq>—Jf(Kq>+J22<Kq>+J32<Kq>), -

17 and oK y= 6K sin(k/2)/(R/2). Thus the short-time quantum
correlations are washed out in much the same way as the
classical correlations, as in E@L4). However, since the lo-
ations of the classical and quantum oscillationB {fK) are

where it is assumed that the initial quantum distribution is
approximately uniform over a2X 2 unit cell in the clas-

sical phase space. Consequently, there is an oscillator dgf . . )
P P q y y ifferent for our operating parameters, we can immediately

pendence of the initial quantum diffusion rate Kg that is conclude that in order to observe good correspondence be-
closely related to the underlying classical dynamics. How- . yoc ponc :
een quantum and classical evolution, the applied noise

ever, the oscillations are shifted due to the quantum scalinﬁgvuSt be verv strond. In this case. both quantum and classical
factor in Eq.(16). Since the width of the localized distribu- y strong. , Dot g

tion (the localization length is related to the initial diffusion diffusion will proceed at the quasilinear rate, since the diffu-

rate[47], the oscillations are also apparent in the Iong-timeSlon oscillations will be destroyeas in Fig. 3, and the

quantum distributions. This oscillatory structure was ob-9iobal behavior will be the same. For lower levels of noise,

served, and the quantum scaling was confirmed experimelsi)—ne might e.);pﬁCt Ito recover d|fflJ|S|ye behavior n Ith? qlljan—
tally in Ref.[48], where it was also observed that exponen—turp si/_sterr(l tde tong-tlgnet corre_;lltlor;s restpotrt;s?de or O_t
tially localized distributions do not occur for values K, (r:na;;tzci I?hneacrlzsseiszgoy?éddigtigr?sa y at arate that does no
that lead to maxima in Eq17). The quantum scaling factor P '

is significant for the data reported in this paper; typically, we. E!nally, we note that amplitude noise 1s ladder preserv-
ing,” which means that atoms can still only change momen-

tions by about 20% irK. such as spontaneous emission, can break this ladder symme-

We now turn to the concept of adding noise to thety and possibly lead to more effective destruction of local-
quantum-kicked rotor. Since the deviation from the classicajzation[7].

dynamics is due primarily to long-time correlations, dynami-

c_al Ioc_alization should be susceptible to noise_and dissipa- IIl. EXPERIMENTAL METHOD

tion, either of which would lead to the destruction of these

correlations. Note that noise and dissipation are fundamen- The experimental setup is that of our earlier quantum
tally different in nature: noise is a unitary process, and ischaos experimentgl6,25,48, with minor modifications. A
hence reversible in principle, whereas dissipation is an intergeneral schematic of the setup is shown in Fig. 2. The ex-
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FIG. 2. Schematic diagram of the experimental setup. Two diode lasers provide the light for the MOT, and a Ti:sapphire laser provides
the far-detuned standing wave.

periments are performed on laser-cooled cesium atoms in A typical measured distribution is plotted in Fig. 3, along
MOT [49]. Two actively locked, single-mode diode laserswith function (20). The parameters for the model were de-
(L1 and L2 at 852 nm are used for cooling, trapping, andtermined from a best fit; the widths of the components are
detection of the cesium atoms. The main beam from L1 isrp/2fik, =3.9 and¢y/2fik, =13.0, and the relative weights
double passed through a tunable acousto-optic modulat@re ,=82% andz.=18%. This distribution corresponds to
(AOM) that provides fast control over the intensity and de-the initial conditions for all our kicked rotor experiments.
tuning of the beam. During the trapping stage of the experiWe mention this model only to more precisely quantify our
ment, the light from L1 is locked 15 MHz to the red of the initial conditions. For the simulations described before, we
(6Sy2,F=4)—(6P3,,F=5) cycling transition. This light construct the initial conditions directly from the experimental
is collimated with a radius of 11 mm, and has a typicaldata. It should be noted that the choice of an exponential
power of 23 mW at the chamber. The light from L1 is split distribution to model the broad tails is purely empirical, and
into three beams that are retroreflected through the center i in no way related to the exponential localization that is
the chamber in a standard six-beam MOT configuration. Thebserved after several kicks in the kicked-rotor evolution.
second laser, L2, is locked to the%6,,F=3)—(6P5,F Using a simple Gaussian model for our measured distribu-
=3,4) crossover transition, and shifted onto the5{6,F
=3)—(6P5,,F=4) resonance with an AOM that also pro- 107
vides fast control over the intensity of the beam. This beam
prevents optical pumping into tHe=3 ground state during
the trapping and detection stages.

After trapping and initial cooling, the intensity of L1 is
reduced for 7 ms, and the detuning is increased to 55 MHz tc
further cool the sample. After this final cooling, the trapping -
fields are then turned off. The light from L2 is left on
150 us longer than the light from L1, to ensure that the -
atoms are left in the (8,,,F=4) ground state. Typically,
we trap 16 atoms witho,=0.15 mm andr /25 k =4 (de-
termined by fitting a simple Gaussian modelhe momen-
tum distribution in the trap is mostly Gaussian, with broad-
ened tails. Similar distributions were observed by other 10° . [ , [ [ | ,
groups, especially for strong magnetic-field gradm(m;., 80 60 40 20 0 20 40 60 80
Refs.[50,51]). A reasonably good model for this momentum p/ 27k
distribution is an incoherent sum of a Gaussian and an expo- L
nential distribution: FIG. 3. Plot of the momentum distribution in the MQFolid

line), with model distribution(20) (dotted ling. Most of the atoms
1 p? 1 Ip| are in the main Gaussian component, while a smaller fraction is
e - + ex;{ ) (20 contained in the broad, non-Gaussian tails. This distribution corre-
2‘Tp sponds to the initial conditions of our kicked-rotor experiments.
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tion, we find that 96% of the atoms are accounted for by this 700
thermal model, with the remaining 4% augmenting the tails
of the momentum profile. o 600
Once the trapping light is off, the interaction potential is
turned on. The pulsed standing wave is provided by a stabi-*~ 500
lized single-mode Ti:sapphire las@r3). The light from L3 §
passes through a third AOM that controls the pulse sequence 5 400
The linearly polarized beam is spatially filtered, aligned with ~
the atoms, and retroreflected through the chamber to form ¢ 300
standing wave. The beam has a typical maximum power of
470 mW at the chamber, and a waist of 1.5 mm. For all the
experiments described here, this beam is detuned 6.1 GHz t
the red of the cycling transition, with typical fluctuations of
about 100 MHz. The frequency of this laser is monitored by
a wavemetefscanning Michelson interferomejewhich has
a resolution of around 500 MHz; the frequency is also moni- 0 120 30 4 350 6 70 8
tored on a finer scaléwith a resolution of around 10 MHz time (number of kicks)

by comparing it to the light from L1 on a scanning Fabry-  rig 4. Example of how the systematic effects described in the
Perot cavity. The pulse sequence consists of a series @iy can affect the measured energies. Shown are the simulated
295-ns(full width at half maximum pulses with a rise-fall ~ 5yerage energy evolution for typical operating parametdts (
time of 70 ns, and less than a 3-ns variation in the pulse. 17 5 1009 noise levehnd typical parameters for the systematic
duration. The pulse period used for these experiments Wagrections. The solid straight line is the ideal case, corresponding
T=20 ps, with variations of less than 4 ns. This period (5 the 5-kicked rotor with no corrections; the successively lower
corresponds t&=2.08. The detection of momentum is ac- cyrves represent the cumulative result as each effect is accounted
complished by letting the atoms drift in the dark for a con-for (in the order of presentation in the tgxtonzero pulse duration
trolled duration(typically 15 mg. The trapping beams are (qashed ling MOT (detection beam profile(long dot-dashed line
then turned on in zero magnetic field, forming an opticalgjipping due to the width of the CCD chigotted lin, profile of
molasses that freezes the position of the atoms. The atomijgieraction beam and transverse atomic motiong dashes cor-
position is recorded via fluorescence imaging in a sk®t  rection for free-expansion measureme(aiot-dashed ling and
ms) exposure on a cooled charge-coupled deW@€ED). The  \ertical-offset biagthin solid line.
final spatial distribution and the free-drift time enable the
determination of the one-dimensional momentum distribu- ) ) ) )
tion. perform classical Monte Carlo simulations of the experi-
We now briefly discuss the dominant systematic uncer/Ment. In these simulations, a large numbgypically
tainties in our experiment. The uncertainty in the spatial cali2x 10°) of classical trajectories are computed, each with a
bration of our imaging system leads to an uncertainty of 29glistinct realization of amplitude noise; momentum distribu-
in the measured momenta, and hence 4% in the measurd@ns and distribution energies are then extracted from this
energies. The uncertainties in the power meter and bea®nsemble. Additionally, we account for several different sys-
diameter measurements lead to a 10% systematic uncertairtgmatic effects that are present in our experiment, in order to
in the mean kick strength. While the locations of the oscil-provide the best possible classical baseline for comparison.
lations in Eq.(17) provide, in principle, ann situ calibration  In the remainder of this section we describe in detail each of
of the laser intensity, the uncertainty in this method is at thehe systematic effects that we have accounted for, and how

same level, since the effects presented in Sec. IV strongle have included them in the comparison of the data to
modify the measured energies, and it is difficult to accountheory.

for these effects in a quantum model of the experiment. Even The effects that we will describe in this section are illus-

worse, the kick strength exhibits long-term drifts due tOyateq in Fig. 4. This plot compares the energy evolution for
drifts in the laser intensity and detuning, alignment with theifterent cases where different corrections are accounted for.
spatial filter, and alignment with respect to the atoms. Thes@g gach correction igcumulatively taken into account, the

drifts occur on time scales of minutes to hours, and can causggiting energy curve is lower and less linear. Indeed, there
systematic shifts in local sections of a data set, since a typic quite a large difference between the uncorrected, linear

data run can Igst many hours. It is particularly important. 105 kick curve that one might expect to observe and the fully
keep this point in mind when comparing the data to classical . ected curve. Hence the importance of this rather techni-
models, since the error bars shown with the data represeql, iscussion of experimental details is clear: without care-
statistical scatter among measurements at the same set @ ly taking into account these systematic effects, one might

parameter values, but they cannot properly account for thesigiakenly attribute curvature in the experimental energy
long-term drifts. There are several qthgr e_ffects that '.mp.acaata to residual quantum effects. It is also important to em-
the measurements of momentum distributions and d'smbu'hasize that although these effects cause a reduction in the

tion energies, and we discuss them in detall in Sec. IV agynamic range of the experimental measurements, they do
well as describe how we account for them in our analysis. not change the underlying physics in a fundamental way.
Finally, we note that most of these systematic effects are
such that it is either impractical or impossible to compensate
In order to facilitate an accurate comparison of the experifor them with a correction to the experimental data. In this
mental data to the classical limit of the kicked rotor, we sense, the “energies” that we use in our comparisons are not

200

energy

100

IV. CLASSICAL MODEL OF THE EXPERIMENT
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whereN(p) is the number density of atoms with momentum
p, 1(x) is the local intensity at spatial position I' is the
excited state decay rate, ahgy, is the saturation intensity
(=2.70 mW/cn3, assuming isotropic pumping on the trap-
ping transition. Also, in the free expansion measurement,

o
[~
G

Photodiode amplitude (V)
(=]
[\*}

0.15 the unscaled variablesx and p are related by x
0.1 =v(p/hk )ty , Wherev,=3.5 mm/s is the velocity corre-
sponding to a single photon recoil, atgy is the free drift
0.05 time of the momentum measurement. The spatial intensity
0 | | | | ‘ profile of the six beams is given by
0 100 200 300 400 500

time (ns) | (X) =2] o[e72x2/W02+ Zef(x2+ 222)/W02], (23)

FIG. 5. Model function[Eq. (21)] for the experimental pulses Wwherel g is the intensity at the center of one of the six beams,
(dashed linecompared to an actual experimental pulse as measuredo=11 mm is the beam radius parameter of the Gaussian
on a fast photodiodésolid line). The two curves are nearly indis- beams,z is the vertical position of the atom{gransverse to
tinguishable. the standing wave, in the direction of gravityhe first term

represents the two vertical beams, and the last term repre-
true energies, but relatively complicated functions of the truesents the four horizontal beams, each at 45° to and in the
energies and many experimental parameters. Hence it is th®rizontal plane with the standing wave. Hence, to account
ability to take these effects into account in the classical simufor this effect, we apply a correction to the classical simula-

(24)

lations that allows for a quantitative comparison between oution of the form
experiment and classical theory.
The first, and perhaps most important, effect that we ac- f1(x)
count for is the detailed pulse shapg) of our kicks. The Fmol(X) = Cpt (%)’
nonzero temporal width of the pulses leads to an effective
reduction in the kick strength at higher momef#28], and so  where f (x)=1(x)/2l, is a scaled intensity profile, ant
it is important to accurately model_ th_e experimental pulses iN=[1+4(A/T)?][ 154/ (210)]. The value ofc, was deter-
order to reproduce the correct tails in the momentum distrimined to be 5.94 by fitting correctiof24) to a known expo-
butions. It turns out that our experimental pulses are welhentially localized distribution for various drift times; this
modeled by the function value is in reasonable agreement with the expected value of
¢, from the laser parameters.
1 (t—ty) (t—t,) The finite extent of our imaging CCD camera chip also
f(t)= 5 erf( 5 )—erf(T) , (22) has an impact on our measurements. We have set up our
Mert . 2 imaging system such that a typical localized distribution is
just contained within the imaged area after a 15-ms drift.
where t,—t;=295 ns is the full width at half maxi- However, for strongly noise-driven cases, the momentum
mum of the pulsest;=67 ns is the rise time of the pulse distribution can extend significantly past the edges of the
(defined such that a straight line going from 0 to 100% ofimaged area. This effect has little impact on the measured
the pulse height in timedst; matches the slope of the momentum distributions, since it only restricts the measur-
rising edge at the half-maximum pojintt,=72 ns, erfk) able range of momentum. However, the energies computed
:=(2I\7) [Sexp(-t?)dt is the error function, andy. is a  from this momentum distribution are sensitive to this trunca-
normalization factor, which has the valtg—t, for small  tion, even if the population in the truncated wings is small.
values ofét; ,/(t,—t;). Function(21) is plotted along with a  The result is a systematic reduction in the measured energy.
measured optical pulse in Fig. 5. It should be noted thatt is straightforward to model this effect in the simulations by
although the agreement between the pulse model and thigjecting trajectories that fall outside the experimental win-
experimentally measured pulses is excellent, Bf) is  dow.
merely an empirical model of our observed pulse profiles. In  Another effect we must account for is the transverse po-
the simulations, the classical equations of motion are directlgition of the atoms in the standing-wave beams. Although the
integrated, using Eq21) for the kick profile. spatial size of the bearfwith 1/e? radiuswo=1.5 mm) is
The next effect that we consider is due to the Gaussiatarge compared to the size of the initial MOT cloudh(
profile of the optical molasses laser beams. Recall that te=0.15 mm), the variation in kick strength over the atomic
measure momentum distributions, we image the light scatdistribution must be accounted for, especially as the experi-
tered by the atoms from the molasses beams after a fre@ent progresses and the atoms move further out transversely.
expansion time. Since the light is not uniform over theHence each atom “sees” an effective kick strength of
atomic cloud, the scattering rate due to atoms with momenk a, exd 2(y(t)>+z(t)?)/m2], where the transverse coordi-
tum p is given by natesy andz are given in scaled units by



PRE 62 QUANTITATIVE STUDY OF AMPLITUDE NOISE . .. 3469

typical measurements of localized distributions, the bulk of
(25) the distribution is contained well within the imaged region.

In these cases, the measured values near the edges of the

imaged region are small compared to those in the center of

In these equations, we have used the scaled gravitational

y(t)=Yo+ pyot,

2(t)=zo+ pLot— gt?/2.

acceleratiom, which is related to the acceleration in physical 600 -
units byg=2kLTnghys. In the simulations, each particle is 500 |- i |
given initial transverse positiong, and z, according to a
Gaussian distribution that matches the measured MOT size 400 - -
and initial momenta,, and p,, that match the momentum 300 L |
distribution measured along the standing wave. It should be
noted that this correction may actually increase or decreas: 200 —
Fhe final energies compared to an uncorrected simulation us 100 L 80% noise
ing the mean value ok, even though the mean value kf -
effectively decreases with time. This is because a subset o 0 | —
the atoms may completely dominate the diffusion if they are ST
located more closely to one of the maximafK). For our 500 = ]
parameters, there is typically a spread<irof around 5% in 400 |- .
our initial distribution. ~

Additionally, we must account for a systematic effect that _>x_ 3001 I
occurs in our free-expansion measurement technique. Thi: 200 | _

technique relies on allowing the atomic cloud to freely ex-
pand for 15 ms after the interaction with the standing wave

p/2hk;)?

in order to convert the spatial distribution of the atoms into ~=

100

40% noise

0

an effective momentum distribution. However, the interac- 2 -
tion with the standing wave lasts as long as 1.6 ms for these § 500 7
experiments. Since we define the drift time as the time from @ ., ]
the beginning of the standing-wave interaction to the begin-

ning of the camera exposure, the drift time effectively be- 300 a
comes smaller as the number of kicks in the experiment in- 200 |
creases. There is no simple way to correct for this effect

directly, so we include this effect in our simulations by simu- 100 .
lating the free-expansion process. The initial spatial distribu- 0 [ . ‘ . . .

tion is chosen(in scaled unitsto be uniform in the range ' ‘ ' ' b_e-~-
[ —,), which is extremely small compared to the spatial 500 + .

distribution after the expansion. We do not choose the distri-
bution from the MOT spatial distribution to account for con-

volution effects; these effects have been approximately ac: 300 -
counted for already, since the initial momentum distribution

400 ~

used in the simulations is the measured momentum distribu 200 17 ]
tion, which is already convolved with the initial spatial dis- 100 L 0% noise -
tribution. Then the effective momentum of each particle @ 7---~ | ‘T . | .
measured by the free-expansion method is 0 0 5 10 15 20 25 20
K
_ Tarie— 1
Perr(t) =x(t) + tam p(t), (26) FIG. 6. Plot of experimentally measured ener@pints con-

nected by solid lingsand energy from the classical moddhshed

line) as a function of the stochasticity parametér for several

different levels of applied amplitude noise. All the plotted energies
re taken at the fixed time of 35 kicks. The oscillations and the shift

where all quantities are scaled.

The final effect that we account for is due to variations in
the background levels measured by our camera. Although Ue to quantum effects, corresponding to EAK) and (17) with
p_erform bac.kground subtraction, which greatly |mprov§s ou k:2.08q, are clearly apparent inpthe cagse Witrﬁo applied noise. On
signal-to-noise ratio, the offset Ievelg after the §ubtractlon an;}“lverage, the experimental energies are lower than their classical
generally nonzero, due to fluctuatiorisom d”fts_m the counterparts due to localization effects for small noise levels. How-
camera elecftronl(}Sand constant (_)ffseté‘rom physical ef- ever, for the strongest noise level shown h@@%), there is good
fects in the imaging of the atomic cloudTo enhance the ,4reement between the two energy curves. For this figure, no ad-
reproducibility of our data, we use the following procedurejystments have been made to the measured valués ahd the
to fix the zero level of our measured distributions: the 40error bars for the energy values are suppressed, but are ’[ypma"y
lowest points(out of 510 total in the distribution are aver- smaller than the corresponding dots. Each experimental point is an
aged together and defined to be the zero level. The disadvagverage over ten realizations of amplitude noise. Two arrows in the
tage of this technique is that it results in a slight negativezero-noise case mark the locations of detailed study that are de-
bias in the offset level from the “true” distribution. For scribed in the following two subsections.



3470 STECK, MILNER, OSKAY, AND RAIZEN PRE 62

400 280
Q350 <260
—— ——
DN DN
< 300 <
S & 240
s s
= 250 =
220
B3 200 B
1 1
& &
3 150 o 200
100 1 I 1 180 1 I 1
0 50 100 150 200 0 50 100 150 200
noise level (%) noise level (%)
FIG. 7. Experimentally measured ener@pints and solid lines FIG. 8. Experimentally measured ener@pints and solid lings

and energy from the classical moddhshed lingas the noise level and energy from the classical moddashed lingas the noise level

is changed, for a fixed timé&0 kickg and stochasticity parameter is changed, for a fixed timéO0 kickg and stochasticity parameter
(the experimental value iK=11.2+10%, and the classical simu- (the experimental value iK=8.4+10%, and the classical simula-
lation corresponds t&=10.9). At the lowest noise levels, there is tion corresponds t& =8.4). As in the case of Fig. 7, there is a large

a significant difference between the experimental and classical erdiscrepancy between the experimental and classical energies at the
ergies, due to both localization and differences in short-term correlowest noise levels, which disappears for high noise levels. Experi-
lations, which disappears for high noise levels. Error bars represemhental data are averaged over 18 realizations of noise. The value of
the statistical scatter among the 18 noise realizations comprised i used here corresponds to the leftmost arrow in Fig. 6. Note the
each point, but do not account for long-term drifts or systematidarger discrepancy for zero noise in this figure, since the time dis-
uncertaintiegsee the note in the teéxtThe value ofK used here played here is later than that used in Fig. 6. Note also that the
corresponds to the rightmost arrow in Fig. 6. vertical scale used here is magnified compared to that of Fig. 7.

the distribution, and the error in the offset is negligible.
However, for strongly noise-driven cases, a significant fracfor quantum-classical correspondence in our system.
tion of the distribution can fall outside the imaged region, as We also note that the corrections we have mentioned lend
noted above. The lowest 40 values are then significantly difthemselves well to classical Monte Carlo simulations,
ferent from the true zero level, and our procedure can introwhereas with other methods it would be quite cumbersome
duce a significant bias. It is straightforward to mimic thisto take the many aspects of the experiment into account. A
process in the simulations, but in some data sets it is possibRimilar, quantum-mechanical analysis is much more difficult,
to restore the correct offset level. For our typical studies ofiowever, since one would need to average over many wave
the transition from localized to delocalized behavior, thepackets in a Monte Carlo approach to obtain good conver-
only cases that are significantly biased are the strongly nois@ence, and the evolution for a single quantum wave packet
driven cases, which behave essentially classidaiywe will ~ requires much more computation than for a single classical
see latex. Then one can assume that the biased cases can Barticle.
modeled as Gaussian distributions, with the MOT beam pro-
file correction applied to them, and we obtain the correct
offset by fitting the model function to the measured distribu-
tion. This ansatz is justified by the essentially perfect fit of V. DATA AND RESULTS
the model function whenever its use is appropriate. Using
this idea, we have implemented an automatic procedure for
restoring the correct offset in the data sets where the proce- We have undertaken a detailed experimental study of the
dure is sensibléFigs. 7—12. In other dataFig. 6), such as  quantum kicked rotor dynamics in the presence of amplitude
measurements of exponentially localized distributions withnoise, using the classical model for comparison. An over-
very long localization lengths, such a procedure is clearlyiew of our results appears in Fig. 6, where the energies from
inappropriate, and this effect is instead accounted for in théhe experiment and classical model are shown as a function
corresponding simulations. of the kick strengttK, for four different levels of amplitude
There are a few other effects that we do not account forpoise. The energies are plotted at the fixed time of 35 kicks.
including spontaneous emission, the stochastic dipole forct the case of no applied noise, one can clearly see the os-
[26], collisions between atoms, and other sources of noisesillations that correspond to Egd.1) and(17). Additionally,
most notably phase jitter in the standing wave. These effectihe shift in the locations of the experimental oscillations
cause decoherence, but they are sufficiently small that at loffom their classical counterparts is evident; for the value of
levels of applied amplitude noise, quantum effects are easilikx=2.08 used in all the experiments shown here, the shift is
observed, and at high amplitude noise levels, the applie@0% above the classical value. Although in some locations
noise dominates any effects that these other processes mighe quantum(experimentally observedenergies are larger
have. Thus these effects do not hinder our ability to searcthan the classicdhumerically calculatedenergies due to the

A. Overview
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. time (mumber ofkicl.<s) - FIG. 10. Experimentally measured ener@yoints and solid
FIG. 9. Experimentally measured energpints and solid lings

: . . lines) and energy from the classical moddhshed lingas a func-
?nd efnergy from Ithe lclas}smallmgddhshe_d}rlllnbs as a_func?c:ln of tion of time, for various levels of applied noise. The experimentally
slumrzyd gtro\(/:?]gg'tjiziteVZfa?ne?gFKi 1;02Iiei 0% eai);pter:'em;::]jlgf[ig:]ea'measured stochasticity parameteKis 8.4+ 10%, and the simula-
comresponds ti —ylfz The e er'm.ental d(;ta oints are avera esFion corresponds t& =8.7. The experimental data points are aver-

v rlg distin t_r Ii'z'ti n xfp rrl1 litude noi P Ind dat \f' ; 9 ages over 15 distinct realizations of amplitude noise, and data for
over stinct realizations of ampitude noise, a ata 1or SUCq ccessive noise levels are offset vertically by 200 for clarity. The
cessive noise levels are offset vertically by 200 for clarity. The . . .

t betw th ) tal dat d the classical mod Ia reement between the experimental data and the classical model is
23<rziﬁemn‘etr]forenoizsr:evgls)gf)eg(l)r?/egr? d ;)ivin Th: \(;a?j:(l(c:u?s;?jo ea'gain excellent for noise levels of 60% and above. The valu€ of
: 0 S used here corresponds to the leftmost arrow in Fig. 6.

here corresponds to the rightmost arrow in Fig. 6.

Additionally, the difference between the experimental and
shift of the oscillations, the experimental energies are smalleclassical curves becomes less apparent, until the highest

on average than the classical energies because of quanturoise level(80%), where there is excellent agreement be-
localization effects.

tween the two curves. In accordance with our previous dis-
As the noise is added, the oscillations in the energy curvesussion, good correspondence only occurs when the noise

become washed out, as one expects from Egs.and(18). level is sufficiently large to destroy the short-time quantum
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FIG. 11. Evolution of the momentum distributions, for both the experintsolid) and classical modedldashed, at various levels of
applied noise. The experimentally measured stochasticity parameer isl.2+ 10%, and the simulation correspondsKe=11.2. The
times shown, in order of increasing width, are 0, 10, 20, 40, and 80 kicks, with the final distributions emphasized in bold. In the zero-noise
case, the contrast between the exponentially localized experimental distribution and the classical Gaussian distribution is evident. For the
largest three levels of noise shown, the experimental and classical distributions are nearly indistinguishable. The data and simulations
presented in this figure are the same as those used to calculate the energies in Fig. 9, and thekvalseddfiere corresponds to the
rightmost arrow in Fig. Gthe “valley” in the experimental curve

and classical correlations, and hence the oscillations in theamics at two values & in the following two subsections.

diffusion curves. The two values oK in these detailed measurements corre-
To fill out this picture of the kicked rotor behavior, we spond to a minimum and a maximum of the quantum energy

present detailed views of the experimental and classical dyeurve in Fig. 6; these locations are indicated as arrows in the

10! . . . . . .
0% noise 20% noise 40% noise

107

10°

normalized intensity

10*

200% noise

10

10°

normalized intensity

10* B . :
-80 -40 0 40 -80 -40 0 40 -80 -40 0 40 80
p/ 20k, p/2kk,, p/2hk;,

FIG. 12. Evolution of the momentum distributions, for both the experinfsolid) and classical modgldashed, at various levels of
applied noise. The experimentally measured stochasticity paraméter 84+ 10%, and the simulation correspondskte-8.7. The times
shown, in order of increasing width, are 0, 10, 20, 40, and 70 kicks, with the final distributions emphasized in bold. In the zero-noise case,
the quantum distribution does not exhibit exponential localization, as observed in previous work, but the behavior is distinctly nonclassical.
For the largest three levels of noise shown, the experimental and classical distributions are again nearly indistinguishable. The data and
simulations presented in this figure are the same as those used to calculate the energies in Fig. 10, and th¢ wsdukhefre corresponds
to the leftmost arrow in Fig. 6the “peak” in the experimental curye
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zero-noise plot in this figure. From previous wddg], we B. Detailed study: destruction of exponential localization
know that the qualitative dynamics are distinctly different at e now focus on the behavior at the minimum of the

these two locations. At the minima of the experimental dif-gyherimental diffusion curve, as indicated by the rightmost
fusion curve, exponential localization occurs. However, abyrow in Fig. 6. In this regime, the atoms localize in an

the maxima, the late-time distributions that we measure ir?axponential distribution at late times. In Fig. 7, there is a

our experiment are nonexponential; this behavior is a fingefge difference between the experimental and classical en-
print of the underlying classical an0m<’;\|.0US diffusion. . ergies after 50 kicks when no noise is applied. This differ-

In Figs. 7-12, we contrast the behavior of the experimengce s due to both dynamical localization and the misalign-
tal and classical systems at these two value&.oThe be-  ant of the quantum and classical diffusion oscillations,
haviors at small noise levels have several mterestl_ng d'ﬁe_r\'/vhich gives the classical system a larger initial diffusion
ences, but, as we have already seen, the behavior at highie aAs noise is added, both the experimental data and the
noise levels is similar in that there is good correspondence,ssical simulations exhibit increased diffusion, as the short-
between the experiment and the classical simulations. §me correlations are washed out. The increase in the experi-
Figs. 7 and 8, we show the behaviors of the energies at th@enta) diffusion is larger than the classical diffusion because
minimum and maximum of the experimental diffusion curve, quantum localization is destroyed. At high noise levels, the
respectively, at a fixed timé0 kicks as the level of noise  agreement between experiment and classical simulation is
varies. The time evolutions of the energies are shown ifyood. Additionally, both curves exhibit a characteristic dip in
Figs. 9 and 10 for the two values &f at various levels of the energy around 150% noise levels. This somewhat sur-
noise. Finally, the corresponding evolutions of the momen+prising effect is a result of residual short-time correlations,
tum distributions themselves are shown in Figs. 11 and 12which persist at noise levels as high as 100%, where they
We will discuss these results for the two valueskoepa- enhance diffusion slightly above the quasilinear value.
rately in the following two subsections. Similar behavior occurs in the time evolution of the ener-

Before proceeding, though, we make a few remarks abougies shown in Fig. 9. When there is no applied noise, the
the comparisons between the experiment and the coexperimental energy grows initially more slowly than the
rescponding classical dynamics performed in this paper. Thelassical energy, and then saturates and diffuses slowly. This
classical model contains many experimental parameters b&low diffusion is likely due to residual decohering effects in
yond the two that are really important for the quantum©ur ex_penment, such as p'hasga noise in the_standlng wave. As
kicked rotor dynamicsK andXk). For the purposes of com- NoIse 1S ad.ded, the diffusion is enhancgd in both cases, a}nd
parison, we emphasize that all the extra parameters are anr_ h'gh noise levels the energy grOWt_h n the experiment is
treated as fitting parameters; instead, they are all fixed t8”'t‘? similar to that_o_bserved In _the S|mulat|oqs. .

. . Finally, the transition to classical behavior in the experi-
their experimentally measured values. However, the stocha%a

ficit rametelK. which is by far the largest ; £ un ent is most dramatically evident in the momentum distri-
clty parameterr, ch IS Dy 1ar the largest sourceé ot un- v, yiong shown in Fig. 11. In the zero-noise case, the experi-

certainty in our experiments, is sometlme§ deusted by a fe%ental distributions evolves from the initial, nearly Gaussian
percent from its measured valdeut well within the experi- o o the exponentially localized distributioshown in
mental uncertainty oft 10%) in order to obtain better cor- po|qg) which is characteristic of dynamical localization. The
respondence. To be precise about these adjustments, thRssical distribution, on the other hand, evolves to the
measured values df are presented in each figure caption proader, Gaussian distribution that one expects from classi-
along with the value used in the classical simulations. Fical physics. When a small amount of noi@8%) is applied,
nally, as noted before, although we indicate statistical errothe final experimental distribution is broader and has a
for our energy measurements in each figure, they are of limrounded appearance, but is still quite far away from the clas-
ited utility in determining the quality of the correspondencesical Gaussian distribution. With 40% noise, the final experi-
between the experimental results and classical simulationsnental distribution has made the transition to a Gaussian
The main reason for this statement is the long-term opticaprofile, but the widths still do not quite match the classical
alignment and laser drifts that result in long-term drift&<in ~ predictions. For the highest levels of noise shown
which can result in local systematic shifts in energies be{60—200 %), the evolutions of the experimental and classical
tween different curvegr even points within a curyén each  distributions are nearly identical, providing strong evidence
figure. This effect is not properly accounted for by either thethat the experiment is behaving classically.

statistical error estimates or the simulations, which use a

single value oK for an entire data set. For example, in Figs. C. Detailed study: regime of classical anomalous diffusion

9 and 10, it is not pOSSible to dIStIﬂgUISh different levels of In this Section’ we focus on a different regime than in Sec.
agreement between the data and simulations for th& B. Here we consider the behavior at a peak in the experi-
60-200 % noise levels, although some pairs of curves maghental diffusion curve, indicated by the leftmost arrow in
appear to agree more closely than others. Indeed, it is impoFig. 6. This location in the diffusion curve corresponds to a
tant to realize that the momentum distributions are the mostegime of classical anomalous diffusion. As in the previous
reliable tool for studying correspondence, since they contailcase, there is a significant difference in the energy after 50
much more information, and tend to be less sensitive to thé&icks in the absence of noise, as seen in Fig. 8. The differ-
problems we have mentioned. The energies, on the othe@nce in this figure is much larger than in Fig. 6, because of
hand, are still valuable as a concise summary of the largghe much later time used in the pl@O0 vs 35 kick$. As
amount of information presented here. noise is applied, the experimental energy increases. This be-
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havior is consistent with the breaking of localization, al-fusion occurred more slowly than in the classical model.
though it is not completely clear that localization occurs inAgain, for the highest levels of noise shown (60—200 %),
this regime, because of the nonexponential form of the longthe experimental evolutions are in excellent agreement with
time momentum distributions. By contrast, the classical enthe classical model, and hence classical behavior is restored.
ergy is initially reduced by the applied noise, due to the

destruction of the classical correlations. Again, for high VI. SUMMARY
noise levels the behavior in the experiment is well described _ N
by the classical model. We have presented a detailed study of the transition to

From the evolution of the energies in Fig. 10, we see thaflassical behavior in an experimental realization of the quan-
the differences between the behaviors of the atoms and tHgM kicked rotor system. An important component in the
classical model are more subtle than in the case of Sec. V Bnalysis of this transition is a meticulous understanding of
When there is no applied noise, the experimental data showRpW various aspects of the experimental system affect the
faster initial diffusion than one would expect classically; atmeasured evolution of the atoms. We have observed that for
later times, the diffusion seems to saturate, suggesting that/fficiently high levels of noise, the global behavior of the
localization effects are setting in, and the diffusion proceed§*perimental system is in good agreement with a classical
more slowly than in the classical model. The energy differ-model of the experiment, which includes the effects of the
ence in this case is smaller than one might expect from Fighoise as well as the most significant aspects of the experi-
8, due to slight differences in the intensity and beam diamMmental setup. _ _ o
eter of the kicking laser light between the two data r(nmate There is still much interesting work to be done in this
that this value oK corresponds to a steeply sloped region inarea, and there are several future directions _for this experi-
the classical diffusion curyeAs noise is added, the satura- ment that are directly related to the work discussed here.
tion is less pronounced, until at 40% noise, where the diffufirst, it appears that the quantum behavior is relatively ro-
sion occurs more quickly than in the classical model, withbust to the applied noise, most likely because of the strongly
little indication of saturation. Above this level, the experi- quantum nature of our parameter regime. It would be inter-
ment agrees well with the classical model, and the short-tim&sting to compare the effects of different types of noise in the
correlations are evidently small. experiment, to see if the system is especially sensitive to any

The momentum distributions for this case are shown irParticular form of noise. Another possibility would be to
Fig. 12. In the zero-noise case, the experimental distributio@Perate in a more classical regini@mallerk), where the
after 70 kicks(highlighted in bold has a characteristic pro- kicked rotor should be more susceptible to noise. In this
file, rounded and nonexponential in shape. One might b&gime, it should also be possible to observe quantum-
tempted to attribute this shape to the systematic effects th&lassical correspondence without destroying the short-time
we have discussed, which affect the tails of an exponentiggorrelations, since there would be little mismatch between
distribution with a very long localization length. However, the quantum and classical diffusion oscillations. Finally, we
the region over which the distribution is rounded is well Will soon have the ability to prepare localized initial condi-
within the domain where the systematic effects are not sigtions in phase space, and it will be possible to study the
nificant. The final classical distribution also has tails thateffects of noise on local phase space structures.
extend well beyond those of the experimental measurement.
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