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Abstract: The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers 

feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on com-

bined functional (PET) and structural (CT or MR) imaging techniques, their advantages over current quantitative tech-

niques and their potential clinical applications in the management of various diseases. First the complicated kinetic model-

ing and methods for calculation of the standardized uptake value (SUV) that have been utilized in the practice of clinical 

PET are briefly described. Subsequently we discuss the quantitative concepts in PET-CT imaging that have been devel-

oped in recent years: (a) SUV analysis in the dual-time point and delayed PET imaging, (b) partial volume correction of 

SUV for small lesions (c) assessment of global metabolic activity in the whole organ or of diseased sites and (d) the novel 

image segmentation techniques with FDG-PET and newer tracers to precisely define the diseased or intended normal tis-

sue which is of great value for image guided radiation therapy. 
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1. INTRODUCTION 

In this review, we describe the existing and evolving 
quantitative approaches in positron emission tomography 
(PET)/Computed Tomography (PET-CT) imaging that may 
allow accurate assessment of global and regional function by 
utilizing the modern tomographic imaging modalities. In 
order to provide quantitative results in PET, a correction for 
physical degrading factors including tissue attenuation of the 
annihilation photons, Compton scatter and detection of ran-
dom events is necessary. For brain studies this might to a 
reasonably accuracy be performed by pure calculation as-
suming a homogenous medium. In the thorax and abdomen, 
however, a measurement is mandatory. Using radioactive 
sources of limited activity the acquisition of a transmission 
scan of sufficient quality takes about the same time as the 
emission PET scan itself, and even after the advent of itera-
tive reconstruction methods, noise propagates into the result-
ing images. Compared to this, a CT scan of the whole body 
is almost instantaneous, and therefore the hybrid combina-
tion of PET/CT which utilizes the CT density information 
for (almost noise-free) attenuation calculation has made 
quantitative whole body PET scanning much more feasible.  
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Since its commercial introduction in 2001, the hybrid com-
bination PET/CT has entirely replaced stand-alone PET in 
clinical use [1, 2]. With the widespread utility of 

18
F-

Fluorodeoxyglucose (FDG)-PET as a practical non-invasive 
modality for assessing organ function efforts for accurately 
assessing regional and global metabolic function are impera-
tive. The impact of such measurement is invaluable in the 
day-to-day practice of medicine. For the purposes of this 
scientific communication, we have intentionally selected 
FDG as a model that can be adopted for other PET proce-
dures. There has been significant interest in the recent years 
for using FDG-PET data in monitoring treatment response in 
various tumors owing to the several benefits it renders over 
the anatomic imaging modalities. This further necessitates 
methods and approaches for more accurate quantification of 
tumor burden in the entire body. While visual assessment 
continues to play a pivotal role in the interpretation of PET 
studies, it is not suitable for being used in clinical trials, 
where a rigorous and objective measurable parameter is de-
sirable. Calculating SUV at a single time point and assigning 
standard regions of interest are also clearly inadequate and 
suboptimal for this purpose.  

Since its introduction, PET has been a popular quantita-
tive tool, superior to many other modalities in the functional 
and structural imaging domains. While the initial dynamic 
quantitative approaches with FDG-PET intended for calcu-
lating absolute glucose metabolic rate in an area of interest 
(normally in the brain) were reliable, they were technically 
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demanding and required arterial blood sampling at multiple 
time points and encompassed complex mathematical proce-
dures [3, 4]. These were, however, found to be impractical 
for routine use in a busy clinical setting. Quantitative imag-
ing

 
with PET, hence, has undergone constant refinements to 

develop quantitative methods that would be simple yet rea-
sonably accurate and which could complement visual image 
interpretation and minimize the inter-observer variability [5].  

2. PET DATA ANALYSIS: THE PARAMETERS 

The various methods of PET data analysis can be primar-
ily classified into the following three major groups (the latter 
approach can be divided into 3 categories as shown below):  

(i) Qualitative analysis or visual assessment; 

(ii) Semi-quantitative analysis which includes standard-
ized uptake value (SUV) and lesion to background ratio 
(L:B ratio), and  

(iii) Absolute quantitative analysis; 

(a) Non-linear regression (NLR) 

(b) Patlak graphical analysis and derived 
methods, and  

(c) Simplified quantitative methods. 

2.1 Quantitative Versus Visual Assessment of FDG Up-
take 

The uptake in an abnormal focus in a FDG-PET study is 
the result of “metabolic contrast”. Significant inter- and in-
tra-observer variability of PET image interpretation can oc-
cur due to the subjective nature of the visual interpretation 
and has been a source of concern in clinical trials and treat-
ment monitoring where objective assessments are essential. 
Consequently efforts have been made to define an objective 
quantitative technique that would be practical and at the 
same time reasonably accurate. 

2.2. Assessment of Absolute Glucose Metabolic Rate 

Mathematical compartmental modeling describes the be-
havior of FDG in various cells and was developed to de-
scribe the kinetics of the glucose analogues [

14
C]-

deoxyglucose and FDG in the pioneering work on tracer 
kinetic modeling [3-4, 6-8]. This kinetic modeling generates 
the quantitative metabolic rate that can measure FDG me-
tabolism and also yields individual rate constants and 
thereby provides insight into the various components of glu-
cose metabolism such as transport and phosphorylation. The 
tracer kinetic modeling of FDG is based upon a standard 
three-compartment kinetic model originally developed for 
the brain (Fig. 1). Compartment 1 (C1) represents the arterial 
concentration of free FDG in plasma. It is an "open" com-
partment exchanging with other tissues in the body that are 
not measured in the experiment and therefore the "input 
function" C1 cannot be predicted within the model, but must 
be measured separately. For this reason, the name "two tis-
sue compartment model" [9] may be preferred. The first tis-
sue compartment (C2) represents an extravascular pool of 
tracer in the tissue, which is available for phosphorylation, 
and the final compartment (C3) is the concentration of FDG 
that has undergone phosphorylation by hexokinase. Dynamic 
scanning data coupled with rapid arterial blood sampling 

provide time-activity curves for the specific tumor, organ, or 
tissue under study. Utilizing non-linear least squares ap-
proximations these curves can be fit to obtain the various 
rate constants. In the mentioned kinetic modeling, the 
dephosphorylation of FDG-6-phosphate to FDG is generally 
ignored, although kinetic modeling that includes this reverse 
process, can lead to more accurate results. 

The glucose metabolic rate (MRglu) is calculated by the 
following equation: 

  

MRglu =
C

p
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K
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3
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2
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C

p
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i            (1) 

where Cp = plasma glucose concentration, K1, k2 = rate con-
stants for forward and reverse transport of FDG, respec-
tively, k3 = rate of phosphorylation of FDG, Ki = net rate of 
influx of FDG, and LC = lumped constant relating FDG ki-
netics to that of glucose. Errors in accurately assessing 
MRglu, or Ki, include the variance and covariance of the rate 
constants extracted from the fitting procedure (dependent on 
the noise in the imaging data), partial volume effects, inaccu-
rate assumptions underlying the model (such as a zero value 
for k4), and the contribution from blood pool activity in the 
imaging data. In addition, the lumped "constant" is actually a 
slowly varying function of Cp., and only in the brain is it 
known with some certainty [10-13]. From the initial descrip-
tion in brain imaging [14-15], the methods were subse-
quently extrapolated into tumor imaging, largely ignoring the 
unknown LC, i.e., focusing directly on FDG uptake as a sur-
rogate measure. The methods

 
described are non-linear re-

gression, Patlak graphical analysis, and Patlak derived meth-
ods [16]. These methods (except for the simplified quantita-
tive techniques) all involve dynamic scanning. 

  

Fig. (1). Kinetic model of FDG behavior. In clinical pharmacology 

this type of model is traditionally named a "three compartment 

model" while the usual term within radiotracer modeling today is 

"two-tissue model" [9]. This emphasizes that C1 , the concentration 

of unmetabolized activity in arterial plasma is determined by factors 

external to the model. C2 is the concentration of free tracer in the 

tissue under consideration, and C3 is concentration of tracer after 

phosphorylation. 

The general advantages of dynamic quantitative ap-
proaches include the availability of dynamic data and a low 
dependency on imaging time. However there are certain dis-
advantages of dynamic quantitative approaches. They are 
complex, technically demanding and time consuming proce-
dures; they require a dynamic scanning protocol; there is a 
need for arterial blood sampling (unless the heart or, during 
dynamic imaging,

 
a blood-pool structure is in the field of 

view) to obtain a precise input function [16]. While this is 
true for brain PET studies, for heart studies such require-
ments may be easier to accomplish, as the input function can 
be obtained directly from heart images (left ventricle, aorta, 
atrium). 

K1 

k2 k4

k3

C1 C2 C3
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In addition, dynamic scanning is a disadvantage in cancer 
patients with multiple lesions scattered throughout the body. 
The field of

 
view of the study in dynamic imaging methods 

like NLR or Patlak-Gjedde analysis is limited to 1 bed posi-
tion in routine use. Hence, lesions in the specific bed posi-
tion can be assessed but additional scans are required

 
to as-

sess other lesions that may be evident in a whole body sur-
vey. 

2.2.1. Non-Linear Regression Analysis 

In this method, the net rate of FDG influx (Ki) is esti-
mated

 
from dynamic PET data and from a standard two-

tissue compartment model, arterial input function, and non-
linear regression

 
analysis [8]. The advantages of this tech-

nique are that it is quantitative, independent of uptake pe-
riod, and provides insight into various rate constants. The 
usual disadvantages of a dynamic study make its implemen-
tation complex.  

2.2.2. Patlak–Gjedde Graphical Analysis 

In this technique, that was initially described by Patlak 
[15], the regional concentration at

 
time t after injection can 

be described by the following
 
equation: 

  

c t( ) = c
p

t( ) + K
i

c
p ( ) d

0

t

     (2) 

where  

c(t) = activity in the tissue as measured
 
by the PET scanner 

at time t, 

cp(t) = concentration of FDG in the plasma, 

= distribution volume of FDG, 

Ki = net rate of FDG influx into the tissue, and 

 is a dummy integration variable 

The only kinetic assumption is the existence of an irre-
versible binding compartment. Division on both sides of the 
equation with the plasma concentration cp(t) performs a "lin-
earization" which allows Ki to be determined as the slope in 
a simple plot. 

The advantages of this technique include: (i) it is more 
robust compared to NLR method; (ii) compared to NLR 
analysis it uses a simplified scanning protocol, avoids noise 
amplification, and (iii) can generate parametric images. The 
disadvantages include (i) it still requires dynamic scanning, 
although not necessarily from the injection, and (ii) com-
pared to NLR analysis, individual rate constants like K1 and 
K3 cannot be obtained. 

2.2.3. Simplified Kinetic Methods 

The autoradiographic method of Sokoloff (developed for 
the rat brain) [6, 17] allows a reasonable accurate determina-
tion of CMRgl from one static scan, but still requires (arterial) 
blood sampling from the time of injection to the end of the 
scan in order to determine the integrated FDG supply to the 
tissue. The method described by Hunter et al. [18] requires 
only a static scan and a few (venous) blood samples during 
the scan. These samples are then utilized to scale a popula-
tion-derived average plasma curve. This method is able to 

estimate glucose metabolism without the need for a dynamic 
scan and with a substantially reduced blood sampling proto-
col. Compared to the SUV method, it takes into account 
changes in plasma clearance. A potential drawback of this 
method is that the correction for differences in plasma clear-
ance is only a first-order correction (the peak is assumed to 
be constant). This method needs to be validated in a large 
patient population. Sandell et al. [19] suggested the use of 
red blood cells as a "reference" tissue, assuming that the ac-
cumulated FDG here can be taken to represent the integral of 
the input function needed in the autoradiographic method of 
Sokoloff One potential application would be quantitative 
studies in children where sampling of the full input curve is 
an ethical problem. 

3. STANDARDIZED UPTAKE VALUE (SUV): PO-
TENTIALS AND PITFALLS 

A few synonyms have been used in the literature for 
SUV: Differential

 
absorption ratio (DAR), differential uptake 

ratio
 
(DUR), or standardized uptake ratio (SUR). 

SUV is the most widely utilized semi-quantitative index 
in the clinical PET centers across the world. It provides a 
semi-quantitative measure of FDG metabolism and is de-
fined as the tissue concentration of tracer, as measured by 
PET (at any given time), divided by the injected dose nor-
malized to patient weight multiplied by a decay factor [20]. 
It is calculated

1
 by dividing the activity concentration

 
in the 

region of interest (ROI) drawn around the lesion (MBq/mL) 
by

 
the injected dose (MBq) divided by the body weight (g): 

  

SUV = Mean ROI concentration ( MBq / ml)

Injected dose ( MBq) Body weight(g)

1

decay factor of
18

F

                  (3) 

It follows from this definition that if no activity were ex-
creted, a uniform distribution would have the value SUV = 1 
(with the approximation of average body density being 1 
g/ml). Note also that the activity unit cancels out, showing 
that as long as the PET scanner is calibrated in units of the 
dose calibrator actually used for measuring the patient activ-
ity, the accuracy of that calibrator does not affect the result. 
Although dose calibrator measurements ideally should be 
traceable to national standards, this fact is likely to reduce 
variability in SUV between centers and over time, compared 
to "absolute" measurements. 

3.1. Advantages and Shortcomings of Simple SUV Meas-
urements 

SUV estimation is usually an automated procedure and 
can be readily calculated with current software supplied with 
commercial PET scanners. There exists a linear relationship 
between the SUV and the rate of glucose metabolism as 
measured by kinetic modeling. Two studies [21, 22] have 
documented this and registered correlation coefficients of 
0.91 and 0.84, respectively. The correlation improves further 

                                                
1
 Despite the wording in this definition ("as measured by PET" , "in the ROI 

drawn") we shall assume that there exists an "ideal" SUV, as determined by 

an ideal PET scanner, to which we compare. Only in this sense is it mean-

ingful to say, e.g., that a measured SUV is underestimated due to resolution 

or other effects. A similar argument might be used for the timing, but as 

described we maintain here that SUV is a function of time. 
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when body surface area or lean body mass is used for nor-
malization rather than body weight. The SUV method is 
technically less demanding and computationally simple (with 
no requirement for blood sampling) and requires considera-
bly less scanner time than the dynamic acquisition protocols. 
As a result, this method has replaced the more cumbersome 
dynamic procedures in clinical practice for assessing me-
tabolism in the

 
tumors and other diseases. 

3.2. Factors Affecting the Reliability of SUV 

The common calibration of scanner and dose calibrator, 

of course, is essential. Several other factors can affect the 

reliability of SUV [23]. These can be divided into (i) injec-

tion related (ii) patient related, and (iii) technical factors 

comprising acquisition, reconstruction and evaluation. The 

description of (ii) and (iii) are detailed in (Table 1). The in-

jection related factors comprise degree of infiltration of ad-

ministered FDG dose at the site of injection, residual activity 

in the syringe and correction for the decay of the injected 

dose from time of dose measurement to scan, all factors that 

affect the denominator of eq. (3). 

There are many factors that could affect the accuracy of 

quantification with PET/CT imaging. The most challenging 
one has been with imaging of thoracic lesions or non-small 

cell cancer in which respiratory motion could impact the 

diagnostic and staging accuracy. Misregistration between the 

CT and PET data due to respiratory motion in the thorax and 
abdomen was reported soon after commercial introduction of 

PET/CT and has been one of the most challenging research 

topics in PET/CT. Fast gantry rotation of less than 1 s per 
revolution and a large detector coverage of >2 cm enable a 

CT scan of over 100 cm in the cranial-caudal direction in 20 

s. On the other hand, it normally takes 2 to 5 min to acquire 
the PET data of every 15 cm. The temporal resolutions of CT 

and PET are very different: less than 1 s for CT and about 

one respiratory cycle for PET. This mismatch in the temporal 
resolution may cause a misalignment of the tumor position 

between the CT and PET data, and may compromise quanti-

fication of PET data. 

Respiratory gating is another important development in 
PET/CT for RT. Although, 4D-PET can also be performed 
on this PET/CT for RT, its application has been limited due 
to the total acquisition time of approaching 40 min. Most of 
the patients cannot hold their arms up over their heads for 
over 30 min and the long acquisition time could induce pa-
tient motion and compromise the PET/CT study. Moreover, 
the statistics of 4D-PET is poor due to splitting-up the coin-
cidence events into multiple bins or phases for 4D-PET, and 
the spatial resolution of PET in general is only around 5-10 
mm. 4D-PET with respiratory gating increases the SUV and 
improves the consistency of tumor volumes between PET 

Table 1. Factors Influencing Standardized Uptake Value (SUV) Determination for FDG at Intended Regions of Interest, their Unde-
sirable Effects, and Associated Required Corrective Measures. (Based on Basu et al. [95] with permission from Elsevier 
Inc.) 

A. Patient Related Factors 

Factor Effects Corrective Measures 

Body size and habitus (3.3) SUV in obese patients overestimates FDG 

uptake relative to normal patients 

Use of lean body mass (SUVLBM) or body surface area 

(SUVBSA)  

Serum glucose levels (3.4) Reduced FDG uptake in target tissues with 

increasing blood glucose levels, i,e, both 

SUV and FDG are low. 

Control of blood glucose before administering FDG and 

applying correction factor for glucose level 

Organ and lesion motion Reduction of SUV Respiratory gating or 4D reconstruction 

 
B. Technical Factors 

Factor Effects Corrective Measures 

Duration of uptake period (3.5) Increase in SUV
 
with increasing time in 

malignant lesions  

Standardization of time of image acquisition  

Attenuation correction and reconstruction 

methods (spatial filter kernel, image resolution, 

number of iterations) 

Underestimation of SUV with highly 

smoothed reconstruction 

Standardize acquisition and reconstruction algorithms 

Partial-volume effects (4.1, 4.2) Underestimation of SUV in lesions with 

diameters smaller than 2-3  spatial reso-

lution  

Adopt an optimal partial volume correction factor 

Size of the ROI and non- uniformity of tracer 

distribution in the lesion 

Low SUVmean for large ROIs and high 

random errors in smaller ROIs 

Standard size ROIs placed reproducibly in the same loca-

tion, SUVmax preferable to SUVmean. 

Organ and lesion motion Mismatch between EM and CT data Respiratory gating or 4D reconstruction 
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and CT. In contrast, 4D-CT can be performed in less than 2 
min for the coverage of the whole lungs. There is normally 
high contrast between the lung tumor and the parenchyma 
except when the lung tumor is connected to a similar tissue 
density of the mediastinum and chest wall. 

3.3. SUV Dependence on Body Habitus 

In most current generation PET scanners, the SUV is 
normalized to patient body weight (designated as SUVBW). 
However, body habitus may also be important, since adipose 
tissue typically demonstrates lower FDG uptake compared to 
other tissues owing to much less metabolic activity. Conse-
quently, in heavier patients with a high fraction of total body 
fat, SUV overestimates the metabolic activity in non-adipose 
tissues compared to the situation in patients of normal 
weight. Studies have investigated the feasibility of correcting 
SUV with regard to other parameters such as lean body mass 
(SUVLBM) and body surface area (SUVBSA) and found them 
to be superior [24-26] compared to SUVBW. The latter cor-
rective methods reduce the variation of SUV related to the 
patient body composition and habitus. Due to the complex 
power-dependency of BSA on BW, SUVBSA=1 does not have 
the same simple interpretation as for SUVBW. 

Kim et al. [24] examined the value of normalization of 
SUV with body surface area (SUVBSA) in 44 patients with 
cancer with body weights ranging from of 45 to 115 kg. 
They observed a strong positive correlation between SUVBW 
and body weight but only a weak correlation between SU-
VBSA and body weight with a near flat regression line. These 
authors concluded that SUVBW overestimates FDG uptake in 
large patients and that SUVBSA is preferable over SUVBW. 
Subsequently two studies have confirmed this observation, 
and have concluded that SUVBSA was superior to both 
SUVBW and SUVLBM. Graham et al. [27] took this a step 
further and derived (fitted) a normalization based on a func-
tion of BSA and BW (i.e., height and weight), the result of 
which turned out to be a power function of weight alone. 
Zasadny et al. [28] addressed the same concern by studying 
the relationship between SUVs in normal tissues and body 
weight in 28 nondiabetic women with newly diagnosed un-
treated primary breast cancer with body weights ranging 
from 45 to 107 kg, and observed a positive correlation be-
tween SUV and body weight for liver and spleen metabolic 
activity. In heavy patients, SUVs for these tissues were up to 
two times higher than those of the lighter patients. They con-
cluded that correction of SUV for lean body mass (SUVLBM) 
eliminated the weight dependence of the SUV. Nevertheless, 
some authors feel that these differences between the nor-
malization methods are small except in very obese patients 
[29]. 

3.4. SUV Dependence on Blood Glucose Level 

Several studies have demonstrated that SUVs of malig-
nant lesions depend substantially upon the glycemic status. 
Hyperinsulinemia leads to enhanced glycolysis in adipose 
tissue and in muscles, and thereby reduce SUV values in 
other tissues. Note that, unlike in the dependency of body 
habitus, the reduced SUV here correctly describes a reduced 
FDG uptake. Most PET centers usually require a maximum 
plasma glucose level ranging from 150 to 200 mg/dl in pa-
tients undergoing FDG-PET studies. Interestingly, Zhuang et 

al. [30] noted that the effects of glucose concentration differ 
between malignant and inflammatory processes. They ob-
served that elevated blood glucose levels up to 250 mg/dl do 
not appear to affect the SUV in the inflammatory or other 
benign lesions. 

3.5. SUV Changes Over Time in Malignant and Benign 
Tissues 

Currently most centers employ SUV measurement at a 
single time point by assigning a standard ROI. It is obvious 
that variations in the time interval between tracer injection 
and image acquisition (i.e. FDG uptake period) substantially 
influence SUV. It must be noted, that due to the duration of 
the scan itself and its typical composition of a number of 
axial fields-of-view, a certain time difference within the 
body is unavoidable. In comparisons of sequential patient 
scans the effect is minimized by using standard protocols, 
always scanning in the same direction. Hamberg et al. [31] 
demonstrated that the equilibrium time (no change in con-
centration of this compound) in bronchial carcinoma varied 
from 4-6 hours post-injection, and decreased after therapy to 
2-3 hours post-injection. These authors concluded that the 
time interval of 45–60 minutes

 
leads to values of SUV, sig-

nificantly under the potential maximum because,
 
in most 

tumors, FDG uptake continues to rise beyond this
 
period, and 

typically does not reach a plateau for several hours. Lodge et 

al. [32] also noted that in high-grade sarcomas maximal 
FDG was found at 4 hours whereas such equilibrium was 
achieved within 30 minutes in benign lesions. Investigators 
at the University of Pennsylvania, in their study of FDG up-
take over extended time periods (over 8 hours) in patients 
with non small cell lung cancer showed that while tumor 
sites revealed increased uptake of FDG over 3-4 hours, sur-
rounding normal tissues showed declining values with time. 
These data indicate that SUV in normal and abnormal tissues 
change substantially over time and therefore the time interval 
between the administration and imaging should be taken into 
consideration in such measurements.  

Also, there exists considerable overlap between active in-
flammatory processes and malignant lesions when SUV is 
employed for this distinction. Therefore, a threshold value 
for SUV alone cannot be employed to differentiate between 
the two. Several approaches have been explored to enhance 
the specificity of FDG-PET for assessing potential malignant 
lesions. For example, dual-time point FDG-PET imaging has 
been utilized in assessing various malignancies including 
those of the head and neck [33], lung [34], breast [35-37] 
cervix [38], gallbladder [39], and central nervous system 
[40]. The theoretical basis for the role of this approach in this 
setting lies in the fact that dephosphorylation in tumor cells 
is either absent or very slow compared to that in normal cells 
due to their low glucose-6-phosphatase content. This results 
in a build up of contrast between malignant lesions and the 
normal tissues with time which further increases lesion de-
tectability on delayed images. This approach has been tested 
by several investigators as a potential way to distinguish 
malignant from benign lesions. 

Hustinx et al. [33] examined the utility of dual-time point
 

scanning in 21 patients with head and neck cancer who were 
scanned serially at two time points, the first at 70 minutes 
(range 47-112) and the second at 98 minutes (range 77-142) 



Quantitative Techniques in PET-CT Imaging Current Medical Imaging Reviews, 2011, Vol. 7, No. 3    221 

after the intravenous injection of FDG. The mean interval 
between emission scans was 28 minutes (range 13-49). 
SUVs were generated for the cerebellum, tongue, larynx, 
malignant lesion, and a matched contralateral site. The ratio 
of tumor SUV to contralateral SUV increased by 23% ± 29% 
over time whereas this ratio for inflammatory sites increased 
by only 5% ± 15% (p=0.07). They proposed this approach as 
a useful means for differentiating malignant lesions from 
inflammation and non-specific uptake in normal tissues. 

Matthies et al. [34] investigated this method for the as-
sessment of pulmonary nodules. Thirty six patients with 38 
known or suspected malignant pulmonary nodules under-
went PET scanning of the thorax at 2 time points: the first 
was at 70 minutes (range, 56-110) and the second was at 123 
minutes (range, 100-163) after the intravenous administra-
tion of FDG. In this study, single-time point PET scanning 
with a threshold SUV of 2.5 (at time point 1) had a sensitiv-
ity of 80% and a specificity of 94%, while dual-time point 
scanning with a threshold value of a 10% increase in SUV 
between the first and second time points provided a sensitiv-
ity of 100% and a specificity of 89%. 

Recent studies by Kumar et al. [36] and Mavi et al. [37] 
reported high sensitivity, specificity, and accuracy in breast 
carcinoma with a dual-time point approach. Lesion detecta-
bility increased from 83% at 1.5 hour images to 93% at 3 
hour images in a study by Boerner et al. [35] in breast carci-
noma.  

Ma et al. [38] examined the usefulness of this technique 
in detecting para-aortic lymph

 
node (PALN) metastases from 

cervical cancer. These data revealed that an additional scan 
at 3 hours is helpful for detecting PALN, especially for 
lower PALN metastases. Nishiyama et al. [39] investigated 
this approach in gallbladder carcinoma and concluded that 
delayed FDG-PET

 
is more helpful than early FDG-PET for 

evaluating this cancer. Spence et al. [40] applied this method 
in supratentorial gliomas coupled with kinetic modeling. The 
estimated k4 values for tumors were

 
not significantly differ-

ent from those of cerebral gray matter (GM) in early
 
imaging 

but were lower at the delayed times. A report by Zhuang et 

al. [41] revealed an increase in SUV on delayed scans in 
known malignant lesions, whereas the SUVs of benign lung 
nodules decreased slightly

 
over time. In contrast, the SUVs 

of the inflammatory lesions
 
caused by radiation therapy and 

those of the lesions of painful lower limb prostheses re-
mained stable over time. The application of this approach to 
predict the nature of the bone marrow FDG uptake was stud-
ied by Houseni et al. [42]. They noted that malignant lesions 
in the bone marrow result in significantly higher levels of 
FDG uptake over time than those affected by chemothera-
peutic agents.  

In many of these studies, the dual-time point
 
approach 

improved both the sensitivity
 
and the specificity of PET for 

various malignancies, including breast, lung, and head and 
neck cancers. This can be explained as follows: increasing 
FDG uptake over time in the malignant lesions allows differ-
entiating them from benign etiologies with higher specificity, 
whereas increased lesion-to-background

 
ratio (resulting from 

a combination of FDG washout from the surrounding normal 
tissues and enhanced FDG uptake in cancer) leads to higher 
sensitivity for detecting cancer. This is a noteworthy obser-

vation, as there is usually a trade-off between sensitivity and 
specificity for most other diagnostic tests when a new ap-
proach is adopted. 

4. FUTURE IMPLICATIONS 

In summary, several studies have demonstrated that abso-
lute SUV measurement does not always allow for optimal 
separation of malignant from benign lesions. Change in SUV 
over time may prove to be useful for improving the accuracy 
of FDG-PET imaging for this purpose. Delaying FDG-PET 
imaging beyond the traditional 1 hour time should also be 
considered since most lesions show increasing FDG uptake 
over the time up to several hours. When comparing lesions 
and in the same lesions noted on images the SUV should be 
measured at same time point to enhance its reliability. 

4.1. Correction of SUV for the Partial Volume Effect 
(PVE) 

The partial volume effect (PVE) is an important factor 
for measuring the radiotracer concentration with accuracy. 
This is mostly related to the scanner resolution and is appli-
cable to (homogeneous) objects with sizes less than 2-3 
times the spatial resolution of the PET scanner. In addition, 
physiological and patient motions during data acquisition are 
also major factors in degrading spatial resolution, thereby 
also contributing to the PVE. It is important to realize the 
problems related to internal organ and lesion motion and the 
actual possibility to account and compensate for it by using 
4D respiratory gated (RG) PET/CT acquisition techniques. 
In fact 4D RG PET/CT can significantly contribute to im-
prove the quantification in PET/CT not only because these 
techniques allow accounting and compensating for the lesion 
motion but also because they allow the best spatial and tem-
poral match between PET and CT data to be obtained. This 
is an important point also for all the dual-point and follow up 
clinical protocols in order to avoid the attenuation correction 
errors occuring from possible mismatch caused by organ and 
lesion motion. 

The phenomenon of PVE is akin to what is observed with 
other imaging techniques including SPECT and structural 
imaging. Though extensively addressed in brain PET studies 

[43-49], this is a major source of concern in optimal assess-
ment of malignant lesions [50]. Typically, the best resolution 
(as measured by laboratory experiments) achieved by the 
modern generation of clinical whole-body PET scanners is at 

best 4 mm [51]. However, in clinical practice the actual spa-
tial resolution of the reconstructed images is substantially 
less than that specified by phantom experiments owing to the 
limited statistics in the acquired data sets and the limitations 

of the reconstruction algorithms. This limited spatial resolu-
tion does not allow

 
for

 
an accurate measurement of the true 

SUV in structures and lesions less than 2-3 times the spatial 
resolution of the PET scanner as defined by the full-width at 

half-maximum (FWHM) of a point spread function. It is well 
known that the contrast between the lesion and the surround-
ing background decreases as the size of the lesion becomes 
smaller, and may disappear completely beyond a certain 

point [52]. While many physicians refer to the SUV of 2.5 to 
discriminate between benign and malignant lung lesions, 
such a value is well recognized as an arbitrary threshold de-
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pending on PET scanner used, acquisition parameters and 
reconstruction algorithm. 

Several approaches to minimize PVE have been de-
scribed. Broadly they can be categorized into three groups 
based on the underlying principles [53]: (i) methods that 
correct for resolution losses after reconstruction of images 
using various models, (ii) methods that incorporate PVE 
modeling within the reconstruction process and (iii) methods 
that use the size of the lesion as determined by anatomic 
imaging data (e.g. CT/MRI) to correct for PVE. 

Factors affecting Recovery coefficients (RCs): These 
include lesion to background (L/B) ratio, matrix size and so 
on. Furthermore, it should be pointed out that RCs are usu-

ally obtained in a static condition (no motion) but are then 
applied to lesions which most of the time are moving. We 
shall describe the latter approach in more detail, which is 
probably the most practical one in the clinical settings. 

With partial volume correction, Hickeson et al. [54] in-

vestigated this effect in the assessment
 
of pulmonary lesions, 

and noted that there is a significant underestimation of SUV 

in lesions smaller than 2 cm in size. By correcting the meas-

ured value by using lesion size measured from the CT scan 

(which was assumed to represent the true size of the lesion), 

improved differentiation between malignant and benign le-

sions was achieved.  

Hickeson et al. [54] reported an increase in accuracy 

from 58% to 89% in the metabolic activity of lung nodules 

measuring less than 2 cm when a SUV threshold of 2.5 was 

adopted to distinguish between benign and malignant lesions 

(Figs. 2–4). In this study, each lesion's SUV was determined 

by using two different methods. The maximum voxel SUV 

was determined in a circular ROI with a diameter of 0.8 cm 

(two voxels) at the plane with maximal FDG uptake in the 

lesion. In the second method, the SUV was corrected for 

underestimation of the true metabolic activity of the entire 

lesion because of the suboptimal spatial resolution and the 

PVE. Two ROIs were drawn around the lesion. The smaller 

of the two included all voxels associated with the lesion. In 

practice, this was drawn at least 0.8 cm outside the 50% up-

take level of the maximum activity to include all of the 

counts resulting from the solitary pulmonary nodule. The 

second larger ROI surrounded the smaller ROI as well as its 

surrounding background. Thus, lesion background could be 

determined from the average uptake outside the smaller ROI 

and inside the larger ROI. Note that the halfway point be-

tween the maximum lesion activity and the surrounding 

 

Fig. (2). A. Profile of small lung nodule with uniform FDG uptake using "ideal" PET scanner with perfect spatial resolution; normal lung 

tissue showing uniformly low FDG activity. B. Profile of measured FDG activity with current PET scanner technology through the same 

nodule in same lung (thick-lined curve). The true distribution of FDG (ideal profile) is indicated by broken line. Note that area under profile 

assuming the "ideal" PET scanner indicated in A is equal to that using current PET scanner indicated in B. The mentioned fig. 2D (not repro-

duced here) merely shows the placement of the two circular regions on top of the lung nodule. Reprinted with permission of Springer Science 

and Business Media from Hickeson et al. [54]. 

 

Fig. (3). SUVs of benign and malignant lung lesions measuring 

equal to or less than 2 cm using uncorrected and corrected maximal 

voxel determinations. Reprinted with kind permission of Springer 

Science and Business Media from Hickeson et al. [54]. 
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background activity is frequently used as the true size of the 

lesion. The background uptake was then subtracted from the 

average uptake in the small ROI. Therefore, the corrected 

SUV was calculated by including the injected dose, the pa-

tient's weight, and time after injection by using the following 
formula: 

  

corSUV =

region ' s activity ( MBq) background activity ( MBq)

lesion ' s size onCT scan cm
3( )

Injected dose ( MBq)

Body weight (g)

  (4) 

Avril et al. [29] examined the role of a similar approach 
in breast cancer, and noted that correction of SUV for the 
PVE and normalization for blood glucose level yielded the 
highest diagnostic accuracy among several PET quantitative 
procedures. Lubberink et al. [55] compared the results of 
110m

In-DTPA-D-Phe
1
-octreotide PET images with those of 

the 
111

In-DTPA-D-Phe
1
-octreotide

 
SPECT scans, and ob-

served that partial volume correction greatly improved
 
detec-

tion of small tumors and allowed accurate
 
quantitation of 

tracer concentration in lesions of various sizes (Fig. 5). From 
these studies, it is clear that PVE correction is crucial in the 
measurement of tumor FDG uptake in the small lesions. It is 
of importance when monitoring response to therapeutic in-
tervention, where the reduction in the size of a tumor could 
result in underestimation of the true concentration of com-
pounds such as FDG in the intended sites. It should be noted, 
that inhomogeneities in a large tumour may still cause the 
reported SUVmax to be too low, even if the overall size of the 
tumour exceeds 3 times the scanner FWHM. 

4.2. Applications of PVE Correction in Neurology 

Correction for partial volume correction was studied al-
ready in the 1980s when CT and low resolution PET instru-
ments were utilized to examine patients with Alzheimer’s 
disease (AD) and other central nervous system disorders that 
usually result in cerebral atrophy [43]. This technique was 
later investigated by using modern segmentation methodolo-
gies and high resolution MR imaging [56, 57]. The latter has 
allowed for accurate measurement of gray matter (GM) and 
white matter (WM) as well as cerebral spinal fluid (CSF) 
volumes in the brain [58, 59]. 

Kohn et al. [58] described a new computerized system 
developed to process standard spin-echo magnetic resonance 
imaging data for estimation of brain parenchyma and cere-

 

Fig. (4). SUVs of benign and malignant lung lesions measuring 

more than 2 cm using both methods. Reprinted with kind permis-

sion of Springer Science and Business Media from Hickeson et al. 

[54]. 

 

Fig. (5). Sphere recovery functions for partial volume correction for 
110m

In-PET, 
111

In-SPECT, and 
18

F FDG-PET. Reprinted by permission 

of the Society of Nuclear Medicine from Lubberink et al. [55]. 
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brospinal fluid volumes. In phantom experiments, these es-
timated volumes corresponded closely to the true volumes  
(r = .998), with a mean error less than 1.0 cm

3
 (for phantom 

volumes ranging from 5-35 cm
3
), with excellent intra- and 

inter-observer reliability. In a clinical validation study with 
actual brain images of 10 human subjects, the average coef-
ficient of variation among observers for the measurement of 
absolute brain and CSF volumes was 1.2% and 6.4%, respec-
tively. The intraclass correlation for three expert operators 
was found to be greater than 0.99 in the measurement of 
brain and ventricular volumes and greater than 0.94 for total 
CSF volume. The authors concluded that their technique to 
analyze MR images of the brain performed with acceptable 
levels of accuracy, and concluded that it can be used to 
measure brain and CSF volumes for clinical research. This 
technique, they believed, could be helpful in the correlation 
of neuroanatomic measurements to behavioral and physio-
logical parameters in neuropsychiatric disorders. 

Tanna et al. [44] adopted this computerized segmentation 
technique in a retrospective analysis of digitized T2-
weighted MR images of 16 healthy elderly control subjects 
and 16 patients with AD. They quantified ventricular and 
extraventricular CSF and studied the effects of aging and AD 
on brain function as determined by FDG-PET. In both 
groups, the degree of atrophy as measured by these tech-
niques was used to correct for metabolic rates obtained by 
PET. Patients with AD had higher total; extraventricular, 
total ventricular, and third ventricular CSF volumes (49%, 
37%, 99%, and 74%, respectively), and 7% lower brain vol-
umes than the control group. Patients with AD also showed a 
more marked decline in brain volumes and a greater increase 
in CSF volumes with advancing age than the control group. 
The patient group had a 25.0% increase in corrected whole-
brain metabolic rates compared to the control group who had 
only a 15.8% increase by applying the partial volume correc-
tion factors. The use of this technique, they concluded, could 
provide a basis for further studies of aging and dementia, by 
calculating the accurate rates of regional metabolism of 
structural components in these settings. 

Bural et al. [60] studied the effects of a novel quantitative 
MR imaging segmentation scheme which allows for actual 
SUV (instead of metabolic rates as reported by Tanna et al. 
as referenced above) calculation of the regional GM, WM, 
and CSF volumes. This approach resulted in overcoming the 
difficulties associated with conventional low resolution im-
aging techniques for measuring actual metabolic activity of 
the GM. These investigators calculated the volumes of GM, 
WM, and CSF by using a special segmentation technique on 
the MR images. This was followed by computation of the 
mean SUV representing the whole metabolic activity of the 
brain from the FDG-PET images. They also measured the 
WM SUV from the upper transaxial slices (centrum semio-
vale) of the FDG-PET images. The volumes of the GM, 
WM, and CSF were summed to calculate whole brain vol-
ume to enable calculation of global cerebral metabolic activ-
ity by multiplying the mean SUV by the total brain volume. 
Similarly, the whole brain WM metabolic activity was 
measured by multiplying the mean SUV for the WM by the 
WM volume. CSF metabolic activity was considered to be 0. 
Thus, by subtracting the global WM metabolic activity from 
that of the whole brain, they were able to measure the global 

GM metabolic activity alone. Finally, by dividing GM global 
metabolic activity by GM volume, an accurate SUV for GM 
alone was determined. The brain volumes ranged between 
1100-1546 cm

3
. The mean SUV for total brain was 4.8-7. 

Global cerebral metabolic activity of the brain ranged from 
5565-9566 SUV-cm

3
. The mean SUV for WM was 2.8-4.1. 

Based on these measurements, they reported that the GM 
SUV in the sample examined ranged from 8.7-11.3. 

5. CONCEPT OF GLOBAL METABOLIC ACTIVITY. 
ASSESSMENT IN HEALTHY AND DISEASED 
STATES 

The basic principle of derivation of the global metabolic 
activity is based upon multiplying partial volume corrected 
average standardized uptake value to the volume of the organ 
of interest obtained from the CT/MRI. With the introduction 
of fusion imaging in the day-to-day practice of medicine, we 
believe, a quantitative approach imbibing data from both 
structural and functional modalities will be the way forward 
for accurate assessment of various pathophysiological proc-
esses. Medical image segmentation is an integral part of this 
promising approach by which identification of objects of 
interest in a given multidimensional image enable us to as-
sess the regional functional parameters of an individual 
component within an organ. The future impact of this ap-
proach is discussed along with a brief overview of the con-
cepts that allow for segmentation of various structural com-
ponents of different organs. The direct and the most promis-
ing impact of this will certainly be in monitoring therapeutic 
efficacy in several malignancies and incorporation of quanti-
tative FDG-PET data into the different tumor response 
evaluation scales used in clinical oncology trials like the 
WHO criteria, the Southwest Oncology Group (SWOG) cri-
teria or the Response Evaluation Criteria in Solid Tumours

 

(RECIST). While the major use of such measurement will be 
more accurate assessment of disease activity in cancer, 
which we have termed as “metabolic burden”, there are sev-
eral potential applications as well like the assessment of 
global metabolic activity in various neuropsychiatric disor-
ders and quantification of atherosclerosis (termed as “athero-
burden”). 

5.1. Principle and Method of Global Metabolic Activity 
Estimation 

The concept of global metabolic activity was first intro-

duced by Alavi et al. [3] in assessment of the brain in pa-

tients with Alzheimer’s disease (AD) and in age-matched 

controls. These investigators were able to demonstrate that 

by multiplying segmented brain volumes as determined from 

MR images by the measured mean cerebral metabolic rates 

for glucose, significant differences between these two popu-

lations can be demonstrated. The same investigators have 

proposed adopting a similar approach for assessing global 

normal organ function and overall disease activity in other 
settings [4]. 

This concept would require calculating tissue volume by 
utilizing modern computer based algorithms and accurate 
(partial volume corrected) measurement of metabolic activi-
ties (or other functional process) at each site of interest. The 
partial volume effect (PVE) is one of the important limiting 
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technical factors for accurate quantitation with PET and re-
cent advances have made it feasible to correct for partial 
volume effects on low spatial resolution functional imaging 
techniques. By multiplying partial volume corrected meta-
bolic measures (such as SUV, rates of metabolism, etc.) by 
volumetric measures from structural images to yield the 
metabolic volumetric product (MVP) for the organ of inter-
est or the diseased site, it would be feasible to calculate the 
global function in the intended tissues. By combining these 
measurements in the entire body for various pathological 
states, one can calculate the global metabolic activity of the 
underlying process. 

5.2. Advantages Over the “Structural Data Only”  
Approach 

The power of this concept stems from its ability to rely 
upon both structural and functional alterations that take place 
as a consequence of normal processes such as aging or dis-
ease states. This is important, as it is well documented that 
existing uni-dimensional measurement (RECIST) criteria, a 
standard ROI based SUV, or other semi-quantitative meas-
urements are often prone to inaccuracy and high variability 
in their generated results [63].  

This concept is particularly applicable to cancer both at 

the initial stage and following treatment. The use of this ap-

proach may prove to be essential for testing new therapeutic 

agents. Similarly, this approach can be effectively employed 

in other states such as atherosclerosis, cardiac disorders, and 

central nervous system diseases. Below, we present some 

data generated based on these concepts. 

5.3. Applications of Global Metabolic Activity in Neurol-
ogy 

One of the major domains of neurology where assess-
ment of global metabolic activity is of great interest is that of 

neuropsychiatric disorders. In order to elucidate the relation-
ship between reduced cognitive function and cerebral me-
tabolism in patients with AD, Basu et al. [61] hypothesized 
that the absolute amount of glucose used by the entire brain 
would prove to be a more reliable indicator of disease than 
metabolic rates calculated for a unit of brain weight alone. 
They investigated 20 patients with the probable diagnosis of 
AD and 17 age-matched controls who underwent FDG-PET 
imaging and MR imaging within a few days of each other. 
The uncorrected cerebral metabolic rate for glucose 
(CMRGlc) values were atrophy corrected using the follow-
ing equation: 

Absolute whole brain metabolism was calculated by us-
ing the formula: 

Average metabolic rates, when corrected for atrophy, 
were 3.91 ± 1.02 and 4.43 ± 0.87 (mg of glucose per 100 cm

3
 

brain tissue per minute) for AD patients and controls, respec-
tively. Two other indices were determined as well: atrophy-
weighted total brain metabolism (calculated by multiplying 
the brain volume, determined from MR image analysis, by 
the average metabolic rate) and absolute whole brain me-
tabolism (calculated by multiplying the brain volume by the 
average metabolic rate corrected for atrophy). The former 
showed a very significant difference between the two groups 
(29.96 ± 7.90 for AD patients compared to 39.1 ± 7.0 for 
controls, p < 0.001). Atrophy-weighted total brain metabo-
lism also correlated with mini-mental status examination 
(MMSE) scores (r = 0.59, p < 0.01). Absolute whole brain 
metabolism was found to be significantly different between 

Table 2. Whole Brain PET data for AD and Controls. (Adapted with Permission from [96]) 

 
CMRGlc (uncorrected) 

(mean±S.D.) 

CMRGlc (cor-

rected) (mean±S.D.) 

Atrophy weighted total brain me-

tabolism (mean±S.D.) 

Absolute whole brain me-

tabolism (mean±S.D.) 

AD patients 3.15±0.83** 3.91±1.02
ns

 29.96±7.90*** 37.24±9.65* 

Controls 3.83±0.70 4.43±0.87 39.09±7.02 45.09±8.52 

Cerebral metabolic rate of glucose (CMRGlc) in mg glucose/100 cc brain tissue/min; Atrophy weighted total brain metabolism in mg glucose/brain/min; Absolute whole brain me-

tabolism Absolute whole brain metabolism in mg glucose/brain/min.  

P-values refer to comparison with control subjects: ns: not significant; * <0.02; **< 0.01; *** < 0.001 

 

Table 3. Recovered Whole Brain PET Data for AD and Controls. (Adapted with Permission from [96]) 

 

Recovered CMRGlc (uncor-

rected) 

(mean±S.D.) 

CMRGlc (cor-

rected) (mean±S.D.) 

Atrophy-weighted total brain me-

tabolism (mean±S.D.) 

Absolute whole brain me-

tabolism (mean±S.D.) 

AD patients 4.89±1.22* 6.06±1.48** 46.61±12.24*** 57.86±14.89**** 

Controls 5.38±0.88 6.22±1.07 55.23±9.82 63.73±10.07 

Cerebral metabolic rate for glucose (CMRGlc) in mg glucose/100cc/brain tissue/min; Atrophy weighted total brain metabolism in mg glucose/brain/min; Absolute whole brain me-

tabolism Absolute whole brain metabolism in mg glucose/brain/min. 

*Not Significantly different from controls p=0.17 

** Not Significantly different from controls p=0.72 

***Significantly different from controls p=0.026 

****Significantly different from controls p=0.18 

 

Atrophy corrected average CMRGlc = Mean CMRGlc

percentage of brain tissue in the intracranial volume

 (5) 

 
Absolute whole brain metabolism = Atrophycorrected mean CMRGlc brain volume  (6) 
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AD and control groups and correlated well with MMSE 
scores. These data demonstrated that although the metabolic 
rate per unit weight of the brain is unchanged in AD com-
pared to controls, atrophy-weighted total brain metabolism 
and absolute whole brain metabolism are significantly af-
fected. They concluded that both indices could prove to be 
sensitive correlates for cognitive dysfunction in AD (Table 2 
and 3). 

5.4. Application of Global Metabolic Activity for Quanti-
tation of Atherosclerosis 

Bural et al. [60] described a technique for quantifying the 
extent of atherosclerosis in the aorta by multiplying SUVs in 
the aortic wall with aortic wall volumetric data provided by 
CT to yield MVPs. They examined this approach in 18 pa-
tients who had both FDG-PET and contrast-enhanced CT of 
the chest and abdomen. All had homogeneous diffuse FDG 
uptake in all segments of the aortic wall. The patients were 
divided into three groups according to their age and FDG 
uptake was measured in different segments of the aorta by 
calculating the mean SUV for each segment. On each axial 
CT image, ROI tracings along the inner and outer wall con-
tours of the aorta were generated. The inner surface area was 
subtracted from the outer surface area, and net area values 
for each segment were subsequently multiplied by slice 
thickness to calculate aortic wall volume. By multiplying 
SUV by the wall volume, they were able to calculate the 
atherosclerotic burden (AB) (a special instance of the MVP) 
for each segment of the aorta. They then compared the aortic 
wall volumes, SUVs, and AB values in each arterial segment 
for each age group. When the aortic wall volumes, SUVs, 
and AB values in each aortic segment for each age group 
were compared, AB values, SUVs, and wall volumes were 
found to increase with age (p<.05) (Fig. 6). 

5.5. Application of Global Metabolic Activity to Diffuse 
Hepatic Steatosis 

Bural et al. [62] adopted this approach to compare the 
FDG uptake in liver and hepatic MVPs between normal sub-
jects and subjects with diffuse hepatic steatosis by using 
FDG-PET and MR imaging. They investigated 24 subjects in 
this study (11 men, 13 women, age range 21-75 years). All 

subjects had FDG-PET and MR scans within a time interval 
of 52 ± 60 days. Twelve of the 24 subjects had the diffuse 
hepatic steatosis based on MR imaging criteria. The remain-
ing twelve were selected as age-matched subjects, as they 
had normal appearing livers on MR images and on FDG-
PET scans. They calculated the mean and maximum hepatic 
SUVs for both groups for every subject from the FDG-PET 
images. They also calculated the volume of the liver for each 
subject from MR images by summing the surface area values 
and multiplying by slice thickness. Subsequently, the hepatic 
MVP was calculated by multiplying liver volume by the 
mean hepatic SUV in each subject. The mean and maximum 
hepatic SUVs and the hepatic MVPs were compared for two 
groups. Mean and maximum hepatic SUVs for the group 
with diffuse hepatic steatosis were 2.2 ± 0.1 and 3.2 ± 0.4, 
respectively, and 1.8 ± 0.2 and 2.4 ± 0.3 for the control 
group, respectively, which were all statistically significantly 
different (p<0.05). Hepatic MVP for the group with diffuse 
hepatic steatosis was 3.7 ± 0.2 (SUV - L), and 2.3 ± 0.9 
(SUV - L) for the control group, which were statistically 
significantly different (p<0.05). 

5.6. Application of Global Metabolic Activity in Oncology 

The concept of whole body metabolic burden (WBMB) 
has been examined in relation to disease activity in lym-
phoma patients [63]. Individual lesion metabolic burden 
(MB) was calculated by measuring the volume on CT (VCT), 
the mean SUV measured on PET of the CT volume (SU-
VmeanCT), and the Recovery Coefficient (RC): 

 
MB = SUV

meanCT
V

CT( ) RC      (7) 

where RC recovers counts that extend beyond the CT vol-
ume due to partial volume effects, and was obtained from a 
calibration plot study of hot sphere activity within a warm 
background phantom for the PET scanner used. For lesions > 
3 cm, RC was 1. The preliminary results showed that MB is 
a useful measure when corrected for partial volume effects 
and operator error in drawing ROIs. The WBMB was de-
fined as the sum of the individual metabolic burden of all 
lesions identified. This index appeared promising to monitor 
changes in total body tumor burden in patients undergoing 
treatment. 

 

Fig. (6). Assessment of changes in global metabolic activity of aortic atherosclerosis (atheroburden) with increasing age. (Adapted with per-

mission from [60]). 
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WBMB = MB
i

i=1

n

 where n is the number of individual tu-

mors outlined. Akin to single lesion MB, the WBMB had 

units of SUV – volume.  

More recently, Larson et al. [64] proposed the concept of 

"Total Lesion Glycolysis" (TLG) which was defined as TLG 

= SUVmean  volume of PET lesion. They further defined the 

response index (also known as Larson-Ginsberg Index  

LGI) as: 

  

TLG LGI( ) =
SUV

mean( )
1

Vol( )
1

SUV
mean( )

2
Vol( )

2

SUV
mean( )

1
Vol( )

1

100

     (8) 

where "1" and "2" denote the pre- and post-treatment FDG-
PET scans, respectively. They investigated a group of 41 
locally advanced lung (n=2), rectal (n=17), esophageal 
(n=16) and gastric (n=6) cancers. They concluded that the 
visual response score and 

 
TLG  are substantially correlated 

with other response parameters and are highly reproducible. 

6. IMAGE SEGMENTATION IN QUANTITATIVE 
PET IMAGING 

Image segmentation is defined as the process of classify-

ing the voxels of an image into set of distinct classes. Medi-

cal image segmentation has been a popular and challenging 

area of research. Despite the known limitations, several im-

age segmentation approaches have been proposed and used 

in the clinical setting including thresholding, region growing, 

classifiers, clustering, edge detection, Markov random field 

models, artificial neural networks, deformable models, atlas-
guided and many other approaches [65]. 

Within the context of quantitative PET imaging, image 

segmentation has found numerous clinical and research ap-
plications [5]. This includes estimation of organ volumes or 

tumor volumes as well as definition of target treatment vol-

umes in radiation therapy [66, 67] or for assessment of treat-
ment response [68, 69], extraction of parameters of clinical 

relevance such as the left ventricular region in nuclear cardi-

ology [70, 71], automated ROI delineation of structures of 
interest in dynamic functional imaging [72], generation of 

functional images to highlight regions of similar temporal 

behavior (components) [73, 74], determination of the at-
tenuation map in emission tomography [75], anatomically-

tomically-guided image reconstruction and partial volume 

segmentation [48], and construction of voxel-based anthro-

pomorphic phantoms based on high resolution anatomical 
images. For the latter, the interested reader is refered to a 

recent review describing the development of such computa-

tional models in connection with Monte Carlo modeling 
tools in radiological sciences [76]. 

One example (Fig. 7) of the application of image seg-
mentation shows a representative slice of a clinical T2-
weighted MR image through the brain and the corresponding 
segmentation results separately showing each tissue class 
(GM, WM, CSF). MR images were first corrected for inho-
mogeneity and were subsequently intensity standardized 
before applying a segmentation method on them. The mean 
intensity and standard deviation for each of GM, WM, and 
CSF regions are then estimated from the training data set and 
are fixed once for all. A fuzzy connectedness framework was 
utilized for creating a brain intracranial mask, and the fuzzy 
membership value of each voxel in each brain tissue was 
estimated, and final segmentation of the brain tissues was 
simply performed via a maximum likelihood criterion as 
described by Zhuge et al. [59]. 

Another example involves segmentation of the lung pa-
renchyma. Historically, segmentation of the lungs on CT 
scans was a popular research subject given its usefulness in 
computer-based analysis of thoracic CT images and com-
puter-aided diagnosis. As a consequence, plenty of image 
segmentation approaches were proposed and many of them 
found applications in clinical settings. For example, the soft-
ware system 3DVIEWNIX [77]

 
was used to segment the CT 

image of the lungs to obtain the left and the right lung. The 
steps were as follows: (i) The Threshold operation was used 
to segment the lung tissue from the rest of the CT image. (ii) 
Subsequently, Interactive2D was used to manually remove 
the areas that were not a part of the lungs or were a part of 
the airway tree. (iii) The mask that was produced covered the 
lung area only. Using Interactive2D once again, the left lung 
was removed and hence the mask for the right lung was 
obtained. (iv) Algebra was used to obtain the left lung by 
subtracting the right lung mask from the entire lung mask. 
Fig. (8) displays the segmentation results on a chest CT in 
one subject. 

To enhance lesion detectability, the use of similarity 
measures for analysis of dynamic oncological imaging to 
enhance the contrast between normal tissues and lesions is 
an appealing approach that needs to be investigated further 

 

Fig. (7). Segmentation technique used to calculate standard uptake value (SUV) in gray (GM) and white (WM) matter, and cerebrospinal 

fluid (CSF). A. Axial slice of intensity inhomogeneity corrected and intensity standardized T2-weighted image. B-D, Color overlays on same 

axial T2-weighted image corresponding to segmented WM, GM, and CSF, respectively. (Reprinted with permission from [61]). 
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[78]. One such technique, proposed originally for cardiac 
imaging but could also be applied in oncological PET stud-
ies, uses the cross- B-energy operator, a nonlinear similarity 
measure which quantifies the interaction between two time-
signals including their first and second derivatives [74]. 
Similarity measure between the time activity curve (TAC) of 
each pixel and the mean value of the TACs of a reference 
region of the dynamic image series is calculated, thereby 
generating images demonstrating temporal changes in radio-
active tracer distribution. 

As far as partial volume correction is concerned, the ac-

curacy of algorithms depends in part on the degree of accu-

racy in the segmentation of the anatomical images and the 

coregistration of anatomical images with the PET data. 

These effects have been investigated extensively in the lit-

erature for both the voxel-based and region-based partial 

volume correction strategies [47, 49, 79]. It was demon-

strated that errors in the segmentation procedure have greater 

impact but are relatively limited to the mis-segmented region 

[49]. Overall, it appears that the success of the segmentation 

of the structural information provided by MR images, for 

instance, has a higher impact on the accuracy of the cor-

rected estimates [47], compared to the influence of image co-

registration, although some authors recently suggested that 

mis-registration errors have the strongest impact on data ac-

curacy and precision [79]. Notwithstanding, it was suggested 

that in the absence of major sources of registration or seg-

mentation errors, recovered activity concentration estimates 

have been found to be typically within 5-10% of true tracer 

concentration with a standard deviation of a few percent in 

both phantom and simulation studies [49, 79]. An important 

development that can be exploited for future simultaneous 

PET/MR imaging technology dedicated for brain research 

[80] is to combine various MR imaging segmentation meth-

odologies for both partial volume correction and attenuation 

compensation [81, 82]. 

7. NOVEL IMAGE SEGMENTATION APPROACHES 
IN IMAGE GUIDED RADIATION THERAPY 

Within the realm of oncological PET imaging, image 
segmentation is vital for a variety of specific applications for 
tumor quantitation in staging, assessment of tumor response 

to therapy, and definition of target volumes in radiation ther-
apy treatment planning [67, 83]. One of the most difficult 
issues facing PET-based radiation therapy treatment plan-
ning is the accurate delineation of target regions from typical 
noisy functional images. The major problems encountered in 
functional volume quantitation are image segmentation and 
imperfect system response function. 

At present, various methods are used in practice to de-

lineate PET–based target volumes [84]. The manual delinea-

tion of target volumes using different window level settings 
and look up tables is the most common and widely used 

technique in the clinic. However, the method is highly opera-

tor-dependent and is subject to high variability between op-
erators. Semi-or fully-automated delineation techniques 

might offer several advantages over manual techniques by 

reducing operator error/subjectivity, thereby improving re-
producibility. There have been remarkable progress in auto-

mated image segmentation during the last few years and the 

performance validation in a clinical setting is now under 
way. It is imperative that the application of these findings 

into routine treatment planning scenario would help define 

viable
 
tumor boundaries with better precision. 

One such novel automated system for the segmentation 
of oncological PET data aiming at providing an accurate 
quantitative analysis tool was recently proposed [85]. The 
initial step involves Expectation Maximization (EM)-based 
mixture modeling using a k-means clustering procedure, 
which varies voxel order for initialization. A multiscale 
Markov model is then used to refine this segmentation by 
modeling spatial correlations between neighboring image 
voxels. Anthropomorphic phantom experiments were con-
ducted for quantitative evaluation of the performance of the 
proposed segmentation algorithm. The comparison of actual 
tumor volumes to the volumes calculated using different 
segmentation methodologies including standard k-means, 
spatial domain Markov Random Field Model (MRFM), and 
the new multiscale MRFM showed that the latter dramati-
cally reduces the relative error. The analysis of the resulting 
segmentations of clinical oncologic PET data seems to con-
firm that this methodology can successfully segment patient 
lesions. Another promising technique using the Markov 
chain model was recently proposed by Hatt et al. who modi-
fied their original algorithm into fuzzy locally adaptive Bay-

 

Fig. (8). Illustration of lung CT segmentation results. From left to right: original axial CT image, right lung segmentation, and left lung seg-

mentation. (Reprinted with permission from [61]). 
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esian (FLAB) to improve segmentation of small lesions [86]. 
This Bayesian approach uses adaptive estimation of priors 
using a family of distributions from the Pearson’s system. 

Vees et al. [87] compared various image segmentation 

techniques in the delineation of gross tumor volume (GTV) 

in patients with cerebral glioma (Fig. 9). The study results 

highlighted the limitations associated with some of the seg-

mentation algorithms (e.g. 2.5 standardized uptake values 

cutoff and the gradient finding GTV approaches) compared 

to the signal-to-background ratio (SBR)-based adaptive 

thresholding technique and its impact on RT planning in 

patients of cerebral glioma. The authors concluded the selec-

tion of the most appropriate FET-PET based segmentation 

algorithm is crucial for correct delineation of resulting GTV 

[87]. 

A recent study compared nine PET image segmentation 
techniques [88]. These include manual delineation performed 
by an experienced radiation oncologist on both the CT 
(CTman) and PET (PETman) images, four semi-automated 
methods comprising the Signal-to-Background Ratio (SBR)-
based adaptive thresholding technique [89], region growing 
(RG) [90], Black et al. technique [91], Nestlé et al. technique 
[92], and three fully automated methods: standard fuzzy C-
means (FCM) [93], the spatial FCM (FCM-S) which incor-
porates nonlinear anisotropic diffusion filtering thus allow-
ing the integration of spatial contextual information and the 
wavelet-based FCM-S algorithm (FCM-SW) which also 
considers inhomogeneity of tracer uptake through the use of 
the à trou wavelet transform [94]. Representative segmenta-

tion results of FDG PET/CT image of a patient presenting 
with histologically proven non-small cell lung cancer are 
shown in Fig. (10). The GTVs defined on the non-
homogeneous lesion using 9 segmentation techniques are 
depicted on both the CT (left) and FDG-PET (right) tran-
saxial slices. 

8. CONCLUSIONS 

The appearance of hybrid PET/CT scanners have created 
a unique possibility for quantitative measurements of physio-
logical and patophysiological processes in the human body, 
and for precisely correlating these with anatomy. The devel-
opment of software methods to register to other modalities, 
e.g. MR has further strenghtened the use of PET. 

The power of accurate quantitative assessment of global 
disease activity in patients may certainly have several advan-
tages over measuring SUVmax in one index lesion. This con-
cept is particularly applicable to cancer both at the initial 
stage and following treatment to estimate the metabolic bur-
den of the disease and may be essential for testing new 
therapeutic agents. Similarly, this approach can be effec-
tively employed in other disease states such as atherosclero-
sis, hepatic and cardiac disorders. Sophisticated quantitative 
analysis methodologies are likely to become widely avail-
able in clinical settings and not just limited to PET research 
facilities with advanced scientific and technical support. This 
will enhance the potential of PET-CT imaging to "personal-
ize" treatment by evaluating the effectiveness of therapy and 
to recognize ineffective treatments, which may also be costly 

 

Fig. (9). Typical example of geographical mismatch between gross tumor volumes (GTVs) defined on MRI and PET in a patient with a 

glioblastoma. Top: from left to right, Gadolinium enhanced T1-weighted MRI, corresponding 
18

F-FET PET study, and fused PET/MR. Bot-

tom: 3-D reconstructions illustrating the substantial mismatch. Note that the GTV defined on MRI overestimates the tumour extension com-

pared with GTV defined on PET images. Adapted with permission from [87] and [97]. 
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GTVMR 
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or risky. Thus further refinements might prove invaluable for 
the optimal utilization of this powerful imaging technology. 
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ABBREVIATIONS 

(C)MRGlc = (cerebral) metabolic rate of glucose  

CT = computed tomography 

FDG = Fluorodeoxyglucose 

MRI = Magnetic Resonance Imaging  

MVP = metabolic volumetric product 

NLR = Non-linear regression 

SUV = standardized uptake value 

PVE = partial volume effect 

TLG = Total Lesion Glycolysis  
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