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Abstract

In many cases, the addition of metric operators to qualitative temporal logics (TLs)
increases the complexity of satisfiability by at least one exponential: while common
qualitative TLs are complete for NP or PSpace, their metric extensions are often
ExpSpace-complete or even undecidable. In this paper, we exhibit several metric
extensions of qualitative TLs of the real line that are at most PSpace-complete, and
analyze the transition from NP to PSpace for such logics. Our first result is that
the logic obtained by extending since-until logic of the real line with the operators
‘sometime within n time units in the past/future’ is still PSpace-complete. In
contrast to existing results, we also capture the case where n is coded in binary and
the finite variability assumption is not made. To establish containment in PSpace,
we use a novel reduction technique that can also be used to prove tight upper
complexity bounds for many other metric TLs in which the numerical parameters to
metric operators are coded in binary. We then consider metric TLs of the reals that
do not offer any qualitative temporal operators. In such languages, the complexity
turns out to depend on whether binary or unary coding of parameters is assumed:
satisfiability is still PSpace-complete under binary coding, but only NP-complete
under unary coding.

1 Introduction

The classical approach to the specification and verification of reactive sys-
tems uses qualitative temporal logics (TLs) that are interpreted in the nat-
ural numbers [5,11,12]. When real-time properties play a crucial role in the
description of the system behaviour, this rather abstract approach is no longer
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feasible since concrete distances between events cannot be described in quali-
tative TLs. Consequently, the basic logical tool for reasoning about real-time
systems is provided by quantitative TLs, which are usually extensions of stan-
dard qualitative TLs with metric operators. To obtain a realistic model of
time, such logics are usually interpreted in the real line [1–3,10,14] (although
metric TLs of discrete time have also been proposed [8]). Unfortunately, mov-
ing from qualitative to quantitative logics is often accompanied by an increase
in computational complexity of the satisfiability problem, both in discrete
and continuous flows of time. The most important example demonstrating
this effect is the PSpace-complete since-until logic of the real line [13], whose
extension with a metric operator ‘sometime in at least n but not more than
m time units’ (n and m coded in binary) becomes ExpSpace-complete if the
case n = m is not admitted, and even undecidable if it is [1,3,10]. It is well
known that the complexity of this quantitative TL can be reduced to PSpace
by enforcing that the lower parameter n to metric temporal operators is re-
stricted to zero [1]. However, in contrast to the ExpSpace-completeness and
undecidability results, this result has only been proved under the finite vari-
ability assumption (FVA) which states that no propositional variable changes
its truth-value infinitely many times in any bounded interval. Additionally,
in contrast to qualitative TLs, to the best of our knowledge there have been
no attempts to obtain metric temporal logics that are only NP-complete by
further restricting the language.

The purpose of this paper is to investigate metric temporal logics of the real
line that are at most PSpace-complete, and to investigate the transition from
NP to PSpace for such logics. In our analysis, we consider the case with
and without FVA. Since the case without FVA is sometimes neglected in
computer science, we first give some justification for why we believe that it is
worth studying.

The FVA is used to capture the assumption that a system can change its
state only finitely many times in a bounded time interval. While the FVA
is an appropriate condition in classical control theory and most computer
science applications [2], we believe that there are at least four reasons to
study also the non-FVA case: first, qualitative temporal logic originated in
philosophy and mathematics to study time itself, rather than the behavior of
systems with discrete state changes as considered in most computer science
applications. If quantitative TL is used for the former purpose, there is no
obvious reason for adopting the FVA. Second, it has been argued that there are
relevant real-time systems that may experience infinitely many state changes
in bounded time intervals [9,4,6]. Third, even in a setting in which the intended
models satisfy the FVA, reasoning without the FVA can be fruitfully employed:
assume that a formula ϕ of a quantitative TL describes the specification of a
real-time system. Further assume that ϕ has been found to be unsatisfiable
under FVA, indicating that the described specification is not realizable. If an
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additional satisfiability check of ϕ without FVA gives a positive result, then
the user obtains additional information on the source of the unrealizability of
her specification: namely that it enforces an infinite number of state changes
in a bounded time interval. Finally, in languages containing the operators
‘since’ and ‘until’ there exists a formula which expresses the FVA, see [10]
and below. It follows that complexity upper bounds for the non-FVA case are
more general than upper bounds in the FVA case and exhibit a uniform upper
bound for both cases.

In this paper, we prove two main results. Our first result is that extending
since-until logic of the real line with metric operators ‘sometime in at most n
time units in the past/future’, n coded in binary, is PSpace-complete even
without FVA. To show this result, we propose a new method for polynomially
reducing satisfiability in metric TLs where numerical parameters are coded in
binary to satisfiability in the same logic with numbers coded in unary. The
essence of this reduction is to introduce new propositional variables that serve
as the bits of a binary counter which measures distances. For the metric TL
mentioned above, we obtain a PSpace upper bound since Hirshfeld and Ra-
binovich have shown that QTL, the same logic with numbers coded in unary,
is PSpace-complete without FVA [10]. This proof method can also be used
to establish tight upper complexity bounds for many other metric temporal
logics in which numerical parameters are coded in binary. To substantiate this
claim, in the appendix we reprove ExpTime-completeness of RTCTL (real-
time computational tree logic), a metric extension of the branching time logic
CTL proposed by Emerson et al. [8]. Whereas Emerson et al. use a tableau-
based decision procedure to prove containment in ExpTime of RTCTL, we
reprove this result in a much simpler way by applying our reduction technique
to polynomially reduce satisfiability in RTCTL to satisfiability in CTL.

Our second result is concerned with the transition from NP to PSpace. We
first sharpen the PSpace lower bounds for metric temporal logics of the
real line. In the current literature, such logics usually contain qualititative
since-until logic as a proper fragment, and thus trivially inherit PSpace-
hardness [2,10,13]. We consider metric TLs with weaker qualitative operators
and show that PSpace-hardness can already be observed in the following
three cases: (i) a future diamond and a future operator ‘sometime in at most
n time units’, n coded in unary; (ii) only the future operator ‘sometime in at
most n time units’, n coded in binary (i.e., no qualitative operators at all);
(iii) only a metric version of the until operator for the interval [0, 1].

Then we show that no further sharpening of the PSpace lower bound is
possible by proving that the quantitative TL with only the metric operator
‘sometime within n time units’, n coded in unary, is NP-complete, both with
and without FVA. We thus obtain a quantitative counterpart of the result
of Sistla and Zuck that qualitative TL with the future diamond as the only
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temporal operator is NP-complete on the real numbers [16]. To establish the
upper bound, we devise an algorithm for satisfiability that first guesses a set of
“types” (of polynomial cardinality), and then constructs and solves a system
of rational linear inequalities over the real (or, equivalently, rational) numbers
to deal with the metric operators. We give two separate algorithms for the case
with and without FVA since, without the operators ‘since’ and ‘until’, there
appears to be no “semantically transparent” reduction of the FVA case to
the non-FVA case. When compared with PSpace-hardness of (ii) above, this
result shows that the complexity of metric TLs without qualitative operators
depends on the coding of numbers.

2 Preliminaries

We introduce the metric temporal language QTL of [10] which is closely related
to the language MITL of [1]. Fix a countably infinite supply p0, p1, . . . of
propositional variables. A QTL-formula is built according to the syntax rule

ϕ, ψ := p | ¬ϕ | ϕ ∧ ψ | ϕS ψ | ϕU ψ | ϕSIψ | ϕU Iψ

with p ranging over the propositional variables and I ranging over intervals
of the forms (0, n), (0, n], [0, n), and [0, n], where n > 0 is a natural number.
The Boolean operators >, ∨, →, and ↔ are defined as abbreviations in the
usual way. Moreover, we introduce additional future modalities as abbrevia-
tions: 3I

Fϕ = >U I ϕ, 2I
Fϕ = ¬3I

F¬ϕ, 3Fϕ = >U ϕ, 2Fϕ = ¬3F¬ϕ, and
2+
Fϕ = ϕ ∧2Fϕ. Their past counterparts are defined analogously and have a

subscript P .

Formulas of QTL are interpreted on the real line. A model M = 〈R,V〉 is a
pair consisting of the real numbers and a valuation V mapping every propo-
sitional variable p to a set V(p) ⊆ R. The satisfaction relation ‘|=’ is defined
inductively as follows, where for each time point w ∈ R and interval I of one
of the above forms, we write w + I to denote the set {w + x | x ∈ I} ; w − I
is defined analogously.

M, w |= p iff w ∈ V(p)

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= ϕU ψ iff there exists u > w such that M, u |= ψ and M, v |= ϕ

for all v such that w < v < u
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M, w |= ϕS ψ iff there exists u < w such that M, u |= ψ and M, v |= ϕ

for all v such that u < v < w

M, w |= ϕU I ψ iff there exists u ∈ w + I such that M, u |= ψ and M, v |= ϕ

for all v such that w < v < u

M, w |= ϕSI ψ iff there exists u ∈ w − I such that M, u |= ψ and M, v |= ϕ

for all v such that u < v < w

We will also write w |=V ϕ for 〈R,V〉, w |= ϕ. A QTL-formula ϕ is satisfiable
if there exists a model M and a time point w ∈ R such that M, w |= ϕ. It is
satisfiable under the finite variability assumption (FVA) if it is satisfiable in
a model in which no propositional variable changes its truth-value infinitely
many times in any bounded interval.

Our presentation of QTL deviates from the original one given by Hirshfeld
and Rabinovich in [10], where only the metric operators 3

(0,1)
F and 3

(0,1)
P are

admitted. If the numerical parameters of the metric operators are coded in
unary, there exists an easy polynomial translation from Hirshfeld and Rabi-
novich’s version of QTL to ours and vice versa. However, in this paper we also
consider binary coding of numbers. If we want to emphasize this fact, we shall
write QTLb instead of QTL, and, likewise, QTLu will denote unary coding of
numbers.

It is worth noting that the results presented in this paper apply to formulas
with rational numbers as parameters of metric operators SI and U I as well:
such formulas can be translated (in polynomial time) to equi-satisfiable for-
mulas containing only natural numbers as parameters by multiplying with the
least common denominator of all (rational) parameters.

We close this section with a brief discussion of the relation between temporal
logics with FVA and those without. The main observation is that, in any
temporal logic that includes the since and until operators, satisfiability of a
formula ϕ with FVA can be polynomially reduced to satisfiability without
FVA [10]: let

δ =
∧

p used in ϕ

(2P δp ∧ δp ∧2F δp), where

δp =
(
(pU p) ∨ (¬pU ¬p)

)
∧

(
(pS p) ∨ (¬pS ¬p)

)
.

It is not hard to verify that ϕ is satisfiable with FVA iff ϕ ∧ δ is satisfiable
without FVA. Note that the length of ϕ ∧ δ is polynomial in the length of ϕ.
To the best of our knowledge, there is no polynomial reduction of this type
for the language without since or until.
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3 QTLb is PSpace-complete without FVA

The purpose of this section is to prove that QTLb-satisfiability without FVA is
decidable in PSpace. This result is already known for QTLu without FVA [10]
and QTLu and QTLb with FVA [1]. Note that, due to polynomial reducibility
of QTLb with FVA to QTLb without FVA, those three results follow from the
new upper complexity bound for QTLb without FVA. We first observe that
our result indeed improves upon the existing ones by showing that QTLb is
exponentially more succinct than QTLu.

Theorem 1 Let ψ be a QTL-formula with numbers coded in unary that is
equivalent to 2

[0,n]
F p. Then ψ has length at least n.

PROOF. Suppose by contradiction that there exists a QTL-formula ψ with
numbers coded in unary such that ψ is equivalent to 2

[0,n]
F p, for some n ≥ 1,

and the length of ψ is strictly smaller than n. We may assume that ψ con-
tains no other propositional letters than p: replacing such letters in a formula
equivalent to 2

[0,n]
F p with > is an equivalence-preserving operation.

For n ≥ 1, set Vn(p) := [−n, n] and Mn := 〈R,Vn〉. Then Mn, 0 |= 2
[0,n]
F p

and Mn, 1 6|= 2
[0,n]
F p. The former implies Mn, 0 |= ψ. Our aim is to derive a

contradiction by showing that Mn, 1 |= ψ.

It is straightforward to prove the following by induction on the length |χ|
of χ: for every subformula χ of ψ and all real numbers x, y from the interval
[−(n− |χ|), n− |χ|], we have

Mn, x |= χ iff Mn, y |= χ.

Since the length of ψ is smaller than n, it follows that, in Mn, the points 0
and 1 satisfy the same subformulas of ψ. In particular, Mn, 1 |= ψ. 2

We now establish the main result of this section.

Theorem 2 Satisfiability in QTL with numbers coded in binary is PSpace-
complete without FVA.

Since (qualitative) since-until logic on the real line is PSpace-hard [13], it
suffices to prove the upper bound. For simplicity, we prove the upper bound
for the future fragment of QTL, i.e., we omit past operators. The proofs are
easily extended to the general case. Within the future fragment, we consider
only the metric operators 3

(0,1)
F , 3

(0,1]
F , 3

[0,1)
F , and 3

[0,n]
F . This can be done

w.l.o.g. due to the following observations:
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First, satisfiability in QTLb can be reduced to satisfiability in QTLb without
the metric operators ψ1 U I ψ2: to decide satisfiability of a QTLb-formula ϕ,
introduce a new propositional variable pψ2 for every ψ2 which occurs in a
subformula of the form ψ1 U I ψ2 of ϕ. Inductively define a translation on QTLb-
formulas such that, for any subformula χ of ϕ, χp to denotes the result of
replacing all outermost subformulas ψ1 U I ψ2 of χ by ψp1 U pψ2 ∧3I

Fpψ2 . Then
ϕ is satisfiable iff

ϕp ∧2+
F

[ ∧
ψ1 UI ψ2∈sub(ϕ)

(pψ2 ↔ ψp2)
]

is satisfiable, where sub(ϕ) denotes the set of subformulas of ϕ. Note that the
length of the obtained formula is polynomial in the length of ϕ. Second, for
any interval I of the form (0, n), (0, n], or [0, n) with n > 1, 3I

Fϕ is equivalent

to 3J
F3

[0,n−1]
F ϕ, where J is obtained from I by replacing the upper interval

bound n by 1.

In the following, we reduce satisfiability of QTLb-formulas to the satisfiability
of QTL-formulas in which all upper interval bounds have value 1. As the
coding of numbers is not an issue in the latter logic, we obtain a PSpace
upper bound from the result of [10] that QTLu-satisfiability in models without
FVA is decidable in PSpace.

Let ϕ be a QTL-formula meeting the restrictions laid out above. Let k be
the greatest number occurring as a parameter to a metric operator in ϕ, nc =
dlog2(k+2)e, and χ1, . . . , χ` the subformulas of ϕ that occur as an argument to

a metric operator of the form 3
[0,n]
F with n > 1. We reserve, for 1 ≤ i ≤ `, fresh

propositional variables xi, yi, and cinc−1, . . . , c
i
0 that do not occur in ϕ. The

sequences cinc−1, . . . , c
i
0 of propositional variables will be used to implement

binary counters, one for each χi. Intuitively, the i-th counter measures the
distance to the “nearest” future occurrence of the formula χi, rounded to the
next larger natural number. A counter value greater than or equal to k + 1
is a special case indicating that the nearest occurrence of χi is too far away
to be of any relevance. The variables xi and yi will serve as markers on the
real line with the following meaning: xi holds in a point iff there is a natural
number n such that χi holds at distance n in the future, but not in between;
similarly, yi holds iff there is a natural number n such that χi does not hold
in the future at any distance up to (and including) n, but χi is true at points
that converge (from the future) against the future point with distance n. In
the following, we call the structure imposed on the real line by the markers xi
and yi the (one-dimensional) “grid” for χi.

To implement the counters, we introduce the following auxiliary formulas: for
1 ≤ i ≤ `, let

• (Ci = m) be a formula saying that, at the current point, the value of the i-th
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counter is m, for 0 ≤ m < 2nc . Obviously, there are exponentially many such
formulas, but we will use only polynomially many of them in the reduction.

• (Ci ≤ m) is a formula saying that, at the current point, the value of the
i-th counter does not exceed m, for 0 ≤ m < 2nc .

• ©ϕ := ¬(xi ∨ yi)U((xi ∨ yi) ∧ ϕ) says that, at the next grid point of the
grid for χi, ϕ is satisfied.

To deal with effects of convergence, it is convenient to introduce an additional
abbreviation. The formula rc(ψ) := ¬(¬ψ U >) ∧ ¬ψ describes convergence
of ψ-points from the future against a point where ψ does not hold. We now
inductively define a translation of QTLb-formulas to QTL-formulas in which
all upper interval bounds have value 1:

p∗ := p

(¬ψ)∗ := ¬ψ∗

(ψ1 ∧ ψ2)
∗ := ψ∗

1 ∧ ψ∗
2

(ψ1 U ψ2)
∗ := ψ∗

1 U ψ∗
2

(3I
Fψ)∗ := 3I

Fψ
∗

(3
[0,n]
F χi)

∗ := (Ci ≤ n− 1) ∨
(
(Ci = n) ∧ ¬yi

)
Here, I ranges over intervals (0, 1], (0, 1), and [0, 1). It remains to enforce the
existence of the grids for each χi and the behavior of the counters as described
above. This is done with the following auxiliary formulas, for 1 ≤ i ≤ `:

ϑi1 := (Ci = 0) ↔
(
χ∗i ∨ rc(χ∗i )

)
ϑi2 := xi ↔

[
χ∗i ∨

(
2

(0,1)
F (¬χ∗i ∧ ¬xi ∧ ¬yi) ∧3

(0,1]
F xi ∧3Fχ

∗
i

)]

ϑi3 := yi ↔
[
rc(χ∗i ) ∨

(
2

(0,1)
F (¬χ∗i ∧ ¬xi ∧ ¬yi) ∧3

(0,1]
F yi ∧3F rc(χ

∗
i )

)]

ϑi4 := ¬(Ci = 0) ∧3
(0,1]
F (xi ∨ yi) →( ∨

t=0..nc−1

(
cit ∧©¬cit ∧

∧
`=0..t−1

(¬ci` ∧©ci`) ∧
∧

`=t+1..nc−1

(ci` ↔©ci`)
)

∨
∧

`=0..nc−1

(ci` ∧©ci`)
)

ϑi5 := ¬3
[0,1)
F (xi ∨ yi) → (Ci = 2nc − 1)

Intuitively, ϑi1 initializes the counter, ϑi2 and ϑi3 ensure that the grid points xi
and yi behave as described above, ϑi4 increments the counter when traveling
into the past and ensures that the counter stays in maximal value once it is
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reached, and ϑi5 ensures that, when traveling into the future, the counter is set
to the maximal value after the last occurrence of χ∗i . Let ϑi be the conjunction
of ϑi1 to ϑi5. The following finishes the reduction.

Lemma 3 ϕ is satisfiable iff 2+
F (ϑ1 ∧ · · · ∧ ϑ`) ∧ ϕ∗ is satisfiable.

PROOF. “⇐”: Let V be a valuation and w ∈ R a time point such that
w |=V 2+

F (ϑ1∧ · · ·∧ϑ`)∧ϕ∗. We show, by induction, for all time points v ∈ R
and every subformula χ of ϕ:

v |=V χ iff v |=V χ∗ (†)

Clearly, w |=V ϕ follows. The cases for propositional variables, ¬, ∧, U , and
3I
F , where I ranges over intervals (0, 1), (0, 1], and [0, 1), are trivial and omit-

ted here. Consider the remaining case χ = 3
[0,n]
F χi.

For the direction from right to left, suppose v |=V (3
[0,n]
F χi)

∗, i.e.,

v |=V (Ci ≤ n− 1) ∨
(
(Ci = n) ∧ ¬yi

)
.

We define a time point u ∈ R, distinguishing two cases:

(i) v |=V xi ∨ yi. Set u = v.
(ii) v 6|=V xi ∨ yi. Let u ∈ v + (0, 1) be minimal such that u |=V xi ∨ yi.

Note that, in (ii), the required u exists: by definition of nc, we have n < 2nc−1

and thus v |=V (3
[0,n]
F χi)

∗ implies v |=V 3
[0,1)
F (xi∨yi) by ϑi5. Hence, there exists

u ∈ v+(0, 1) such that u |=V xi∨yi. By ϑi2 and ϑi3, there exists a minimal such
u. For m ≥ 1, let cm denote the natural number such that u+m |=V (Ci = cm).
Our aim is to show that one of the following holds:

(a) u+ c0 |=V χ∗i and u |=V xi;
(b) u+ c0 |=V rc(χ∗i ) and u |=V yi.

For suppose that this has been shown. Then we obtain v |=V 3
[0,n]
F χ∗i , which

can be seen by distinguishing the following four subcases, and thus get v |=V

3
[0,n]
F χi by induction hypothesis as desired.

• Cases (i) and (a). Since v |=V (3
[0,n]
F χi)

∗ and v = u, we have c0 ≤ n. Thus,

u+ c0 |=V χ∗i yields v |=V 3
[0,n]
F χ∗i .

• Cases (i) and (b). Then u + c0 |=V rc(χ∗i ) implies that we can find a time

point v′ ∈ u+(c0, c0 +1) such that v′ |=V χ∗i . Since v |=V (3
[0,n]
F χi)

∗, v = u,

and u |=V yi, we have c0 < n. Thus, v |=V 3
[0,n]
F χ∗i .

• Cases (ii) and (a). Since v 6|=V xi ∨ yi, ϑi1 to ϑi3 yield that v |=V ¬(Ci = 0).
Together with the existence of u with u |=V (Ci = c0) and by ϑi4, it follows

9



that v |=V (Ci = c0 + 1). Since v |=V (3
[0,n]
F χi)

∗, this yields c0 < n. Thus

u+ c0 |=V χ∗i and the choice of u yield v |=V 3
[0,n]
F χ∗i .

• Cases (ii) and (b). Then u + c0 |=V rc(χ∗i ) implies that we can find a time
point v′ ∈ u + (c0, c0 + 1) such that v′ |=V χ∗i . As in the third subcase,
we can show that c0 < n. Thus v′ |=V χ∗i and the choice of u and v′ yield

v |=V 3
[0,n]
F χ∗i .

It thus remains to show that one of (a) and (b) holds. To this end, we show
by induction on m that, for m ≤ c0, we have

(1) u+m |=V xi ∨ yi;
(2) cm = c0 −m;
(3) if m < c0, then v′ 6|=V χ∗i ∨ rc(χ∗i ) for all v′ ∈ [u+m,u+m+ 1).

For the induction start, let m = 0. Point 1 holds by choice of u and Point 2
is trivial. For Point 3, first assume that u |=V χ∗i ∨ rc(χ∗i ). Then c0 = 0 by ϑi1,
which is a contradiction to the precondition of (iii). It thus remains to show
that v′ 6|=V χ∗i ∨rc(χ∗i ) for all v′ ∈ (u, u+1). This is an immediate consequence
of ϑi2 and ϑi3 together with the facts that u |= xi ∨ yi and u 6|=V χ∗i ∨ rc(χ∗i ).
For the induction step, assume that (1) to (3) have been shown up to and
including m < c0.

• Point 1. By induction, u+m |=V xi ∨ yi and u+m 6|=V χ∗i ∨ rc(χ∗i ). Thus,
we have u+m+ 1 |=V x1 ∨ yi by ϑi2 and ϑi3.

• Point 2. By induction, we have cm = c0−m which implies u+m |=V ¬(Ci =
0) by m < c0. Since Point 1 additionally gives us u + m + 1 |=V xi ∨ yi,
ϑi4 yields cm = cm+1 + 1 and from Point 2 of the induction hypothesis we
obtain cm+1 = c0 − (m+ 1).

• Point 3. Assume m+ 1 < c0. Point 2 gives us cm+1 = c0− (m+ 1). We thus
have u+(m+1) |=V ¬(Ci = 0). Thus, ϑi1 implies u+(m+1) 6|=V χ∗i ∨rc(χ∗i ).
It thus remains to show that v′ 6|=V χ∗i ∨ rc(χ∗i ) for all v′ ∈ (u+(m+1), u+
(m+ 1) + 1). This is an immediate consequence of ϑi2 and ϑi3 together with
the facts that u+(m+1) |= xi∨yi by Point 1 and u+(m+1) 6|=V χ∗i ∨rc(χ∗i ).

In particular, we have shown that u + c0 |=V (Ci = 0). Thus, u + c0 |=V

χ∗i ∨ rc(χ∗i ) by ϑi1. We have two sub-cases: first, u+ c0 |=V χ∗i . By ϑi2, we have
u+m |=V xi for all m ≤ c0, and thus Case (a) from above holds. The second
case is u + c0 |=V rc(χ∗i ). Then ϑi3 yields u + m |=V yi for all m ≤ c0 and
Case (b) from above holds.

For the direction from left to right of (†), suppose v |=V 3
[0,n]
F χi. By the

semantics, there is a u ∈ w + [0, n] such that u |=V χi. If there is a smallest
such position u, then

(a) let u denote this position, otherwise
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(b) let u be the smallest position such that u |=V rc(χi).

In Case (b), we clearly have u < w + n. The induction hypothesis yields (a)
u |=V χ∗i or (b) u |=V rc(χ∗i ). With ϑi1, we get u |=V (Ci = 0). Together with
v′ 6|=V χ∗i for each v′ ∈ (v, u), it follows from ϑi2 and ϑi3 that (a) v′′ |=V xi∧¬yi
or (b) v′′ |=V yi ∧¬xi for all v′′ such that v′′ = u− j for some natural number
j ≤ u− v. In particular,

(a) v |=V xi ∧ ¬yi or (b) v |=V yi ∧ ¬xi. (∗)

Next, {w ∈ [v, u] | w |=V χ∗i ∨ rc(χ∗i )} = {u}, ϑi1, and ϑi4 yield v′ |=V (Ci = j)
for every natural number j ≤ u − v and all v′ ∈ [u − j, u − j + 1). Since
u was chosen such that (a) u ∈ v + [0, n] or (b) u ∈ v + [0, n), we obtain
(a) v |=V (Ci ≤ n) or (b) v |=V (Ci < n). Together with (∗), this yields

v |=V (Ci ≤ n− 1) ∨
(
(Ci = n) ∧ ¬yi

)
as required.

“⇒”: Suppose ϕ is satisfiable, i.e., there is a valuation V and a time point
w ∈ R such that w |=V ϕ. For 1 ≤ i ≤ `, set

Si := {v ∈ R | ∃u > v : u |=V χi}

and let, for each v ∈ S, vχi
denote the smallest time point such that vχi

≥ v
and vχi

|=V χi ∨ rc(χi). We extend V to the additional propositional letters
xi, yi, and cit used in ϕ∗ as follows:

(1) v ∈ V(xi) iff v ∈ Si, vχi
− v is an integer, and vχi

|=V χi;
(2) v ∈ V(yi) iff v ∈ Si, vχi

− v is an integer, and vχi
|=V rc(χi);

(3) v ∈ V(cit) iff v /∈ S, the t-th bit of the number dvχi
− ve is one, or this

number exceeds the value 2nc − 2.

It is not hard to verify that w |=V 2+
F (ϑ1 ∧ · · · ∧ ϑ`). In order to show that

w |=V ϕ∗, the following can be proved by structural induction on ψ: for all
v ∈ R and all subformulas ψ of ϕ,

v |=V ψ iff v |=V ψ∗

Details are left to the reader. 2

4 From NP to PSpace

Qualitative since-until logic on the real line is PSpace-complete, and thus
not computationally simpler than QTLb. However, several fragments are only
NP-complete, an important example being the qualitative TL with temporal
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operators ‘eventually in the future’ [16]. In this section, we explore the tran-
sition from NP to PSpace for fragments of quantitative temporal logics of
the real line, i.e., for QTL and its fragments. We start with determining sev-
eral weak, but still PSpace-hard fragments of QTL. Observe that two of the
fragments are purely quantitative, i.e., they do not admit qualitative temporal
operators at all.

Theorem 4 Satisfiability (with and without FVA) is PSpace-hard for the
fragments of QTL whose only temporal operators are:

(i) 3F and 3
[0,n]
F with n > 0 coded in unary;

(ii) 3
[0,n]
F with n > 0 coded in binary;

(iii) U [0,1].

PROOF. Since the proof uses standard techniques, it is only sketched here.
Details are easily filled in. To show Point (i), we reduce satisfiability in LTL,
i.e., qualitative temporal logic of the natural numbers with the only temporal
operators and 3F ,which is PSpace-hard [15]. The main idea of the reduction
is to represent the discrete natural numbers on the real line by alternating
between intervals that make a propositional variable a true and intervals that
make ¬a true. Intuitively, the former represent the time points of discrete
time. The length of the a-intervals and the ¬a-intervals is between 2 and 3.
These requirements are formalized by the formula ϑ = ϑ1 ∧ ϑ2 ∧ ϑ3:

ϑ1 = 2
[0,2]
F a,

ϑ2 = 2+
F (a→ 3

[0,3]
F 2

[0,2]
F ¬a),

ϑ3 = 2+
F (¬a→ 3

[0,3]
F 2

[0,2]
F a).

Note that models of ϑ can also contain a and ¬a-intervals of length smaller
than 1. These small intervals are located between successive a and ¬a-intervals
of length at least 2. However, their presence does not interfere with the reduc-
tion. Inductively define a translation (·)∗ as follows:

p∗ := p

(¬ψ)∗ := ¬ψ∗

(ψ1 ∧ ψ2)
∗ := ψ∗

1 ∧ ψ∗
2

(ψ)∗ := 3
[0,3]
F

(
2

[0,2]
F ¬a ∧3

[0,3]
F 2

[0,2]
F (ψ∗ ∧ a)

)
(3Fψ)∗ := 3F

(
2

[0,2]
F ¬a ∧3F2

[0,2]
F (ψ∗ ∧ a)

)
Additionally, a formula ϑ′ is needed to take care of uniformity, i.e., to make
sure that the same propositional variables hold in all time points of an interval
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that makes a true:

ϑ′ = 2+
F

∧
p used in ϕ

((
p ∧ a→ 2

[0,2]
F (a→ p)

)
∧

(
¬p ∧ a→ 2

[0,2]
F (a→ ¬p)

))
.

Now, ϕ is satisfiable over the natural numbers iff ϕ∗ ∧ϑ∧ϑ′ is satisfiable over
the real numbers with FVA iff it is satisfiable over the real numbers without
FVA.

A similar reduction can be used to prove (ii). Notice that satisfiability in LTL
is already PSpace-hard if the natural numbers are replaced by a finite strict
linear order (an initial segment of the natural numbers). Moreover, any for-
mula ϕ which is satisfiable in a finite strict linear order is also satisfiable in
a finite strict linear order of length not exceeding 2|ϕ|. Based on this observa-
tion, using the operator 3

[0,n]
F , n > 0 coded in binary, instead of 3F , we can

reduce satisfiability of an LTL-formula ϕ in such a finite strict linear order to
satisfiability over the real line (with and without FVA).

Finally, (iii) can be proved by reducing satisfiability over the real line in
QTLU , the QTL-fragment with only temporal operator U , which is known
to be PSpace-hard without FVA [13], to satisfiability of formulas with the
operator U [0,1] over the interval (0, 1). The idea of the reduction is to embed
the whole real line into the interval (0, 1): given a formula ϕ of QTLU , fix a
fresh propositional variable a that does not occur in ϕ. Define a translation
(·)∗ that recursively replaces every subformula of ϕ of the form ψ1 U ψ2 with

ψ1 U [0,1](a ∧ ψ2). Then ϕ is satisfiable iff ϕ∗ ∧ a ∧
(
aU [0,1](2

[0,1]
F ¬a)

)
is. For

the FVA case, we note that the PSpace-hardness proof for QTLU does not
depend on variables changing their value an infinite number of times in any
bounded interval. 2

We now exhibit a purely quantitative temporal logic of the real line for which
satisfiability is NP-complete: the fragment of QTL with only the quantitative
diamond and numbers coded in unary, with and without FVA. This logic may
appear rather weak since it does not allow to make statements about all time
points. Still, it is useful for reasoning about the behavior of systems up to a
previously fixed time point. Note that our NP-completeness result shows that
Points (i) and (ii) of Theorem 4 are optimal in the following sense: in Point (i)
we cannot drop 3F , and in Point (ii) we cannot switch to unary coding.

Theorem 5 In the fragment of QTL with temporal operators 3I
F and 3I

P ,
where I is of the form (0, n), [0, n), [0, n], or (0, n], and n > 0 coded in unary,
satisfiability is decidable in NP, both, with and without FVA.

The lower bound is immediate from propositional logic and thus we only have
to prove the upper bound. Since numbers are coded in unary, we may restrict
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our attention to temporal operators whose upper interval bound is 1. In the
proof, we only consider the temporal operator 3

[0,1]
F ; an extension to past

operators and open intervals is straightforward.

Let ϕ be a formula whose satisfiability is to be decided. We introduce some
convenient abbreviations: mϕ denotes the nesting depth of operators 3

[0,1]
F in

ϕ (henceforth called diamond depth), nϕ = 2 × |ϕ|3 + |ϕ|2, and rϕ = |ϕ| ×
nϕ. Denote by cl(ϕ) the closure of the set of subformulas of ϕ under single
negation. A type t for ϕ is a subset of cl(ϕ) such that (i) ¬ψ ∈ t iff ψ 6∈ t for
all ¬ψ ∈ cl(ϕ), and (ii) ψ1 ∧ ψ2 ∈ t iff ψ1, ψ2 ∈ t for all ψ1 ∧ ψ2 ∈ cl(ϕ). For a
model 〈R,V〉 and time point w ∈ R, set

t(w) = {ψ ∈ cl(ϕ) | w |=V ψ},

t3(w) = {3[0,1]
F ψ ∈ cl(ϕ) | w |=V 3

[0,1]
F ψ}.

Notice that t(w) is a type for ϕ. First, we devise an algorithm for satisfiability
without FVA. To begin with, we show that satisfiability of ϕ implies satisfia-
bility of ϕ in a “homogeneous” model, whose most important property is that
the number of realized types is polynomial in the length of ϕ.

Lemma 6 Let ϕ be satisfiable without FVA. Then there is a sequence x0, . . . , xnϕ

in R such that 0 = x0 < x1 < · · · < xnϕ = mϕ, and a valuation V such that
〈R,V〉, 0 |= ϕ and

• |{t(w) | 0 ≤ w ≤ mϕ}| ≤ rϕ;
• for every n with 0 ≤ n < nϕ and each type t for ϕ, the set

{w ∈ R | xn < w < xn+1 and w |=V t}

is either empty or dense in the interval (xn, xn+1).

PROOF. Consider a model M = 〈R,V′〉 with M, 0 |= ϕ. Observe first that
the truth of ϕ in 0 does not depend on the value of propositional variables
after mϕ. Therefore, we can assume that w |=V′ ¬p for every w > mϕ and

propositional variable p. Moreover, the semantics of 3
[0,1]
F yields:

(∗) for any 3
[0,1]
F ψ ∈ cl(ϕ), the set {w ∈ R | 0 ≤ w ≤ mϕ and w |=V′ 3

[0,1]
F ψ}

is a union of intervals of length at least 1 and at most two intervals of
length smaller than 1.

The two possibly shorter intervals are the one starting at 0 and the one ending
at mϕ. Using (∗), we can show that there is a sequence y0, . . . , yk in R for some
k ≤ 2× |ϕ|2 + |ϕ| such that

• 0 = y0 < · · · < yk = mϕ and
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• t3(w) = t3(w′) whenever yi < w < w′ < yi+1 for any i < k.

To see this, take a formula 3
[0,1]
F ψ ∈ cl(ϕ). The toggle points for 3

[0,1]
F ψ in the

interval [0,mϕ] are those time points x such that either (i) there is a y > x such

that the truth value of 3
[0,1]
F ψ at x is different from the truth value of 3

[0,1]
F ψ

at all points z with x < z < y or (ii) there is a y < x such that the truth value

of 3
[0,1]
F ψ at x is different from the truth value of 3

[0,1]
F ψ at all points z with

y < z < x. By (∗), there are at most 2×mϕ+1 < 2×|ϕ|+1 toggle points for

each formula 3
[0,1]
F ψ in [0,mϕ], and thus at most 2 × |ϕ|2 + |ϕ| toggle points

altogether in this interval. These points form the required sequence y0, . . . , yk.

We convert this sequence into the desired sequence x0, . . . , xnϕ by arranging
the elements of the set

{y0, . . . , yk} ∪
⋃
i<k

1≤j<mϕ

{yi + j | yi + j < mϕ}

in ascending order according to the ordering relation ‘<’ on R, possibly intro-
ducing arbitrary intermediate points from the interval [mϕ − 1,mϕ] to obtain
a sequence of length nϕ + 1. This construction ensures that if xi = x and
xi ≤ mϕ − 1, then xj = x+ 1 for some j > i.

To obtain a valuation V as required by the lemma, fix a set Ti of types in M

for each i < nϕ as follows: for each 3
[0,1]
F ψ ∈ cl(ϕ), choose a w ∈ (xi, xi+1)

with ψ ∈ t(w) if such a w exists. Then, Ti is the set of types t(w) of all points
w chosen in this way. Clearly |Ti| ≤ |ϕ|. For each i < nϕ, take a collection
(X i

t)t∈Ti
, of subsets of (xi, xi+1) which form a partitioning of (xi, xi+1) such

that each X i
t is dense in (xi, xi+1). Now define a valuation V by setting, for

every propositional variable p,

V(p) := (V′(p) ∩ {x0, . . . , xnϕ}) ∪
⋃

i<nϕ,t∈Ti

{X i
t | p ∈ t}.

Let ti, i ≤ nϕ, be the type {ψ ∈ cl(ϕ) | xi |=V′ ψ} for ϕ realized in point xi of
the original model M. To show that V is as required, it is sufficient to show
for all ψ ∈ cl(ϕ) and all w ∈ [0,mϕ]:

w |=V ψ iff there is an i ≤ nϕ such that

(a) w = xi and ψ ∈ ti, or

(b) w ∈ X i
t and ψ ∈ t for some t ∈ Ti.

Let ψ and w be as above. The proof is by induction on the structure of ψ. The
cases for propositional variables, ¬, and ∧ are left to the reader. Consider the
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case for 3
[0,1]
F .

“⇒”: Suppose w |=V 3
[0,1]
F ψ. Then there is a w′ ∈ w+[0, 1] such that w′ |=V ψ.

First assume that mϕ − w ≥ 1. Then we distinguish four cases:

• w = xi for some i < nϕ and w′ = xj for some j with i ≤ j ≤ nϕ. The
induction hypothesis yields ψ ∈ tj. Then xj |=V′ ψ. From xj − xi ≤ 1, it

follows that xi |=V′ 3
[0,1]
F ψ. Hence 3

[0,1]
F ψ ∈ ti.

• w = xi for some i < nϕ and w′ ∈ Xj
t for some j with i ≤ j < nϕ and

t ∈ Tj. The induction hypothesis yields ψ ∈ t. Then, by definition of Tj,
there is a w′′ ∈ (xj, xj+1) such that w′′ |=V′ ψ. By definition of the sequence
x0, . . . , xnϕ , there is an ` with i < ` ≤ nϕ such that x` = xi + 1. Then

xj+1 ≤ x` because w′ ∈ Xj
t ⊆ (xj, xj+1). Thus w′′ − w < 1 and it follows

that w |=V′ 3
[0,1]
F ψ. Hence 3

[0,1]
F ψ ∈ ti.

• w ∈ X i
t for some i < nϕ − 1 and t ∈ Ti, and w′ = xj for some j with

i < j ≤ nϕ. The induction hypothesis yields ψ ∈ tj. Then xj |=V′ ψ. Now,

from xj − w ≤ 1, it follows that w |=V′ 3
[0,1]
F ψ. But then, by definition of

the sequence x0, . . . , xnϕ , it holds that w′′ |=V′ 3
[0,1]
F ψ for all w′′ ∈ (xi, xi+1).

Therefore, 3
[0,1]
F ψ ∈ t′ for each t′ ∈ Ti.

• w ∈ X i
t for some i < nϕ−1 and t ∈ Ti, and w′ ∈ Xj

t′ for some j with i ≤ j <
nϕ and t′ ∈ Tj. The induction hypothesis yields ψ ∈ t′. Then, by definition
of Tj, there is a w′′ ∈ (xj, xj+1) such that w′′ |=V′ ψ. By definition of the
sequence x0, . . . , xnϕ , there is an ` with i < ` ≤ nϕ such that x` = xi+1 + 1.

Then xj+1 ≤ x` because w ∈ X i
t ⊆ (xi, xi+1) and w′ ∈ Xj

t′ ⊆ (xj, xj+1).
Thus, there is a point v ∈ (xi, xi+1) such that w′′ − v ≤ 1. It follows that

v |=V′ 3
[0,1]
F ψ. But then, by definition of the sequence x0, . . . , xnϕ , it holds

that v′ |=V′ 3
[0,1]
F ψ for all v′ ∈ (xi, xi+1). Therefore, 3

[0,1]
F ψ ∈ t′′ for each

t′′ ∈ Ti.

Now let mϕ − w < 1. First assume w′ > mϕ. Since V and V′ are identical

beyond mϕ, we have w′ |=V′ ψ and w |=V′ 3
[0,1]
F ψ follows. If w = xi for

some i ≤ nϕ, then this yields 3
[0,1]
F ψ ∈ ti as required. If w ∈ X i

t for some
i < nϕ and t ∈ Ti, then by definition of the sequence x0, . . . , xnϕ , it holds that

v |=V′ 3
[0,1]
F ψ for all v ∈ (xi, xi+1). Therefore, 3

[0,1]
F ψ ∈ t as required. Now

assume w′ ≤ mϕ. Then we can distinguish the same four subcases as above.
In each of these cases, the proof is a slight variation of what was done above.
We leave details to the reader.

“⇐”: Let i ≤ nϕ such that

(a) w = xi and 3
[0,1]
F ψ ∈ ti. Then xi |=V′ 3

[0,1]
F ψ, i.e., there is a w′ ∈ xi+[0, 1]

such that w′ |=V′ ψ. Distinguish three cases:
• w′ = xj for some j with i ≤ j ≤ nϕ. Then ψ ∈ tj. The induction

hypothesis in (a) yields w′ |=V ψ. From w′ − xi ≤ 1, it follows that
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w |=V 3
[0,1]
F ψ.

• w′ ∈ (xj, xj+1) for some j with i ≤ j < nϕ. By definition of Tj, there is a
t ∈ Tj such that ψ ∈ t. The induction hypothesis in (b) yields w′′ |=V ψ
for any w′′ ∈ Xj

t . Since Xj
t is dense in the interval (xj, xj+1), there is

such a w′′ such that w′′ ≤ w′. Thus w′′ − xi ≤ 1. Hence w |=V 3
[0,1]
F ψ.

• w′ > mϕ. Then w′ |=V ψ because w′ |=V′ ψ and the valuations V and

V′ coincide after mϕ. Now w |=V 3
[0,1]
F ψ follows.

(b) w ∈ X i
t and 3

[0,1]
F ψ ∈ t for some t ∈ Ti. By definition of Ti, there is a

w′ ∈ (xi, xi+1) such that w′ |=V′ 3
[0,1]
F ψ. But then, by definition of the

sequence x0, . . . , xnϕ , it holds that w′′ |=V′ 3
[0,1]
F ψ for all w′′ ∈ (xi, xi+1).

In particular, w |=V′ 3
[0,1]
F ψ. We derive that v |=V′ ψ for some v ∈

w + [0, 1]. Distinguish three cases:
• v = xj for some j with i < j ≤ nϕ. Then ψ ∈ tj. The induction

hypothesis in (a) yields xj |=V ψ. From xj − w ≤ 1, it follows that

w |=V 3
[0,1]
F ψ.

• v ∈ (xj, xj+1) for some j with i ≤ j < nϕ. By definition of Tj, there is a
t ∈ Tj such that ψ ∈ t. The induction hypothesis in (b) yields v′ |=V ψ
for all v′ ∈ Xj

t . Fix a point v′ ∈ Xj
t such that v′ ≤ v if j > i, and v′ ≥ v

otherwise. Such a v′ exists since Xj
t is dense in the interval (xj, xj+1).

Then v′ − w ≤ 1. Hence w |=V 3
[0,1]
F ψ.

• v > mϕ. Then v |=V ψ because v |=V′ ψ. Hence, w |=V 3
[0,1]
F ψ.

2

Lemma 6 suggests the following idea for deciding in non-deterministic polyno-
mial time whether a formula ϕ is satisfiable: guess a (polynomially bounded)
set of types for ϕ to be realized in a homogeneous model, a sequence v0, . . . , vnϕ

of variables, and construct a system of linear inequalities whose solution in
R determines a sequence of points x0, . . . , xnϕ from which we can build a ho-
mogeneous model realizing the guessed types. More precisely, to decide the
satisfiability of ϕ, we non-deterministically choose

• a set T of types for ϕ such that |T | ≤ rϕ;
• a type ti ∈ T such that ϕ ∈ t0, for every i ≤ nϕ;
• a non-empty set of types Ti ⊆ T , for every i < nϕ.

Intuitively, the type ti is to be realized at point xi, and the types in Ti are those
types realized in the interval (xi, xi+1). Then we take variables v0, . . . , vnϕ and
check whether the system of inequalities given in Figure 1 has a solution in R.
The Inequalities 2 to 9 are only added if i < nϕ. To understand the inequalities
(in particular 4 and 5), note that to obtain a model satisfying ϕ in 0 it is not
required that the points xi described by variable vi realize exactly the type
ti. This is only required for those elements of ti whose diamond depth is at
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(1) 0 = v0 < v1 < · · · < vnϕ = mϕ

(2) vj − vi > 1 if ¬3
[0,1]
F ψ ∈ ti, j ≥ i, and ψ ∈ tj

(3) vj − vi ≥ 1 if ¬3
[0,1]
F ψ ∈ ti, j ≥ i, and ψ ∈ t for some t ∈ Tj

(4) mϕ − vi < 1 if 3
[0,1]
F ψ ∈ ti, but there is no j ≥ i such that ψ ∈ tj or ψ ∈ t

for a t ∈ Tj

(5) mϕ − vi ≤ 1 if 3
[0,1]
F ψ ∈ t for some t ∈ Ti, there is no j > i such that ψ ∈ tj ,

and there is no j ≥ i such that ψ ∈ t′ for some t′ ∈ Tj

(6) vj − vi ≤ 1 if 3
[0,1]
F ψ ∈ ti and j ≥ i is minimal such that ψ ∈ tj and,

for every j′ with i ≤ j′ < j, ψ 6∈ t for any t ∈ Tj′

(7) vj − vi < 1 if 3
[0,1]
F ψ ∈ ti and j ≥ i is minimal such that ψ ∈ t for some

t ∈ Tj and there is no j′ with i ≤ j′ ≤ j such that ψ ∈ tj′

(8) vj − vi ≤ 1 if 3
[0,1]
F ψ ∈ t for some t ∈ Ti, ψ 6∈ t′ for any t′ ∈ Ti, and j > i

is minimal such that ψ ∈ tj or ψ ∈ t′ for some t′ ∈ Tj

(9) vj − vi+1 ≥ 1 if ¬3
[0,1]
F ψ ∈ t for some t ∈ Ti, and (j ≥ i and ψ ∈ t′ for some

t′ ∈ Tj) or (j > i and ψ ∈ tj)

Fig. 1. The system of inequalities.

most bmϕ− xic. Similarly, it is sufficient that points from (xi, xi+1) described
by a type t ∈ Ti realize those elements of t whose diamond depth is at most
bmϕ − xic.

The algorithm runs in non-deterministic polynomial time and returns ‘ϕ is
satisfiable’ if there is a solution to this system of inequalities, and ‘ϕ is not
satisfiable’ otherwise. By considering the contrapositive, it is easily seen that ϕ
is unsatisfiable if the algorithm answers ‘no’: if ϕ has a model, then by Lemma 6
it also has a homogeneous model, and this model suggests a choice of types
such that the corresponding system of inequalities is satisfiable. Conversely, if
the algorithm returns ‘yes’, we can construct a homogeneous model:

Lemma 7 If the algorithm returns ‘ϕ is satisfiable’, then ϕ is satisfiable.

PROOF. Suppose there are types ti, i ≤ nϕ, and sets of types Ti, i < nϕ, such
that there is a solution x0, . . . , xnϕ for the corresponding system of inequalities.
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For each i < nϕ, take a partitioning (X i
t)t∈Ti

of (xi, xi+1) such that each X i
t is

dense in (xi, xi+1). Now define a valuation V by putting, for every propositional
variable p,

V(p) :=
⋃
i≤nϕ

(
{xi | p ∈ ti} ∪

⋃
i<nϕ,t∈Ti

{X i
t | p ∈ t}

)
.

It is now straightforward to prove that, for all k ≤ mϕ, all ψ ∈ cl(ϕ) with
diamond depth bounded by k, and all w ∈ [0,mϕ − k], we have

w |=V ψ iff there is an i ≤ nϕ such that

(a) w = xi and ψ ∈ ti, or

(b) w ∈ X i
t and ψ ∈ t for some t ∈ Ti.

It is an immediate consequence that 0 |=V ϕ. 2

We now come to the proof of Theorem 5 with FVA. Again, the first step is
to show that if ϕ is satisfiable under FVA, then it is satisfiable in a homoge-
neous model (this time with FVA) in which only polynomially many types are
realized:

Lemma 8 Suppose ϕ is satisfiable with FVA. Then there exists a sequence
z0, . . . , zrϕ in R such that 0 = z0 < z1 < · · · < zrϕ = mϕ, and a valuation V

such that

• 〈R,V〉, 0 |= ϕ;
• for all n with 0 ≤ n < rϕ, all ψ ∈ cl(ϕ), and all zn < w < w′ < zn+1, we

have w |=V ψ iff w′ |=V ψ.

Notice the difference to Lemma 6: in each interval (zi, zi+1), i < rϕ, only a
single type for ϕ is realized; in contrast, homogeneous models as described by
Lemma 6 allow polynomially many types in every such interval.

PROOF. Consider a model M = 〈R,V′〉 with FVA satisfying ϕ in 0. As in
Lemma 6, we may assume that w |=V′ ¬p for every w > mϕ and propositional
variable p.

Construct a sequence 0 = y0 < y1 < · · · < yk = mϕ, k ≤ 2 × |ϕ|2 + |ϕ|, of
toggle points as in Lemma 6. Then the sequence x0, . . . , xnϕ is obtained by
arranging the elements of the set

{y0, . . . , yk} ∪
⋃
i<k

1≤j<mϕ

{yi + j | yi + j < mϕ} ∪
⋃
i≤k

1≤j<mϕ

{yi − j | yi − j > 0}
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in ascending order according to the ordering relation ‘<’ on R (where we
possibly have to add new intermediate points to obtain a sequence of length
nϕ + 1). Let

σ = min{xi+1 − xi | 0 ≤ i < nϕ},
and set, for i < nϕ, σi = 1

|ϕ|i+1 × σ. The sequence

0 = z0 < z1 < · · · < zrϕ = mϕ

is obtained by adding to the sequence x0, . . . , xnϕ the points

yji = xi +
j

|ϕ|
× σi,

for all i < nϕ and j ≤ |ϕ|. For i < nϕ, denote by t−i the type t which is
realized in some interval of the form (xi, y). Note that such an interval exists
since we are in a model with FVA. Also, denote by t+i the type which is
realized in some interval of the form (y, xi+1). Now, for i < nϕ, take for each

3
[0,1]
F ψ ∈ cl(ϕ) such that there exists w ∈ (xi, xi+1) with ψ ∈ t(w) such a

type t(w) and denote the collection of selected types plus the types t−i and
t+i by Ti. Notice that |Ti| ≤ |ϕ|. Let ti0, . . . , t

i
|ϕ|−1 be an ordering of the types

in Ti such that ti0 = t−i (if Ti has cardinality < |ϕ|, then take some t from Ti
more than once in this ordering.) Define a valuation V by setting, for every
propositional variable p,

V(p) = {xi | i ≤ nϕ, xi |=V′ p}∪
⋃

i<nϕ,j<|ϕ|
{(yji , y

j+1
i ] | p ∈ tij}∪

⋃
i<nϕ

{(y|ϕ|i , xi+1) | p ∈ t+i}.

To show that V is as required, it suffices to show by induction for all ψ ∈ cl(ϕ)
and all w ∈ [0,mϕ]:

w |=V ψ ⇔ there is an i ≤ nϕ such that

(a) w = xi and xi |=V′ ψ, or

(b) w ∈ (y`i , y
`+1
i ] and ψ ∈ ti` for some ` < |ϕ|, or

(c) w ∈ (y
|ϕ|
i , xi+1) and ψ ∈ t+i.

Let ψ and w be as above. The proof is by induction on the structure of ψ. The
cases for propositional variables, ¬, and ∧ are left to the reader. Consider the
case for 3

[0,1]
F .

“⇒”: Suppose w |=V 3
[0,1]
F ψ. Then there is a w′ ∈ w+[0, 1] such that w′ |=V ψ.

Similarly to the proof of Lemma 6 above we assume first that mϕ − w ≥ 1
and distinguish four cases:
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• w = xi for some i < nϕ and w′ = xj for some j with i ≤ j ≤ nϕ. The
induction hypothesis in (a) yields xj |=V′ ψ. From xj − xi ≤ 1, it follows

that xi |=V′ 3
[0,1]
F ψ.

• w = xi for some i < nϕ and w′ ∈ (xj, xj+1) for some j with i ≤ j < nϕ. If
w′ ∈ (y`j, y

`+1
j ] for some ` < |ϕ|, then the induction hypothesis in (b) yields

ψ ∈ tj`. Otherwise, i.e., if w′ ∈ (y
|ϕ|
j , xj+1), it holds that ψ ∈ t+j by the

induction hypothesis in (c). Since tj`, t
+j ∈ Tj, it follows by definition of Tj

that there is a w′′ ∈ (xj, xj+1) such that w′′ |=V′ ψ. By definition of the
sequence x0, . . . , xnϕ , there is an i′ with i < i′ ≤ nϕ such that xi′ = xi + 1.
But then xj+1 ≤ xi′ ; otherwise xj ≥ xi′ and thus w′ ∈ (xj, xj+1) contradicts

w′ ∈ w + [0, 1]. Now from w′′ − w < 1, it follows that w |=V′ 3
[0,1]
F ψ.

• w ∈ (xi, xi+1) for some i < nϕ− 1, and w′ = xj for some j with i < j ≤ nϕ.
The induction hypothesis in (a) yields xj |=V′ ψ. From xj−w ≤ 1, it follows

that w |=V′ 3
[0,1]
F ψ. But then, by definition of the sequence x0, . . . , xnϕ , it

holds that w′′ |=V′ 3
[0,1]
F ψ for all w′′ ∈ (xi, xi+1). Therefore, 3

[0,1]
F ψ ∈ t′ for

each t′ ∈ Ti. Hence, 3
[0,1]
F ψ ∈ ti` if w ∈ (y`i , y

`+1
i ] for some ` < |ϕ|, and

3
[0,1]
F ψ ∈ t+i if w ∈ (y

|ϕ|
i , xi+1).

• w ∈ (xi, xi+1) for some i < nϕ − 1, and w′ ∈ (xj, xj+1) for some j with
i ≤ j < nϕ. If w′ ∈ (y`j, y

`+1
j ] for some ` < |ϕ|, then the induction hypothesis

in (b) yields ψ ∈ tj`. Otherwise, i.e., if w′ ∈ (y
|ϕ|
j , xj+1), it holds that ψ ∈ t+j

by the induction hypothesis in (c). Since tj`, t
+j ∈ Tj, it follows by definition

of Tj that there is a w′′ ∈ (xj, xj+1) such that w′′ |=V′ ψ. By definition of
the sequence x0, . . . , xnϕ , there is an i′ > i + 1 such that xi′ = xi+1 + 1.
But then xj+1 ≤ xi′ ; otherwise xj ≥ xi′ and thus w′ ∈ (xj, xj+1) contradicts
w′ ∈ w + [0, 1]. Thus, there is a point v ∈ (xi, xi+1) such that w′′ − v ≤
1. It follows that v |=V′ 3

[0,1]
F ψ. But then, by definition of the sequence

x0, . . . , xnϕ , it holds that v′ |=V′ 3
[0,1]
F ψ for all v′ ∈ (xi, xi+1). Therefore,

3
[0,1]
F ψ ∈ t′ for any t′ ∈ Ti. Hence 3

[0,1]
F ψ ∈ ti` if w ∈ (y`i , y

`+1
i ] for some

` < |ϕ|, and 3
[0,1]
F ψ ∈ t+i if w ∈ (y

|ϕ|
i , xi+1).

Now let mϕ − w < 1. Using the fact that w′′ |=V ¬p and w′′ |=V′ ¬p for all
w′′ > mϕ and all propositional variables p, the inductive proof can be carried
out in almost the same way as above. We leave details to the reader.

“⇐”: Let i ≤ nϕ and suppose one of the cases (a), (b), or (c) is satisfied. First,

consider Case (a), i.e., suppose w = xi and xi |=V′ 3
[0,1]
F ψ. Then there is a

w′ ∈ xi + [0, 1] such that w′ |=V′ ψ. Distinguish three cases:

• w′ = xj for some j with i ≤ j ≤ nϕ. The induction hypothesis in (a) yields

xj |=V ψ. From xj − xi ≤ 1, it follows that xi |=V 3
[0,1]
F ψ.

• w′ ∈ (xj, xj+1) for some j with i ≤ j < nϕ. By definition of Tj, there is
an ` < |ϕ| such that tj` ∈ Tj and ψ ∈ tj`. Then the induction hypothesis
in (b) yields w′′ |=V ψ for all w′′ ∈ (y`j, y

`+1
j ]. Fix such a w′′. By definition
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of the sequence x0, . . . , xϕ, there is an i′ > i such that xi′ = xi + 1. But
then xj+1 ≤ xi′ ; otherwise xj ≥ xi′ and thus w′ ∈ (xj, xj+1) contradicts

w′ ∈ xi + [0, 1]. Now, from w′′ − xi ≤ 1, it follows that xi |=V 3
[0,1]
F ψ.

• w′ > mϕ. V and V′ coincide beyond mϕ. Hence, w′ |=V ψ and it follows

that xi |=V 3
[0,1]
F ψ.

Consider Case (b), i.e., suppose w ∈ (y`i , y
`+1
i ] and 3

[0,1]
F ψ ∈ ti` for some ` < |ϕ|.

By definition of Ti, there is a w′ ∈ (xi, xi+1) such that w′ |=V′ 3
[0,1]
F ψ. Then

it follows by definition of the sequence x0, . . . , xnϕ that w′′ |=V′ 3
[0,1]
F ψ for

any w′′ ∈ (xi, xi+1). In particular, w |=V′ 3
[0,1]
F ψ. Then v |=V′ ψ for some

v ∈ w + [0, 1]. Distinguish four cases:

• v = xj for some j with i < j ≤ nϕ. The induction hypothesis in (a) yields

v |=V ψ. From v − w ≤ 1, it follows that w |=V 3
[0,1]
F ψ.

• v ∈ (xi, xi+1). By definition of Ti, there is a t ∈ Ti such that ψ ∈ t. Dis-
tinguish two subcases: First, suppose that ψ ∈ ti`′ for some `′ ≥ `, or
ψ ∈ t+i. The induction hypothesis in (b) or (c) yields v′ |=V ψ for all

v′ ∈ (y`
′
j , y

`′+1
j ], or all v′ ∈ (y

|ϕ|
i , xi+1), respectively. Then there is such a v′

such that v′ − w < 1. Hence w |=V 3
[0,1]
F ψ.

Second, suppose there is no `′ ≥ ` such that ψ ∈ ti`′ , and ψ /∈ t+i. Note that
this implies ` > 0. Since ψ /∈ t+i, there is an interval of the form (y, xi+1)

such that y′ 6|=V′ ψ for all y′ ∈ (y, xi+1). Take such a y′. Since w |=V′ 3
[0,1]
F ψ,

it follows by definition of the sequence x0, . . . , xnϕ that y′ |=V′ 3
[0,1]
F ψ. Then

there is a v′ ∈ y′ + [0, 1] such that v′ |=V′ ψ and v′ ≥ xi+1. By definition of
the sequence x0, . . . , xnϕ , there is an i′ such that xi′ = xi +1. Consider only
the case where v′ ∈ (xj, xj+1) where j = i′; the other cases are straightfor-
ward. Note that there is no such j > i′. For suppose otherwise, it holds that
xi + 1 < xj < xi+1 + 1. But then, by definition of the sequence x0, . . . , xnϕ ,
there is a j′ such that xj′ = xj − 1. Thus xi < xj′ < xi+1; a contradiction.
So, consider the case j = i′, i.e., xj = xi + 1. By definition of Tj, there is
an `′ < |ϕ| such that tj`′ ∈ Tj and ψ ∈ tj`′ . Then the induction hypothesis
in (b) yields v′′ |=V ψ for all v′′ ∈ (y`

′
j , y

`′+1
j ]. Take such a v′′. From ` > 0

and σj ≤ 1
|ϕ| × σi by definition of σj, it follows that y`i + 1 ≥ xj + σj. Then

y`
′+1
j − y`i < 1 and thus v′′ − w < 1. Hence w |=V 3

[0,1]
F ψ.

• v ∈ (xj, xj+1) for some j with i < j < nϕ. By definition of the sequence
x0, . . . , xnϕ , there is an i′ such that xi′ = xi + 1. Consider only the case
where j = i′; the other cases are straightforward. Note that there is no such
j > i′. For suppose otherwise, it holds that xi+1 < xj < xi+1 +1. But then,
by definition of the sequence x0, . . . , xnϕ , there is a j′ such that xj′ = xj−1.
Thus xi < xj′ < xi+1; a contradiction. So, consider the case j = i′, i.e.,
xj = xi + 1. Now, distinguish three subcases (recall that w ∈ (y`i , y

`+1
i ]):

· ` = 0 and w′ |=V′ ψ for some w′ with xi < w′ ≤ xj. Then it is easy to
see that there is a v′′ ≥ w such that v′′ |=V ψ and v′′ − w ≤ 1. Hence
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w |=V 3
[0,1]
F ψ.

· ` = 0 and w′ 6|=V′ ψ for all w′ with xi < w′ ≤ xj. Since w |=V′ 3
[0,1]
F ψ, it

follows by definition of the sequence x0, . . . , xnϕ that w′′ |=V′ 3
[0,1]
F ψ for

all w′′ with xi < w′′ < w. Take such a w′′. Then there is a v′′ ∈ w′′ + [0, 1]
such that v′′ |=V′ ψ and v′′ > xj. This implies that ψ ∈ t−j = tj0. Then the
induction hypothesis in (b) yields v′ |=V ψ for all v′ ∈ (y0

j , y
1
j ]. Clearly,

there is such a v′ such that w − v′ ≤ 1. Hence w |=V 3
[0,1]
F ψ.

· 1 ≤ ` < |ϕ|. Since v |=V′ ψ and v ∈ (xj, xj+1), there is, by definition of Tj,
an `′ < |ϕ| such that tj`′ ∈ Tj and ψ ∈ tj`′ . The induction hypothesis in (b)
yields v′ |=V ψ for all v′ ∈ (y`

′
j , y

`′+1
j ]. Take such a v′. From σj ≤ 1

|ϕ| × σi

by definition of σj, it follows that y`i + 1 ≥ xj + σj and thus v′ − w < 1.

Hence w |=V 3
[0,1]
F ψ.

• v > mϕ. Then v |=V ψ if, and only if, v |=V′ ψ. Hence, w |=V 3
[0,1]
F ψ.

Case (c) with w ∈ (y
|ϕ|
i , xi+1) and ψ ∈ t+i is similar to (b) and left to the

reader. 2

Using Lemma 8, we can adapt the (non-deterministic polynomial time) algo-
rithm for satisfiability without FVA to the FVA case: given a formula ϕ whose
satisfiability with FVA is to be decided, we non-deterministically choose

• a type t0 such that ϕ ∈ t0;
• a type ti, for every 1 ≤ i ≤ rϕ;
• a type t′i, for every i < rϕ.

Intuitively, the type ti is to be realized at point zi, and the type t′i in the interval
(zi, zi+1). It remains to determine a set of rational linear inequalities which
represent the truth conditions in models of the form described in Lemma 8.
To this end, we modify the system of inequalities given in Figure 1 as follows:
in Inequality (1) replace nϕ with rϕ and in (3) to (9) replace the set of types
Tj, j < rϕ, with the singleton set {t′j}, respectively. We obtain a modified
system of inequalities in the variables v0, . . . , vrφ . Then we check whether this
system has a solution in R. The algorithm returns ‘ϕ is satisfiable’ if there is
a solution to this system of inequalities, and ‘ϕ is not satisfiable’ otherwise.
Correctness of this modified decision procedure can be shown similarly to the
case without FVA. We leave this exercise to the reader.

5 Conclusion

We have presented two complexity results for quantitative temporal logics over
the real line: first, we have used a rather general method for reducing quan-
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titative logics with binary coding of parameters to quantitative logics with
unary coding of parameters to show that satisfiability in QTLb without FVA
is decidable in PSpace. This result implies the known result that satisfia-
bility in QTLb with FVA is decidable in PSpace. In the appendix, we have
shown another application of this method by reproving that satisfiability in
RTCTL is decidable in ExpTime. The second complexity result determines
the transition from NP to PSpace for fragments of QTL. By a reduction to
solvability of linear inequalities over the rationals, it is shown that the frag-
ment of QTL with temporal operators ‘sometime within n time units’, with n
coded in unary, is a maximal natural fragment of QTL whose satisfiability is
still in NP. This result is proved with and without FVA.

An interesting open question is whether these results hold for other dense
flows of time as well. For example, in various proofs we used the fact that the
real line is Dedekind-complete. Thus, it is not obvious whether the complexity
results presented here hold as well for the rational numbers.
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A ExpTime-completeness of RTCTL Reproved

We demonstrate the generality of the reduction technique proposed in Sec-
tion 3 by applying it to a metric temporal logic that is based on discrete
branching time. This logic is Real-Time Computational Tree Logic (RTCTL),
which has been introduced by Emerson et al. as the extension of well-known
CTL with a metric version of the until operator [8]. Since we are concerned
with a discrete time framework, adding such an operator does not increase
the expressive power. However, RTCTL is exponentially more succinct than
CTL since the arguments to the metric operator are coded in binary. Nev-
ertheless, Emerson and colleagues show that satisfiability in RTCTL is Ex-
pTime-complete, and thus not more complex than satisfiability in CTL. In
their proof, a tableau-based decision procedure is used for the upper bound.
We reprove this upper bound in a simpler way using our reduction techniques.
A similar (but easier) reduction can be used to show that the corresponding
extension of the logic LTL based on discrete linear time is in PSpace. For the
sake of completeness, we first introduce the syntax and semantics of RTCTL.

Definition 9 (RTCTL Syntax) Let p0, p1, . . . be a countably infinite supply
of propositional variables. RTCTL formulas are built according to the syntax
rule

ϕ := pi | ¬ϕ | ϕ ∧ ψ | E©ϕ | E(ψ U ϕ) | A(ψ U ϕ) | E(ψU≤kϕ) | A(ψU≤kϕ)

where k denotes a natural number that is coded in binary. A CTL-formula is
an RTCTL formula that does not use the metric version of the until operator.

The abbreviations >, ⊥, ∨, →, and ↔ are defined as usual. Moreover, we
abbreviate A©ϕ = ¬E©¬ϕ and A2ϕ = ¬E(>U ¬ϕ).

A model M = 〈S,R,V〉 is a triple consisting of a set of states S, a binary
relation R ⊆ S × S, and a valuation V mapping every propositional variable
p to a subset V(p) of S. W.l.o.g., we assume that the graph (S,R) is a tree
since every model can be unwound into a tree. Moreover, we assume that for
every state, there is an R-successor. Given a state w ∈ S, a w-fullpath is an
infinite sequence u0u1 · · · ∈ Sω of states such that u0 = w and (ui, ui+1) ∈ R
for all positions i ≥ 0.

Definition 10 (RTCTL Semantics) Let M = 〈S,R,V〉 be a model. Define
the truth-relation ‘|=’ of RTCTL inductively as follows: for all states w ∈ S,

• M, w |= p iff w ∈ V(p), for all propositional variables p;
• M, w |= ¬ϕ iff M, w 6|= ϕ;
• M, w |= ψ ∧ ϕ iff M, w |= ψ and M, w |= ϕ;
• M, w |= E©ϕ iff there exists an R-successor v of w such that M, v |= ϕ;
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• M, w |= E(ψ U ϕ) iff there exists a w-fullpath u0u1 · · · and a position i ≥ 0
such that M, ui |= ϕ and M, uj |= ψ for all positions j < i;

• M, w |= A(ψ U ϕ) iff for all w-fullpaths u0u1 · · · , there is a position i ≥ 0
such that M, ui |= ϕ and M, uj |= ψ for all positions j < i;

• M, w |= E(ψU≤kϕ) iff there exists a w-fullpath u0u1 · · · and a position i ≤ k
such that M, ui |= ϕ and M, uj |= ψ for all positions j < i;

• M, w |= A(ψU≤kϕ) iff for all w-fullpaths u0u1 · · · , there is a position i ≤ k
such that M, ui |= ϕ and M, uj |= ψ for all positions j < i.

Our aim is to prove the following result:

Theorem 11 Satisfiability in RTCTL is ExpTime-complete.

The lower bound is an immediate consequence of the fact that CTL is a frag-
ment of RTCTL, and the former is ExpTime-hard [7]. We prove a matching
upper bound by a polynomial reduction to satisfiability of CTL, which is
known to be in ExpTime [7].

The reduction is similar to the reduction presented in Section 3. In particular,
the main idea is to replace subformulas of the forms E(ψU≤kϕ) and A(ψU≤kϕ)
with binary counters that are implemented using propositional variables to
represent the bits. However, there are also two significant differences: first,
RTCTL is interpreted in discrete models, and thus it is not necessary to con-
struct a ‘grid’ using variables xi and yi to measure the distance ‘exactly one’ as
in the reduction for QTL. Second, RTCTL models are not linear, and there-
fore we cannot simply increment the value of a distance-measuring counter
when going to a predecessor state. Instead, the value at this predecessor state
is determined by incrementing the least or greatest counter value of its suc-
cessor nodes, depending on whether we are simulating a formula E(ψU≤kϕ)
or A(ψU≤kϕ). For identifying the least and greatest counter value among the
successors, we use a marking procedure based on additional propositional vari-
ables. Before we describe this marking in detail, we fix a some notation.

Let ϕ be an RTCTL-formula whose satisfiability is to be decided. As an upper
bound for the number of counter bits needed, let nc = dlog2(k + 1)e where k
is the largest natural number occurring as a parameter to an until operator in
ϕ. For simplicity, we assume w.l.o.g. that ϕ contains at least one subformula
of the form E(ψU≤kϕ′) and at least one subformula of the form A(ψU≤kϕ′).
Now, let χ0, . . . , χ`′ be an enumeration of all subformulas of ϕ that are of the
form E(ψU≤kϕ′), and let χ`′+1, . . . , χ` be an enumeration of all subformulas
of ϕ that are of the form A(ψU≤kϕ′). If χi = Q(ψU≤kϕ′), Q ∈ {E,A}, for
some i ≤ `, we use ψi to denote ψ and ϕi to denote ϕ′. For the reduction, we
use the following propositional variables:

• the bits of the i-th counter, i ≤ `, are represented using propositional vari-
ables cinc−1, . . . , c

i
0;
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• to mark the bits of the i-th counter, i ≤ `, we use propositional variables
mi
nc−1, . . . ,m

i
0.

The marking procedure for finding the greatest counter value among the suc-
cessors of a node can be described as follows. We mark bits of the counter in
successor nodes by proceeding from the most (nc − 1-st) to the least (0-th)
significant bit. If s′ is a successor of a node s and i < nc, then s′ is called
i-active if the bits nc − 1, . . . , i + 1 of s′ are all marked, and active if all bits
of s′ are marked. Now, the i-th bit of s′ is marked if and only if one of the
following conditions is true:

(1) all i-active successors of s agree on the value of the i-th bit and s′ is
i-active;

(2) the i-active successors of s do not agree on the value of the i-th bit, s′ is
i-active, and the i-th bit of s′ is one.

The result of this marking is that only those successors are active whose
counter value is highest among all the successors of s. A corresponding mark-
ing scheme for finding the lowest value is obtained by changing the last part
of the second condition to ‘the i-th bit of s′ is zero’. The marking of the i-th
counter, i ≤ `, can be implemented using the following formula ϑi1. It marks
highest values for i ≤ `′ and smallest values for i > `′ (recall that `′ is such that
χ0, . . . , χ`′ are existentially path-quantified while χ`′+1, . . . , χ` are universally
quantified). In the formula (i ≤ `′) abbreviates > if i ≤ `′, and ⊥ otherwise.
Moreover, actit abbreviates

∧
t<j<nc

mi
j.

ϑi1 :=
∧

t=0..nc−1

( (
(A©(actit → cit) ∨ A©(actit → ¬cit))

→ A©(mi
t ↔ actit)

)
∧(

(E©(actit ∧ cit) ∧ E©(actit ∧ ¬cit) ∧ (i ≤ `′))

→ A©(mi
t ↔ (¬cit ∧ actit))

)
∧(

(E©(actit ∧ cit) ∧ E©(actit ∧ ¬cit) ∧ (i > `′))

→ A©(mi
t ↔ (cit ∧ actit))

) )
We now inductively define a translation (·)∗ of subformulas of ϕ to CTL-
formulas, where the formula (Ci ≤ n) is defined as in Section 3:

p∗ := p

(¬ψ)∗ := ¬ψ∗

(ψ1 ∧ ψ2)
∗ := ψ∗

1 ∧ ψ∗
2

(E©ψ)∗ := E©ψ∗
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(E(ψ1 U ψ2))
∗ := E(ψ∗

1 U ψ∗
2)

(A(ψ1 U ψ2))
∗ := A(ψ∗

1 U ψ∗
2)

(E(ψ1U≤kψ2))
∗ := (Ci ≤ k) if χi = E(ψ1U≤kψ2)

(A(ψ1U≤kψ2))
∗ := (Ci ≤ k) if χi = A(ψ1U≤kψ2)

It remains to properly update the counters, which is done by the following
formulas, for i ≤ `, where the formulas (Ci ≤ n) and (Ci = n) are defined as
in Section 3. Recall that χi = E(ψiU≤kϕi) if i ≤ `′, and χi = A(ψiU≤kϕi) if
`′ < i < `. We use acti to denote mi

nc−1 ∧ · · · ∧mi
0.

ϑi2 := (Ci = 0) ↔ ϕ∗i

λ := ¬ψ∗
i ∨(

(i ≤ `′) ∧ A©(Ci = 2nc − 1)
)
∨(

(i > `′) ∧ E©(Ci = 2nc − 1)
)

ϑi3 :=
(
(¬ϕ∗i ∧ λ) → (Ci = 2nc − 1)

)
∧(

(¬ϕ∗i ∧ ¬λ) →
∨

t=0..nc−1

(
cit ∧ E©(acti ∧ ¬cit) ∧

∧
r=0..t−1

(
¬cir ∧ E©(acti ∧ cir)

)
∧

∧
t<r<nc

(
cir ↔ E©(acti ∧ cir)

) ))

Intuitively, ϑi2 initializes the counter and ϑi3 ensures that the counter of a
node is obtained by incrementing the counter value of its active successors.
Similarly to the reduction for QTL, the value 2nc − 1 of the i-th counter is
used to express that, on all paths (for existential path quantification) or some
path (for universal path quantification), the formula ϕi is too far to be of any
relevance. The value 2nc − 1 is also used to indicate that ψi is false at some
point on the way to the next occurrence of ϕi.

It is left to the reader to prove the following lemma, which finishes the reduc-
tion.

Lemma 12 ϕ is satisfiable iff ϕ∗ ∧
∧
i≤`
A2(ϑi1 ∧ ϑi2 ∧ ϑi3) is satisfiable.
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