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Quantitative Tverberg theorems over lattices and

other discrete sets

J. A. De Loera R. N. La Haye D. Rolnick P. Soberón

December 20, 2016

Abstract

This paper presents a new variation of Tverberg’s theorem. Given
a discrete set S of Rd, we study the number of points of S needed
to guarantee the existence of an m-partition of the points such that
the intersection of the m convex hulls of the parts contains at least k
points of S. The proofs of the main results require new quantitative
versions of Helly’s and Carathéodory’s theorems.

1 Introduction

This year marks the 50th anniversary of Tverberg’s theorem, one of
the most important results in combinatorial convex geometry.

Theorem (Tverberg 1966 [36]). Let a1, . . . , an be points in R
d. If

the number of points n satisfies n > (d + 1)(m − 1), then they can be
partitioned into m disjoint parts A1, . . . , Am in such a way that the m
convex hulls convA1, . . . , convAm have a point in common.

The case of m = 2 was proved in 1921 by Radon [31] and is often
referred to as Radon’s theorem or Radon’s lemma. Tverberg published
the general theorem in 1966 [36] and presented another proof in 1981
[37]. Simpler proofs have since appeared in [11, 33, 34]. Chapter 8.3
of [28] and the expository article [39] can give the reader a sense of the
abundance of work surrounding this elegant theorem.

Traditionally, Tverberg-type theorems consider intersections of con-
vex sets over R

d. In this article, we present Tverberg-type theorems
where all points lie within a discrete subset S ⊂ R

d and the inter-
section of convex hulls is required to have a non-empty intersection
with S. Recall that a set S is discrete if every point x ∈ R

d has a
neighborhood which intersects S in a finite set. Lattices, such as Zd,
are important examples, but other more sophisticated discrete sets are
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also of interest (e.g., the difference of a lattice and a sublattice or the
Cartesian product of the primes numbers).

One motivation for considering discrete sets S is that we are able
to count the number of points of S occurring within a finite set. This
allows us to generalize the traditional Tverberg theorem to discrete
quantitative Tverberg theorems, in which the intersections of sets are
constrained to contain at least a certain number of points. As an
example, consider the case of S = Zd, which will follow as an easy
corollary from our main result, Theorem 1.4.

Corollary 1.1 (Discrete quantitative Tverberg over Zd). Let d be the
dimension and k a positive integer. Set c(d, k) = (2d−2)

⌈

2
3 (k + 1)

⌉

+2.
Then, any set of at least c(d, k)(m− 1)kd+ k integer lattice points in
Zd can be partitioned into m disjoint subsets such that the intersection
of their convex hulls contains at least k integer lattice points.

For example, in the usual (real-valued) Tverberg theorem, if one has
seven points with real coordinates in the plane, they can be partition
into three disjoint parts such that their convex hulls intersect in at least
one (real-valued) point. In our setting, if one takes 25 lattice points
in Z2, there is always a 3-partition of them, so that the three convex
hulls intersect, and their intersection contains at least one lattice point.
Prior work on this type of statement was pioneered in [23, 26, 29].
To state our main results formally, we must define the (quantitative)
Tverberg and Helly numbers over discrete sets S.

Definition 1.2. Given a discrete subset S of Rd, the quantitative S-
Tverberg number TS(m, k) (if it exists) is the smallest positive integer
with the following property. For any TS(m, k) distinct points in S ⊆
R

d, there is a partition of them into m sets A1, A2, . . . , Am such that
the intersection of their convex hulls contains at least k points of S.

If no such integer exists, we say that TS(m, k) = ∞.

Recall now the classical theorem of Helly. It says that given F ,
a finite family of convex sets of R

d, If
⋂

K 6= ∅ for all K ⊂ F of
cardinality at most d+1, then

⋂

F 6= ∅. In this case d+1 is the Helly
number of the space R

d. More generally one can define.

Definition 1.3. Given a discrete set S ⊂ R
d, the quantitative S-

Helly number HS(k) (if it exists) is the smallest positive integer with
the following property. Suppose that F is a finite family of convex sets
in R

d, and that
⋂

G intersects S in at least k points for every subfamily
G of F having at most HS(k) members. Then

⋂

F intersects S in at
least k points.

If no such integer exists, we say that HS(k) = ∞.

For simplicity, we write TS(m) and HS for TS(m, 1) and HS(1),
respectively. Note that for k ≥ 1, the definitions of TS(m, k) and
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HS(k) make sense only because S is discrete. As our main result, we
prove that the existence of S-Tverberg numbers is a consequence of
the existence of S-Helly numbers, and that these numbers are related.
Our main theorem below is proven in Section 3. As we see later, to
prove our Tverberg-type results, we will need discrete generalizations
of Carathéodory’s theorem and Helly’s theorem.

Theorem 1.4 (Discrete quantitative Tverberg). Let S ⊆ R
d be dis-

crete with finite quantitative Helly number HS(k). Let m, k be integers
with m, k ≥ 1. Then, we have

TS(m, k) ≤ HS(k)(m− 1)kd+ k.

Corollary 1.1 follows from Theorem 1.4, by setting S = Zd and
applying the results in Averkov et al. [6], as will be discussed further
in Section 2. The special case of S = Zd and k = 1 was considered
previously in Eckhoff [23] and in the case of m = 2 (Radon partitions)
by Onn [29]. Eckhoff described the bounds

2d(m− 1) < TZd(m) ≤ (m− 1)(d+ 1)2d − d− 1,

where the upper bound follows by combining a theorem of Jamison
for general convexity spaces [26] with [21]. Our work improves slightly
upon this bound, giving us:

TZd(m) ≤ (m− 1)d2d + 1.

For general S and k = 1, we have no enumeration and care only
about a non-empty intersection over S. In this case, the condition
that S be discrete is unnecessary in the definition of S-Helly and S-
Tverberg numbers, and the conclusion of Theorem 1.4 holds for any
subset S ⊆ R

d. We obtain the following corollary, using bounds on
S-Helly numbers provided in [7, 20].

Corollary 1.5 (S-Tverberg numbers for interesting families). The
following bounds on Tverberg numbers hold:

• When S = Zd−a×R
a, we have TS(m) ≤ (m−1)d(2d−a(a+1))+1.

• Let L′, L′′ be sublattices of a lattice L ⊂ R
d. Then, if S = L \

(L′∪L′′), the Tverberg number satisfies TS(m) ≤ 6(m−1)d2d+1.

• If S ⊆ R
d is a Q-module, then we have TS(m) ≤ 2(m− 1)d2+1.

In Section 2, we discuss several new results on discrete quantitative
Helly numbers, including the following:

Theorem 1.6 (Discrete quantitative Helly and Tverberg numbers for
differences of lattices). Let L be a lattice in R

d and let L1, . . . , Ls be
sublattices of L. Let S = L \ (L1 ∪ · · · ∪ Ls) and r = rank(L). Then
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the quantitative S-Helly number HS(k) exists and is bounded above by
(

2s+1k + 1
)r
. Thus, by Theorem 1.4, we have:

TS(m, k) ≤
(

2s+1k + 1
)r

(m− 1)kd+ k.

A reader may wonder, why would one consider differences of lattices
as the choice of discrete set S? what are applications of these theorems?
These are not generalizations for the sake of generalization. Convex
geometry over special discrete (or semi-discrete) subsets of Rd is quite
applicable. Concretely, convex geometry over differences of lattices is
closely related to the study of integer optimization problems where
inequations appear. For instance, optimization problems such as

min 3x1 + 7x2 + 4x3

subject to 8x1 + 3x2 + 5x3 6≡ 6 mod 11,

x1 6≡ x3 mod 5,

x1 6≡ 2, 4, 16 mod 23, x2 ≡ 0 mod 2, x3 ≡ 2 mod 3,

x1, x2, x3 ≥ 0 and integral.

Optimality certificates (similar to Farkas’ lemma in linear program-
ming) and algorithms (e.g., Clarkson’s algorithm) can be derived from
convexity over differences of lattices which translates into forbidden
modularity conditions (see [19]). Finally, within computation with pre-
cise arithmetic restricted to rational or integer input, one can see that
discrete Tverberg’s theorem is more representative in this situation.

Earlier versions of our results were presented in [17] which was
divided into two papers: the present paper and a separate paper [18],
where we present similar results but regarding continuous quantitative
combinatorial convexity theorems (e.g., regarding volumes, instead of
counting discrete points). Additional quantitative results regarding the
intersection structure of families of convex sets are shown by Rolnick
and Soberón in [32]. These are closely related to the contributions
of this paper and include versions of the (p, q) theorem of Alon and
Kleitman [3] and the fractional Helly theorem of Katchalski and Liu
[27].

2 Discrete quantitative Helly numbers

Helly’s theorem and its numerous extensions are of central importance
in discrete and computational geometry (see [4, 16, 22, 38]). Doignon
was the first to calculate the L-Helly number for an arbitrary lattice
L, which has since been much studied by researchers (see e.g., [12, 35,
25, 15]).
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Theorem (Doignon [21]). Let L be a rank d lattice inside R
d. Then,

HL exists and is at most 2d.

In a related result, it was shown in [7] that HZa×Rb = (b + 1)2a.
Most relevant for the present work are results in [20] generalizing
Doignon’s theorem to discrete sets that are not lattices.

Theorem (De Loera et al. [20]). Let L be a lattice in R
d and let

L1, . . . , Lm be m sublattices of L. Let Rm be the Ramsey number
R(3, 3, . . . , 3), i.e., the minimum number of vertices needed to guar-
antee the existence of a monochromatic triangle in any edge-coloring,
using m colors, of the complete graph KRm

. Then the set S = L\(L1∪
· · · ∪ Lk) satisfies HS ≤ (Rm − 1)2d.

In [2], Aliev, De Loera, and Louveaux first presented a quantita-
tive version of Doignon’s theorem to provide quantitative Helly num-
bers, showing their first ever upper bound. This was later improved to
HL(k) ≤ (2d − 2)

⌈

2
3 (k + 1)

⌉

+ 2 for L ⊂ R
d a lattice of rank d in [1].

Bounds for the quantitative Zd-Helly number have since been improved
in asymptotic behavior in [6, 14]. First, Chestnut et al. [14] showed
that for fixed d, to HZd(k) = O(k(log log k)(log k)−1/3 ) and gave lower
bound c(d, k) = Ω(k(n−1)/(n+1)). In 2016 Averkov et al. [6] gave have a
different new combinatorial description of HS(k) in terms of polytopes
with vertices in S for an arbitrary set S ⊂ R

d. They expressed the
quantitative S-Helly number HS(k) in terms of polytopes with vertices
in S containing exactly k points of S in their interior and used this de-
scription to show that, for fix d, in fact HZd(k) = Θ(k(d−1)/(d+1)) holds
and determined exact values for HZd(k) for k = 1, . . . , 4. They also
proved some interesting properties, e.g., that HZd(k) is, surprisingly,
not monotonic with respect to k.

Before proving our main contribution in discrete quantitative Helly
numbers, Theorem 1.6, we remark the existence of similar colorful
Helly numbers. The conditions needed for this generalization have
been used by several authors e.g., [7, 10], and recently summarized in
[20].

First, we need the fact that the property “having at least k points
of S” has a finite S-Helly number. Second, the property of having at
least k points of S is monotone in the sense that if K ⊂ K ′ and K has
at least k points from S, then this implies that K ′ has also at least k
points of S within. Finally, the property of having at least k points
from S is orderable, because for any finite family F of convex sets there
is a direction v such that:

1. For every K ∈ F with |K ∩ S| ≥ k, there is a containment-
minimal v-semispace (i.e. a half-space of the form {x : vTx ≥ 0})
H such that |K ∩H ∩ S| ≥ k.

5



2. There is a unique containment-minimal K ′ ⊂ K ∩H with |K ′ ∩
S| ≥ k.

In our case, the work presented in [20] shows that every mono-
tone and orderable property with a well-defined Helly number must be
colorable:

Theorem 2.1 (Colorful discrete quantitative Helly). Let S be a dis-
crete set in R

d with finite quantitative S-Helly number N = HS(k).
Suppose that F1, . . .FN are finite families of closed convex sets such
that |

⋂

G ∩ S| ≥ k for every subfamily G satisfying |G ∩ Fi| = 1 for
every i. Then |

⋂

Fi ∩ S| ≥ k for some i.

Results such as Theorem 2.1 are called colorful because we may
think of each Fi as a different color class, in which case the relevant
subfamilies G are those with one element in every color. As a corol-
lary to Theorem 2.1, we immediately obtain the following by applying
Theorem 1.6.

Corollary 2.2 (Colorful quantitative Helly for differences of lattices).
Let L be a lattice in R

d and let L1, . . . , Lm be m sublattices of L.
Let S = L \ (L1 ∪ · · · ∪ Lm). Let N =

(

2m+1k + 1
)r
, where r =

rank(L), and let F1, . . . ,FN be finite families of closed convex sets so
that |

⋂

G ∩ S| ≥ k for every rainbow subfamily G. Then, there is an i
such that |

⋂

Fi ∩ S| ≥ k.

To prove Theorem 1.6, we will use the following definition based
on [1, 2]. The condition that S must be discrete is necessary if the
following definition is to make sense for k > 1.

Definition 2.3. Say that a subset P of S ⊂ R
d is k-Hoffman if

∣

∣

∣

∣

∣

∣

⋂

p∈P

conv(P \ {p}) ∩ S

∣

∣

∣

∣

∣

∣

< k.

The quantitative Hoffman number H′
S(k) of a set S ⊂ R

d is the largest
cardinality of a k-Hoffman set P ⊆ S.

To compute the S-Helly number when S is a discrete subset ofRd, it
suffices to consider (finite) families of convex polytopes whose vertices
are in S, instead of families of arbitrary convex sets. In the work of
Hoffman [25] and later Averkov [5], the Helly numbers of various sets
S were calculated using this approach. Hoffman proved HS = H

′
S(1),

where HS is the S-Helly number. Here we extend their work for k > 1
to take into account the cardinality of the intersections with S.

Lemma 2.4. Let S ⊂ R
d be a discrete set. The quantitative Hoffman

number H′
S(k) bounds the quantitative Helly number HS(k) as follows:

H
′
S(k)− k + 1 ≤ HS(k) ≤ H

′
S(k).
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Proof. We begin by showing that HS(k) ≥ H
′
S(k) − k + 1. To do so,

let U ⊂ S be some finite set such that
∣

∣

⋂

u∈U conv(U \ {u}) ∩ S
∣

∣ < k.
By the definition of H′

S(k), |U | ≤ H
′
S(k).

Consider the family F = {conv(U \ {u})|u ∈ U}. By the definition
of U , |

⋂

F∩S| < k. Note that if G is a subfamily of F with cardinality
|U | − k, then G = {conv(U \ {u})|u ∈ U \ U ′} for some U ′ ⊆ U of
cardinality k. Consequently,

U ′ ⊆
⋂

u∈U\U ′

conv(U \ {u}) ∩ S =
⋂

G∈G

G ∩ S.

Hence the quantitative Helly number HS(k) must be greater than
|U | − k. That is, HS(k) ≥ H

′
S(k)− k + 1.

To prove the other inequality, let K1, . . . ,KHS(k) be convex sets

such that
∣

∣

∣

⋂

j 6=i Kj ∩ S
∣

∣

∣
≥ k for all i ∈ [HS(k)] (where [m] = {1, . . . ,m})

yet
∣

∣

∣

⋂

i∈[HS(k)] Ki ∩ S
∣

∣

∣
< k. Such a family {Ki} exists by the defini-

tion of the quantitative Helly number. Then for all indices i ∈ [HS(k)],
there exists Ui ⊆

⋂

j 6=i Kj ∩ S with |Ui| ≥ k.
Suppose u ∈ Ui∩Uj (for some i 6= j). Then u ∈

⋂

i Ki∩S, so there
can be no more than k − 1 such points. Hence, for each i ∈ [HS(k)],
there exists ui ∈ Ui such that ui /∈

⋃

j 6=i Uj . In particular, the ui are
distinct. Define now U = {ui|i ∈ [HS(k)]}. Consider

⋂

u∈U conv(U \
{u}) ∩ S. Note that U \ {ui} =

⋃

j 6=i{uj}. Because uj ∈ Ki for all
j 6= i, U \ {ui} ⊆ Ki. Therefore,

∣

∣

∣

∣

∣

⋂

u∈U

conv(U \ {u}) ∩ S

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

⋂

i∈[HS(k)]

conv(U \ {ui}) ∩ S

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

⋂

i∈[HS(k)]

Ki ∩ S

∣

∣

∣

∣

∣

∣

< k.

By the definition of H′
S(k), it follows that HS(k) ≤ H

′
S(k).

The following notion is easier to work with directly than the Hoff-
man number:

Definition 2.5. A set P ⊂ S is k-hollow if

∣

∣(conv(P ) \ V (conv(P ))) ∩ S
∣

∣ < k,

where V (K) is the vertex set of K.
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To relate this notion to the Hoffman number, we have the following
lemma.

Lemma 2.6. Let S ⊂ R
d be a discrete set. Then H

′
S(k) is equal to

the cardinality of the largest k-hollow set with respect to S.

Lemma 2.6 is a partial generalization of Proposition 3 from [25].

Proof. Let P be a k-hollow subset of S, and note that

⋂

p∈P

conv(P \ {p}) ⊆ conv(P ) \ V (conv(P )).

Hence
∣

∣

∣

∣

∣

∣

⋂

p∈P

conv(P \ {p}) ∩ S

∣

∣

∣

∣

∣

∣

≤
∣

∣(conv(P ) \ V (conv(P ))) ∩ S
∣

∣ < k.

Thus any k-hollow set is also k-Hoffman; in particular, a maximum-
cardinality k-hollow set is also k-Hoffman.

Let h be the cardinality of the largest k-hollow set. We will show
that if P is a subset of S with cardinality greater than h, then P is
not k-Hoffman; this completes the proof.

Suppose t > h, and define Pt to be the family of t-element subsets
of S. Note that Pt can be partially ordered by inclusion of convex hull;
i.e., P ≤ P ′ if conv(P ) ⊆ conv(P ′).

We will use induction. Let P ∈ Pt; suppose that all predecessors of
P have been shown to not be k-Hoffman (this vacuously includes the
case when P is minimal). Because |P | > h, |(conv(P )\V (P ))∩S| ≥ k.
For all q ∈ (conv(P ) \ V (P )) ∩ S, define m(q) to be the number of
elements p ∈ P such that q /∈ (conv(P \ {p})). Let (conv(P ) \V (P ))∩
S = {q1, q2, . . . , qk, . . . }, where m(q1) ≤ m(q2) ≤ · · · ≤ m(qk) ≤ · · · .

We will show by induction that m(q1) = m(q2) = · · ·m(qk) = 0.
Let 1 ≤ j ≤ k. Suppose that m(qi) = 0 for i < j; assume for a
contradiction that m(qj) > 0. There then exists pj such that qj /∈
conv(P \ {pj}). Note that pj must be a vertex of P , as otherwise qi
would certainly be contained in conv(P \ {pj}). It follows that the set
P ′ = {qj}∪P \{pj} is a strict predecessor of P . By the outer induction
hypothesis, P ′ is not k-Hoffman. That is, there exist at least k points
in

⋂

p∈P ′ conv(P ′\{p})∩S. Because j ≤ k, at least one of those points,
r, must have m(r) > 0. If qj ∈ conv(P \ {p}), then

r ∈ conv(P ′ \ {p}) = conv({qj} ∩ P \ {p, pj}) ⊆ conv(P \ {p}).

Furthermore, r ∈ conv(P ′ \ {qj}) = conv(P \ {pj}). Thus 0 < m(r) <
m(qj), which contradicts the fact that m(qj) is the smallest nonzero
value of m.
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Thus m(q1) = m(q2) = · · · = m(qk) = 0. Hence {q1, q2, . . . qk} ⊆
⋂

p∈P conv(P \ {p}) ∩ S, so P is not k-Hoffman.
Because S is discrete, every element of Pt has a finite number of

predecessors under this ordering. It follows by induction no element of
Pt is k-Hoffman.

Lemmas 2.4 and 2.6 allow us to prove Theorem 1.6 by finding an
upper bound on the largest k-hollow set.

Proof of Theorem 1.6. Let P be a subset of L \
⋃

i Li with cardinality
nr+1, where n = k ·2m+1+1. We will show that P is not k-hollow; this
implies Theorem 1.6 by Lemma 2.4 and the contrapositive of Lemma
2.6.

It is a simple fact, first observed in [30], that there must exist n+1
collinear points z0, z1, . . . , zn in conv(P ) ∩ L with z0, zn ∈ L \

⋃

i Li.
Assume that the points zi are ordered along the line they all lie on.
Note that zj and zj+ℓ cannot both be in Li if j = 0 mod ℓ; otherwise,
z0 would be in Li. Suppose zi is in some sublattice Lj for all i ∈
[ℓ · 2m, (ℓ + 1)2m]. By the above note, zℓ·2m+2a and zℓ·2m+2b cannot
both be in the same sublattice for any 0 ≤ a < b ≤ m. This is
impossible, as there are m + 1 values of a and only m sublattices Li.
Therefore zi ∈ L\

⋃

j Lj for some i ∈ [ℓ ·2m, ℓ ·2m+1, . . . , (ℓ+1) ·2m].

Since n = k · 2m+1 + 1,

{{zi|i ∈ [(2ℓ− 1)2m, 2ℓ · 2m]}|1 ≤ ℓ ≤ k}

is a family of k disjoint subsets of {z1, . . . , zn−1}, each of which contains
a point in L \

⋃

j Lj . It follows that {z1, . . . , zn−1} contains at least k
elements of L\

⋃

j Lj . None of these points can be vertices of conv(P ),
as they are strictly between the two endpoints. Hence

∣

∣

∣

∣

∣

∣

(conv(P ) \ V (conv(P ))) ∩ L \
⋃

j

Lj

∣

∣

∣

∣

∣

∣

≥ k.

That is, P is not k-hollow. Consequently, no k-hollow set P can
have size greater than

(

2m+1k + 1
)r
. Therefore HS(k) ≤ H

′
S(k) ≤

(

2m+1k + 1
)r
.

We end by remarking that using Theorem 3 of the recent paper [6]
one can derive a similar result as our Theorem 1.6.

3 Proof of Theorem 1.4

Recall now the classical 1907 theorem of Carathéodory [13]. Let S be
any subset of Rd. Then each point in the convex hull of S is a convex
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combination of at most d + 1 points of S. Our proof of Theorem 1.4
requires generalizations of Carathéodory’s theorem.

Theorem (Very colorful Carathéodory theorem, Bárány 1982 [8]).
Let X1, X2, . . . , Xd ⊂ R

d be sets, each of whose convex hulls contains
p ∈ R

d and let q ∈ R
d. Then, we can choose x1 ∈ X1, . . . , xd ∈ Xd

such that
p ∈ conv{x1, x2, . . . , xd, q}.

We will use this result to prove the following extension.

Lemma 3.1 (Colorful discrete quantitative Carathéodory). Let K be
the convex hull of m ≥ 2 points in R

d, and ex(K) be the number of
extreme points of K. If n = ex(K) and X1, X2, . . . , Xnd are sets whose
convex hulls contain K, then we can find x1 ∈ X1, . . . , xnd ∈ Xnd such
that

K ⊂ conv{x1, . . . , xnd}.

Moreover, the number of sets is optimal for the conclusion to hold.

We believe this result may already be known, but we have not
found references to it. Lemma 3.1 is “colorful” in the following sense:
given sets X1, . . . , Xnd, considered as color classes, whose convex hulls
contain a set K with n vertices, we want to make a colorful choice
x1 ∈ X1, . . . , xnd ∈ Xnd such that conv{x1, . . . , xnd} also contains K.

Proof of Lemma 3.1. LetK be a polytope with n vertices y1, y2, . . . , yn;
letX1, X2, . . . , Xnd be sets whose convex hulls containK. Without loss
of generality, we may assume th at K contains the origin in its relative
interior.

Using the very colorful Carathéodory theorem above, for a each j
we can find x(j−1)d+1 ∈ X(j−1)d+1, . . . , xjd ∈ Xjd such that

yj ∈ conv{0, x(j−1)d+1, . . . , xjd}.

To finish the proof, it suffices to show that 0 ∈ conv{x1, . . . , xnd}.
If this is not the case, then there must be a hyperplane separat-
ing 0 from conv{x1, . . . , xnd}. We may assume that the hyperplane
contains 0 and leaves {x1, . . . , xnd} in the same open halfspace. Be-
cause K contains 0 in its relative interior, there must be a vertex
yj of K in the other (closed) halfspace, contradicting the fact that
yj ∈ conv{0, x1, . . . , xnd}.

In order to show the value nd is optimal, consider a convex polytope
K ′ which has each yi in the relative interior of one of its facets, and
such that the facets corresponding to yi and yj do not share vertices
for all i 6= j. Then, take nd − 1 copies X1, X2, . . . , Xnd−1 of K ′. Any
colorful choice whose convex hull contains K needs at least d vertices
for each extreme point of K, which is not possible.
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We now turn our attention to the discrete quantitative Tverberg
theorem, Theorem 1.4. We will use the notion of the depth of a point
inside a set to present a cleaner argument. We say that a point p has
depth at least a with respect to a set A if for every closed halfspace
H+ containing p, we have |H+∩A| ≥ a. We say that a set of points P
has depth at least a with respect to A if every p ∈ P has depth at least
a with respect to A. We will use the following lemma in the proof of
Theorem 1.4.

Lemma 3.2. If a set of points P has depth at least 1 with respect to
A, then the convex hull of A contains P .

Proof. If this were not true, then there would exist some hyperplane
H separating conv(A) from a point p ∈ P , contradicting the definition
of having depth at least one.

Proof of Theorem 1.4. Suppose that A ⊆ S containsHS(k)(m−1)kd+
k points. We will construct an m-Tverberg partition of A. For this,
consider the family of convex sets

F = {conv(B)|B ⊂ A, |B| = (HS(k)− 1)(m− 1)kd+ k} .

Note that for any F ∈ F , we have |A \ F | ≤ (m− 1)kd. Therefore,
if G is a subfamily of F with cardinality HS(k), we must have

∣

∣

∣

∣

∣

A \
⋂

G∈G

G

∣

∣

∣

∣

∣

≤ HS(k)(m− 1)kd.

Since there are HS(k)(m−1)kd+k points in A,
⋂

G∈G G must contain
at least k elements of S. Hence, by the definition of the quantitative
Helly number HS(k),

⋂

F∈F F contains at least k elements of S. Let
P = {p1, p2, . . . , pk} be k of those points.

Claim 1. The set P has depth at least (m− 1)kd+1 with respect
to A.

Suppose that this is not true. Then, some closed halfspace H+

contains an element of P and at most (m− 1)kd elements of A. This
means that there are at least (HS(k)− 1)(m− 1)kd+ k elements of A
in the complement of H+. However, this means that some F ∈ F lies
in the complement of H+, a contradiction, since every such F must
contain all points of P .

The theorem now follows immediately from the following claim:
Claim 2. For each j ≤ m, we can find j disjoint subsetsA1, A2, . . . , Aj ⊂

A such that P ⊂ conv(Ai) for every i.
We proceed by induction on j. In the base case of j = 1, Claim 1

tells us that P has depth at least one with respect to A. Hence, by
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Lemma 3.2, we have P ⊂ conv(A). Now suppose that j > 1. By our in-
ductive hypothesis, we can find j−1 disjoint subsetsA1, A2, . . . , Aj−1 ⊂
A such that P ⊂ conv(Ai) for every i.

Case 1. k ≥ 2.
Applying Lemma 3.1, we may assume that A1, A2, . . . , Aj−1 have

cardinality at most kd, so the depth of P is diminished by at most kd
if we remove Ai from A. It follows that the depth of P is at least 1
with respect to A \ ∪1≤i≤j−1Ai. Hence, by Lemma 3.2, we can find
Aj ⊂ A disjoint from A1, A2, . . . , Aj−1 such that P ⊂ conv(Aj).

Case 2. k = 1.
In this case, P = {p}. By standard Carathéodory’s theorem, we

may assume that each Ai (for 1 ≤ i ≤ j− 1) either has cardinality less
than d+ 1 or else has cardinality d+ 1 and defines a full-dimensional
simplex. Notice that every halfspace containing p can contain at most d
points of Ai, since p ∈ conv(Ai). Proceeding as in Case 1, we conclude
that p has depth at least 1 with respect to A \ ∪1≤i≤j−1Ai. Hence, by
Lemma 3.2, we can find Aj ⊂ A disjoint from A1, A2, . . . , Aj−1 such
that P ⊂ conv(Aj).

This completes our induction and proves the theorem.

4 Future directions

We have here defined and demonstrated the existence of quantitative
Tverberg, Helly, and Carathéodory theorems over discrete sets. In
a related work, we will also be presenting new results on continuous
quantitative versions of these theorems. In the continuous setting, the
intersection of sets is measured not by its cardinality over a discrete set
S, but by some continuous parameter such as the diameter or volume.

As with Helly’s and Carathéodory’s theorems (see Theorem 2.1 and
Lemma 3.1), there is the potential for colorful versions of Tverberg’s
theorem. In this case, the aim is to impose additional combinatorial
conditions on the resulting partition of points, while guaranteeing the
existence of a partition where the convex hulls of the parts intersect.
Now that the conjectured topological versions of Tverberg’s theorem
have been proven false [24], the following conjecture by Bárány and
Larman is arguably the most important open problem surrounding
Tverberg’s theorem.

Conjecture 4.1 (Bárány and Larman, 1992 [9]). Let F1, F2, . . . , Fd+1 ⊂
R

d be sets of m points each, considered as color classes. Then, there
is a colorful partition of them into sets A1, . . . , Am whose convex hulls
intersect.

Along these lines, we conjecture the following colorful discrete quan-
titative Tverberg theorem:

12



Conjecture 4.2. Let S ⊂ R
d be a set such that the Helly number

HS(k) is finite for all k. Then, for any m, k there are integers m1 and
m2 such that the following statement holds.

Given m1 families F1, F2, . . . , Fm1
families of m2 points of S each,

considered as color classes, there are m pairwise disjoint colorful sets
A1, A2, . . . , Am such that

m
⋂

i=1

conv(Ai)

contains at least k points of S.
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