
Quantitative Types for the Linear Substitution

Calculus

Delia Kesner1 and Daniel Ventura2

1 Univ. Paris-Diderot, SPC, PPS, CNRS, France
2 Univ. Federal de Goiás, INF, Brasil

Abstract. We define two non-idempotent intersection type systems for
the linear substitution calculus, a calculus with partial substitutions act-
ing at a distance that is a computational interpretation of linear logic
proof-nets. The calculus naturally express linear-head reduction, a notion
of evaluation of proof nets that is strongly related to abstract machines.
We show that our first (resp. second) quantitave type system character-
izes linear-head, head and weak (resp. strong) normalizing sets of terms.
All such characterizations are given by means of combinatorial argu-
ments, i.e. there is a measure based on type derivations which decreases
with respect to each reduction relation considered in the paper.

1 Introduction

It is quite difficult to reason about programs by only taking into account their
syntax, so that many different semantic approaches were proposed to analyze
them in a more abstract way. One typical tool to analyze relevant aspects of
programs is the use of type systems. In particular, intersection types allow to
characterize head/weakly/strongly normalizing terms, i.e. a term t is typable in
an intersection type system iff t is head/weakly/strongly normalizing; quantita-
tive information about the behaviour of programs can also be obtained if the
intersection types enjoy non-idempotence.

Intersection Types (IT): Simply typed terms are strongly normalizing (cf. [7])
but the converse does not hold, e.g. the term t := λx.xx. Intersection Types [15]
extend the simply typed discipline with a finitary notion of polymorphism, listing
type usage, that exactly captures the set of strongly normalizing terms. This is
done by introducing a new constructor of types ∧ together with a corresponding
set of typing rules. For instance, the previous term t is typable with ((σ →
σ)∧σ)→ σ so that the first (resp. second) occurrence of the variable x is typed
with σ → σ (resp. σ). Typically, intersection types are idempotent, i.e. σ∧σ = σ.
Moreover, the intersection constructor is usually commutative and associative.
Intersection types in their full generality provide a characterization of various
properties of terms: models of the λ-calculus [8], characterization of head [17]
as well as weakly [13,17] and strongly normalizing terms [33].

Non-Idempotent Intersection Types: The use of non-idempotent types
[11] gives rise to resource aware semantics, which is suitable for computational

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 296–310, 2014.
c© IFIP International Federation for Information Processing 2014

Quantitative Types for the Linear Substitution Calculus 297

complexity since it allows to extract quantitative information about reduction
sequences. Indeed, the inequality σ ∧ σ �= σ can be read as the fact that two
different uses of the variable x are not isomorphic to a single use. Relationship
with Linear Logic [24] and Relevant Logic [23,18] provides an insight on the
information refinement aspect of non-idempotent intersection types. The rela-
tion between the size of a non-idempotent intersection typing derivation and
the head/weak-normalization execution time of λ-terms by means of abstract
machines was established by D. de Carvalho [21]. Non-idempotence is also used
in [9,20] to reason about the longest derivation of strongly β-normalizing terms
in the λ-calculus by means of combinatorial arguments.

Calculi with Explicit Substitutions (ES) and Intersection Types: Cal-
culi with ES refine the λ-calculus by decomposing β-reduction into small steps
in order to specify different evaluation strategies implemented by abstract ma-
chines. In traditional calculi with ES [1], the operational semantics specifies the
propagation of ES through the structure of the term until they reach a variable
occurrence, on which they finally substitute or get garbage collected. But calculi
with ES can also be interpreted in Linear Logic [22,28,26,5] by implementing
another kind of operational semantics: their dynamics is defined using contexts
(i.e. terms with holes) that allows the ES to act directly at a distance on single
variable occurrences, with no need to commute with any other constructor in
between. In other words, the propagation of substitutions is not performed by
structural induction on terms, since they are only consumed according to the
multiplicity of the variables.

Idempotent intersection type systems were used to characterize strongly nor-
malizing terms of calculi with ES [34,27] while non-idempotence is used in [10]
to prove the exact relationship between typing derivations and the number of
steps of the longest reduction sequence of strongly-normalizing terms in the λs-
calculus [26] and in the λlxr-calculus [28]. No study about linear-head, head
and weak normalizing is provided in those works. Moreover, the systems are not
syntax-directed, i.e. not all the typing derivations of t end with the same typing
rule. As a consequence, the formal developments of proofs require a generation
lemma which guarantees the existence of some typing derivations having a par-
ticular shape. This drawback makes the development of proofs more involved.

Contribution: This paper focuses on functional programs specified – via the
Curry-Howard isomorphism – by intuitionistic logic, in natural deduction style.
The operational semantics implements resource control by means of reduction
rules describing the behaviour of explicit operators for erasure and duplication.
The term language is the linear substitution calculus [3], called here M-calculus,
and obtained from Milner’s calculus [36] and the structural λ-calculus [5].

Partial substitution allows to express linear-head reduction [19,35], a notion of
evaluation of proof nets that is strongly related to significant aspects of computer
science [32,2,4]. Linear-head reduction cannot be expressed as a simple strategy
of the λ-calculus, where substitution acts on all free occurrences of a variable at
once; this is probably one of the reasons why there are so few works investigating

298 D. Kesner and D. Ventura

it. In this paper we use logical systems to reason about different notions of
normalization of terms, including those obtained with linear-head reduction.

More precisely, the quantitative semantics of programs used in this paper is
given by two non-idempotent intersection type systems. The first one, based
on [21], allows a characterization of linear-head, head and weakly normalizing
terms. While full logical characterizations of head/weakly β-normalizing λ-terms
were already given in the literature, the use of a logical/type system to directly
characterize linear-head normalization in calculi with ES is new. The second
system, another main contributions of this paper, gives a characterization of
strongly normalizing terms.

Our type systems use multiset notation and are syntax-directed so that no
generation lemmas are needed, thus making the development of proofs much
more direct. Moreover, the type systems for strong normalization make use of
a special notion of witness derivation for the arguments (of applications and
explicit substitutions) which makes them particularly natural. All the charac-
terizations in the paper are given by means of simple combinatorial arguments,
i.e. there is a measure that can be associated to each typing derivation which
is decreasing with respect to the different reduction relations considered in the
paper.

Structure of the Paper: Sec. 2 presents the syntax and semantics of the
M-calculus and both typing systems. Sec. 3 presents the Linear-Head, Head
and Weak-Normalization characterizations while Sec. 4 presents the Strong-
Normalization characterization. We then conclude in Sec. 5.

2 The Linear Substitution Calculus

We first describe the syntax and the operational semantics of the M-calculus,
including some particular notions of rewriting such as linear-head reduction. We
then introduce a notion of type and two different type systems that play a central
role in the first part of the paper.

Syntax: Given a countable infinite set of symbols x, y, z, . . ., three different
syntactic categories for terms (TM) and contexts (CM) are defined by the following
grammars:

(terms) t, u, v ::= x | tt | λx.t | t[x/t]
(term contexts) C ::= � | λx.C | C t | t C | C[x/t] | t[x/C]
(list contexts) L ::= � | L[x/t]

A term x is called a variable, tu an application, λx.t an abstraction and
t[x/u] a closure where [x/u] is an explicit substitution. We write tt1 . . . tn
for (. . . (tt1) . . . tn). The notions of free and bound variables are defined as
usual, in particular, fv(t[x/u]) := fv(t) \ {x} ∪ fv(u), fv(λx.t) := fv(t) \ {x},
bv(t[x/u]) := bv(t)∪{x}∪ bv(u) and bv(λx.t) := bv(t)∪{x}. We work with the
standard notion of α-conversion i.e. renaming of bound variables for abstractions
and substitutions. We write C[t] (resp. L[t]) for the term obtained by replacing

Quantitative Types for the Linear Substitution Calculus 299

the hole of C (resp. L) by the term t. We write C[[u]] or L[[u]] when the free
variables of u are not captured by the context, i.e. there are no abstractions or
explicit substitutions in the context that binds the free variables of u. The set
of positions of t, written pos(t), is the finite language over {0, 1} inductively
defined as follows: ε ∈ pos(t) for every t; 0p ∈ pos(λx.t) if p ∈ pos(t); 0p ∈
pos(tu) (resp. pos(t[x/u])) if p ∈ pos(t); 1p ∈ pos(tu) (resp. pos(t[x/u])) if
p ∈ pos(u). The subterm of t at position p is written t|p and defined as
expected. The term u has an occurrence in t iff there is p ∈ pos(t) such
that t|p = u. We write |t|x to denote the number of free occurrences of the
variable x in the term t. All these notions are extended to contexts as expected.

Operational Semantics: The M-calculus is given by the set of terms TM and
the reduction relation →dB∪c∪w, the union of →dB, →c, and →w, denoted
by →M, which are, respectively, the closure by term contexts C of the following
rewriting rules:

L[λx.t]u �→dB L[t[x/u]]
C[[x]][x/u] �→c C[[u]][x/u]
t[x/u] �→w t if |t|x = 0

The names dB, c and w stand for distant Beta, contraction and weakening,
respectively. Rule �→dB (resp. �→c) comes from the structural λ-calculus [5] (resp.
Milner’s calculus [36]), while �→w belongs to both calculi. By α-conversion we
can assume in the rule dB that x may only be free in t and no variable in the
domain of L, defined as expected, has free occurrences in the term u. The pushed
out list context L in rule dB can be obtained by using an equivalence related to
Regnier’s σ-equivalence [38]: L[λx.t]u ∼σ L[(λx.t)u]→dB L[t[x/u]]. We will come
back on this equivalence in Sec. 4.

The reflexive-transitive (resp. transitive) closure of →M is denoted by →∗
M

(resp. →+
M). Given t∈TM, t is in M-normal form, written t∈M-nf, if there is

no t′ s.t. t →M t′; and t has an M-nf iff there is t′∈M-nf such that t →∗
M t′.

Moreover, t is weakly M-normalizing, written t∈WN (M), iff t has an M-nf,
t is strongly M-normalizing or M-terminating, written t∈SN (M), if there is
no infinite M-reduction sequence starting at t. Every M-term is (c, w)-strongly
normalizing [29].

The notion of redex occurrence in this calculus is more subtle than the one in
standard rewriting because one unique term may give rise to different reduction
steps at the root, e.g. (xu)[x/u] c← (xx)[x/u] →c (ux)[x/u]. Thus, given p ∈
pos(t), p is said to be a dB-redex occurrence of t if t|p = L[λx.t]u, p is a
w-redex occurrence of t if t|p = v[x/u] with |v|x = 0, and p is a c-redex
occurrence of t if p = p1p2, t|p1 = C[[x]][x/u] and C|p2 = �. For example 000
and 001 are both c-redex occurrences of the term λz.(xx)[x/u].

The M-calculus enjoys good properties required for calculi with ES (including
simulation of β-reduction, preservation of strong normalization, confluence on
terms and metaterms and full composition) [29]. It was recently used in different
investigations of computer science [4,2,3].

300 D. Kesner and D. Ventura

The reduction relation →M can be refined in different ways, where the
(reflexive-)transitive closures and normal-forms are defined as expected. The
non-erasing reduction relation →M\w is given by →dB∪c, and plays a key role in
the characterization of strongly normalizing terms in Sec. 4. Another key sub-
relation studied in this paper is linear-head reduction [19,35], a strategy related
to abstract machines [19] and linear logic [24]. To introduce this notion, we first
define the set of linear-head contexts that are generated by the following
grammar:

LH ::= � | λx.LH | LHt | LH[x/t]

Linear-head M-reduction, written →LHM, is the closure under linear-head con-
texts of the rewriting rules {�→dB, �→c|LH}, where �→c|LH is the following variation
of the rewriting rule �→c:

LH[[x]]x[x/u] �→c|LH LH[[u]][x/u]

Indeed, the leftmost (i.e. head) occurrence of the variable x in LH[[x]] is substi-
tuted by u and this partial (i.e. linear) substitution is only performed on that
head occurrence. The notion of c|LH-redex occurrence is defined as for the c-
rule. A term t is linear-head M-normalizing, written t ∈ LHN (M), iff t has an
LHM-nf. For example, if t0 := λx.xy and t1 := x[y/z](II), where I := λw.w, then
t0 ∈ M-nf, and so also t0 ∈ LHM-nf, while t1 �∈ M-nf but t1 ∈ LHM-nf.

Types: We denote finite multisets by brackets, so that [] denotes the empty
multiset; [a, a, b] denotes a multiset having two occurrences of the element a and
one occurrence of b. We use + for multiset union. Given a countable infinite set
of base types α, β, γ, . . . we consider types and multiset types defined by the
following grammars:

(types) τ, σ, ρ ::= α | M→τ
(multiset types) M ::= [τi]i∈I where I is a finite set

Observe that our types are strict [16,6], i.e. the type on the right hand side of
a functional type is never a multiset. They also make use of usual notations for
multisets, as in [21], so that [σ, σ, τ] must be understood as σ ∧ σ ∧ τ , where
the symbol ∧ is defined to enjoy commutative and associative axioms. When
∧ verifies the axiom σ ∧ σ = σ, the underlying type system is idempotent,
otherwise, like in this paper, it is non-idempotent.

Type assignments, written Γ,Δ, are functions from variables to multiset
types, assigning the empty multiset to all but a finite set of the variables. The
domain of Γ is given by dom(Γ) := {x | Γ (x) �= []}. The intersection of
type assignments, written Γ +Δ, is defined by (Γ +Δ)(x) := Γ (x) +Δ(x),
where the symbol + denotes multiset union. As a consequence dom(Γ + Δ) =
dom(Γ)∪dom(Δ). When dom(Γ) and dom(Γ) are disjoint we write Γ ;Δ instead of
Γ +Δ. We write Γ \\ x for the assignement (Γ \\ x)(x) = [] and (Γ \\ x)(y) = Γ (y)
if y �= x.

Quantitative Types for the Linear Substitution Calculus 301

x:[τ] � x:τ
(ax)

x:[σi]i∈I ;Γ � t:τ (Δi � u:σi)i∈I

Γ +i∈I Δi � t[x/u]:τ
(cutHW)

Γ � t:τ

Γ \\x � λx.t:Γ (x)→τ
(→ i)

Γ � t:[σi]i∈I →τ (Δi � u:σi)i∈I

Γ +i∈I Δi � tu:τ
(→ eHW)

Fig. 1. The Type System HW for the M-Calculus

Typing Rules {(ax), (→ i)} plus

x:[σi]i∈I ;Γ � t:τ (Δi � u:σi)i∈I∪{w}
Γ +i∈I∪{w} Δj � t[x/u]:τ

(cutS)

Γ � t:[σi]i∈I →τ (Δi � u:σi)i∈I∪{w}
Γ +i∈I∪{w} Δi � tu:τ

(→ eS)

Fig. 2. The Type System S for the M-Calculus

The Type Systems: Type judgments have the form Γ
 t:τ , where Γ is a
type assignment, t is a term and τ is a type. The type systems HW , after Head-
Weak, and S, after Strong, for the M-calculus are given respectively in Fig. 1
and 2. A (typing) derivation in system X is a tree obtained by applying the
(inductive) typing rules of system X . The notation Γ
X t:τ means there is a
derivation of the judgment Γ
 t:τ in system X . The term t is typable in system
X , or X-typable, iff there are Γ and τ s.t. Γ
X t:τ . We use the capital Greek
letters Φ, Ψ, . . . to name type derivations, e.g. we write Φ � Γ
X t:τ . The size
of a type derivation Φ is a positive natural number sz(Φ) defined as expected.

The rules (ax), (→ i) and (→ eHW) in system HW come from a relational
semantics for linear logic [21]. Remark in particular that the axiom is relevant
(so there is no weakening) and the rules for application and substitution are
multiplicative, both characteristics are related to the resource aware semantics.
A particular case of rule (→ eHW) is when I = ∅: the subterm u occuring in
the typed term tu turns out to be untyped. Thus for example, from the deriva-
tion x:[σ]
HW λy.x:[]→ σ we can construct x:[σ]
HW (λy.x)Ω:σ, where Ω
is the non-terminating term (λz.zz)(λz.zz). This is precisely the reason why
rules (→ eS) and (cutS) in Fig. 2, the system which characterizes strongly-
normalizing terms, always asks a witness typing derivation for the arguments
of applications and substitutions. Indeed, if I = ∅, then the argument u will be
typed with the witness derivation Δw
 u:σw, whatever the type σw is. This
witness derivation for u is essential to guarantee strong-normalization of u (and
thus of tu and t[x/u]). When I �= ∅ the rules (→ eS) and (cutS) also require a

302 D. Kesner and D. Ventura

witness derivation for u, whose use is necessary in order to deal with the c-rule
when |C[[x]]|x = 1 (see discussion after Lem. 4). Last, remark that an alternative
definition of rules (→ eS) and (cutS) given by adding I �= ∅ to rules (→ eHW)
and (cutHW), respectively, would not be complete: terms like x[y/z] or (λy.x)z
become untypable.

Given Φ � Γ
HW t:σ, not every free variable of t necessarily appears in the
domain of Γ , this is for example the case in x:[σ]
HW (λy.x)z:σ. More precisely,
the systems enjoy the following (weak/strong) relevance properties, that can be
easily shown by induction on derivations.

Lemma 1. If Φ�Γ
HW t:σ then dom(Γ) ⊆ fv(t). If Φ�Γ
S t:σ, then dom(Γ) =
fv(t).

In contrast to other intersection type systems for ES in the literature, the typing
rules of our systems are syntax oriented, so that generation lemmas are not
needed to distinguish particular syntactical forms of derivations.

3 About Linear-Head, Head and Weak M-Normalization

We show in this section two main results. The first one (Sec. 3.1) characterizes
linear-head and head M-normalizing terms by means of HW-typability. This re-
sult generalizes to calculi with ES the well-known logical characterization of head
β-normalizing λ-terms [17,21]. The HW-type system is known to type also some
non weakly M-normalizing terms: for instance, if Ω is any non-terminating term,
then x:[]→σ
HW xΩ:σ. We then characterize the set of weakly M-normalizing
terms, our second result (Sec. 3.2), by restricting the HW-typing derivations to
some particular ones. But first, let us develop some key technical tools.

To understand which are the redex occurrences actually constrained by the
type system, let us consider a derivation Φ�Γ
HW t:τ . A position p ∈ pos(t) is
a typed occurrence of Φ if either p = ε, or p = ip′ (i = 0, 1) and p′ ∈ pos(t|i) is
a typed occurrence of some of their corresponding subderivations of Φ. A redex
occurrence of t which is also a typed occurrence of Φ is a redex T-occurrence
of t in Φ. Thus for example, given the following derivations Φ and Φ′, we have
that ε, 0, 1 and 10 are T-occurrences in Φ and Φ′, while 11 is a T-occurrence in
Φ but not in Φ′.

Φ �

x:[[τ, τ]→τ] � x:[τ, τ]→τ
y:[[]→τ] � y:[]→τ

y:[[]→τ] � yz:τ

y:[[τ]→τ] � y:[τ]→τ z:[τ] � z:τ

y:[[τ]→τ], z:[τ] � yz:τ

x:[[τ, τ]→τ], y:[[]→τ, [τ]→τ], z:[τ] � x(yz):τ

Φ′ �
x:[[τ, τ]→τ] � x:[τ, τ]→τ

y:[[]→τ] � y:[]→τ

y:[[]→τ] � yz:τ

y:[[]→τ] � y:[]→τ

y:[[]→τ] � yz:τ

x:[[τ, τ]→τ], y:[[]→τ, []→τ] � x(yz):τ

Quantitative Types for the Linear Substitution Calculus 303

The notion of T-occurrence plays a key role in the Subject Reduction (SR)
lemma, which is based on a subtle partial substitution lemma, a refinement of
the standard substitution lemma used in the λ-calculus.

Lemma 2 (SR I). Let Φ � Γ
HW t:τ . If t →M t′ reduces a (dB, c, w)-redex
T-occurrence of t in Φ then Φ′ � Γ
HW t′:τ and sz(Φ) > sz(Φ′).

As an example, consider Φ′′ � y:[[]→ []→τ]
HW (xxx)[x/y]:τ . Then the
(typed) reduction step (xxx)[x/y] →c (yxx)[x/y] decreases the measure of
Φ′′ but thereafter (yxx)[x/y] →c (yyx)[x/y] →c (yyy)[x/y] are not decreasing
reduction steps since they act on untyped occurrences.

As a corollary, termination holds for any strategy reducing only redexes
T-occurrences, an important key point used in Sec. 3.1 and 3.2.

Corollary 1. If Φ�Γ
HW t:τ , then any M-reduction sequence contracting only
(dB, c, w)-redex T-occurrences is finite.

Types of terms can also be recovered by means of Subject Expansion (SE), a
property which will be particularly useful in Sec. 3.1 and 3.2.

Lemma 3 (SE I). If Γ
HW t′:τ and t→M t
′ then Γ
HW t:τ .

3.1 Linear-Head and Head M-Normalization

Linear-head reduction [19,35] comes from a fine notion of evaluation for
proof nets [25]. It is a particular reduction strategy of the M-calculus al-
though it is not a strategy of β-reduction. In contrast to head-reduction
for λ-calculus the reduction relation →LHM for M-terms is non-deterministic:
y[y/w][x/z] LHM← (λx.y[y/w])z →LHM (λx.w[y/w])z. This behaviour is however
safe since →LHM has the diamond property [7].

Another remarkable property of linear-head reduction is that the hole of the
contexts LH cannot be duplicated nor erased. This is related to a recent result [3]
stating that linear-head reduction is standard for the M-calculus, exactly as left-
to-right reduction is standard for the λ-calculus.

We now refine a known result in the λ-calculus which characterizes head-
normalizing terms by means of intersection types, either idempotent [17,8]1 or
non-idempotent [21]. Indeed, the set of linear-head M-normalizing terms coincides
with the set of HW-typable terms.

Lemma 4. If Φ�Γ
HW t:τ and t has no (dB, c|LH)-redexes T-occurrences in Φ,
then t ∈ LHM-nf.

It is worth noticing that Lem. 4 does not hold for head-nfs. Indeed, the term
(yxx)[x/y] in the example just after Lem. 2 does not have any redex T-occurrence
(the only two c-redexes occurrences are untyped), and is not a head-nf. This
emphasizes the fact that linear-head reduction is more pertinent for calculi with
ES than head reduction. We conclude by

1 Although idempotency was not explicity mentioned in [17], a remark on pp. 55 points
out the meaninglessness of duplication of types in a sequence.

304 D. Kesner and D. Ventura

Theorem 1. Let t ∈ TM. Then t ∈ LHN (M) iff t is HW-typable.

Proof. Let t ∈ LHN (M). We proceed by induction on the length of the linear-
head M-normalizing reduction using Lem. 3 (see [30] for details).

Let t be HW-typable. By Cor. 1 the strategy consisting in the contraction of
(dB, c|LH)-redex T-occurrences terminates in a term t′ without such redexes. The
term t′ is typable by Lem. 2 and t′ is a LHM-nf by Lem. 4. Thus, t ∈ LHN (M).

We can finally characterize head-normalization. A term t is head-
normalizing, written t ∈ HN (M), iff t M-reduces to a term of the form
λx1 . . . xn.yu1 . . . um for some n ≥ 0,m ≥ 0.

Theorem 2. Let t ∈ TM. Then t ∈ HN (M) iff t is HW-typable.

Proof. For the if implication we have HN (M) ⊆ LHN (M) so we conclude by
Thm. 1. Otherwise, tHW-typable implies by Thm. 1 that t→∗

M t′, where t′ ∈ LHM-
nf. The (terminating) reduction relation→(c,w) on t′ gives a term of the required
form.

3.2 Weak M-Normalization

In this section we use the type system HW to characterize weakly M-normalizing
terms, a result that extends the well-known characterization [17] of weakly β-
normalizing in the λ-calculus. As in [17,13], HW-typability alone does not suffice
to characterize weak M-normalizing terms (see an example at the beginning of
Sec. 3). The type [] plays a similar rôle to the universal ω type in [17,13], although
it is restricted to occur only in the domain type of a function that accepts any
kind of argument. We then restrict the allowed typing derivations in order to
recover such a characterization. Indeed, the set of positive (resp. negative)
subtypes of a type is the smallest set satisfying the following conditions (cf.[13]).

– A ∈ P(A).
– A ∈ P([σi]i∈I) if ∃i A ∈ P(σi); A ∈ N ([σi]i∈I) if ∃i A ∈ N (σi).
– A ∈ P(M→τ) if A ∈ N (M) or A ∈ P(τ); A ∈ N (M→τ) if A ∈ P(M) or

A ∈ N (τ).
– A ∈ P(Γ) if ∃ y ∈ dom(Γ) s.t. A ∈ N (Γ (y)); A ∈ N (Γ) if ∃ y ∈ dom(Γ) s.t.

A ∈ P(Γ (y)).
– A ∈ P(〈Γ, τ〉) if A ∈ P(Γ) or A ∈ P(τ); A ∈ N (〈Γ, τ〉) if A ∈ N (Γ) or

A ∈ N (τ).

As an example, [] ∈ P([]), so that [] ∈ N ([]→ σ), [] ∈ P(x:[[]→ σ]) and
[] ∈ P(〈x:[[]→σ], σ〉).

Lemma 5. Let Φ � Γ
HW t:τ s.t. [] /∈ P(〈Γ, τ〉). If t has no (dB, c, w)-redex
T-occurrences in Φ, then t ∈ M-nf.

Theorem 3. Let t ∈ TM. Then, t ∈ WN (M) iff Γ
HW t:τ and [] /∈ P(〈Γ, τ〉).

Quantitative Types for the Linear Substitution Calculus 305

Proof. If t ∈ WN (M), we proceed by induction on the length of the M-normalizing
reduction sequence using Lem. 3 (see in [30] for details).

Suppose Γ
HW t:τ and [] /∈ P(〈Γ, τ〉). By Cor. 1 the strategy of contracting
only redex T-occurrences terminates in a term t′ without such redexes. The
term t′ is typable by Lem. 2 and then t′ turns out to be a M-nf by Lem. 5. Thus,
t ∈ WN (M).

4 About Strong M-Normalization

In this section we show the third main result of the paper which is a charac-
terization of the set of strongly M-normalizing terms by means of S-typability.
The proof is done in several steps. The first key point is the characterization of
the set of strongly M\w-normalizing terms (instead of M-normalizing terms). For
that, SR and SE lemmas for the S-type system are needed, and an inductive
characterization of the set SN (M\w) turns out to be helpful to obtain them.
The second key point is the equivalence between strongly M and M\w-normalizing
terms. While the inclusion SN (M) ⊆ SN (M\w) is straightforward, the fact that
every w-reduction step can be postponed w.r.t. any M\w-step (Lem. 11) turns out
to be crucial to show SN (M\w) ⊆ SN (M).

We first introduce the graphical equivalence ∼ on M-terms, given by the
contextual, transitive, symmetric and reflexive closure of the following three
axioms2

t[x/u][y/v] ≈CS t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)
(λy.t)[x/u] ≈σ1 λy.t[x/u] if y /∈ fv(u)
(tv)[x/u] ≈σ2 t[x/u]v if x /∈ fv(v)

This equivalence, related to Regnier’s σ-equivalence [38] on λ-terms (resp. σ-
equivalence on terms with ES [5]), preserves types, a property used to perform
some safe transformations of terms in order to inductively define the set SN (M\w)
(cf. clause (E)). Note that, for any t ∈ TM, we have that the set {t′ | t →M\w t′}
is finite. Therefore, for any t ∈ SN (M\w), the depth of t can be defined as the
maximal length of M\w-reduction sequences starting at t, denoted by ηM\w(t).

Lemma 6 (Invariance for ∼). Let t, t′∈TM s.t. t ∼ t′. Then, 1) ηM\w(t) =
ηM\w(t′). 2) If Φ � Γ
S t:τ , then Φ′ � Γ
S t′:τ . Moreover, sz(Φ)=sz(Φ′).

In contrast to systemHW , whose typing measure sz() is only decreasing w.r.t.
reduction of redex typed occurrences, the system S enjoys a stronger subject
reduction property, guaranteeing that every reduction decreases the measure
sz() of terms (whose redexes are all typed now).

Lemma 7 (SR II). Let Φ�Γ
S t:τ . If t→M\w t′ then Φ′�Γ
S t′:τ and sz(Φ) >
sz(Φ′).

2 Eventhough only σ2 will be used later to give an inductive definition of SN (M), the
equivalence is presented as a whole.

306 D. Kesner and D. Ventura

Notice that the previous lemma does not hold if the witness derivation in
the rules (→ eS) and (cutS) in Fig. 2 is only required for the case I = ∅. For
example, given x[x/y] →c y[x/y] and their respective typing derivations Φ and
Φ′, one would have sz(Φ) = sz(Φy) + 2 = 2 · sz(Φy) + 1 = sz(Φ′). One can even
have sz(Φ)<sz(Φ′) if y is replaced by an arbitrary bigger term. Notice that an
erasing step v[x/u]→w v also decreases sz() but the type assignment for u may
change w.r.t. that of v[x/u].

Lemma 8 (SE II). Let Γ
S t′:τ . If t→M\w t′ then Γ
S t:τ .

Notice that expansion does not hold for→w-reduction. For example x : [σ]
S
x:σ and x[y/Ω]→w x, but x : [σ] �
S x[y/Ω]:σ.

These technical tools are now used to prove that SN (M\w) coincides exactly
with the set of S-typable terms. To close the picture, i.e. to show that also
SN (M) coincides with the set of S-typable terms, we establish an equivalence
between SN (M) and SN (M\w). This is done constructively thanks to the use
of an inductive definition for SN (M\w). Indeed, the inductive set of M\w-
strongly-normalizing terms is the smallest subset of TM that satisfies the
following properties:

(V) If t1, . . . , tn ∈ ISN (M\w), then xt1 . . . tn ∈ ISN (M\w).
(L) If t ∈ ISN (M\w), then λx.t ∈ ISN (M\w).
(W) If t, s ∈ ISN (M\w) and |t|x = 0, then t[x/s] ∈ ISN (M\w).
(B) If u[x/v]t1, . . . , tn ∈ ISN (M\w), then (λx.u)vt1, . . . , tn ∈ ISN (M\w).
(C) If C[[u]][x/u] ∈ ISN (M\w), then C[[x]][x/u] ∈ ISN (M\w).
(E) If (tu)[x/s] ∈ ISN (M\w) and |u|x = 0, then t[x/s]u ∈ ISN (M\w).

Note the use of the σ2-axiom in the last clause of the definition. It is not sur-
prising that ISN (M\w) turns out to be equivalent to SN (M\w), a property which
considerably simplifies the proof of Lemma 10.

Lemma 9. SN (M\w) = ISN (M\w)

Proof. Given o ∈ SN (M\w), we show o ∈ ISN (M\w) by induction on 〈ηM\w(o), |o|〉.
The converse uses induction on the definition of ISN (M\w).

Lemma 10. Let t ∈ TM. If t ∈ SN (M\w) then t is S-typable.

Proof. Use the equality SN (M\w) =L. 9 ISN (M\w) to reason by induction on
t ∈ ISN (M\w). The proof also uses Lem. 6 and 8 (see [30] for details).

In order to infer SN (M\w) ⊆ SN (M), the following postponement property is
crucial.

Lemma 11 (Postponement). Let v∈TM. If v→+
w→M\wv′ then v→M\w→+

w v
′.

Proof. We first show by cases v →w→M\w v′ implies v →M\w→+
w v′. Then, the

statement holds by induction on the number of w-steps from v.

Quantitative Types for the Linear Substitution Calculus 307

Lemma 12 (From M\w to M). Let t∈TM. If t∈SN (M\w), then t∈SN (M).

Proof. We show that any reduction sequence ρ : t→M . . . is finite by induction on
the pair 〈t, n〉, where n is the maximal number such that ρ can be decomposed as
ρ : t→n

w t′ →M\w t′′ → . . . (this is well-defined since →w is trivially terminating).
We compare the pair 〈t, n〉 using →M\w for the first component (this is well-
founded since t ∈ SN (M\w) by hyp.) and the standard order on natural numbers
for the second one. When the reduction sequence starts with at least one w-step
we conclude by Lem. 11. All the other cases are straightforward.

We conclude this section with the third main theorem for M-calculus:

Theorem 4. Let t ∈ TM. Then t is S-typable iff t ∈ SN (M).

Proof. Let Φ � Γ
S t:τ . Assume t /∈ SN (M\w) so that ∃∞ sequence t = t0 →M\w
t1 →M\w t2 →M\w · · · . By Lem. 7 Φi � Γ
 ti:τ for every i, and ∃∞ sequence
sz(Φ0) > sz(Φ1) > sz(Φ2) > . . ., which leads to a contradiction. Therefore,
t ∈ SN (M\w) ⊆Lem. 12 SN (M).

For the converse, t ∈ SN (M) ⊆ SN (M\w) because →M\w⊆→M. We conclude by
Lem. 10.

A corollary of this result is that M-calculus enjoys the (IE) Property [26],
namely, if t{x/u} and u are in SN (M), then t[x/u] is also in SN (M). Indeed,
Thm. 4 gives t{x/u} and u typable, then Lem. 30 in [30] gives the exact premises
to type t[x/u], which belongs to SN (M) by Thm. 4.

5 Conclusion

This paper studies quantitative types for the linear substitution calculus for
which we characterized linear-head, head, weak and strongly normalizing sets
of terms. In particular, the correspondence between head β-normalization for
λ-terms and linear-head M-normalization for terms with ES can now be obtained
by means of an indirect logical reasoning (i.e. the HW-system), in contrast to
the operational result given in [4].

The type systems are given by simple formalisms: intersection is represented
by multisets, the typing rules are syntax-oriented and no subtyping relation is
used. Similar ideas can be applied [30] in the framework of intuitionistic se-
quent style, giving rise to a reformulation of Herbelin’s calculus which is in-
teresting in its own. The HW-system also enjoys the inhabitation property for
λ-calculus [12], which is a proper sub-calculus of the linear substitution calculus.

Our strong normalization characterization implies that the number of steps
of the longest reduction sequences of terminating M-terms is bounded by the the
size of typing derivations. But despite the use of quantitative types, we did not
give an exact upper bound, as done for example in [9,20]. This remains as future
work.

Although type inference is undecidable for any system characterizing termi-
nation properties, semi-decidable restrictions are expected to hold. Principal

308 D. Kesner and D. Ventura

typing is a property (cf. [21]) which allows to obtain partial typing inference
algorithms [40,39,31] and exact bounds for termination (cf.[10]). Moreover, rele-
vance in the sense of [18] is a key property to obtain principal typings. Therefore
semi-decidable typing inference algorithms are also expected to hold for our two
non-idempotent type systems.

Neergard et al. [37] proved that type inference and execution of typed pro-
grams are in different (resp. the same) classes of complexity in the idempo-
tent (resp. non-idempotent) case. However, the system introduced by Carlier et
al. [14] allows to relax the notion of type linearity. An interesting challenge would
be relax the notion of linear types in order to gain expressivity while staying in
a different class.

Last but not least, the inhabitation problem for idempotent intersection types
in the λ-calculus is known to be undecidable [41], while the problem was recently
shown to be decidable in the non-idempotent case [12]. An interesting question
concerns the inhabitation problems for our non-idempotent type systems.

Acknowledgment. This work was partially funded by the international project
DeCOPA STIC-AmSud 146/2012 (second author partially supported by
a PDJ grant from the Brazilian agency CAPES) and the French-Argentinian
Laboratory in Computer Science INFINIS.

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. JFP 1(4),
375–416 (1991)

2. Accattoli, B.: Evaluating functions as processes. In: TERMGRAPH. EPTCS,
vol. 110, pp. 41–55 (2013)

3. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardiza-
tion theorem. In: POPL. ACM (2014)

4. Accattoli, B., Dal Lago, U.: On the invariance of the unitary cost model for head
reduction. RTA, LIPIcs 15, 22–37 (2012)

5. Accattoli, B., Kesner, D.: The structural λ-calculus. In: Dawar, A., Veith, H.
(eds.) CSL 2010. LNCS, vol. 6247, pp. 381–395. Springer, Heidelberg (2010)

6. van Bakel, S.: Complete restrictions of the intersection type discipline.
TCS 102(1), 135–163 (1992), version with a corrected proof at,
http://www.doc.ic.ac.uk/~svb/Research/Papers/TCS92corrected.pdf

7. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics, revised edn.
Elsevier Science, Amsterdan (1984)

8. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. Bulletin of Symbolic Logic 48, 931–940 (1983)

9. Bernadet, A., Lengrand, S.: Complexity of strongly normalising λ-terms via non-
idempotent intersection types. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS,
vol. 6604, pp. 88–107. Springer, Heidelberg (2011)

10. Bernadet, A., Lengrand, S.: Non-idempotent intersection types and strong
normalisation. LMCS 9(4) (2013)

11. Boudol, G., Curien, P.-L., Lavatelli, C.: A semantics for lambda calculi with
resources. MSCS 9(4), 437–482 (1999)

http://www.doc.ic.ac.uk/~svb/Research/Papers/TCS92corrected.pdf

Quantitative Types for the Linear Substitution Calculus 309

12. Bucciarelli, A., Kesner, D., Ronchi Della Rocca, S.: The inhabitation problem for
non-idempotent intersection types (submitted)

13. Cardone, F., Coppo, M.: Two extension of Curry’s type inference system.
In: Logic and Computer Science. APIC Series, vol. 31, pp. 19–75. Academic Press
(1990)

14. Carlier, S., Polakow, J., Wells, J.B., Kfoury, A.J.: System E: Expansion vari-
ables for flexible typing with linear and non-linear types and intersection types.
In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 294–309. Springer,
Heidelberg (2004)

15. Coppo, M., Dezani-Ciancaglini, M.: A new type-assignment for lambda terms.
Archiv für Mathematische Logik und Grundlagenforschung 19, 139–156 (1978)

16. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory
for the lambda-calculus. Notre Dame J. of Form. Log. 21(4), 685–693 (1980)

17. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Functional characters of solvable
terms. Mathematical Logic Quarterly 27(2-6), 45–58 (1981)

18. Damiani, F., Giannini, P.: A decidable intersection type system based on rel-
evance. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789,
pp. 707–725. Springer, Heidelberg (1994)

19. Danos, V., Regnier, L.: Head linear reduction (2003),
iml.univ-mrs.fr/~regnier/articles/pam.ps.gz

20. De Benedetti, E., Ronchi Della Rocca, S.: Bounding normalization time through
intersection types. ITRS, EPTCS 121, 48–57 (2013)

21. de Carvalho, D.: Sémantiques de la logique linéaire et temps de calcul. PhD Univ.
Aix-Marseille II (2007)

22. Di Cosmo, R., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions.
MSCS 13(3), 409–450 (2003)

23. Gabbay, D., de Queiroz, R.: Extending the Curry-Howard interpretation to linear,
relevant and other resource logics. JSL 57(4), 1319–1365 (1992)

24. Girard, J.-Y.: Linear logic. TCS 50, 1–102 (1987)
25. Girard, J.-Y.: Proof-nets: The parallel syntax for proof-theory. In: Logic and

Algebra, pp. 97–124 (1996)
26. Kesner, D.: The theory of calculi with explicit substitutions revisited. In: Duparc,

J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 238–252. Springer,
Heidelberg (2007)

27. Kesner, D.: A theory of explicit substitutions with safe and full composition.
LMCS 5(3) (2009)

28. Kesner, D., Lengrand, S.: Resource operators for lambda-calculus. IandC 205(4),
419–473 (2007)

29. Kesner, D., Ó Conchúir, S.: Milner’s lambda calculus with partial substitutions
(2008), http://www.pps.univ-paris-diderot.fr/~kesner/papers

30. Kesner, D., Ventura, D.: Quantitative Types for Intuitionistic Calculi,
http://hal.archives-ouvertes.fr/hal-00980868/

31. Kfoury, A.J., Wells, J.B.: Principality and type inference for intersection types
using expansion variables. TCS 311(1-3), 1–70 (2004)

32. Krivine, J.-L.: A Call-by-Name Lambda-Calculus Machine. HOSC 20(3), 199–207
(2007)

33. Krivine, J.-L.: Lambda-calculus, types and models. Ellis, Horwood (1993)
34. Lengrand, S., Lescanne, P., Dougherty, D., Dezani-Ciancaglini, M., van Bakel, S.:

Intersection types for explicit substitutions. IandC 189, 17–42 (2004)
35. Mascari, G., Pedicini, M.: Head linear reduction and pure proof net extraction.

TCS 135(1), 111–137 (1994)

iml.univ-mrs.fr/~regnier/articles/pam.ps.gz
http://www.pps.univ-paris-diderot.fr/~kesner/papers
http://hal.archives-ouvertes.fr/hal-00980868/

310 D. Kesner and D. Ventura

36. Milner, R.: Local bigraphs and confluence: Two conjectures (extended abstract).
ENTCS 175(3), 65–73 (2007)

37. Neergaard, P., Mairson, H.: Types, Potency, and Idempotency: Why Nonlinear-
ity and Amnesia Make a Type System Work. In: ICFP 2004, SIGPLAN Not.,
vol. 39(9), pp. 138–149 (2004)

38. Regnier, L.: Une équivalence e sur les lambda-termes. TCS 2(126), 281–292 (1994)
39. Ronchi Della Rocca, S.: Principal Type scheme and unification for intersection

type discipline. TCS 59, 1–29 (1988)
40. Ronchi Della Rocca, S., Venneri, B.: Principal Type Scheme for an extended type

theory. TCS 28, 151–169 (1984)
41. Urzyczyn, P.: The emptiness problem for intersection types. Journal of Symbolic

Logic 64(3), 1195–1215 (1999)

	Quantitative Types for the Linear Substitution Calculus
	1 Introduction
	2 The Linear Substitution Calculus
	3 About Linear-Head, Head and Weak M-Normalization
	3.1 Linear-Head and Head M-Normalization
	3.2 Weak M-Normalization

	4 About Strong M-Normalization
	5 Conclusion
	References

