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ABSTRACT

Two diagnostics based on potential vorticity and the envelope of Rossby waves are used to investigate

upscale error growth from a dynamical perspective. The diagnostics are applied to several cases of global,

real-case ensemble simulations, in which the only difference between the ensemble members lies in the

random seed of the stochastic convection scheme. Based on a tendency equation for the enstrophy error, the

relative importance of individual processes to enstrophy-error growth near the tropopause is quantified.After

the enstrophy error is saturated on the synoptic scale, the envelope diagnostic is used to investigate error

growth up to the planetary scale. The diagnostics reveal distinct stages of the error growth: in the first 12 h,

error growth is dominated by differences in the convection scheme. Differences in the upper-tropospheric

divergent wind then project these diabatic errors into the tropopause region (day 0.5–2). The subsequent error

growth (day 2–14.5) is governed by differences in the nonlinear near-tropopause dynamics. A fourth stage of

the error growth is found up to 18 days when the envelope diagnostic indicates error growth from the synoptic

up to the planetary scale. Previous ideas of the multiscale nature of upscale error growth are confirmed in

general. However, a novel interpretation of the governing processes is provided. The insight obtained into the

dynamics of upscale error growth may help to design representations of uncertainty in operational forecast

models and to identify atmospheric conditions that are intrinsically prone to large error amplification.

1. Introduction

Weather prediction has improved significantly in the

past decades (Bauer et al. 2015). Forecast dropouts,

however, do still occur in operational numerical weather

prediction models (Rodwell et al. 2013, 2018). Because

of the multiscale nature of atmospheric dynamics, there

may always be an intrinsic limit of predictability even if

model errors and initial-condition errors occur only on

the smallest resolved scale (Lorenz 1969). Small-scale

errors associated with moist processes grow much faster

than errors on the synoptic scale and saturate already

after about one day (Hohenegger and Schär 2007). Be-

cause of this scale dependence, small-scale errors can

initiate a multistage sequence of upscale error growth

and thereby affect the forecast skill on much larger

scales (e.g., Zhang et al. 2003, 2007; Selz and Craig

2015b; Judt 2018).

Based on an idealized moist baroclinic wave simula-

tion, Zhang et al. (2007) derived a conceptual three-

stage model for upscale error growth. A similar upscale

error-growth behavior could also be found in realistic

weather events (Selz and Craig 2015b; Judt 2018). In the

first stage, errors grow quickly especially in regions of
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moist convection due to convective instability. This

growth quickly slows down and saturates on the

convective scale with a complete displacement of the

individual cells (Zhang et al. 2003, 2007). The following

stage is characterized by the transitioning from an un-

balanced small-scale error pattern to a balanced larger-

scale error pattern. Although spreading gravity waves

are a prominent feature of this stage (Selz and Craig

2015b), Bierdel et al. (2017, 2018) have argued that these

have only transient effects that are small in comparison

to changes in the net divergence forced by convection.

In the last stage, the model suggests that errors grow on

the synoptic scale with the background baroclinic

instability.

Upscale error growth has often been investigated us-

ing error-energy spectra (e.g., Zhang et al. 2007; Selz and

Craig 2015b; Judt 2018; Selz 2019). These spectra pro-

vide insight into the scale of the error, but do not provide

insight into the processes governing the error growth.

One diagnostic to provide such insight into the processes

governing the error growth is based on potential vor-

ticity (PV; Snyder et al. 2003; Dirren et al. 2003; Davies

and Didone 2013; Baumgart et al. 2018). Recently,

Baumgart et al. (2018) applied this diagnostic to a case

study of an operational forecast. In the presence of the

initial-condition and model errors of the investigated

forecast of a state-of-the-art operational model, the er-

ror growth was dominated by differences in the non-

linear near-tropopause dynamics. This work suggests

that these near-tropopause interactions might be more

important to synoptic-scale error growth than the direct

impact of baroclinic instability. For upscale error

growth, one expects that the processes dominating the

error growth are more directly related to moist pro-

cesses than in the operational forecast investigated by

Baumgart et al. (2018). To gain deeper insight into the

role of moist processes to upscale error growth, we here

apply the same diagnostic framework as in Baumgart

et al. (2018) to simulations, in which the initial differ-

ences stem only from the representation of convection.

On the synoptic scale, forecast errors saturate when

troughs and ridges in an upper-level Rossby wave pat-

tern are completely out of phase. Beyond this synoptic-

scale phase saturation at long lead times (beyond

2 weeks), the results of Buizza and Leutbecher (2015)

indicate that there is still forecast skill for large-scale

fields. To investigate error growth up to the planetary

scale, we employ a complementary diagnostic that filters

out phase information and identifies the envelope of

the upper-level Rossby waves. This diagnostic is based

on finite-amplitude local wave activity (LWA) in the

primitive-equation, isentropic-coordinates framework

following Ghinassi et al. (2018). It has been shown

recently that the LWA-based diagnostic is particularly

suitable in identifying finite-amplitudewave packets and

related nonlinear phenomena such as wave-breaking

and blocking (Ghinassi et al. 2018). Using this phase-

filtered envelope diagnostic, we are capable to investi-

gate error growth up to the planetary scale and long

lead times.

Simulating explicitly the upscale error growth from

the convective up to the planetary scale requires

convection-permitting simulations on very large, pref-

erably global, domains and for long lead times. Such an

approach is computationally extremely costly, but has

recently been performed for a single case by Judt (2018).

This approach, however, is currently not feasible to be

applied to a large number of cases with several ensemble

members to ensure the robustness of the results. Using

coarser resolution with a deterministic scheme to pa-

rameterize convection, upscale error growth turns out

to be much slower (Zhang et al. 2003; Selz and Craig

2015a). A way out of this problem was suggested by Selz

and Craig (2015a) who showed that a stochastic con-

vection scheme, namely the scheme of Plant and Craig

(2008), could generate error amplitudes on meso- and

synoptic scales similar to a convection-permitting sim-

ulation. The scheme models the individual updrafts

in a grid box and draws their magnitude randomly

from a distribution. A different realization of the

convection can thus be achieved by changing the

random seed of the scheme. The scheme thus simu-

lates the outcome of the first error-growth stage and

projects it adaptively onto the model grid. For up-

scale error-growth experiments, this characteristic is a

crucial advantage compared to simulations with a

deterministic scheme.

Recently, Selz (2019) investigated the intrinsic pre-

dictability on larger scales that originate from the short

intrinsic predictability of convection using the stochastic

convection scheme of Plant and Craig (2008) to repre-

sent the first stage of error growth. The coarse resolution

allowed for the simulation of 12 cases, regularly dis-

tributed over one year, with 5 ensemble members each.

In the current work we use this dataset to apply the ad-

vanced diagnostics described above to gain more insight

into the processes governing the upscale error growth.

This paper is organized as follows: section 2 describes

the upscale error-growth simulations and introduces the

PV and envelope diagnostics that are used to quantify

the error growth from a dynamical, process-based per-

spective. Section 3 illustrates the results of our diag-

nostic for one representative case study. The relative

importance of the individual processes to upscale error

growth is then discussed in section 4. Finally, we pro-

vide a summary of our results in section 5.
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2. Data and methods

a. Global simulations with a stochastic convection

scheme

We use the icosahedral nonhydrostatic global fore-

casting model ICON of the German weather service

(Zängl et al. 2015). The model was run with a horizontal

resolution corresponding to about 40 km. Convection

is parameterized using the stochastic Plant–Craig (PC)

convection scheme (Plant and Craig 2008). The PC

scheme uses a random value of the convective mass flux,

which is drawn from a quasi-equilibrium distribution

that uses the ensemble mean mass flux given by a stan-

dard CAPE closure. For each ensemble member a

different seed is used to generate the random draw, re-

sulting in a different realization of convective variability

[see Fig. 1 in Selz (2019) for illustration]. At the initial

time, this is the only difference between ensemble

members, but as the simulations evolve, differences in

the resolved flow will also lead to differences in the

closure.

A total of 12 different cases are considered, one for

each month from October 2016 to September 2017.

These cases are initialized 12h before the start of the

month, using initial conditions from ECMWF. After a

spinup period of 12 h, we create an ensemble of five

members by changing the random seed of the PC

scheme. Initially, the only difference between these

members thus lies in the convective scheme. All simu-

lations are run for a duration of 31 days. Further infor-

mation on the set up of the simulations are provided in

Selz (2019).

For the PV inversion, we use data with a horizontal

resolution of 18 3 18 on pressure levels from 900 to

100hPa with a grid distance of 50 hPa. Data on pressure

levels below the ground are created by horizontal linear

interpolation from valid neighboring grid points.We use

hourly data for the first 10 days and 3-hourly data af-

terward. For the further analysis of the error growth,

data are interpolated from pressure to isentropic levels.

Different isentropes are used for each case to account

for the seasonal dependence of the tropopause loca-

tion. For each case, the isentrope is chosen such that the

tropopause is located at approximately 458N [see cli-

matology of Liniger and Davies (2004)], resulting in the

choice of 315K for December, January, and February;

320K for November, March, and April; 325 K for

October and May; 330K for June and September; and

335K for July and August.

b. PV error and tendency equation

We use Ertel-PV (Ertel 1942) as our key variable.

In the framework of the primitive equations and with

potential temperature u as vertical coordinate, it is de-

fined as

P5
1

s
(z

u
1 f ) , (1)

where zu is the vertical component of the isentropic

relative vorticity, f is the Coriolis parameter, and

s52g21(›p/›u) is the isentropic layer density with

gravitational acceleration g and pressure p.

The PV tendency is given by advection and noncon-

servative PV modification,

›P

›t
52v � =

u
P1N1 res., (2)

where N52 _u(›P/›u)1P(› _u/›u)1 (1/s)k � (=3 _v) de-

scribes the nonconservative PV modification due to di-

abatic heating and nonconservative momentum change.

The heating rates _u and horizontal wind tendencies _v are

approximated by centered differences of accumulated

tendencies1 from the parameterization schemes (convec-

tion, microphysics, long- and shortwave radiation, turbu-

lence, subgrid-scale orography, and gravity wave drag).

The residual (res.) includes the influence of those non-

conservative processes that cannot be quantified with

the available data as, e.g., the contribution of numerical

diffusion, and intrinsic numerical errors due to the

discretization and interpolation of the data.

Our focus is on the difference in PV between the in-

dividual ensemble members, DP, defined as

DP5P
n
2P

m
, (3)

where Pn and Pm denote the PV of two different en-

semble members n and m, respectively. Our ICON en-

semble contains five members. It is thus possible to

define the PV difference for 10 different member pairs:

member 22member 1, member 32member 1, member

3 2 member 2, . . .2 In the following, we use the termi-

nology ‘‘error’’ for the difference between twomembers

although, strictly speaking, none of the members de-

scribes the true evolution.

To have a positive definite metric, we consider the

(potential) enstrophy error, (DP)2/2. Themean enstrophy

1Data are saved with an hourly resolution for the first 10 days

and with a 3-hourly resolution afterward (see section 2a), so the

heating rates and horizontal wind tendencies are approximated by

2- and 6-h-centered differences, respectively.
2Note that for the further analysis of the error amplification it is

not necessary to investigate the other possible combination of

two members (e.g., one does not need to investigate member 1 2

member 2 in addition to member 22member 1) as enstrophy and

LWA are positive definite variables.
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error P is then defined as the spatial average of the

enstrophy error over the midlatitudes of the Northern

Hemisphere (308–808N),

P 5
1

A

ð

A

(DP)2

2
dA , (4)

where A is the area of integration, dA5 a2 cosfdldf is

the area element in spherical coordinates, a denotes the

radius of Earth, l is longitude, and f is latitude. P is

then averaged over the 12 cases and 10 member pairs

within each case, which allows us to obtain reasonably

robust statistics (a sample of 120), yielding P . The sta-

tistical uncertainty of P associated with the month-to-

month variability is estimated as the standard error for

the 12 cases [i.e., sðP Þ5s/
ffiffiffiffiffi

12
p

, where s denotes the

standard deviation of the 12 cases].

To further investigate the enstrophy-error evolution,

we follow the derivation of Baumgart et al. (2018) and

derive a tendency equation for DP

›DP

›t
52Dv � =

u
P2 v � =

u
DP1DN1 res., (5)

where

DN52D _u
›P

›u
2 _u

›DP

›u
1DP

› _u

›u
1P

›D _u

›u

1
1

s
k � (=3D _v)1

1

Ds
k � (=3 _v) (6)

denotes the tendency of DP due to nonconservative pro-

cesses.Variableswith aD denote thedifferencebetween the

two members, while variables with an overbar denote the

mean of the twomembers. We further extend the tendency

for the PV error to a tendency for the enstrophy error:

›

›t

(DP)2

2
52DPDv � =

u
P2=

u
�
"

(DP)2

2
v

#

1
(DP)2

2
=

u
� v1DPDN1 res . (7)

We partition the advective part of the error tendency

based on the PV perspective for midlatitude dynamics

(Hoskins et al. 1985) as in Teubler and Riemer (2016)

and Baumgart et al. (2018). We analyze the contributions

to error growth near the tropopause by decomposing the

horizontal velocity at that near-tropopause level. For that

purpose, we first apply a Helmholtz partitioning to sep-

arate the divergent flow from the nondivergent flow

(Lynch 1989). The nondivergent flow is then further par-

titioned into the flow associated with upper- and lower-

level PV anomalies, respectively, by using piecewise PV

inversion (PPVI; Davis and Emanuel 1991; Davis 1992).

Anomalies are defined as deviations from a background

state, which for each case is defined as the temporal

mean over the 31 days of simulation time averaged over

the 5 members. Piecewise PV inversion is performed

between 258–858N and 850–150 hPa. Vertical bound-

ary conditions are specified as potential temperature

anomalies at 875 and 125 hPa. Here 600 hPa is used as

the separation level between upper- and lower-level PV

anomalies as PV errors are, in general, only small at

this midlevel [Fig. 2 in Baumgart et al. (2018)]. The

partitioning includes uncertainties due to the harmonic

flow component, the horizontal boundary conditions,

and the nonlinearities of the piecewise PV inversion. In

general, these uncertainties are small and do not affect

the physical interpretation of the results.

The influence of upper-level PV anomalies (by PV

advection due to the associated winds) on the near-

tropopause evolution is here interpreted as the contri-

bution from near-tropopause dynamics (vnTP). As shown

by Baumgart et al. (2018), this contribution to near-

tropopause error growth is mostly related to differences

in the nonlinear dynamics.3 The influence of lower-level

PV and u anomalies on the near-tropopause evolution is

here interpreted as the contribution from tropospheric-

deep interaction (vTPd). This contribution describes the

vertical interaction between upper and lower levels and

includes the basic mechanism for baroclinic instability

(Eady 1949; Hoskins et al. 1985; Davis and Emanuel

1991; Heifetz et al. 2004). The influence of upper-

tropospheric divergence (vdiv) can be associated with

balanced dynamics and diabatic processes [as one would

obtain from an omega equation, see, e.g., chapter 6.4 in

Holton and Hakim (2012)]. A strong divergence contri-

bution is often associated with latent heat release below

(Davis et al. 1993; Riemer et al. 2014; Quinting and Jones

2016). In summary, our flow partitioning results in

v’ v
nTP

1 v
TPd

1 v
div

. (8)

We insert this flow partitioning in Eq. (7) and spatially

integrate over the midlatitude Northern Hemisphere

(308–808N). Thereby, we can quantify the relative impor-

tance of near-tropopause dynamics [term 1 on the right-

hand sideofEq. (9)], tropospheric-deep interaction (term2),

upper-tropospheric divergence (terms 3 and 4), and non-

conservative processes (term 5) to enstrophy-error growth:

3 In Baumgart et al. (2018), the partitioning into the contribution

of linear and nonlinear dynamics, respectively, was based on the

difference between the full near-tropopause tendency and its lin-

earized part where the background state of the PPVI (30-day

temporal mean) was used as reference state for the linearization

(see their section 4b).
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dP

dt
5

1

A

ð

A

›

›t

(DP)2

2
dA5

1

A

�

2

ð

A

DPDv
nTP

� =
u
PdA2

ð

A

DPDv
TPd

� =
u
PdA

2

ð

A

DPDv
div

� =
u
PdA1

ð

A

(DP)2

2
=
u
� v

div
dA1

ð

A

DPDN dA

�

1 bnd.1 res . (9)

The boundary term, bnd. 52(1/A)
Þ

S
[(DP)2/2]v � ndS,

describes the boundary effect due to errors being

advected into or out of the integration domain. Because

of the choice of the integration domain (hemispheric

integration from 308 to 808N), this boundary contribu-

tion is in general very small and will not be considered

hereafter.

In addition to the enstrophy-error tendency,we consider

the growth rate associated with the individual processes:

a
process

5
1

P

�

dP

dt

�j
process

. (10)

In contrast to the enstrophy-error-tendency diagnostic

[Eq. (9)], which provides a quantitative metric for the

absolute error growth, this growth-rate diagnostic

provides a quantitative metric for the error growth rel-

ative to the existing error. By combining both diagnos-

tic, we thus have a quantitative metric for both the

absolute and relative error growth.

As for the mean enstrophy error (P ), the enstrophy-

error tendency [Eq. (9)] and growth rates [Eq. (10)]

associated with the individual processes are averaged

over the 12 cases and the 10 member pairs within each

case to obtain reasonably robust statistics.4

c. Rossby wave envelope error

The Rossby wave envelope is obtained by, first,

quantifying Rossby ‘‘waviness’’ through local finite-

amplitude wave activity (LWA) and then extracting

the envelope through a spatial filter. In our work we

decided to use the envelope of LWA instead of the

more established envelope of the meridional wind

(Zimin et al. 2003). While both yield very similar results

during the linear stage of a Rossby wave, the former was

shown to be more appropriate in the case of finite-

amplitude waves (Ghinassi et al. 2018).

Our LWA diagnostic is defined in the framework of

the primitive equations with potential temperature u as

vertical coordinate. Details can be found in Ghinassi

et al. (2018). Broadly speaking, LWA is a positive defi-

nite quantity related to the displacement of PV contours

from zonal symmetry. Consider a specific isentropic

layer at a specific time. For any given latitude f one

defines an associated PV contour Q(f) through the

relation

ðð

P$Q

s dA5

ðð

f0
$f

s dA, (11)

where dA denotes surface integration on the considered

isentrope, the integration on the left-hand side extends

over those areas where PV is larger than Q, and the

integration on the right-hand side extends poleward of

the considered latitude f. LWA is then defined as

LWA(l,f)5
1

cosf

(

ð

lS

[P(l,f0)2Q(f)]s a cosf0df0

1

ð

lN

[Q(f)2P(l,f0)]s a cosf0df0

)

,

(12)

where f0 denotes the integration variable in the meridi-

onal direction, and lS and lN are the arcs along the me-

ridian at any given l satisfying the following conditions:

l
S
:P$Q, f0

#f , (13)

l
N
:P#Q, f0

$f , (14)

[for illustration see Fig. 1 inGhinassi et al. (2018)]. LWA

has units of meters per second and quantifies the strength

of Rossby waves in terms of their pseudomomentum.

The zonal average of LWA exactly recovers the finite-

amplitude wave activity of Nakamura and Solomon

(2011). LWA is Eulerian in longitude and partly La-

grangian in latitude. This characteristic has to be kept in

mind when comparing LWA-based diagnostics with our

earlier-defined PV-based diagnostics, since the latter is

fully Eulerian. In addition, the LWA-based diagnostic

is nonlocal in the sense that (possibly remote) non-

conservative processes affect the relation betweenf and

Q. This effect renders the relation Q(f) dependent on

time; however, this time dependence turns out to be small

in the sense thatQ(f) varies by less than 10% within a

4 If a PV inversion at one time step did not converge for a specific

case and member (about 5% of all inversions), the average of the

near-tropopause and tropospheric-deep tendency shown in Figs. 7

and 8 is taken only over the converged cases and member pairs.

Because of the small number of not-converged time steps, we still

expect our diagnostic to be reasonably robust.
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one-month period and, by consequence, the difference

between P and Q in the expression for LWA is domi-

nated by variations in P. Regarding our ensembles, it is

appropriate to define a common Q(f) relation for all

members, and this is achieved by using the corresponding

relation at initial time where all ensemble members are

identical. This guarantees that LWA at one latitude f is

computed with respect to the same PV contour Q(f) for

each ensemblemember. For computational efficiency, we

use a spatial resolution of 28 3 28 for the computation

of LWA.

LWA as defined above still contains the phase infor-

mation of the wave.We now go on to filter out this phase

dependence through a convolution with a Hann window

in the zonal direction, which results in the wave enve-

lope E. The filter is allowed to depend on longitude and

its width is estimated through a wavelet analysis as de-

scribed in Ghinassi et al. (2018).

In our analysis we consider the difference DE in the

envelope between two ensemble members n and m,

DE5E
n
2E

m
. (15)

Note that DE (in contrast to E) is a signed variable and

includes both amplitude and position errors of the

envelope.

As for the enstrophy error, we consider the squared

envelope error, (DE)2/2, which is a positive definite

quantity. From this, the mean squared envelope error is

calculated by a spatial average yielding

E 5
1

A

ð

A

(DE)2

2
dA , (16)

where the integration area A extends over the midlati-

tudes of the Northern Hemisphere (208–808N). Finally,

E is averaged over the 12 cases and 10 member pairs

within each case yielding E . The statistical uncertainty

of E associated with the month-to-month variability is

estimated as the standard error for the 12 cases [i.e.,

sðE Þ5s/
ffiffiffiffiffi

12
p

].

3. Illustrative case study

The October ensemble is used to illustrate the spa-

tial patterns of our error-growth diagnostics. This

section starts with a discussion of the differences be-

tween the first two members. Recall that the difference

between two ensemble members is here referred to as

error. The contributions from the individual processes

to error growth are then discussed in terms of their

spatial pattern. Finally, the error growth in the two-

member ensemble is compared to that in the five-

member ensemble.

a. Evolution of error patterns

The PV and envelope error (DP andDE) derived from

the first two members of the October ensemble at se-

lected time steps are shown in Figs. 1–3 . At day 1, the

PV error occurs near the grid scale and exhibits con-

siderable values only in localized regions (Fig. 1). These

regions are spatially correlated with regions of pre-

cipitation. Between day 1 and 5 (Figs. 1 and 2a), the

PV error amplifies by an order of magnitude (note

the different scales of the color bars) and starts to

develop spatially more coherent patterns. Differ-

ences in the position of the dynamical tropopause

become apparent by day 5. During these first five days

the envelope error is mostly related to amplitude

errors, but overall only of very small magnitude (not

shown).

Between day 5 and 10, the PV error further amplifies

(Figs. 2a and 2b). Importantly, the rather localized PV

errors change to a larger-scale and more coherent er-

ror pattern that maximizes in regions where the tro-

popause is highly distorted. The PV error now projects

more strongly on the envelope error (Fig. 3g), which

shows a dipole error around 1208–1508W, suggesting that

the error consists in a shift of the envelope. The second

envelope-error maximum is a monopole located around

308–608E, suggesting instead an error in the amplitude

of the envelope.

FIG. 1. PV error derived from the first two members

(DP5P2 2P1) of the October ensemble at day 1. Black contours

denote the dynamical tropopause of member 1 (solid) andmember

2 (dashed). The blue contours depict the 1mmh21 precipitation

averaged over member 1 and 2.
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At day 15, the PV error exhibits approximately the

same scale and magnitude as the troughs and ridges

within the Rossby wave pattern (Fig. 2c). At the same

time, the envelope error affects an extended part of the

midlatitudes of theWestern Hemisphere, with two large

negative errors over the northeast Pacific and North

Atlantic sector and a positive error in between (Fig. 3h).

The region with a more zonally oriented tropopause

(708–1408E) shows only small errors both in PV and the

envelope.

Between day 15 and 20, the PV error amplification is

less pronounced than previously (Figs. 2c and 2d), in-

dicating that the PV error starts to saturate. The Rossby

wave pattern in the Western Hemisphere seems to be

completely decorrelated. This decorrelation appears

as a large error in the envelope diagnostic, mostly in the

form of an amplitude error (Fig. 3i). At the same time,

more pronounced PV errors start to occur in the East-

ern Hemisphere. These errors also become apparent as

small errors in the envelope diagnostic.

b. Error tendencies associated with individual

processes

In terms of PV, we can go one step further and re-

late the error evolution to individual processes. The

spatial patterns of the individual contributions to the

enstrophy-error tendency [Eq. (9)] are illustrated in

Fig. 4. The time steps and regions are chosen such that

the respective process makes a dominant contribution to

the error growth.

FIG. 2. PV error derived from the first two members (DP5P2 2P1) of the October ensemble at (a) day 5,

(b) day 10, (c) day 15, and (d) day 20. Black contours denote the dynamical tropopause of member 1 (solid) and

member 2 (dashed).
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The nonconservative tendency at 18 h (Fig. 4a) occurs

near the grid scale in localized regions of precipitation.

In these regions, there is also a significant precipitation

error (Fig. 4b). A partitioning of the nonconservative

tendency into the contributions from the individual pa-

rameterization schemes (see below in section 4b, Fig. 7b)

reveals that the contribution of the convection scheme

dominates at this time, suggesting that differences in the

latent heating induced by the convection scheme govern

the error growth at that time.

The divergence tendency at day 1.5 (Fig. 4c) leads to

error amplification along the dynamical tropopause,

particularly in the two ridges and the cutoff. A large

divergence tendency is found in the vicinity of cyclones

where also the vertical velocity exhibits a pronounced

error (Fig. 4d). At this early lead time, the vertical-

velocity error and the associated divergence error ten-

dency are still rather small-scale and mainly within an

envelope of expected mesoscale ascent, as in the warm

conveyor belt region around 208W. This observation

FIG. 3. Rossby wave envelopeE frommember 1 of theOctober ensemble at (a) day 10, (b) day 15, and (c) day 20. (d)–(f) As in (a)–(c), but

for member 2. (g)–(i) As in (a)–(c), but for the envelope difference DE.
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FIG. 4. (left) Individual contributions to the enstrophy-error tendency [Eq. (9)] and (right) together with the error field it is mostly

related to. The time and region of the panels are chosen such that the individual processes make a dominating contribution and thus differ

for the individual panels. Thick black contours denote the dynamical tropopause at 325K of member 1 (solid) and member 2 (dashed).

Thin contours depict the mean over member 1 and 2 of (a)–(d) geopotential at 850 hPa every 500m2 s22 (smoothed over 3 grid points) in

gray, (a),(b) precipitation at 0.1 and 1 mmh21 (smoothed over 3 grid points) in blue, and (e),(f) PV at 3 and 4 PVU in gray. Contours in

(g) denote the potential temperature error at 875 hPa at 24 and 28K (blue) and at 4 and 8K (red).
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suggests that the differences in latent heating induced by

the convection scheme (see previous paragraph) result

in differences in the vertical motion within existing

features of ascent, which are projected into the tropo-

pause region by upper-tropospheric divergence. This

pattern is in contrast to later lead times, when differ-

ences in vertical velocity are rather associated with a

displacement of the features themselves (not shown).

The near-tropopause tendency at day 4 (Fig. 4e)

maximizes along the dynamical tropopause on the flanks

of the narrow trough and the high-amplitude ridge.

Large error amplification is found in regions where the

PV error aligns with a strong PV gradient (Fig. 4f),

consistent with the observation of Snyder et al. (2003)

that the PV error maximizes in regions where the PV

gradient of the reference flow is large. The regions of

nonlinear Rossby wave behavior are associated with

large near-tropopause error growth, consistent with the

large importance of nonlinear Rossby wave dynamics to

the error growth found by Baumgart et al. (2018).

The tropospheric-deep tendency at day 22 (Fig. 4g)

leads to error amplification in regions of large-scale PV

errors (as can be inferred by the respective 2-PVU

contours; 1 PVU 5 1026Kkg21m2 s21). In these re-

gions, potential temperature errors near the surface

have a similar scale and are in vicinity of the near-

tropopause PV errors (Fig. 4h). The Eady (1949) model

for baroclinic instability suggests that such a configura-

tion is a necessary condition for tropospheric-deep error

amplification (Baumgart et al. 2018). Amplification oc-

curs when the lower-level potential temperature errors

and upper-level PV errors have a phase shift between

0 andp. The tropospheric-deep tendency thus quantifies

error growth due to differences in the baroclinic growth.

Before day 15 when the error has a smaller horizontal

scale than the troughs and ridges, the tropospheric-deep

error amplification is small (not shown). This small im-

portance of tropospheric-deep interaction to the error

growth during the first 15 days is plausible as the vertical

penetration of temperature anomalies, and thereby also

of temperature errors, depends on their horizontal scale

(Eady 1949; Baumgart et al. 2018).

c. Ensemble of all five members

In the following subsection, we consider the differ-

ences within the whole five-member ensemble to in-

vestigate how representative the previous error-growth

discussion of the two-member ensemble is for the five-

member ensemble. For that purpose, Fig. 5 shows the

2-PVUcontour (dynamical tropopause) of all fivemembers

for the same time steps as in Fig. 2.

At day 1 (not shown), no difference in the location

of the dynamical tropopause is apparent between the

individual members, indicating that the error occurs

near the grid scale and does not yet affect the synoptic

scale. At day 5 (Fig. 5a), differences in the tropopause

location of the individual members start to occur. These

differences increase significantly until day 10 (Fig. 5b)

and an increased spread of the 2-PVU contours is evident

in regions of a highly distorted tropopause. Individual

troughs and ridges show both phase and amplitude errors,

but are still located at similar positions. By day 15, the

troughs and ridges are almost completely decorrelated

(Fig. 5c), indicating that the PV error becomes saturated

on the scale of individual troughs and ridges. The region

with a rather zonal tropopause pattern (708–1408E), in

contrast, stands out as a region with only small spread of

the tropopause location. At day 20 (Fig. 5d), the differ-

ences in the ensemble are apparently not related to in-

dividual troughs and ridges any longer.

Compared to the error evolution in the two-member

ensemble, the differences between all five members

evolve in a similar way both in terms of the typical scale,

typical magnitude, and typical location of the error: er-

rors generated near the grid scale start to affect the

synoptic scale at around day 5 and reach the scale of the

Rossby wave troughs and ridges at around day 15. This

change in the scale of the error is also associated with a

strong increase in the magnitude of the error. Regions

with a distorted tropopause are associated with large

error growth, whereas regions with a more zonal tro-

popause exhibit only weak error growth. We conclude

that the error-growth characteristics discussed in the

previous subsections for the two-member ensemble are

representative for the five-member ensemble.

4. Quantitative view on the processes governing the

error growth

To quantify the relative importance of the processes

governing the error growth, we consider all 12 cases

including all pairwise combinations of the 5-member

ensembles. The large number of cases and member

pairs provides a large enough sample for statistics to be

reasonably robust, namely a sample of 120. This sec-

tion starts with a discussion of time series of the mean

enstrophy error and mean squared envelope error. Af-

terward, the contributions of individual processes to error

growth are quantified. Spatial maps of the squared enve-

lope error are then discussed to identify ‘‘error hot spots.’’

Finally, our results are compared with the conceptual

three-stage error growth model of Zhang et al. (2007).

a. Time series of error evolution

Time series of the mean enstrophy error ðP Þ and

mean squared envelope error ðP Þ over the midlatitudes
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of the Northern Hemisphere are shown in Fig. 6 to-

gether with the (statistical) standard error for the cases.

Both the enstrophy and the envelope diagnostic show

the typical form of an error-growth function (e.g., Selz

2019): The initially very fast error growth seems to

follow a power-law behavior in the first two days (as seen

on a log–log plot, not shown), which is followed by quasi-

exponential growth until day 6–7. Afterward, error

growth slows down significantly, until the error eventu-

ally reaches saturation after a certain time.

Two main differences exist between the enstrophy

and the envelope diagnostic. First, the envelope diag-

nostic shows larger differences between the 12 cases as

measured by the standard error. Second and more im-

portantly, the envelope error saturates at a later time

than the enstrophy error.

To quantify the different saturation levels in the

enstrophy and envelope diagnostic, we calculate the

predictability time t in the two diagnostics, according

to Selz (2019). For that purpose, the temporal devel-

opment of P and E after day 7 is fitted to the following

function with the fitting parameters a and b:

H 5H (t
0
) exp(af12 exp[2b(t2 t

0
)]g) , (17)

where t0 is set to 7 days as in Selz (2019) andH denotes

either P or E . From Fig. 6 it is evident that Eq. (17)

provides a very good fit for the temporal development of

P and E , respectively.

The predictability time is defined by the time when

80% of the error magnitude at t/‘ is reached, that

means

H (t)5 0:8H (t
‘
)5 0:8H (t

0
) exp(a) . (18)

With this definition, we derive a predictability time

of about 14.5 days for the enstrophy diagnostic and of

FIG. 5. Dynamical tropopause of member 1 (black contour), member 2 (blue contour), member 3 (yellow contour),

member 4 (red contour), and member 5 (green contour) at (a) day 5, (b) day 10, (c) day 15, and (d) day 20.
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about 18 days for the envelope diagnostic. For differ-

ence kinetic energy, Selz (2019) derived a predictability

time of 17 days, which lies in between the result for the

enstrophy and envelope diagnostic. This intermediate

time can be explained by the fact that the enstrophy

spectrum has larger weight on small scales than kinetic

energy, while small scales are filtered out in the envelope

diagnostic.

Based on Fig. 6, we could thus quantitatively derive a

time lag of 3.5 days between the enstrophy diagnostic

maximizing on the synoptic scale and the envelope di-

agnostic maximizing on the planetary scale. The pre-

dictability of individual ridges and troughs in a Rossby

wave pattern is thus about 3.5 days shorter than the

predictability of the wave-pattern envelope.

b. Relative error growth

For the early stage of the error evolution, we consider

the growth rate associated with the individual processes

[Eq. (10)] to quantify the error growth relative to the

existing error. Time series of these growth rates, aver-

aged over all cases andmember pairs, are shown in Fig. 7

together with the (statistical) standard error.

During the first 12 h, the by far largest growth rate is

associated with the nonconservative processes (Fig. 7a).

A further partitioning of this growth rate (Fig. 7b) in-

dicates that it is mostly related to the convection

scheme. The growth rate associated with the convection

scheme is at the beginning about 7 3 1025 s21 and then

sharply decreases by one order of magnitude within the

first 12 h. During the first 12 h, error growth is thus

dominated by the latent-heating differences that were

induced by the convection scheme. In the first 12 h, the

longwave radiation and microphysics scheme are asso-

ciated with error growth, while the turbulence scheme is

associated with error decay. These growth rates, how-

ever, are much smaller than the growth rate associated

with convection in the first 12 h. After about 18 h, when

the growth rate associated with the convective scheme is

small, these parameterized nonconservative processes

become of larger importance to the error growth than

the parameterized convection.

A substantial positive residual exists in our budget

equation for the enstrophy error in the first 12 h. This

residual translates to a growth rate of similar magni-

tude as the growth rate associated with the convection

scheme (not shown) and can be attributed to the fact

that our diagnostic measures the growth of existing er-

rors, but not the generation of new errors, whichmakes a

dominating contribution in the very beginning of the

simulations. We do not see any indication that this re-

sidual associated with the generation of new errors

compromises our interpretation of the relative impor-

tance of the processes governing the error growth.

The growth rate associated with upper-tropospheric

divergence exhibits large values already at the beginning

of the simulations and becomes the dominating error-

growth contribution after about 12 h when the growth

rate associated with the convection scheme has rapidly

decreased. The divergence error growth during this

stage is, in general, associated with pronounced vertical

velocity errors embedded within regions of mesoscale

ascent in the vicinity of cyclones (see section 3b, Figs. 4c

and 4d). Upper-tropospheric divergence thus provides

FIG. 6. Time series of (a) mean enstrophy error ðP Þ, and (b) mean squared envelope error ðE Þ over the

midlatitudes of the Northern Hemisphere; P and E are averaged over the 12 cases and 10 member pairs within

each case. These averages are shown as thick black lines, while the shading next to the lines denotes the (sta-

tistical) standard error for the 12 cases. The red dashed line shows the fit of the temporal development of the

mean enstrophy error and mean squared envelope error to Eq. (17) and the red cross indicates the predictability

time [as measured by Eq. (18)] of the diagnostics. For later references, vertical solid lines denote the end of

the individual stages, while the dashed blue line denotes the time of maximal near-tropopause error growth

(see Figs. 7 and 8).
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the dominating error-growth mechanism to project the

latent-heating differences induced by the convection

scheme into the tropopause region.

After about 2 days, the growth rate associated with

near-tropopause dynamics becomes larger than the

growth rate associated with upper-tropospheric diver-

gence, indicating that differences in the nonlinear

Rossby wave dynamics near the tropopause become

more important to the error growth than differences in

the moist processes and upper-tropospheric divergence.

The growth rate associated with near-tropopause dy-

namics is about 1 3 1025 s21 and thereby one order of

magnitude smaller than the growth rate associated with

the convection scheme at the beginning of the simula-

tions. Hohenegger and Schär (2007) found a similar

magnitude for error-growth rate on the synoptic scale

and also assumed that balanced dynamics are governing

the synoptic-scale error growth.

c. Absolute error growth

For the later stage of the error growth, we consider

the individual contributions to the enstrophy-error ten-

dency [Eq. (9)] to quantify the error growth in an absolute

sense. Time series of the individual error-tendency con-

tributions, averaged over all cases and member pairs,

are shown in Fig. 8 together with the (statistical) standard

error.

From the growth-rate discussion (see section 4b), it is

clear that near-tropopause dynamics makes the larg-

est contribution to error growth after about 2 days.

FIG. 7. (a) Growth rate of enstrophy error associated with the individual processes as in-

dicated by Eq. (10), and (b) further partitioning of the nonconservative contribution into the

contributions of the individual parameterization schemes. Results are averaged over the 12

cases and the 10 member pairs within each case. These averages are shown as a thick black

line, while the shading next to the line denotes the (statistical) standard error for the 12 cases.

The time series are smoothed by a running mean over 5 time steps.
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FIG. 8. (a) Partitioning of the mean enstrophy-error tendency into the contributions from

the individual processes, (b) partitioning of the mean nonconservative enstrophy-error

tendency into the contributions from the individual parameterization schemes, and (c) par-

titioning of the mean enstrophy tendency into the contributions from the individual pro-

cesses. The individual error-tendency contributions in (a) and (b) are averaged over the

12 cases and the 10 member pairs within each case, while the individual enstrophy-tendency

contributions in (c) are averaged over the 12 cases and the 5 members within each case. These

averages are shown as thick lines, while the shading next to the lines denotes the (statistical)

standard error for the 12 cases. The time series are smoothed by a running mean over

5 time steps.
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Until day 10, the contribution of near-tropopause dy-

namics to the error growth is strongly increasing with

lead time (Fig. 8a). In the following 7 days, it is de-

creasing with time, until it is eventually fluctuating

around zero after about 17 days. After about 15 days, the

contribution of near-tropopause dynamics is no longer

the largest error-growth contribution. Interestingly,

15 days is also about the time when the predictability

time of enstrophy is reached (see section 4a, Fig. 6).

Large error amplification by near-tropopause dynamics

thus occurs until the error becomes saturated on the

synoptic scale of individual troughs and ridges.

After about 15 days, the nonconservative, tropospheric-

deep, and divergence contributions become more im-

portant to the error growth than the near-tropopause

contribution. The large contribution of nonconservative

processes is mostly related to the longwave radiation

scheme (Fig. 8b). The longwave radiative PV tendency

correlates with the PV anomalies of troughs and ridges.

Once these anomalies start to decorrelate, this correla-

tion leads to a systematic radiative error amplification.

Tropospheric-deep error amplification occurs due to

differences in the release of baroclinic instability when

the PV and u errors near the tropopause and near the

surface, respectively, establish a favorable configuration

for baroclinic growth (see section 3b, Figs. 4g and 4h).

The divergence error amplification can be related to a

misrepresentation of surface cyclones and their associ-

ated divergent outflow in warm conveyor belts (not

shown).

To gain insight into the processes governing under-

lying Rossby wave evolution, we evaluate an analog

tendency equation for the enstrophy evolution as de-

rived in Baumgart et al. (2018) (their section 4c). The

enstrophy evolution in our simulation (averaged over all

cases and members, Fig. 8c) is governed by enstrophy

amplification by the nonconservative, divergence,

and tropospheric-deep contribution, while the near-

tropopause contribution is weakly negative. After the

enstrophy error reaches the scale of individual Rossby

wave troughs and ridges (around day 15), the processes

governing the error evolution are thus very similar to the

processes governing the underlying Rossby wave evo-

lution. The magnitude of the individual error-tendency

contributions is about twice as large as the magnitude of

the respective enstrophy-tendency contributions, which

is consistent with the double penalty effect of phase

errors during error saturation. In this stage, the pro-

cesses governing the error growth thus resemble the

climatological signal of the underlying Rossby wave

evolution.

FromFig. 8c it is clear that the sum of all contributions

to enstrophy growth is positive, suggesting that enstrophy

would grow during the whole simulation time. Such

continuous growth, however, is not physically mean-

ingful as the Rossby wave amplitude is, on average, not

amplifying with time. Rossby wave patterns amplify by

(moist) baroclinic instability and dissipate at a similar

rate by (barotropic) dissipation on the small scales due

to the downscale cascade of enstrophy. In numerical

weather prediction models, this dissipation appears as

numerical diffusion, which is an additional enstrophy

sink that cannot be quantified with the available data.

The residual in the enstrophy tendency is about 22 3

1026PVU2 s21 and almost constant over time (not

shown). A negative residual exists also in the enstrophy-

error tendency. This residual increases in magnitude

from day 2 to 15, until it reaches an almost constant

value of about 24 3 1026PVU2 s21 after day 15 (not

shown). This value is about twice as large as the residual

in the enstrophy tendency, consistent with the observed

double penalty effect of phase errors during error

saturation. The important role of dissipation was also

discussed in previous studies (Snyder et al. 2003; Zhang

et al. 2007; Saffin et al. 2016, 2017; Baumgart et al. 2018).

For instance, Zhang et al. (2007) quantified the contri-

bution of horizontal and vertical diffusion to their dif-

ference kinetic energy budget and found that this kind of

dissipation is of similar relative importance to the error

evolution as the residual observed in the current study.

d. Spatial distribution of the envelope error

The spatial distribution of the squared envelope error,

(DE)2/2, at day 5, 10, 15, and 20 is shown in Fig. 9. At day

5, the envelope error appears still very localized and

small in magnitude. At day 10 (Fig. 9b), two distinct

error regions are found around 1208–908W and around

308W. By day 15 (Fig. 9c), large error amplification oc-

curs in the Western Hemisphere: an extended region of

large error is found around 1508–1108W and secondary

maxima are found around 1808 and over an ‘‘error belt’’

extending from North America toward Europe. Be-

tween day 15 and 20 (Figs. 9c and 9d), error growth

continues further both in magnitude and in its spatial

extension. At day 20 (Fig. 9d), the error affects almost

the whole mid- to high latitudes of the Northern

Hemisphere. At this stage, the predictability time in the

envelope diagnostic is already reached (see section 4a,

Fig. 6b).

From Fig. 9 it is evident that the envelope error tends

to appear and amplifymore in the western portion of the

NorthernHemisphere, whereas in the eastern portion its

magnitude is lower and its spatial extent more confined.

This difference may be due to the fact that in our cases

the Rossby wave amplitude was, in general, weaker in

the eastern than in the western Northern Hemisphere.
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e. Comparison with the conceptual three-stage error

growth model

Our quantitative results from the PV- and envelope-

based diagnostic reveal that upscale error growth can

be divided into distinct stages based on the processes

governing the error growth (as indicated by the vertical

lines in Fig. 6). In the first stage (0–12h), differences

in the convection scheme dominate the error growth,

while upper-tropospheric divergence dominates in the

second stage (0.5–2 days). In the third stage (2–14.5 days),

near-tropopause dynamics dominates the error growth.A

fourth stage is found between 14.5 and 18 days, which is

characterized by the planetary-scale error growth in the

envelope diagnostic. In the following, we will compare

these four stages with the conceptual three-stage error

growth model derived by Zhang et al. (2007).

Stage 1 of the conceptual model is characterized by

error growth on the convective scale in regions of moist

convection (Zhang et al. 2007; Selz and Craig 2015b;

Judt 2018). The stochastic convective scheme in our study

represents explicitly resulting variability by reshuffling of

the individual clouds.5 The net effect of this stage on the

grid scale in the first few hours of the simulations is

dominated by differences in the diabatic PVmodification

from the convection scheme.

In the conceptual model, stage 2 is related to the

transitioning toward error growth on the synoptic scale

(Zhang et al. 2007; Selz and Craig 2015b). In our

FIG. 9. Squared envelope error (DE)2/2 averaged over the 12 cases and 10 member pairs within each case at (a) day

5, (b) day 10, (c) day 15, and (d) day 20.

5Note that this is different from a deterministic convection

scheme where the individual updrafts are not simulated, but only

the cloud distribution mean.
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simulations, the latent-heating differences induced by

the convection scheme project on differences in the

vertical motion and the associated upper-tropospheric

divergent PV advection that appear within regions of

mesoscale ascent in the vicinity of cyclones. The tran-

sition is in our simulation thus characterized by the di-

vergent flow making a dominant contribution to the

error growth. Thereby, upper-tropospheric divergence

provides an effective mechanism to project errors from

moist processes into the tropopause region.

The third stage in the conceptual model is related to

error growth by the background baroclinic instability

(Zhang et al. 2007). Although our diagnostic shows

that the underlying Rossby wave evolution during this

stage is governed by (moist) baroclinic amplification

(Fig. 8c), we find that the error growth is governed by

differences in the nonlinear near-tropopause dynam-

ics (Fig. 8a). Our diagnostic thereby provides a new in-

terpretation of the processes governing the error growth

during this stage and emphasize the importance to dis-

tinguish the processes governing the underlying Rossby

wave evolution from the processes governing the error

growth [see also section 4c in Baumgart et al. (2018)].

We find a fourth stage of the error growth between

about 14.5 and 18 days when the predictability time is

reached for the enstrophy error, but not for the envelope

error. This fourth stage could not be identified by Zhang

et al. (2007) and Selz and Craig (2015b) because these

studies did not have a long enough lead time to identify

this stage.6 The enstrophy error maximizes when the

phase of the individual troughs and ridges in the Rossby

wave pattern becomes decorrelated. The envelope di-

agnostic, instead, filters phase information and its error

can continue to grow beyond the saturation of phase

errors. The fourth stage is thus characterized by error

growth from the synoptic scale of individual Rossby

wave troughs and ridges up to the planetary scale.

In summary, previous ideas of amultiscale behavior of

upscale error growth are confirmed by our diagnostics.

Furthermore, our results provide a novel interpretation

of the governing processes and suggest a fourth stage of

upscale error growth.

5. Summary

This study provides a quantitative view on the pro-

cesses governing upscale error growth. Employing the

stochastic Plant–Craig convection scheme, global ICON

simulations of real cases are used to study upscale error

growth induced by the convection scheme up to the

planetary scale (Selz 2019). The use of a stochastic

convection scheme enables us to represent convective

uncertainty and its upscale propagation at relatively low

computational cost (Selz and Craig 2015a). Thereby, it is

possible to simulate 12 cases each consisting of a 5-member

ensemble, in which the only difference between the en-

semble members lies in the random seed of the stochastic

convection scheme.

We investigate upscale error growth with a PV diag-

nostic (Teubler and Riemer 2016; Baumgart et al. 2018)

that allows us to quantify the relative importance of in-

dividual processes to error growth near the tropopause.

The partitioning of the processes builds on the PV per-

spective for midlatitude dynamics and includes the in-

fluence of Rossby wave dynamics, baroclinic growth,

and moist processes. Additionally, we use a diagnostic

for the (phase-filtered) envelope of Rossby waves based

on local finite-amplitude wave activity (Ghinassi et al.

2018) to investigate error growth up to the planetary scale.

Based on the PV and envelope diagnostic, we find a

distinct sequence of the processes governing upscale

error growth: during the first 12 h, error growth is

dominated by differences in the convection scheme.

This growth is related to differences in the direct PV

modification by diabatic processes resulting from their

latent heating. Between 12 h and 2 days, the largest

contribution to error growth is related to upper-

tropospheric divergence, which projects errors from

moist processes into the tropopause region. This diver-

gence error growth is associated with vertical-motion

errors in regions of mesoscale ascent in the vicinity of

cyclones that result from the latent-heating differences.

After 2 days, error amplification up to the synoptic scale

is dominated by differences in the nonlinear near-

tropopause dynamics. During this stage, the dynamics

of error amplification differ distinctly from the under-

lying dynamics, which are that of the classical life cycle

of moist baroclinic Rossby waves. The envelope diag-

nostic indicates that a fourth stage of the error growth

exists between about day 14.5 and 18 when the pre-

dictability time in the PV diagnostic is reached, but

when there is still some predictability in the envelope

diagnostic. This stage is thus characterized by error

growth from the synoptic scale of individual Rossby

wave troughs and ridges up to the planetary scale of

the (phase-filtered) wave envelope. The processes

governing the error evolution during this stage, as

identified by the PV diagnostic, are basically indistin-

guishable from those governing the Rossby wave

evolution itself.

6 In addition, there are differences in the experimental setup

[e.g., the f-plane approximation and the periodic symmetry in the

study of Zhang et al. (2007) or the limited domain size in Selz and

Craig (2015b)].
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The results of our PV and envelope diagnostic confirm

the existence of a multistage behavior of upscale error

growth as observed in previous studies (e.g., Zhang et al.

2007; Selz and Craig 2015b; Judt 2018). Importantly,

new insight is gained into the processes that govern error

growth: By displacing the strong PV gradient associated

with the tropopause, upper-level divergence provides

an effective way to project errors associated with moist

processes directly into the tropopause region. Subse-

quently, these errors amplify by nonlinear near-tropopause

dynamics [the importance of nonlinear dynamics was

shown explicitly by Baumgart et al. (2018)]. This notion

is distinct from the projection of errors on differences in

the release of baroclinic instability, which is in our sim-

ulations only of minor importance to the error growth

during this stage. Our results suggest an additional fourth

stage of planetary-scale error growth that was missing in

the conceptual model of Zhang et al. (2007).

Because of the initial-condition and model errors

contained in current state-of-the-art operational weather

prediction models, one can expect a different error-

growth behavior in current operational forecasts than in

the upscale error-growth simulations investigated here.

For instance, the error growth in a recently investigated

operational case (Baumgart et al. 2018) did not show the

first two stages of upscale error growth that we found in

the present study. By contrast, it was dominated by

differences in the (balanced) near-tropopause dynamics

right from the beginning. For the same data as investi-

gated here, Selz (2019) calculated explicitly that the

error level at day 3.5 of our upscale error-growth simu-

lations corresponds to the initial-condition uncertainty

of the current ECMWF data assimilation system. In-

deed, at day 3.5 upscale error growth in our simulations

is already in stage 3 (error growth by near-tropopause

dynamics). These results provide evidence that the first

two stages do not dominate the error growth in opera-

tional forecasts. Nevertheless, stochastic perturbations

are necessary to increase the spread in current ensemble

forecasting systems that would be underdispersive oth-

erwise. In that sense, upscale error growth is of practical

importance to current weather forecasts, albeit not as

the dominant mechanism in an average sense. The in-

sight into the processes governing upscale error growth

obtained in this study may help to generate stochastic

perturbations that effectively initiate an upscale error-

growth cascade and thereby help to increase spread in

current ensemble forecasts.

An improved understanding of upscale error growth

may also help to identify regions that are prone to large

error growth. As upscale error growth provides a rather

effective mechanism to seed an error into the tropo-

pause region within 2 days, one can expect that localized

errors along the tropopause establish predominantly in

regions with latent heat release below. The dominant

contribution of near-tropopause dynamics in the third

stage of the error growth suggests that these errors then

further amplify along the dynamical tropopause, par-

ticularly in regions with a highly distorted tropopause.

In that sense, the results of this study point to those re-

gions where one can expect large forecast error growth

and thus large forecast uncertainty.
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