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Abstract. We consider homogeneous singular kernels, whose angular part is
bounded, but need not have any continuity. For the norm of the corresponding
singular integral operators on the weighted space L2(w), we obtain a bound
that is quadratic in the A2 constant [w]A2

. We do not know if this is sharp,
but it is the best known quantitative result for this class of operators. The
proof relies on a classical decomposition of these operators into smooth pieces,
for which we use a quantitative elaboration of Lacey’s dyadic decomposition
of Dini-continuous operators: the dependence of constants on the Dini norm
of the kernels is crucial to control the summability of the series expansion of
the rough operator. We conclude with applications and conjectures related to
weighted bounds for powers of the Beurling transform.

1. Introduction and main results

We are concerned with sharp weighted inequalities for singular integral opera-
tors, a topic that goes back to [1, 19] in the case of the Beurling operator, continues
through the solution of the A2 conjecture for all standard Calderón–Zygmund op-
erators [8] and the alternative approach to this result by A. K. Lerner [16, 17], and
keeps developing with new extensions, among them the recent approach of M. T.
Lacey [15] covering all Dini-continuous kernels. For a more precise discussion of
the background and our contributions, we need to recall some definitions:

Let T be a bounded linear operator on L2(Rd) represented as

Tf(x) =

ˆ

Rd

K(x, y)f(y) dy, ∀x /∈ supp f.

A function ω : [0,∞) → [0,∞) is a modulus of continuity if it is increasing and
subadditive (i.e. ω(t + s) ≤ ω(t) + ω(s)) and ω(0) = 0. We say that the operator
T above is an ω-Calderón–Zygmund operator if the kernel K has the standard size
estimate

|K(x, y)| ≤ CK

|x− y|d (1.1)
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and the smoothness estimate

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ ω

( |x− x′|
|x− y|

)
1

|x− y|d
for |x − y| > 2|x − x′| > 0. (We deliberately leave out any multiplicative constant
from the smoothness estimate, as this can be incorporated into the function ω.)
Moreover, K is said to be a Dini-continuous kernel if ω satisfies the Dini condition:

‖ω‖Dini :=

ˆ 1

0

ω(t)
dt

t
<∞. (1.2)

Let us denote the average of a function f over a cube Q by

〈f〉Q =

 

Q

f =

 

Q

f(x) dx =
1

|Q|

ˆ

Q

f(x) dx.

Here |Q| is the Lebesgue measure of Q. A weight is a nonnegative and finite almost
everywhere function on Rd. For 1 < p <∞, the Muckenhoupt class Ap is the set of

locally integrable weights w for which w1−p′ ∈ L1
loc(R

d), with 1/p+ 1/p′ = 1, and

[w]Ap
:= sup

Q

(  

Q

w
)(  

Q

w1−p′

)p−1

<∞,

where the supremum is taken over all cubes in Rd. We will adopt the following
definition for the A∞ constant of a weight w introduced by N. Fujii [7], and later
by J.M. Wilson [23]:

[w]A∞
:= sup

Q

1

w(Q)

ˆ

Q

M(1Qw)(x) dx.

Here, w(Q) :=
´

Q
w(x) dx, 1Qw(x) = w(x)1Q(x), where 1Q is the characteristic

function of Q, and the supremum above is taken over all cubes with edges parallel
to the coordinate axes. When the supremum is finite, we will say that w belongs
to the A∞ class.

Our weighted estimates are most efficiently stated in terms of the following vari-
ants of the weight characteristic:

{w}Ap
:= [w]

1/p
Ap

max{[w]1/p
′

A∞

, [w1−p′

]
1/p
A∞

},
(w)Ap

:= max{[w]A∞
, [w1−p′

]A∞
}.

Using the facts that [w1−p′

]
1/p′

Ap′
= [w]

1/p
Ap

and [w]A∞
≤ cd[w]Ap

(for the latter, see

[12, last display on p. 778]), one easily checks that

(w)Ap
≤ cd{w}Ap

≤ c′d[w]
max{1,1/(p−1)}
Ap

,

so any bounds in terms of the weight characteristics (w)Ap
and {w}Ap

are stronger

than similar bounds using [w]
max{1,1/(p−1)}
Ap

, which is the expression that most fre-

quently appears in sharp estimates for Calderón–Zygmund operators, like [8]. While
our notation is non-standard, we note that the characteristics (w)Ap

and {w}Ap

have implicitly appeared in several recent contributions, starting from [12, 14].
Given a Calderón–Zygmund operator T , the maximal truncation of T is the

operator T♯ given by

T♯f(x) := sup
ε>0

∣∣∣Tεf(x)
∣∣∣.
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where Tε is the ε-truncation of T :

Tεf(x) :=

ˆ

|x−y|>ε

K(x, y)f(y) dy.

Our first main result in contained in the following. It is a fully quantitative
version of a recent theorem of Lacey [15], which in turn is an extension of the A2

theorem of the first author [8].

Theorem 1.3. Let T be an ω-Calderón–Zygmund operator whose modulus of con-
tinuity satisfies the Dini condition (1.2). Let 1 < p <∞. Then, for every w ∈ Ap,
we have

‖T♯‖Lp(w)→Lp(w) ≤ cd,p
(
‖T‖L2→L2 + CK + ‖ω‖Dini

)
{w}Ap

.

In particular,

‖T♯‖L2(w)→L2(w) ≤ cd
(
‖T‖L2→L2 + CK + ‖ω‖Dini

)
[w]A2 .

Lacey proves such a result under the same assumptions on the operator T , but
without specifying the dependence of the norm bound on the Calderón–Zygmund
characteristics of T . For us, the precise form of this dependence will be important
in the application to our second main result. It should be noted that obtaining the
stated dependence, especially on ‖ω‖Dini, is not just a question of keeping careful
track of constants in Lacey’s proof, but requires some new twist in the argument:
Lacey’s proof relies on the possibility of making

´ ρ

0
ω(t) dt/t small by choosing ρ

small enough, and in this way it introduces a more complicated implicit dependence
on the function ω.

We now recall the notion of rough homogeneous singular integrals. These are
operators with convolution kernels K(x, y) = K(x− y) where, writing x′ = x/|x|,

K(x) =
Ω(x′)

|x|d , Ω ∈ L∞(Sd−1),

and
ˆ

Sd−1

Ω dσ = 0.

Observe that the kernel so defined is homogeneous of degree −d. The size estimate
is as usual, but there is no angular smoothness. Then, we will write

TΩf(x) = p. v.

ˆ

Rd

Ω(y′)

|y|d f(x− y) dy = lim
ε→0
R→∞

ˆ

ε<|y|<R

Ω(y′)

|y|d f(x− y) dy.

Our second aim is to prove the following.

Theorem 1.4. For every w ∈ Ap, we have

‖TΩ‖Lp(w)→Lp(w) ≤ cd,p‖Ω‖L∞{w}Ap
(w)Ap

.

In particular,
‖TΩ‖L2(w)→L2(w) ≤ cd‖Ω‖L∞ [w]2A2

.

Qualitatively, without specifying the dependence of the norm bound on the A2

characteristics of w, this result is well known [5, 6, 22]. The question of sharp
dependence on [w]A2

for TΩ was raised during the workshop “Weighted singular
integral operators and non-homogenous harmonic analysis” at the American Insti-
tute of Mathematics (Palo Alto, California) in October 2011, and the first author
discussed this issue especially with David Cruz-Uribe. Tracking the dependence in
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one of the classical proofs of a qualitative form of Theorem 1.4, we arrived at a
somewhat higher power on [w]A2 back then. We do not know if the bound above
is optimal but, to our knowledge, it is the best that is currently available.

Notation. By cd we mean a positive dimensional constant. Also, the positive
constants not depending on the essential variables will be denoted by C. Both C
and cd may vary at each occurrence. For x ∈ Rd, r > 0, the ball of center x and
radius r is the set B(x, r) := {y ∈ Rd : |x− y| < r}. For an operator T , ‖T‖B1→B2

is the operator norm, that is, the smallest N in the inequality ‖Tf‖B2
≤ N‖f‖B1

.
Sometimes we will use the notation a∨ b := max{a, b}. Finally, given a function f ,

by f̂ we will denote the Fourier transform of f .

2. Calderón–Zygmund operators with Dini-continuous kernel

Recently, Lacey [15, Theorem 4.2] extended the A2 theorem to a more general
class of Calderón–Zygmund operators, whose modulus of continuity ω satisfies the
Dini condition (1.2). (Very recently, his method has been pushed even further in
[2], but this extension goes to a different direction than our present needs.) For
such operators, Lacey proved a pointwise domination theorem by so-called sparse
operators, which originate from the approach to the A2 theorem due to Lerner
[16, 17].

However, Lacey’s result was qualitative in the sense that the constants arising
were not fully explicit in terms of ω. In this section, we revisit Lacey’s results, and
show the precise quantitative dependence on the Dini condition in the pointwise
domination result. As a consequence, we will obtain Theorem 1.3 as a corollary.

2.1. Dyadic cubes, adjacent dyadic systems and sparse operators. We be-
gin with some necessary definitions. The standard system of dyadic cubes in Rd is
the collection D ,

D :=
{
2−k([0, 1)d +m) : k ∈ Z,m ∈ Zd

}
,

consisting of simple half-open cubes of different length scales with sides parallel to
the coordinate axes. These cubes satisfy the following three important properties:

1) for any Q ∈ D , the sidelength ℓ(Q) is of the form 2k, k ∈ Z;
2) Q ∩R ∈ {Q,R, ∅}, for any Q,R ∈ D ;
3) the cubes of a fixed sidelength 2k form a partition of Rd.

Although the standard system of dyadic cubes is a versatile tool in mathematical
analysis, it does have some disadvantages. Namely, if B(x, r) is a ball, then there
does not usually exist a cube Q ∈ D such that B(x, r) ⊂ Q and ℓ(Q) ≈ r. In many
situations, a bounded number of adjacent dyadic systems Dα,

D
α :=

{
2−k([0, 1)d +m+ (−1)k 1

3α) : k ∈ Z,m ∈ Zd
}
, α ∈ {0, 1, 2}d,

can be used to overcome this problem:

Lemma 2.1 (See [10, Lemma 2.5]). For any ball B := B(x, r) ⊂ Rd, there exists a
cube QB ∈ Dα for some α ∈ {0, 1, 2}d such that B ⊂ QB and 6r < ℓ(QB) ≤ 12r.

We note that [10, Lemma 2.5] is actually a stronger lemma than Lemma 2.1
above but for clarity, we use this formulation.

In the light of Lemma 2.1, the collection D0 :=
⋃

α∈{0,1,2}d Dα can be seen

as a countable approximation of the collection of all balls in Rd. It still satisfies
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essentially the properties 1) and 3) that we listed earlier but it satisfies the property
2) only in various weaker forms. We slightly abuse the common terminology and
say that Q is a dyadic cube if Q ∈ D0.

The adjacent dyadic systems Dα satisfy also the following property, which will
be useful for us later in this section.

Lemma 2.2. If Q0 ∈ D0, then for any ball B := B(x, r) ⊂ Q0 there exists a cube
QB ∈ D0 such that B ⊂ QB ⊆ Q0 and ℓ(QB) ≤ 12r.

Proof. We will only detail the proof for d = 1. The general case follows by consider-
ing the cube that contains the ball, and repeating the one-dimensional consideration
for each of its side intervals in every coordinate direction.

We may assume that r < 1
12ℓ(Q0) since otherwise we can simply choose QB =

Q0. Let k ≥ 1 be the unique integer such that 6r < 2−kℓ(Q0) ≤ 12r and let us look
at the dyadic descendants of Q0 of side length 2−kℓ(Q0). Since B ⊂ Q0, we know
that there exists at least one such descendant interval I that B ∩ I 6= ∅. If B ⊂ I,
we can simply choose QB = I. Thus, we may assume that B 6⊂ I.

Since 2r < 1
3ℓ(I), the ball B can only intersect the left or right third of the

interval I. By symmetry, we can assume that the ball B intersects the left third of
the interval I. Then, by shifting the interval I one third of its length to left, we can
cover the ball B. Let Is be this shifted interval. By the definition of the collections
Dα, we know that Is ∈ D0. Since B ⊂ Q0 and B 6⊂ I, we know that there exists
another dyadic descendant J of Q0 of side length ℓ(I) on the left side of I. Then,
Is ⊂ I ∪ J ⊂ Q0. In particular, B ⊂ Is ⊂ Q0 and we can set QB = Is. �

For Lacey’s domination theorem, the notion of sparse operators is crucial. Let
S α ⊂ Dα. Then we say that the operator AS α is sparse if

AS αf(x) =
∑

Q∈S α

1Q〈|f |〉Q

and the collection S α satisfies the sparseness condition: for each Q ∈ S α we have
∣∣∣
⋃

Q′∈S
α

Q′(Q

Q′
∣∣∣ ≤ 1

2
|Q|.

The sparseness condition is equivalent with a suitable Carleson condition, see [18,
Section 6]. We will use the notation AS also for other types of collections S ⊂ D0.

2.2. Localized maximal truncations and truncated maximal operators.

Let T be a Calderón-Zygmund operator with Dini-continuous kernel. For every
cube P ⊂ Rd, we define the P -localized maximal truncation of T as the operator
T♯,P ,

T♯,P f(x) := sup
0<ε<δ< 1

2 ·dist(x,∂P )

∣∣Tε,δf(x)
∣∣1P (x),

where Tε,δ is another truncation operator given by

Tε,δf(x) :=

ˆ

ε<|x−y|<δ

K(x, y)f(y) dy.

As an auxiliary operator, we also need the truncated centered Hardy-Littlewood
maximal operator M c

ε,δ,

M c
ε,δf(x) := sup

ε<r<δ
〈|f |〉B(x,r).
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The connection between the truncations Tε,δ and the maximal operator M c
ε,δ is

formulated in the next lemma.

Lemma 2.3. Suppose that |x− x′| < 1
2ε. Then

|Tε,δf(x)− Tε,δf(x
′)| ≤ cd (CK + ‖ω‖Dini)M

c
ε,2δf(x).

Proof. This is a straightforward calculation that we complete in several steps. First,
let us write the left hand side of the inequality in a different form:

|Tε,δf(x)− Tε,δf(x
′)| =

∣∣∣
ˆ

ε<|x−y|<δ

K(x, y)f(y) dy −
ˆ

ε<|x′−y|<δ

K(x′, y)f(y) dy
∣∣∣

=
∣∣∣
ˆ

ε<|x−y|<δ

[K(x, y)−K(x′, y)]f(y) dy

+
( ˆ

ε<|x−y|<δ

−
ˆ

ε<|x′−y|<δ

)
K(x′, y)f(y) dy

∣∣∣ =: |I + II|.

Then we can estimate terms I and II separately. For the term I, we use the
smoothness of the kernel and the properties of ω:

|I| ≤
ˆ

ε<|x−y|<δ

ω

( |x− x′|
|x− y|

) |f(y)|
|x− y|d dy

≤
∑

k:ε≤2kε<δ

ˆ

2kε<|x−y|≤2k+1ε

ω

( |x− x′|
2kε

) |f(y)|
(2kε)d

dy

≤
∑

k:ε≤2kε<δ

ω

( |x− x′|
2kε

)
ˆ

B(x,2k+1ε)

|f(y)|
(2kε)d

dy

≤
∞∑

k=0

ω
( |x− x′|

2kε

)
cdM

c
ε,2δf(x)

≤ c′dM
c
ε,2δf(x)

∞∑

k=0

ˆ |x−x′|/2k−1ε

|x−x′|/2kε

ω(t)
dt

t

= c′dM
c
ε,2δf(x)

ˆ 2|x−x′|/ε

0

ω(t)
dt

t
≤ c′dM

c
ε,2δf(x)

ˆ 1

0

ω(t)
dt

t
.

For the term II, let us first notice that

II = IIε − IIδ,

where

IIr :=
( ˆ

|x−y|>r

−
ˆ

|x′−y|>r

)
K(x′, y)f(y) dy

=
( ˆ

|x−y|>r≥|x′−y|

−
ˆ

|x′−y|>r≥|x−y|

)
K(x′, y)f(y) dy.

Since |x− x′| ≤ 1
2ε ≤ 1

2r, in the first integral we have |x− y| ≤ |x− x′|+ |x′ − y| <
1
2r+ r ≤ 3

2r, and in the second, |x− y| ≥ |x′ − y| − |x′ − x| > r− 1
2r =

1
2r, so that

1
2r ≤ |x− y| ≤ 3

2r throughout. By symmetry, we also have that 1
2r ≤ |x′ − y| ≤ 3

2r.
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Thus, the size estimate of the kernel K gives us

|IIr| ≤
ˆ

1
2 r≤|x′−y|,|x−y|≤ 3

2 r

CK

|x′ − y|d |f(y)| dy

≤ cdCK

 

B(x, 32 r)

|f(y)| dy ≤ cdCKM
c
ε,2δf(x),

which proves the claim. �

2.3. Lacey’s domination theorem revisited. In this section we will prove the
following quantitative version of Lacey’s pointwise domination theorem.

Theorem 2.4 (Quantitative pointwise domination). Let T be a Calderón–Zygmund
operator with Dini-continuous kernel. Then for any compactly supported function
f ∈ L1(Rd) there exist sparse collections S α ⊆ Dα, α ∈ {0, 1, 2}d, such that

T♯f(x) ≤ cd
(
‖T‖L2→L2 + CK + ‖ω‖Dini

) ∑

α∈{0,1,2}d

AS αf(x) (2.5)

for almost every x ∈ Rd, where the constant cd depends only on the dimension.

Note that Theorem 1.3 is an immediate corollary of Theorem 2.4, in combination
with the following, by now well known estimate from [9] (see also [11]).

Theorem 2.6. Let 1 < p <∞ and w ∈ Ap. Then

‖AS α‖Lp(w)→Lp(w) ≤ cp{w}Ap
.

Remark 2.7. The original Calderón–Zygmund operator can be estimated in terms
of the maximal truncations by |Tf(x)| ≤ T♯f(x) + ‖T‖L2→L2 |f(x)|, cf. [20, I.7.2].
(The case of the identity operator T = I, which is a Calderón–Zygmund operator
with zero kernel, shows that the second term cannot be omitted.) Since Ap-weighted
estimates for the second term (in effect, the identity operator) are trivial, Theorem
1.3 remains true for the linear T in place of T♯, under the same assumptions.

The novelty in both Theorems 1.3 and 2.4 is the explicit constant on the right.
The main tool for the proof of Theorem 2.4 is the following elaboration of Lacey’s
recursion lemma [15, Lemma 4.7], again with the same explicit constant. As men-
tioned in the Introduction, obtaining this explicit constant requires some nontrivial
twist in the argument, and we provide the full details.

Lemma 2.8. Let f be an integrable function. Then for every Q0 ∈ D0, there exists
a collection Q(Q0) of dyadic cubes Q ⊂ Q0 such that the following three conditions
hold:

(1)
∑

Q∈Q(Q0)
|Q| < εd|Q0|; (small size)

(2) if Q′ ⊂ Q and Q′, Q ∈ Q(Q0), then Q′ = Q; (maximal with respect to
inclusion)

(3) we have

T♯,Q0
f ≤ C0

T 〈|f |〉Q0
1Q0

+ max
Q∈Q(Q0)

T♯,Qf,

where C0
T := cd

(
‖T‖L2→L2 +CK+‖ω‖Dini

)
and εd can be taken as small as desired,

at the cost of choosing a large enough cd.
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Proof. The idea of the proof is to show that for any constant C0
T > 0 we can cover

the set E0,

E0 := {x ∈ Q0 : T♯,Q0
f(x) > C0

T 〈|f |〉Q0
},

with countably many cubes Qi ∈ D0 that satisfy conditions (2) and (3) and if the
constant C0

T is of the form cd
(
‖T‖L2→L2+CK+‖ω‖Dini

)
, then the cubes also satisfy

condition (1).
Let x ∈ E0. Since the function (ε, δ) 7→ Tε,δf(x) is continuous, we can choose

such radii 0 < σx < τx ≤ 1
2 · dist(x, ∂Q0) that

|Tσx,τxf(x)| ≥ C0
T 〈|f |〉Q0

and

|Tσ,τf(x)| ≤ C0
T 〈|f |〉Q0

if σx ≤ σ ≤ τ ≤ 1

2
· dist(x, ∂Q0).

For simplicity, we drop the conditions ε > 0 and δ ≤ 1
2 · dist(x, ∂Q0) from the

notation. Now the maximality of σx implies the following:

T♯,Q0
f(x) = sup

ε≤δ
|Tε,δf(x)|

= sup
ε≤δ≤σx

|Tε,δf(x)| ∨ sup
σx≤ε≤δ

|Tε,δf(x)| ∨ sup
ε≤σx≤δ

|Tε,δf(x)|

=: I ∨ II ∨ III,
where

III = sup
ε≤σx≤δ

|Tε,σx
f(x) + Tσx,δf(x)| ≤ I + II,

and II ≤ C0
T 〈|f |〉Q0 by definition. So altogether we find that

T♯,Q0f(x) ≤ sup
ε≤δ≤σx

|Tε,δf(x)|+ C0
T 〈|f |〉Q0 ∀x ∈ E0, (2.9)

which is a preliminary version of the pointwise domination result we are proving.
Now we can use Lemma 2.2 to get from the preliminary version to the desired
estimate. Since B(x, 2σx) ⊂ Q0 for every x ∈ E0, there exists a cube Qx ∈ D0 such
that B(x, 2σx) ⊂ Qx ⊂ Q0 and ℓ(Qx) ≤ 12 · 2σx for every x ∈ E0. Let (Qi)i be
the sequence of such cubes Qx that are maximal with respect to inclusion, that is,
for each Qi there does not exist R ∈ D0 such that Qi ( R ⊆ Q0. Then for every
x ∈ E0 we have

T♯,Q0
f(x)

(2.9)
≤ sup

0<ε≤δ≤σx

|Tε,δf(x)|+ C0
T 〈|f |〉Q0

≤ sup
0<ε≤δ≤ 1

2 ·dist(x,∂Qx)

|Tε,δf(x)|+ C0
T 〈|f |〉Q0

= T♯,Qx
f(x) + C0

T 〈|f |〉Q0

≤ max
i
T♯,Qi

f(x) + C0
T 〈|f |〉Q0

and for every x ∈ Q0 \ E0 we have T♯,Q0
f(x) ≤ C0

T 〈|f |〉Q0
by definition. Thus, the

cubes Qi satisfy Lacey’s conditions (2) and (3) and to complete the proof, we only
need to show that with a suitable choice of C0

T the cubes also satisfy property (1).
Let us split the set E0 into two parts:

E1 := {x ∈ E0 :Mσx,2τxf(x) ≤ C1
T 〈|f |〉Q0

}, E2 := E0 \ E1,
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where C1
T is a constant whose value we will fix in the next step. Then, for x ∈ E1

and x′ ∈ B(x, 12σx), we have

|Tσx,τxf(x
′)− Tσx,τxf(x)|

2.3
≤ cd(CK + ‖ω‖Dini)M

c
σx,2τxf(x)

≤ cd(CK + ‖ω‖Dini)C
1
T 〈|f |〉Q0

=
1

2
C0

T 〈|f |〉Q0
,

provided that we choose

C1
T :=

C0
T

2cd(CK + ‖ω‖Dini)
.

Then, since x ∈ E1 ⊆ E0, it follows that

T♯(1Q0
f)(x′) ≥ |Tσx,τxf(x

′)| ≥ |Tσx,τxf(x)| −
1

2
C0

T 〈|f |〉Q0
>

1

2
C0

T 〈|f |〉Q0

for all x′ ∈ B(x, 12σx). In particular,
∣∣∣∣∣
⋃

x∈E1

B(x, 12σx)

∣∣∣∣∣ ≤
∣∣{T♯(1Q0f) >

1
2C

0
T 〈|f |〉Q0}

∣∣

≤ ‖T♯‖L1→L1,∞

1
2C

0
T 〈|f |〉Q0

‖1Q0f‖L1 =
2‖T♯‖L1→L1,∞

C0
T

|Q0|

by the weak L1 inequality of T♯.
Let us then show that with this choice of C1

T and a suitable choice of C0
T the size

of E2 is controlled. Let x ∈ E2. By definition, we can choose some ρx ∈ [σx, 2τx]
such that

 

B(x,ρx)

|f(y)| dy > C1
T 〈|f |〉Q0

.

Since τx ≤ 1
2 · dist(x, ∂Q0), we know that B(x, 2ρx) ⊂ Q0. In particular,

M(1Q0
f)(x′) > C1

T 〈|f |〉Q0

for all x′ ∈ B(x, ρx), where M is the noncentered Hardy-Littlewood maximal oper-
ator

Mf(x) := sup
B∋x

 

B

|f |dx.

Thus
∣∣∣∣∣
⋃

x∈E2

B(x,
1

2
σx)

∣∣∣∣∣ ≤
∣∣∣∣∣
⋃

x∈E2

B(x, ρx)

∣∣∣∣∣ ≤ |{M(1Q0
f) > C1

T 〈|f |〉Q0
}|

≤ cd
C1

T 〈|f |〉Q0

‖1Q0f‖L1 =
c′d(CK + ‖ω‖Dini)

C0
T

|Q0|.

by the weak L1 inequality of Hardy-Littlewood maximal operator.
Finally, let us combine all the previous calculations. For every maximal cube Qi,

let xi ∈ E0 be a point such that Qi = Qxi
. Then, since ℓ(Qx) ≤ 12 · 2σx for each

x ∈ E0, we have |Qxi
| ≤ cd|B(xi,

1
2σxi

)| for every i. In particular, since the cubes
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in the collection {Qxi
: Qxi

∈ Dα} are pairwise disjoint for a fixed α ∈ {0, 1, 2}d,
we get that

∑

i

|Qxi
| =

∑

α∈{0,1,2}d

∑

i:Qxi
∈Dα

|Qxi
|

≤ cd
∑

α∈{0,1,2}d

∑

i:Qxi
∈Dα

∣∣B(xi,
1
2σxi

)
∣∣

= cd
∑

α∈{0,1,2}d

∣∣∣
⋃

i:Qxi
∈Dα

B(xi,
1
2σxi

)
∣∣∣

≤ 3dcd

(∣∣∣
⋃

x∈E1

B(x, 12σx)
∣∣∣+
∣∣∣
⋃

x∈E2

B(x, ρx)
∣∣∣
)

≤ c′d
‖T♯‖L1→L1,∞ + CK + ‖ω‖Dini

C0
T

|Q0|.

By Corollary A.3, we know that ‖T♯‖L1→L1,∞ ≤ cd(‖T‖L2→L2 + CK + ‖ω‖Dini).
Hence, if

C0
T = cd(CK + ‖ω‖Dini + ‖T‖L2→L2),

then the cubes Qi satisfy property (1). �

With the lemma at hand, Theorem 2.4 will follow by repeating the rest of Lacey’s
original proof, with the application of his Lemma 4.7 replaced by our Lemma 2.8.
For completeness of the presentation and convenience of the reader, we also provide
the details here:

Proof of Theorem 2.4. Let f be a compactly supported integrable function and let
B be a ball such that B ⊇ supp f . By Lemma 2.1, there exists a dyadic cube
P0 ∈ D0 such that 2B ⊂ P0. Our strategy is to construct a collection S0 ⊂ D0 and
a nested sequence of collections Sn ⊂ D0, n = 1, 2, . . ., such that the collections
Dα∩⋃∞

n=0 S α
n are sparse, the operator AS0 satisfies the pointwise inequality (2.5)

for every x /∈ P0 and the operator AS∗
satisfies (2.5) for almost every x ∈ P0, where

S∗ :=
⋃∞

n=1 Sn. We prove the theorem in three parts.
Part 1: Construction of the collection S0. Let κd be a dimensional constant

such that dist(x, ∂(2κdP0)) ≥ 2 · diam(P0) for every x ∈ P0, where 2κdP0 is the
concentric enlargement of P0 with side length 2κd · ℓ(P0). Then we can use Lemma
2.1 to take a cube P1 ∈ D0 such that 2κdP0 ⊂ P1. Since supp f ⊆ B and dist(x, y) ≤
diam(P0) ≤ 1

2 ·dist(x, ∂P1) for every x ∈ P0 and y ∈ B, we have T♯f(x) = T♯,P1f(x)
for every x ∈ P0.

With this, we see that the construction of the collection S0 is simple. For every
i = 2, 3, . . ., let Pi ∈ D0 be a dyadic cube given by Lemma 2.1 such that 2Pi−1 ⊂ Pi.
Then, since supp f ⊂ B, we have Tε,δf(x) = 0 for every x /∈ B and δ < dist(x,B).
Also, for x ∈ Pn+1 \ Pn, it holds that ℓ(Pn+1) ≤ cd · dist(x,B) by the construction
of the cubes. Thus, for x ∈ Pn+1 \ Pn, we have

T♯f(x) = sup
ε>0

∣∣∣∣∣

(
ˆ

ε<|x−y|<dist(x,B)∨ε

+

ˆ

|x−y|>dist(x,B)∨ε

)
K(x, y)f(y) dy

∣∣∣∣∣

= sup
ε>dist(x,B)

∣∣∣∣∣

ˆ

|x−y|>ε

K(x, y)f(y) dy

∣∣∣∣∣
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(1.1)
≤ CK sup

ε>dist(x,B)

ˆ

|x−y|>ε

|f(y)|
εd

dy

≤ cdCK

ˆ

Rd

|f(y)|
ℓ(Pn+1)d

dy = cdCK〈|f |〉Pn+11Pn+1(x).

Thus, we can set S0 = {Pi : i = 1, 2, . . .}. We note that the collections S0 ∩ Dα

are sparse by construction.
Part 2: Construction of the collections Sn, n ≥ 1. From now on, we say that a

cube in a given collection is maximal if it is maximal with respect to inclusion and
we say that it is size-maximal if it is maximal with respect to side length.

Let P1 be the collection Q(P1) given by Lemma 2.8 and denote P∗
1 := {Q ∈

P1 : ℓ(Q) = max{ℓ(Q′) : Q′ ∈ P1}}. Recursively, we set

Rn+1 := (Pn \ P∗
n) ∪

⋃

Q∈P∗

n

Q(Q),

Pn+1 := maximal cubes of Rn+1,

P∗
n+1 := size-maximal cubes of Pn+1.

Using the collections P∗
n we can define the collections Sn: we set

S1 := {P1}, Sn+1 := Sn ∪ P∗
n.

Thus, we start with the collection P1 = Q(P1) and pick the size-maximal cubes
Qi ∈ Q(P1) to form P∗

1 . Then, we add these cubes Qi to the collection S α
1 to form

the collection S α
2 and apply Lemma 2.8 for each of them to get the collections

Q(Qi). We add these “new” cubes to the collection Q(P1) \ {Qi}i which gives us
the collection R2. Then, we form the collection P2 by removing the cubes that are
not maximal and start over. This way the cubes in Sn+1 \Sn have strictly smaller
side length than all the cubes in Sn for every n ∈ N.

We now claim that

T♯,P1
f ≤ C0

TASn
f + max

Q∈Pn

T♯,Qf (2.10)

for every n = 1, 2, . . ., where C0
T = cd

(
‖T‖L2→L2 +CK +‖ω‖Dini

)
as in the previous

proof. For n = 1 the claim is true by Lemma 2.8. Let us then assume that the
claim holds for n = k. Then

max
Q∈Pk

T♯,Qf = max

{
max

Q∈Pk\P∗

k

T♯,Qf, max
Q∈P∗

k

T♯,Qf

}

2.8
≤ max

{
max

Q∈Pk\P∗

k

T♯,Qf, max
Q∈P∗

k

{
C0

T 〈|f |〉Q1Q + max
Q′∈Q(Q)

T♯,Q′f

}}

≤ max

{
max

Q∈Pk\P∗

k

T♯,Qf, max
Q∈P∗

k

max
Q′∈Q(Q)

T♯,Q′f

}
+ C0

T

∑

Q∈P∗

k

〈|f |〉Q1Q,

and hence

T♯,P1f ≤ C0
TASk

f + max
Q∈Pk

T♯,Qf ≤ C0
TASk+1

f + max
Q∈Pk+1

T♯,Qf.

by the following fact: if Q′ ⊆ Q then T♯,Q′f(x) ≤ T♯,Qf(x).
The a.e. pointwise bound (2.5) follows from (2.10) in the following way. Let

us fix n ∈ N and denote Tn,k := {Q ∈ Pn : ℓ(Q) ≤ 2−kℓ(Q′) : Q′ ∈ P∗
n} for

every k ∈ N, i.e. we get the collection Tn,k from Pn by taking away k generations
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of size-maximal cubes. Then, since we have
∑

Q∈Pn
|Q| < ∞, we can choose a

large integer kn ∈ N such that
∑

Q∈Tn,kn
|Q| ≤ εd

∑
Q∈Pn

|Q|. Since it holds that

Pn+kn
⊆ Tn,kn

∪⋃Q∈Pn\Tn,kn
Q(Q), we get

∑

Q∈Pn+kn

|Q| ≤
∑

Q∈Tn,kn

|Q|+
∑

Q∈Pn\Tn,kn

∑

Q′∈Q(Q)

|Q|

2.8
≤ εd

∑

Q∈Pn

|Q|+
∑

Q∈Pn\Tn,kn

εd|Q|

≤ 2εd
∑

Q∈Pn

|Q| ≤ 1

2

∑

Q∈Pn

|Q|.

Thus, we need to apply the recursion to the cubes of Pn only finitely many times
to halve the mass of the cubes. In particular, limn→∞

∑
Q∈Pn

|Q| = 0 and hence,

for almost every x ∈ P1 there exists an integer nx ∈ N such that x /∈ ⋃Q∈Pnx
Q.

This gives us the a.e. pointwise bound (2.5).
Part 3: Sparseness of the collections Dα ∩⋃∞

n=0 Sn. Let us recall the notation
S∗ =

⋃∞
n=1 Sn. To prove the sparseness of the collections Dα ∩ S∗, we will prove

a stronger claim. For this, we need some definitions and notation:

1) We say that a cube Q′ ∈ S∗ is a S∗-child of a cube Q ∈ S∗ (denote
Q′ ∈ chS∗

(Q)) if Q′ ( Q and there does not exist a cube Q′′ ∈ S∗ such
that Q′ ( Q′′ ( Q.

2) We denote n(Q) := min{n ∈ N : Q ∈ Sn} for every Q ∈ S∗.

Recall that if Q ∈ Pk+1, then Q ∈ Pk \ P∗
k or Q ∈ Q(R) for some R ∈ P∗

k .

3) We denote m(Q) := min{m ∈ N : Q ∈ Pk for every k = m, . . . , n(Q)− 1}.
4) We say that a cube Q ∈ S∗ is a ♯-parent of a cube Q′ ∈ S∗ (denote Q = Q̂′)

if Q ∈ P∗
m(Q′)−1 and Q′ ∈ Q(Q). We note that n(Q̂′) = m(Q′) and that Q̂′

may not be unique but we fix some Q̂′ for each Q′.

Our goal is to show that the collection S∗ satisfies a sparseness-type condition
|⋃Q′∈ chS∗

(Q)Q
′| ≤ C · εd|Q|.

The following property of ♯-parents is crucial:

if Q′ ∈ chS∗
(Q) and Q̂′ 6= Q, then ℓ(Q̂′) ≤ ℓ(Q) and Q̂′ 6⊂ Q. (2.11)

The property ℓ(Q̂′) ≤ ℓ(Q) follows from the simple observation that if ℓ(Q̂′) >

ℓ(Q), then also n(Q) ≥ n(Q̂′) + 1. Since Q′ ∈ P
n(Q̂′)

, this would then imply that

Q′, Q ∈ Pn for some same n. Since Q′ ( Q, this is impossible by the maximality

of the collections Pn. The property Q̂′ 6⊂ Q follows directly from the maximality

of the S∗-children of Q: otherwise we would have Q′ ( Q̂′ ( Q.
By the property (2.11) we know the following: if Q′ ∈ chS∗

(Q), then either
Q′ ∈ Q(Q) or Q′ ∈ Q(S) for some S ∈ S∗ such that ℓ(S) ≤ ℓ(Q) and S 6⊂ Q.
In either case, the following statement holds: there exists a cube S ∈ S∗ such
that Q′ ∈ Q(S), ℓ(S) = 2−nℓ(Q) and S ⊂ (1 + 2−n+1)Q \ (1 − 2−n+1)Q for some
n ∈ {0, 1, . . .}, where cQ is the cube with same center point as Q with side length
ℓ(cQ) = c · ℓ(Q) and cQ = ∅ if c ≤ 0. Let us denote

Bn(Q) := {S ∈ S∗ : ℓ(S) = 2−n · ℓ(Q), S ⊂ (1 + 2−n+1)Q \ (1− 2−n+1)Q}
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for every n = 0, 1, . . .. Then, since the cubes of the collection Bn(Q) ∩ Dα are
disjoint and contained in (1 + 2−n+1)Q \ (1− 2−n+1)Q for every α ∈ {0, 1, 2}d, we
know that ∑

S∈Bn(Q)

|S| ≤ 3d
∣∣(1 + 2−n+1)Q \ (1− 2−n+1)Q

∣∣ (2.12)

for every n = 0, 1, . . .. Thus, if Q′ ∈ chS∗
(Q), then Q ∈ Q(S) for some S ∈ Bn(Q)

and n ∈ {0, 1, . . .}. Hence, for every Q ∈ S we have

∣∣∣
⋃

Q′∈S∗

Q′(Q

Q′
∣∣∣ ≤

∞∑

n=0

∑

S∈Bn(Q)

∑

Q′∈Q(S)

|Q′|
2.8
≤ εd ·

∞∑

n=1

∑

S∈Bn(Q)

|S|+ εd
∑

S∈B0(Q)

|S|

(2.12)
≤ 3d · εd

∞∑

n=1

∣∣(1 + 2−n+1)Q \ (1− 2−n+1)Q
∣∣+ 3d · εd|3Q|

≤ 3d · εd|Q|
∞∑

n=1

2−n+2 · 2d + 32d · εd|Q| ≤ 5 · 32d · εd|Q|.

In particular, if we choose εd to be small enough, the collections S∗∩Dα are sparse.
Finally, we note that the collections S α := Dα ∩ (S∗ ∪ S0) are sparse since

adding the large cubes P2, P3, . . . to the corresponding collections S∗ ∩ Dα does
not affect the sparseness of those collections. This completes the proof. �

3. Rough homogeneous Calderón–Zygmund operators

In this section, we prove Theorem 1.4. The techniques are originally developed
in [6] and [22], but we adapt them and modify them in order to get the dependence
of the results in terms of the A2 characteristic of the weight. We will use Theorem
1.3 as a black box. Also a clever choice in the expression of our rough operators
will refine such dependence.

To begin with, the proof of Theorem 1.4 requires some ingredients that are shown
in the subsequent subsections.

Recall the definition of the operator TΩ given in the introduction. It can be
written as

TΩ =
∑

k∈Z

Tkf =
∑

k∈Z

Kk ∗ f, Kk =
Ω(x′)

|x|d χ2k<|x|<2k+1 . (3.1)

The following lemma is well-known, and the proof can be found in [6].

Lemma 3.2. The following inequality holds

|K̂k(ξ)| ≤ cd‖Ω‖L∞ min(|2kξ|α, |2kξ|−α),

for some numerical 0 < α < 1 independent of TΩ and k.

Remark 3.3. The estimates in Lemma 3.2 are still valid for Ω ∈ Lp(Sd−1), p > 1,
or even Ω ∈ L logL(Sd−1). Nevertheless, in order to obtain weighted estimates we
will require Ω ∈ L∞(Sd−1).

We consider the following partition of unity. Let φ ∈ C∞
c (Rd) be such that

suppφ ⊂ {x : |x| ≤ 1
100} and

´

φ dx = 1, and so that φ̂ ∈ S(Rd). Let us also define

ψ by ψ̂(ξ) = φ̂(ξ)− φ̂(2ξ). Then, with this choice of ψ, it follows that
´

ψ dx = 0.

We write φj(x) =
1

2jd
φ
(

x
2j

)
, and ψj(x) =

1
2jd
ψ
(

x
2j

)
.
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We now define the partial sum operators Sj by Sj(f) = f ∗φj . Their differences
are given by

Sj(f)− Sj+1(f) = f ∗ ψj . (3.4)

Since Sjf → 0 as j → −∞, for any sequence of integer numbers {N(j)}∞j=0, with
0 = N(0) < N(1) < · · · < N(j) → ∞, we have the identity

Tk = TkSk +
∞∑

j=1

Tk(Sk−N(j) − Sk−N(j−1)).

In this way, TΩ =
∑∞

j=0 T̃j =
∑∞

j=0 T̃
N
j , where

T̃0 := T̃N
0 :=

∑

k∈Z

TkSk, (3.5)

and, for j ≥ 1,

T̃j :=
∑

k∈Z

Tk(Sk−j − Sk−(j−1)),

T̃N
j :=

∑

k∈Z

Tk(Sk−N(j) − Sk−N(j−1)) =

N(j)∑

i=N(j−1)+1

T̃i.

(3.6)

3.1. L2 estimates for T̃N
j .

Lemma 3.7 (Unweighted L2 estimates for T̃N
j ). Let T̃j and T̃N

j be the operators
as in (3.5) and (3.6). Then we have

‖T̃jf‖L2 ≤ cd‖Ω‖L∞2−αj‖f‖L2 ,

‖T̃N
j f‖L2 ≤ cd‖Ω‖L∞2−αN(j−1)‖f‖L2 ,

for some numerical 0 < α < 1 independent of TΩ and j.

Proof. Let us first consider j ≥ 1. From (3.1), (3.6) and (3.4), we write

̂̃
Tjf(ξ) =

∑

k∈Z

K̂k(ξ)ψ̂(2
k−jξ)f̂(ξ) =: mj(ξ)f̂(ξ).

We will obtain a pointwise estimate for mj(ξ). Since ψ̂ ∈ S(Rd) and ψ̂(0) = 0, we

have |ψ̂(ξ)| ≤ Cmin(|ξ|, 1), and hence

|ψ̂(2k−jξ)| ≤ Cmin(|2k−jξ|, 1). (3.8)

Thus, (3.8) and Lemma 3.2 imply

|K̂k(ξ)||ψ̂(2k−N(j)ξ)| ≤ cd‖Ω‖L∞ |2kξ|−α min(|2k−jξ|, 1), (3.9)

and hence

|mj(ξ)| ≤ cd‖Ω‖L∞

( ∑

k:2k|ξ|≤2j

2−j |2kξ|1−α +
∑

k:2k|ξ|≥2j

|2kξ|−α
)

≤ cd‖Ω‖L∞

(
2−j2j(1−α) + 2−jα) ≤ cd‖Ω‖L∞2−jα.

The required L2 inequality for T̃jf then follows by Plancherel. To estimate T̃N
j f ,

we simply need to sum the geometric series
∑N(j)

i=N(j−1)+1 2
−αi.
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For j = 0, we have φ̂(2kξ) in place of ψ̂(2k−jξ) above. Then, in place of (3.8)

and (3.9), we use simply |φ̂(2kξ)| ≤ C and

|K̂k(ξ)||φ̂(2kξ)| ≤ cd‖Ω‖L∞ min(|2kξ|, |2kξ|)−α,

so that

|m0(ξ)| :=
∣∣∣
∑

k∈Z

K̂k(ξ)||φ̂(2kξ)
∣∣∣

≤ cd‖Ω‖L∞

( ∑

k:2k|ξ|≤1

|2kξ|α +
∑

k:2k|ξ|≥1

|2kξ|−α
)
≤ cd‖Ω‖L∞ .

Again, Plancherel completes the L2 estimate for T̃0f = T̃N
0 f . �

3.2. Calderón–Zygmund theory of T̃N
j .

Lemma 3.10. The operator T̃N
j is a Calderón–Zygmund operator with

CN
j := CT̃N

j
≤ cd‖Ω‖L∞ , ωN

j (t) := ωT̃N
j
(t) ≤ cd‖Ω‖L∞ min(1, 2N(j)t),

which satisfies
ˆ 1

0

ωN
j (t)

dt

t
≤ cd‖Ω‖L∞(1 +N(j)).

Proof. We have already proved in Lemma 3.7 that T̃N
j is a bounded operator in L2.

Recall the definition of T̃N
j given in (3.6). In order to get the required estimates for

the kernel of T̃N
j , we first study the kernel of each TkSk−N(j). Let x ∈ Rn. Since

suppφ ⊂ {x : |x| ≤ 1
100}, and passing to polar coordinates, then

|Kk ∗ φk−N(j)(x)| =
∣∣∣∣
ˆ

Rn

Ω(y′)

|y|d 12k<|y|<2k+12−(k−N(j))dφ
( x− y

2k−N(j)

)
dy

∣∣∣∣

≤ cd‖Ω‖L∞

1

|x|d 12k−1<|x|<3·2k

ˆ

Rn

2−(k−N(j))d

∣∣∣∣φ
( x− y

2k−N(j)

)∣∣∣∣ dy

≤ cd‖Ω‖L∞

1

|x|d 12k−1<|x|<3·2k ,

so that
∑

k∈Z

|Kk ∗ φk−N(j)(x)| ≤ cd‖Ω‖L∞

∑

k∈Z

1

|x|d 12k−1<|x|<3·2k ≤ cd
‖Ω‖L∞

|x|d . (3.11)

On the other hand, we compute the gradient. Again by taking into account the
support of φ and passing to polar coordinates

|∇(Kk∗φk−N(j))(x)| =
∣∣∣∣
ˆ

Rn

Ω(y′)

|y|d 12k<|y|<2k+12−(k−N(j))(d+1)∇φ
( x− y

2k−N(j)

)
dy

∣∣∣∣

≤ cd‖Ω‖L∞

1

|x|d 12k−1<|x|<3·2k

ˆ

Rn

2−(k−N(j))(d+1)

∣∣∣∣∇φ
( x− y

2k−N(j)

)∣∣∣∣ dy

≤ cd‖Ω‖L∞

1

|x|d 12k−1<|x|<3·2k
1

2k−N(j)

≤ cd‖Ω‖L∞

1

|x|d+1
12k−1<|x|<3·2k2

N(j),
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thus
∑

k∈Z

|∇(Kk ∗ φk−N(j))(x)| ≤ cd‖Ω‖L∞

∑

k∈Z

12k−1<|x|<3·2k

|x|d+1
2N(j)

≤ cd‖Ω‖L∞

2N(j)

|x|d+1
.

(3.12)

From the triangle inequality and N(j− 1) < N(j) it follows that the kernel KN
j :=∑

k∈ZKk ∗ (φk−N(j) − φk−N(j−1)) of T̃N
j satisfies the same estimate (3.11) and

(3.12), i.e.

|KN
j (x, y)| = |KN

j (x− y)| ≤ cd
‖Ω‖L∞

|x− y|d ,

|∇KN
j (x− y)| ≤ cd

‖Ω‖L∞

|x− y|d+1
2N(j).

(For j = 0, the subtraction is not even needed.) The first bound above is already
the required estimate for CN

j . On the other hand, by the gradient estimate, for

|x− x′| ≤ 1
2 |x− y| we have

|KN
j (x, y)−KN

j (x′, y)| = |KN
j (x− y)−KN

j (x′ − y)|
≤ |x− x′| sup

z∈[x,x′]

|∇KN
j (z − y)|

≤ |x− x′| sup
z∈[x,x′]

cd
‖Ω‖L∞

|z − y|d+1
2N(j)

≤ cd
‖Ω‖L∞

|x− y|d 2
N(j) |x− x′|

|x− y| .

From the triangle inequality we also have the easy bound

|KN
j (x, y)−KN

j (x′, y)| ≤ cd
‖Ω‖L∞

|x− y|d ,

and combining the two estimates and symmetry,

|KN
j (x, y)−KN

j (x′, y)|+ |KN
j (y, x)−KN

j (y, x′)| ≤ cd ω
N
j

( |x− x′|
|x− y|

)
1

|x− y|d ,

where
ωN
j (t) ≤ cd‖Ω‖L∞ min(1, 2N(j)t).

The Dini norm of this function is estimated as
ˆ 1

0

ωj(t)
dt

t
≤ cd‖Ω‖L∞

( ˆ 2−N(j)

0

2N(j)t
dt

t
+

ˆ 1

2−N(j)

dt

t

)

= cd‖Ω‖L∞(1 + log 2N(j)) ≤ cd‖Ω‖L∞(1 +N(j)).

�

In the following, we will prove a quantitative Lp weighted inequality for the

operators T̃N
j .

Lemma 3.13. Let T̃N
j be the operators as in (3.5) and (3.6). Let 1 < p < ∞.

Then, for all w ∈ Ap, we have

‖T̃N
j f‖Lp(w) ≤ cd,p‖Ω‖L∞

(
1 +N(j)

)
{w}Ap

‖f‖Lp(w).
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Proof. By Theorem 1.3 and Remark 2.7 for the first inequality below, and Lemma
3.7 and Lemma 3.10 for the second one, we deduce that

‖T̃N
j ‖Lp(w) ≤ cd,p

(
‖T̃N

j ‖L2→L2 + CN
j + ‖ωN

j ‖Dini

)
{w}Ap

‖f‖Lp(w)

≤ cd,p
(
2−αN(j)‖Ω‖L∞ + ‖Ω‖L∞ + ‖Ω‖L∞(1 +N(j))

)
{w}Ap

‖f‖Lp(w)

≤ cd,p‖Ω‖L∞

(
1 +N(j)

)
{w}Ap

‖f‖Lp(w).

�

Finally, we will show that, from the unweighted L2 estimate in Lemma 3.7 and
the unweighted Lp estimate in Lemma 3.13 (i.e., the weighted estimate with w(x) ≡
1), we can infer a good quantitative unweighted Lp estimate for T̃j .

Lemma 3.14. Let T̃N
j be the operators as in (3.5) and (3.6). Let 1 < p < ∞.

Then,

‖T̃N
j f‖Lp ≤ cd,p‖Ω‖L∞2−αpN(j−1)(1 +N(j))‖f‖Lp ,

for some constant αp independent of TΩ, j and the function N(·).
Proof. First, assume that p > 2, and take q := 2p, so that 2 < p < q. We have that
1
p = 1−θ

2 + θ
q , for 0 < θ := p−2

p−1 < 1. Then, from Lemma 3.7 and Lemma 3.13 with

w(x) ≡ 1, by complex interpolation, we get

‖T̃N
j ‖Lp→Lp ≤ ‖T̃N

j ‖1−θ
L2→L2‖T̃N

j ‖θL2p→L2p

≤ (cd‖Ω‖L∞2−αN(j−1))1−θ(cd,2p‖Ω‖L∞(1 +N(j)))θ

≤ cd,p‖Ω‖L∞2−αpN(j−1)(1 +N(j)),

where αp = α(1− θ) = α/(p− 1).

On the other hand, if p < 2, let us take q := 2p
1+p , so that 1 < q < p < 2. In this

case, 1
p = 1−θ

2 + θ
q , for 0 < θ := 2 − p < 1. Once again, by interpolating between

L2 and Lq, we get an analogous Lp estimate. �

3.3. The Reverse Hölder Inequality. We first need some recent results concern-
ing the sharp Reverse Hölder Inequality (RHI). They are contained in the theorem
below, where we combined [12, Theorem 2.3] and [13, Theorem 2.3]

Theorem 3.15 ([12, 13]). There are dimensional constants cd, Cd with the follow-
ing properties:

(a) Let w ∈ A∞. Then
 

Q

w1+δ ≤ 2

(
 

Q

w

)1+δ

,

for any δ ∈ (0, cd/[w]A∞
].

(b) If a weight w satisfies the RHI
(
 

Q

wr

)1/r

≤ K

 

Q

w,

then w ∈ A∞ and [w]A∞
≤ Cd ·K · r′.

As a consequence, we can infer the following corollary. Recall that (w)Ap
:=

max([w]A∞
, [w1−p′

]A∞
).
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Corollary 3.16. Let 1 < p < ∞ and w ∈ Ap. Then, there exists cd small enough
such that for every 0 < δ ≤ cd/(w)Ap

, we have that w1+δ ∈ Ap and

[w1+δ]Ap
≤ 4[w]1+δ

Ap
.

Proof. By Theorem 3.15, for a suitable cd and every δ ∈ (0, cd/(w)Ap
], we have

both
 

Q

w1+δ ≤ 2

(
 

Q

w

)1+δ

and
 

Q

w(1−p′)(1+δ) ≤ 2

(
 

Q

w1−p′

)1+δ

.

Multiplying the two estimates and using the definition of Ap give the result. �

Corollary 3.17. Let w ∈ A∞. Then, there exists cd small enough such that for
every 0 < δ ≤ cd/[w]A∞

, we have that w1+δ/2 ∈ A∞ and

[w1+δ/2]A∞
≤ Cd[w]

1+δ/2
A∞

.

Proof. Let δ0 := cd/[w]A∞
, for a suitable cd. By (a) in Theorem 3.15, w satisfies

the RHI
 

Q

w1+δ0 ≤ 2

(
 

Q

w

)1+δ0

.

For δ ≤ δ0, the weight w1+δ/2 satisfies
 

Q

(w(1+δ/2))(1+δ0)/(1+δ/2) ≤ 2
(  

Q

w
)1+δ0

≤ 2
(  

Q

w1+δ/2
)(1+δ0)/(1+δ/2)

.

By (b) of Theorem 3.15, w1+δ/2 ∈ A∞, and

[w1+δ/2]A∞
≤ Cd · 2 ·

( 1 + δ0
1 + δ/2

)′
= Cd · 2 ·

1 + δ0
δ0 − δ/2

≤ Cd ·
8

δ0
= C ′

d · [w]A∞
≤ C ′

d · [w]1+δ/2
A∞

.

�

Finally, for our special weight characteristics (w)Ap
and {w}Ap

, we have:

Corollary 3.18. Let 1 < p < ∞ and w ∈ Ap. Then, there exists cd small enough

such that for every 0 < δ ≤ cd/(w)Ap
, we have that w1+δ/2 ∈ Ap and

(w1+δ/2)Ap
≤ Cd(w)

1+δ/2
Ap

, {w1+δ/2}Ap
≤ Cd{w}1+δ/2

Ap
.

Proof. For the first bound, we apply Corollary 3.17 to both w ∈ A∞ and w1−p′ ∈
A∞, observing that if δ ≤ cd/(w)Ap

, then it satisfies both δ ≤ cd/[w]A∞
and

δ ≤ cd/[w
1−p′

]A∞
. Hence

(w1+δ/2)Ap
= max{[w1+δ/2]A∞

, [w(1−p′)(1+δ/2)]A∞
}

≤ Cd max{[w]1+δ/2
A∞

, [w1−p′

]
1+δ/2
A∞

} = Cd(w)
1+δ/2
Ap

.

The other bound is similar, using in addition Corollary 3.16:

{w1+δ/2}Ap
= [w1+δ/2]

1/p
Ap

max{[w1+δ/2]
1/p′

A∞

, [w(1−p′)(1+δ/2)]
1/p
A∞

}
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≤ (4[w]
1+δ/2
Ap

)1/p max{(Cd[w]
1+δ/2
A∞

)1/p
′

, (Cd[w
1−p′

]
(1+δ/2)
A∞

)1/p}

≤ C ′
d{w}1+δ/2

Ap
.

�

3.4. Proof of Theorem 1.4. Let us denote ε := 1
2cd/(w)Ap

. By Lemma 3.13 and
Corollary 3.18, we have, for this choice of ε,

‖T̃N
j ‖Lp(w1+ε)→Lp(w1+ε) ≤ Cd,p‖Ω‖L∞(1 +N(j)){w1+ε}Ap

≤ Cd,p‖Ω‖L∞(1 +N(j)){w}1+ε
Ap

.

On the other hand, by Lemma 3.14, we also have

‖T̃N
j ‖Lp→Lp ≤ Cd,p‖Ω‖L∞(1 +N(j))2−αpN(j−1)

Now we are in position to apply the interpolation theorem with change of mea-
sures by E. M. Stein and G. Weiss (see [21, Th. 2.11]).

Theorem 3.19 (Stein and Weiss). Assume that 1 ≤ p0, p1 ≤ ∞, that w0 and w1

are positive weights, and that T is a sublinear operator satisfying

T : Lpi(wi) → Lpi(wi), i = 0, 1,

with quasi-norms M0 and M1, respectively. Then

T : Lp(w) → Lp(w),

with quasi-norm M ≤Mλ
0M

1−λ
1 , where

1

p
=

λ

p0
+

(1− λ)

p1
, w = w

pλ/p0

0 w
p(1−λ)/p1

1 .

We apply Theorem 3.19 to T = T̃N
j with p0 = p1 = p, w0 = w0 = 1 and

w1 = w1+ε so that λ = ε/(1 + ε):

‖T̃N
j ‖Lp(w)→Lp(w) ≤ ‖T̃N

j ‖ε/(1+ε)
Lp→Lp ‖T̃N

j ‖1/(1+ε)
Lp(w1+ε)→Lp(w1+ε)

≤ Cd,p‖Ω‖L∞(1 +N(j))2−αpN(j−1)ε/(1+ε){w}Ap

≤ Cd,p‖Ω‖L∞(1 +N(j))2−αp,dN(j−1)/(w)Ap {w}Ap
.

Thus

‖TΩ‖Lp(w)→Lp(w) ≤
∞∑

j=0

‖T̃N
j ‖Lp(w)→Lp(w)

≤ Cd,p‖Ω‖L∞{w}Ap

∞∑

j=0

(1 +N(j))2−αp,dN(j−1)/(w)Ap ,

and all that remains is to make a good choice of the increasing function N(j). We
choose N(j) = 2j for j ≥ 1. Then, using ex ≥ 1

2x
2 and hence e−x ≤ 2x−2, we have

∞∑

j=0

(1 +N(j))2−αp,dN(j−1)/(w)Ap

≤ c
∑

j:2j≤(w)Ap

2j + Cp.d

∑

j:2j≥(w)Ap

2j
( (w)Ap

2j

)2
≤ Cp,d(w)Ap

by summing two geometric series in the last step.
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This completes the proof that

‖TΩ‖Lp(w)→Lp(w) ≤ Cd,p‖Ω‖L∞{w}Ap
(w)Ap

.

Remark 3.20. The above bound is the best that one can get by any choice of
the function N(·), at least without deeper structural changes in the proof. Indeed,
given an increasing function N : N → N, let j0 be the smallest value such that
N(j0) > (w)Ap

, and hence N(j0 − 1) ≤ (w)Ap
. But then

(1 +N(j0))2
−αp,dN(j0−1)/(w)Ap ≥ (1 + (w)Ap

)2−αp,d ,

so that clearly the entire sum over j ∈ N is bigger than the right hand side as well.
It might also be interesting to note that the naïve choice N(j) = j above would

have produced a weaker bound, with the second power of (w)Ap
rather than the

first. This is the reason for us studying the operators T̃N
j , instead of just T̃j .

4. Applications and conjectures

Let us consider the Ahlfors–Beurling, or just Beurling, operator. This operator
B can be understood as a Calderón–Zygmund operator, defined on L2(C), by

Bf(z) := − 1

π
p. v.

ˆ

C

f(z)

(z − ζ)2
dA(ζ),

where dA denotes the area Lebesgue measure on C.
Investigation of this operator was the origin of the A2 conjecture: K. Astala, T.

Iwaniec, and E. Saksman [1] raised the question whether the norm ‖B‖Lp(w)→Lp(w)

depends linearly on [w]Ap
, p ≥ 2. In particular, they conjectured

‖B‖L2(w)→L2(w) ≤ C[w]A2
, (4.1)

and this was positively answered in [19].
Let us now consider the operator given by the integer powers, or composition, of

Beurling operators Bm = B ◦ · · · ◦ B, for m ∈ N. They have a representation (see

e.g. [4, Eq. (1)], which gives the mth power of
√
B and should be used with 2m in

place of m for the present purposes) as homogeneous singular integrals as

Bmf(z) := p. v.

ˆ

C

Km(z − ζ)f(ζ) dA(ζ),

where, for ζ = reiφ ∈ C,

Km(ζ) =
Ωm(eiφ)

|ζ|2 , Ωm(eiφ) =
(−1)m

π
·m · e−i2mφ.

It is easy to check that K1(ζ) = − 1

π

1

ζ2
and ‖Ωm(eiφ)‖L∞ ≤ m.

Since each Bm is a nice Calderón–Zygmund operator, both the bound (4.1) and
an analogous bound with B and C replaced by Bm and some Cm are special cases
of the general A2 theorem [8]. Shortly before the general result of [8], the operators
Bm were studied by O. Dragičević [3], who found that Cm ≤ C ·m3. By a careful
study of the constants in [8] and subsequent new proofs of the A2 theorem, this
could be somewhat improved. From the results in the present paper, we obtain:
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Corollary 4.2. For every w ∈ Ap, we have

‖Bm‖Lp(w)→Lp(w) ≤ Cpm · {w}Ap
·min

(
1 + logm, (w)Ap

)
,

and in particular

‖Bm‖L2(w)→L2(w) ≤ Cm · [w]A2
·min

(
1 + logm, [w]A2

)
,

Proof. Observe that, on one hand,

π|Ωm(eiφ)−Ωm(eiφ
′

)| = m|e−i2mφ − e−i2mφ′ | = m|e−i2m(φ−φ′) − 1| ≤ 2m2|φ− φ′|.
Also, |e−i2mφ − e−i2mφ′ | ≤ 2 obviously. So, if we denote by ωBm(t) the modulus of
continuity associated with Bm, we have just proved that

ωBm(t) ≤ C ·m ·min{mt, 1},
where C is a positive constant independent of Bm.

Moreover,
ˆ 1

0

ωBm(t)
dt

t
≤ C ·m

(
ˆ 1/m

0

mt
dt

t
+

ˆ 1

1/m

dt

t

)
= C ·m(1 + logm),

again, with the constant C independent of Bm. So, by Theorem 1.3,

‖Bmf‖Lp(w)→Lp(w) ≤ cp{w}Ap

(
‖Bm‖L2→L2 +m+m(1 + logm)

)

≤ cp ·m · {w}Ap

(
1 + logm

)
, (4.3)

since ‖Bm‖L2→L2 ≤ m. On the other hand, if we consider Bm as a rough operator,
Theorem 1.4 gives

‖Bmf‖Lp(w)→Lp(w) ≤ cp ·m · {w}Ap
(w)Ap

. (4.4)

The conclusion follows by considering (4.3) and (4.4) together. �

The form of the bounds above seems too arbitrary to be final, which leads us to
conjecture that the last factor should not be needed at all. In order not to obscure
the main point by unnecessary technicalities, we state the conjectures only for the
case p = 2 and with the classical A2 constant [w]A2

:

Conjecture 4.5. For every w ∈ A2, we have

‖TΩf‖L2(w) ≤ cd‖Ω‖L∞ [w]A2‖f‖L2(w).

In particular, for the operator Bm:

Conjecture 4.6. For every w ∈ A2, we have

‖Bmf‖L2(w) ≤ Cm · [w]A2
‖f‖L2(w).

Appendix A. Quantitative form of some classical bounds

For easy reference, we record several results from the classical Calderón–Zygmund
theory, in a quantitative form appropriate for our purposes. All these results are in
principle well known, but not so easily available with precise quantitative statement.

Theorem A.1 (Calderón–Zygmund). Let T be an ω-Calderón–Zygmund operator
whose modulus of continuity satisfies the Dini condition (1.2). Then,

‖T‖L1→L1,∞ ≤ cd(‖T‖L2→L2 + ‖ω‖Dini).
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Sketch of proof. This follows from the usual Calderón–Zygmund decomposition tech-
nique, which uses smoothness of the kernel in the second variable. The only twist to
the usual argument is that, when estimating the size of the level set {|Tf | > λ}, one
should make the Calderón–Zygmund decomposition of f at the level αλ (instead
of λ) and optimise with respect to α in the end. �

Theorem A.2 (Cotlar’s inequality). Let T be an ω-Calderón–Zygmund operator
whose modulus of continuity satisfies the Dini condition (1.2). If δ ∈ (0, 1], then

T♯f ≤ cd,δ
(
‖T‖L2→L2 + ‖ω‖Dini

)
Mf + cd,δMδ(Tf),

where

Mδf(x) :=
(
M(|f |δ)(x)

)1/δ
= sup

r>0

(
 

B(x,r)

|f |δ
)1/δ

Sketch of proof. Fix x ∈ Rd and ε > 0. For x′ ∈ B(x, ε/2), we have

Tεf(x) = T (1B(x,ε)cf)(x)

= [T (1B(x,ε)cf)(x)− T (1B(x,ε)cf)(x
′)] + Tf(x′)− T (1B(x,ε)f)(x

′).

Using smoothness of the kernel in the first variable and splitting into dyadic annuli,
the first term can be dominated (pointwise in x′) by cd‖ω‖DiniMf(x). Then, we
take the Lδ average over x′ ∈ B(x, ε/2), namely

|Tεf(x)| ≤ cδ

[
cd
(
CK + ‖ω‖Dini

)
Mf(x)

+
( 1

|B(x, ε/2)|

ˆ

B(x,ε/2)

|Tf(x′)|δ dx′
)1/δ

+
( 1

|B(x, ε/2)|

ˆ

B(x,ε/2)

|T (1B(x,ε)f)(x
′)|δ dx′

)1/δ]
.

The second term gives rise to Mδ(Tf) by definition. Finally, comparing the Lδ

and L1,∞ norms on a bounded set via Kolmogorov’s inequality, and using the
boundedness of T from L1 to L1,∞, we obtain the estimate or the last term. Indeed

( 1

|B(x, ε/2)|

ˆ

B(x,ε/2)

|T (1B(x,ε)f)(x
′)|δ dx′

)1/δ
≤ cδ

‖T (1B(x,ε)f)‖L1,∞

|B(x, ε/2)|

≤ cδ‖T‖L1→L1,∞

‖1B(x,ε)f‖L1

|B(x, ε/2)| ≤ cd,δ‖T‖L1→L1,∞Mf(x).

Finally, we use the bound for ‖T‖L1→L1,∞ from Theorem A.1. �

Corollary A.3. Let T be an ω-Calderón–Zygmund operator whose modulus of
continuity satisfies the Dini condition (1.2). Then

‖T♯‖L1→L1,∞ ≤ cd(‖T‖L2→L2 + ‖ω‖Dini).

Sketch of proof. We fix some δ ∈ (0, 1), combine the bounds from the previous
two theorems, and use the boundedness of T : L1 → L1,∞, M : L1 → L1,∞ and
Mδ : L1,∞ → L1,∞. �
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