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Abstract: A scanning coherent diffraction imaging method was used to

reconstruct the X-ray wavefronts produced by a Fresnel zone plate (FZP)

and by Kirkpatrick-Baez (KB) focusing mirrors. The ptychographical

measurement was conducted repeatedly by placing a lithographed test

sample at different defocused planes. The wavefronts, recovered by phase-

retrieval at well-separated planes, show good consistency with numerical

propagation results, which provides a self-verification. The validity of the

obtained FZP wavefront was further confirmed with theoretical predictions.
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1. Introduction

Recent developments in optics fabrication techniques have provided focused X-ray beam sizes

in tens-of-nanometer size range, by a variety of formations: compound refractive lens [1], Ki-

noform lens [2], Kirkpatrick-Baez mirrors [3], Fresnel zone plate [4, 5] and multilayer Laue

lens [6]. Characterization of the resulting X-ray focused beam wavefront is of fundamental

importance for evaluating the fabrication and alignment qualities of focusing optical elements

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Quantitative wavefront measurement is also extremely valuable for the purpose of reliably

obtaining artifact-free images with arbitrary sizes. In lens-less coherent diffraction imaging

(CDI) methods specifically, the image obtained through phase retrieval is the product of the

object and the illumination function. If the incident X-ray wavefront is not sufficiently uniform

over the sample, the beam structure will be present mixed in with the image of the object. Phase-

retrieval based approaches for wavefront measurement can reconstruct the complex wavefront

using the far-field diffraction intensity of the beam itself with a priori knowledge of the op-

tics aperture [7]. The accurately determined wavefront function can then serve as a scannable

probe [18, 19], and thus release the limitation on field of view to imaging samples with arbi-

trary sizes. Alternatively, introducing translational diversity into coherent diffraction imaging

measurement provides extra constraints arising from overlapping, redundantly illuminated sam-

ple sections. This general ptychographic approach can remove requirements on the maximum

sample dimensions [20]. This redundancy also enables the factorisation of the illuminating

beam while recovering the object image simultaneously [21, 22, 23, 24, 25, 26, 27]. Because

they also characterize the incident beam wavefront, these generalized ptychography approaches

have been approved to be very robust for handling noise and eliminating ambiguities. Widely

used algorithms are based on the Difference Map [21] and the extended Ptychographic Iterative

Engine (ePIE) [23].

In this work, we conducted X-ray wavefront measurements on the focused beams produced

by FZP and KB mirrors by scanning a test pattern transversely across the beam. To verify the

accuracy of the recovered illumination function, the measurement was performed at 3 defocused

planes. Excellent agreement between the recovered wavefronts at each plane, which should be

related by Fresnel propagation, was confirmed by numerical propagation. This approach verifies

experimentally that the retrieved complex probe descriptions contain the correct convergent or

divergent information within their phase structure.

2. Experimental setup

Fig. 1(a) illustrates the experimental setup at the 34-ID-C beamline of Advanced Photon

Source, Argonne National Laboratory. The coherence and illumination-defining slits are 54.5

m (Zv) away from the center of the Undulator A. The vertical X-ray beam source size σv is 26

µm [28]. To increase the horizontal coherence length, a 100 µm wide beam was selected hori-

zontally by slits in front of a mirror, located 27.5 m in front of the coherence-defining entrance

slits. With this setup, the half width at half maximum (HWHM) transverse coherence lengths

can be estimated using 2λ Z
√

ln2/(πσ) [29] to be 20× 154 µm (horizontal × vertical). The

slit gaps were adjusted to select the coherent part of the incident X-ray beam.

An X-ray energy of 9 keV (λ = 0.138 nm) was selected by the beamline Si(111) double

crystal monochromator [30], which provides sufficient longitudinal (temporal) coherence for

this experiment.

A customized test pattern (shown in Fig. 1 (b)) was designed by us and fabricated by Zone-

Plates Ltd [31] using electron beam lithography and Reactive Ion Etching (RIE). The pattern

was prepared in 1.5 µm thick tungsten film evaporated on to a 100 nm thick silicon nitride

window, to provide about 70% intensity transmission and about 0.8 π phase shift to a 9 keV
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Fig. 1. (a) Sketch of the experimental setup. (b) SEM image of the test pattern. (c) A typical

reconstructed magnitude image. (d) A typical reconstructed phase image.

X-ray beam. The test pattern was illuminated by an X-ray beam focused by the optics under

investigation: the FZP or the KB mirror system. The ptychographical measurement was per-

formed by translating the sample in the transverse plane. The sample was scanned using nPoint

NPXY100Z25A piezo stage, which was mounted on the top of a set of XYZ step-motors for

larger range movements. The scanning trajectory follows concentric circles, with 5n points on

the nth ring and a radius increment of 0.5 µm for FZP and 0.75 µm for KB mirrors.

A Princeton Instrument PI-MTE 1300B charge-coupling device (CCD) with 20×20 µm pixel

size was placed 2.31 m downstream from the test sample. The detector region-of-interest (ROI)

was set to 400×400 pixels for FZP and 280×280 pixels for KB mirror measurements, which

gives the real-space pixel size of 40 nm and 56.8 nm, respectively.

3. Focused wavefront from the Fresnel zone plate

The FZP we used in this work contains 2 µm thick alternating gold and diamond zones [32].

The diameter is 180 µm with 80 nm outer-most zone width and a 30 µm diameter central

stop. With 9 keV X-rays, the first-order focus length is 104.5 mm. It was fabricated using

ultra-nanocrystalline diamond (UNCD) as the dielectric mold material into which Au is elec-

troplated. UNCD is a chemical vapor deposition (CVD) diamond composed of 2-5 nm grains

of diamond bonded together with graphitic type bonds [33]. A 2-µm-thick layer of UNCD was

prepared on 40 nm of tungsten and 1 µm of Si3N4 supported by a Si substrate. These layers

were released to form a membrane by back etching the Si substrate. The sample was then coated

with hydrogen silsesquioxane (HSQ) acting as the resist material and exposed using a 100 keV

e-beam lithography system. After development, UNCD was etched with oxygen plasma de-

signed for high anisotropy and selectivity. The resulting mold was filled by electroplating gold

using tungsten as the conductive base. The HSQ was removed and the resulting FZP consists

of alternating Au and UNCD zones.

The zone plate was mounted 286 mm downstream of the beam defining slits, about 104 mm

before the sample. Considering the transverse coherence lengths at the zone plate plane are not

sufficient to cover its entire 180 µm diameter, the beam-defining slits were set to 20×100 µm
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Fig. 2. (a)(b)(c) The phase-retrieved probe for FZP with the test sample placed at 0.0 mm,

-6.0 mm and -12.32 mm. (d)(e) The simulated probes propagated from (c). (f) The propaga-

tion distances were determined by minimizing the standard variation between propagated

and phase-retrieved probes.

(horizontal × vertical) to select the coherent beam and produce a partial illumination of the

FZP [16]. The slits were offset by 35 µm in the horizontal direction to avoid the central stop

and produce the separation between the first order focussed beam and the zeroth order direction

beam, which is blocked by a 40 µm diameter order sorting aperture (OSA) mounted 85 mm

away from the FZP, 19 mm in front of the sample.

A concentric scan pattern, chosen for the purpose of eliminating grid artifacts [22], with

10× 10 µm scan range and 0.5 µm radius increment, generates 323 frames of far field diffrac-

tion patterns for one ptychographical measurement. A reconstruction strategy as described by

Thibault [21] was used to recover the images of the sample and the illumination probe. A typical

reconstructed test sample image is shown in Fig. 1 (c) and (d). The first measurement was per-

formed at a plane denoted as z = 0 mm. The same ptychographical measurement was repeated

at 2 different defocus positions with z step-motor readings of z=−6.0 mm and z=−12.32 mm,

respectively, while the positive z points the downstream direction of the X-ray beam. The recov-

ered probe wavefronts are shown in Fig. 2 (a), (b) and (c). Considering that these wavefronts at

different planes are related by free space Fresnel propagation [34], to confirm the validity of the

phase-retrieved X-ray wavefronts, we started with the recovered probe at z = 0 mm plane, and

propagated it backwards to the other two planes. A half-pixel size sampling interval was used



in the Fresnel propagation calculation, upon Discrete Fourier Transformation in an array of 800

× 800. To compensate the positioning inaccuracy introduced by the z step-motor, the propaga-

tion distances were selected by minimizing the standard variation between the propagated and

phase-retrieved probes (shown in Fig. 2 (d)). The best-matching propagation distances for the

other two measurements located at z =−5.947± 0.241 mm and z =−12.401± 0.172 mm, re-

spectively. The discrepancy between the measured and best-fit sample plane distances exceeds

the expected errors with the motor stage, which is most likely attributed to a combination of

phase-retrieval error and numerical propagation uncertainty. The probe images obtained from

numerical propagations (shown in Fig. 2(e)(f)) show good consistency to the phase-retrieved

probes (shown in Fig. 2(b)(c)). Fig. 3 shows a quantitative comparison between phase-retrieved

and propagated probes. Both the amplitude and phase match very well, which confirms that the

recovered phases are correct.
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Fig. 3. Quantitate comparison of phase-retrieved and numerically propagated probes along

the central vertical lines: the amplitude (a) and phase (b) plots at z = −5.947 mm, the

amplitude (c) and phase (d) plots at z =−12.401 mm.

The fully recovered complex wavefront allows one to propagate it to any other plane in both

the forward and backward directions. We propagated the reconstructed probe at z = 0 mm with

10 µm propagation step size in 20 mm range. Fig. 4 (a) and (b) shows horizontally-integrated

and vertically-integrated intensities of the propagation profiles. In order to precisely locate the

focal planes, a finer propagation with 1 µm step size was perform in the neighborhood of z = 0

mm. The propagation was repeated with 10 individually phase-retrieved probes obtained from

different random starts, and the vertical and horizontal waist planes with narrowest peaks were

selected from each propagation. Averaging these propagation results reveals that the vertical

and horizontal focuses locate at 65 µm and 322 µm upstream of z = 0 mm plane, and the

separation of those 2 focal planes is 257± 68 µm. The horizontal and vertical focus sizes are

730 nm and 168 nm, respectively, as shown in Fig. 6 (a) and (b).

Considering the focused wavefront as a demagnified image of the light source, if the horizon-

tal and vertical X-ray sources located at different distances from the FZP, it can cause separated

foci in the different directions. In the 34-ID-C beamline, the undulator center served as the
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vertical source, and a horizontal secondary source of 100 µm was set by a white-beam slit at

the beamline mirror location. A simple calculation using the lens law gives that the separation

of horizontal and vertical focal planes should be 195 µm, which agrees with the experimental

result of 257±68 µm within measurement uncertainty. This 62 µm discrepancy may be due to

fabrication or alignment issues with the FZP (see below) or due to incorrect functioning of the

secondary source, which will be investigated further.

The additional 62 µm separation between the vertical and horizontal foci may suggest that

the FZP was not perfectly perpendicular to the incident X-ray beam. The misalignment angle

can be estimated by ∆= f (1−cosθ)≈ f sin2 θ/2, where ∆ is the focus separation, f is the focal

length, and θ is the misalignment angle between the FZP norm direction and the incident X-ray

beam direction. Because the 20×100 µm illumination-defining slits were offset horizontally,

this setup is not sensitive to horizontal misalignment angle. The observed focus separation was

thus mainly caused by vertical misalignment angle. With additional 62 µm separation and 104.5

mm focal length, the vertical misalignment angle is about 2 degree. When setting up the FZP,

we used a diode laser to duplicate the X-ray beam path, and accommodated the FZP orientation

to overlap the reflected laser beam from the FZP surrounding frame with the incident laser

beam. The reflected laser dot was diverged to about 5 mm when a screen was placed about 0.5

m away from the FZP, which gave an alignment uncertainty of about 0.6 degree. Another error

source arises from the norm direction difference between the FZP and its surrounding frame

caused by stress related ripples. These uncertainties may accumulate to give 2 degree angular

misalignment.

The focusing performance of the FZP can be simulated using its fabrication and experimental

setup parameters[16]. A perfect FZP with 80 nm outer-most zone width and 180 µm diameter

was simulated using alternating gold and diamond zone with 2 µm thickness. A uniform plane

wave illumination was assumed in front of the 20× 100 µm (horizontal × vertical) beam-

defining slits. It then propagated 286 mm to the FZP. The wavefront modified by the FZP

continued to propagate by 85 mm, where the outer wavefront was masked out by a 30 µm

diameter OSA. The wavefront propagated by another 19.5 mm to reach the focal plane. Notice

that the phase-retrieved wavefront presents alternatively dim horizontal fringes, especially in

the top-half plane as shown in Fig. 5 (a). The missing fringes and asymmetry in the probe
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implies a phase-ramp might be introduced by FZP imperfection. Such a phase ramp with 2π
extent and 90 µm width was simulated into the FZP, and the simulated focus is shown in

Fig. 5 (b). The major features are consistent with the phase-retrieved the probe (Fig. 5 (c) (d)).

The horizontal and vertical focus sizes of the simulated wavefront are 712 nm and 173 nm,

respectively (Fig. 6 (c) (d)), which agree very well with the focus sizes of the recovered probe,

730 nm×168 nm (Fig. 6 (a) (b)), considering that the reconstruction pixel resolution is 40 nm.

4. Focused wavefront from Kirkpatrick Baez mirrors
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Fig. 7. (a)(b)(c) The reconstructed probe of the KB mirrors with the sample placed at -10

mm, 0.0 mm and 10.5 mm. (d)(e) The simulated probes propagated from (b). (f)(g) The

integrated vertical and horizontal amplitude through focus.

Ptychographical measurements were conducted with Kirkpatrick-Baez (KB) mirrors using

the same concept. The experimental setup was identical to FZP experiment, except for no OSA

inserted in the optics path. The bendable KB mirrors [35] were coated with 50 platinum on

top of a 10 nm chrome under-layer. The center of the 100 mm long vertical focusing mirror

was placed 220 mm in front of the sample plane. The 100 mm long horizontal focusing mirror

was 120 mm in front of the sample plane. The incident angle was set to 3 µrad for both of

them. The illumination-define slits were 120 mm upstream of the entrance side of the vertical

focusing mirror, and the entrance slit opening was set to 20× 20 µm. The same lithographed

test object was used to measure the wavefront in the sample plane.

The scan trajectory covered 10× 10 µm range with 0.75 µm step size for radius increment,

which created 141 frames of diffraction patterns for each complete ptychographcial scan. The

measurement was repeated at z = −10.0 mm, 0.0 mm and +10.5 mm. The phase-retrieved

X-ray beam wavefronts are shown in Fig. 7 (a)(b)(c). The recovered probe at z = 0.0 mm



was numerically propagated to −10 mm and +10.5 mm planes. The propagated wavefronts

are shown in Fig. 7 (d) and (e), which are in good agreement with the reconstructed probes.

Although the lack of metrology measurement of KB mirrors prevents numerical simulation of

their focusing behavior, the consistency between recovered and propagated probes provides

satisfactory confidence for the measurement.

The phase-retrieved probe was propagated in a range of 100 mm with 100 µm propagation

step size. The horizontally and vertically integrated intensities at different planes are shown in

Fig. 7 (f) and (g). We found that the vertical focal plane was located at z = −18.6 mm, and

the horizontal focal plane was at z = −27.8 mm. The horizontal and vertical focal sizes were

estimated to be 0.935 µm and 1.321 µm, respectively, as shown in Fig. 8. These numbers are

systematically smaller than the 1.6 µm size routine obtained by scanning a 100 µm tungsten

wire through the focus during the alignment of the KB benders. This discrepancy is understood

to come from partial penetration of the X-ray beam into the edge of the wire.
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Fig. 8. Horizontal (a) and vertical (b) focal sizes of the Kirkpatrick-Baez (KB) mirror sys-

tem at their corresponding focal planes.

5. Conclusion

Ptychographical measurements of the focused X-ray beam produced by Fresnel zone plate and

KB mirrors were conducted with a test sample at various defocused planes. Phase-retrieved

wavefronts at the different planes show good agreement with numerical propagations starting

from the smallest recovered probe. For the FZP, the recovered focus is also consistent with a

numerically simulated wave function of its focal plane. Both measurements confirm that the

ptychographical approach is capable of providing robust and reliable X-ray probe functions.

The repeated measurements at different defocused planes produce a convincing self-verification

of the analytical method recovering the correct probe phase information, which is important in

describing the focus.
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