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Abstract: In this article, the Hamiltonian for the conform-

able harmonic oscillator used in the previous study [Chung

WS, Zare S, Hassanabadi H, Maghsoodi E. The effect of

fractional calculus on the formation of quantum-mechan-

ical operators. Math Method Appl Sci. 2020;43(11):6950–

67.] is written in terms of fractional operators thatwe called

α-creation and α-annihilation operators. It is found that

these operators have the following influence on the energy

states. For a given order α, the α-creation operator pro-

motes the state while theα-annihilation operator demotes

the state. The system is then quantized using these crea-

tion and annihilation operators and the energy eigenvalues

and eigenfunctions are obtained. The eigenfunctions are

expressed in terms of the conformable Hermite func-

tions. The results for the traditional quantum harmonic

oscillator are found to be recovered by setting α 1= .

Keywords: harmonic oscillator, conformable derivative,

fractional order creation, annihilation operators

1 Introduction

The fractional derivative extends the classical derivative by

allowing the operators of differentiation to take fractional

orders, and it has played an important role in phy-

sics, mathematics, and engineering sciences [1–10].

The definition of fractional derivative and fractional

integral subject to several approaches such as Riemann–

Liouville fractional, Caputo, Riesz, Riesz–Caputo, Weyl,

Grünwald–Letnikov,Hadamard, andChen fractional deri-

vatives [1–12]. Recently, a new definition of fractional

derivative was presented by Khalil et al. [13] called the

conformable derivative. This definition is suggested as a

natural extension of the usual derivative in the following

senses. Given a function f 0, �[ )∈ ∞ → , the conformable

derivative of f with order α is defined by ref. [13]

T f t
f t εt f t

ε
limα
ε

α

0

1( )( ) ( ) ( )= + −
→

−
(1)

for all t 0> , α 0,1( ]∈ . Here, we utilize D fα as a shorthand

notation for the conformable derivative of f of order α,

T f tα( )( ). According to this definition, the conformable

derivative of the constant is zero; it satisfies the standard

properties of the traditional derivative, i.e., the derivative

of the product and the derivative of the quotient of two

functions and also satisfies the known chain rule. In

addition, one can say that the conformable derivative is

simple and similar to the standard derivative. To read

more about conformable derivative, its properties, and

its applications, we refer you to refs. [14–20]. Because

of these properties, in the last few years, the conformable

calculus is applied successfully in various fields [13,21,22].

Besides, the conformable Euler–Lagrange equation and

Hamiltonian formulation were discussed by Lazo and

Torres [23]. In ref. [24], the conformable (2 1+ )-dimen-

sional Ablowitz–KaupNewell–Segur equation was inves-

tigated to verify the existence of complex combined

dark-bright soliton solutions. For this purpose, the sine-

Gordon expansion method is used, which is an effective

method. The 2D and 3D surfaces under some suitable

values of parameters are also plotted. In ref. [25], new

solutions to the fractional (2 1+ )-dimensional Boussinesq

dynamical model with the local M-derivative with the

aid of the modified exponential function method were

obtained.Thecomplexandcombineddark-bright characteristic
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properties of nonlinear Date–Jimbo–Kashiwara–Miwa

equation with conformable derivative are extracted in

ref. [26].

The quantization of fractional system is of prime

importance in physics. Rabei et al. [27] discussed how

to find the solution of the Schrodinger equation for

some systems that have a fractional behavior in their

Lagrangian and obey the WKB approximation. Besides,

the canonical quantization of a system with Brownian

motion is carried out using fractional calculus by Rabei

et al. [8]. However, the quantization of fractional singular

Lagrangian systems using WKB approximation is studied

by Rabei and Horani [28].

Recently, the deformation of the ordinary quantum

mechanics based on the idea of fractional calculus is

considered by Chung et al. [29]. They adopted the con-

formable fractional calculus, which depends on the basic

limit definition of the derivative. The authors proposed

the α-position operator and α-momentum operator and

they constructed the α-Hamiltonian operator and frac-

tional Schrodinger equation. Also by considering the

fractional calculus, they have formulated the conformable

quantum mechanics and they have discussed some

physical examples such as the harmonic oscillator

problem.

The harmonic oscillator problem is of great importance

in quantum mechanics. The treatment of this problem

using thealgebraicmethodbasedon thecreationand anni-

hilation operators rather than solving the Schrodinger

equation is well known in quantum mechanics. It

plays a central role in modeling various physical phe-

nomena as well as its importance in the canonical

field quantization. It is then a natural step to extend

the algebraic method within the frame of conformable

quantum mechanics. The main purpose of this article

is to treat the conformable harmonic oscillator using

an algebraic method with newly defined operators

that we call the α-creation and α-annihilation opera-

tors. Their names are justified by noting that the α-

Hamiltonian of the system is factored in terms of these

operators and that they have the effect of promotion

and demotion of the α-states. It should be mentioned

that this treatment is presumably needed to lay out

the transition into any possible conformable quantum

field theory.

This article is organized as follows. In Section 2,

we present a brief review of the formulation of conform-

able quantum mechanics. In Section 3, we present and

discuss the quantization of fractional harmonic oscillator

using the α-creation and α-annihilation operators. In

Section 4, we present our summary and conclusions of

this work.

2 The conformable quantum

mechanics

Recently, Chung et al. [29] proposed a formulation of the

ordinary quantum mechanics in fractional form using the

conformable derivative. Here, we present the main defi-

nitions and relations needed for our work. According to

Chung et al. [29], the fractional Schrodinger equation

takes the form

H x p ψ x t
p

m
V x ψ x t

E ψ x t

ˆ , ˆ ,
ˆ

2
ˆ ,

, ,

α α α
α

α α α

α

2

⎜ ⎟( ) ( ) ⎛
⎝

( )⎞
⎠
( )

( )
= +

=
(2)

with theposition andmomentumoperators x̂α, p̂α definedas

x x p i Dˆ , ˆα α α
α

x
α= = − ℏ (3)

where α
α h

π2 α
1( )ℏ = . The inner product is defined as ref. [29]

f g g x f x x xd ,α 1∣ ( ) ( )∣ ∣∫⟨ ⟩ =
−∞

∞
∗ − (4)

and the expectation value of an observable A for a system

in the state ψ x t,( ) is
A ψ x t A ψ x t

ψ x t Aψ x t x x

, ,

, , d .α 1

( )∣ ∣ ( )
( ) ( )∣ ∣∫

⟨ ⟩ = ⟨ ⟩

=
−∞

∞
∗ − (5)

One can refer to ref. [29] for more illustrations.

3 Quantization of conformable

harmonic oscillator

The Hamiltonian for the conformable harmonic oscillator

is given as ref. [29]:

H
p

m
m ω x

ˆ

2

1

2
,α

α

α
α α α

2
2 2= + (6)

and the Schrodinger equation for this system takes the

form

p

m
m ω x ψ x t E ψ x t

ˆ

2

1

2
, , .α

α
α α α α

2
2 2⎜ ⎟⎛

⎝
⎞
⎠
( ) ( )+ = (7)

By defining an arbitrary potential depending on X xα( ) as
ref. [29]

X x

x

α
x

x

α
x

, if 0

, if 0,

α

α

α
( )

⎧
⎨
⎪

⎩⎪

( )
( )=

>

− − <
(8)
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one may re-express equations (6) and (7) in the forms

H
p

m

α
m ω X x

ˆ

2 2
α

α

α
α α

α

2 2
2 2( )= + (9)

and

p

m

α
m ω X x ψ x t E ψ x t

ˆ

2 2
, , ,α

α
α α

α
α

2 2
2 2⎜ ⎟⎛

⎝
( )⎞

⎠
( ) ( )+ = (10)

respectively.

3.1 α-creation operator âα
†
and

α-annihilation operator âα

We will develop here a fractional algebraic method for

solving equation (10). It involves the definition of two

operators, namely, the fractional creation operator of

order α (âα
†) and fractional annihilation operator of order

α (âα). We start by rewriting the Hamiltonian equation (9)

as

H
m

p α m ω X
1

2
ˆ ˆ .α α α

α α
α

2 2 2 2 2( )= + (11)

Because p̂α and X̂α do not commute, the Hamiltonian

could be factored as

H
m

ip αm ω X ip αm ω X

iαm ω p X

1

2
ˆ ˆ

ˆ , .

α α α
α α

α α
α α

α

α α
α α

{( )( )
[ ]}

= + − +

−
(12)

The commutator p Xˆ ,α α[ ] can be found as follows.

p X ψ p X ψ X p ψ

i ψD X X D ψ X D ψ

i ψD
x

α

ˆ , ˆ ˆ

,

α α α α α α

α
α

x
α

α α x
α

α x
α

α
α

x
α

α

[ ]
[ ]
⎡⎣ ⎤⎦

= −
= − ℏ + −

= − ℏ
(13)

and thus

p X iˆ , .α α α
α[ ] = − ℏ (14)

Substituting this result in equation (12) we obtain

H α ω
ip αm ω X

m α ω

ip αm ω X

m α ω

ˆ

2

ˆ

2

1

2
.

α α
α α α

α α
α

α
α
α α

α
α α

α

α
α
α α

⎡
⎣⎢
( )

( ) ⎤
⎦⎥

= ℏ +
ℏ

× − +
ℏ

−
(15)

According to this result, we define the α-creation operator

âα
† and the α-annihilation operator âα as

a
αm ω X ip

m α ω
ˆ

ˆ

2
,α

α α
α α

α
α
α α

† ( )= −
ℏ (16)

a
αm ω X ip

m α ω
ˆ

ˆ

2
,α

α α
α α

α
α
α α

( )= +
ℏ (17)

respectively. The commutation relation of âα with âα
† is

now straightforwardly calculated using the fundamental

relation equation (14) to yield

a aˆ , ˆ 1.α α
†[ ] = (18)

The fractional Hamiltonian is then expressed in terms of

fractional creation and annihilation operators as

H α ω a aˆ ˆ
1

2
,α α

α α
α α

†⎛⎝ ⎞⎠= ℏ − (19)

or equivalently as

H α ω a aˆ ˆ
1

2
.α α

α α
α α
†⎛⎝ ⎞⎠= ℏ + (20)

Substituting α 1= , one may recover the usual Hamiltonian

of harmonic oscillator.

3.2 The eigenfunction and eigenvalue

First of all let us operate by the fractional Hamiltonian on

a ψˆα
† , then we have

H a ψ α ω a a a ψˆ ˆ ˆ
1

2
ˆ .α α α

α α
α α α

† † †( ) ⎛⎝ ⎞⎠( )= ℏ + (21)

Using equation (18), we obtain

H a ψ α ω a a a a ψ

a α ω a a ψ α ω ψ

a H α ω ψ

E α ω a ψ

ˆ ˆ ˆ ˆ 1 ˆ
1

2

ˆ ˆ ˆ
1

2

ˆ

ˆ .

α α α
α α

α α α α

α α
α α

α α α
α α

α α α
α α

α
α
α α

α

† † † †

† †

†

†

( ) ⎛⎝ ( ) ⎞⎠( )
⎛
⎝

⎛⎝ ⎞⎠
⎞
⎠

( )
( )( )

= ℏ + +

= ℏ + + ℏ

= + ℏ
= + ℏ

Similarly, one can show that

H a ψ α ω a a a ψˆ ˆ ˆ
1

2
ˆ ,α α α

α α
α α α

†( ) ⎛⎝ ⎞⎠( )= ℏ − (22)

and that

H a ψ E α ω a ψˆ ˆ .α α
α

α
α α

α( ) ( )( )= − ℏ (23)

It follows that a ψˆα
†( ) is an eigenfunction of the Hamiltonian

HαwithaneigenenergyE
α increasedbyα ωα

α αℏ anda ψˆα isan

eigenfunction of the Hamiltonian Hα with an eigenenergy

Eα decreasedbyα ωα
α αℏ . This justifies thenamesgivenabove

to âα
† and âα.

To calculate wave function for ground state ψ0, we

stipulate that

a ψˆ 0.α 0 = (24)
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Then, by making use of equation (17), we have

αm ω X ip

m α ω
a ψ αm ω X D ψ

ˆ

2
ˆ 0.

α α
α α

α
α
α α

α
α α

α α
α

x
α

0 0

( ) ( )+
ℏ

= + ℏ =

It is then straightforward to obtain the ground state

eigenfunction as

ψ
αm ω

π

αm ω x

α
exp

2

α α

α
α

α α α

α
α0

2

2

1
4

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=
ℏ

−
ℏ

(25)

αm ω

π

αm ω X
exp

2
,

α α

α
α

α α
α

α
α

2
1
4

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=
ℏ

−
ℏ

(26)

where we make use of equation (4) to normalize ψ0.

Making use of equations (2), (20), and (24) one may cal-

culate the ground state energy Eα
0 . The result is

E α ω
1

2
.α

α
α α

0 = ℏ (27)

In the same manner, we calculate the energy for the first

excited state (E α
1 ) from

H ψ E ψ .α
α

1 1 1( ) ( )=

By making use of equation (21), we have

H a ψ E α ω a ψ

α ω α ω a ψ

α ω a ψ

ˆ ˆ

1

2
ˆ

3

2
ˆ ,

α α
α

α
α α

α

α
α α

α
α α

α

α
α α

α

†
0 0

†
0

†
0

†
0

( ) ( )( )
⎛⎝ ⎞⎠( )
⎛⎝ ⎞⎠( )

= + ℏ

= ℏ + ℏ

= ℏ

from which we obtain the energy for first excited state as

E α ω
3

2
.α

α
α α

1 = ℏ (28)

Repeating similar steps for the n-excited state, one finds

that the energy eigenvalues are

E α ω n n
1

2
, 0, 1, 2,n

α
α
α α⎛⎝ ⎞⎠= ℏ + = … (29)

The n-excited state (ψn) is determined from

ψ A a ψˆ .n n α
n†

0( )= (30)

The constant An is calculated from the normalization con-

dition as

ψ ψ A a ψ a ψ x x

A a a ψ a ψ x x

A a ψ a a ψ x x

ˆ ˆ d

ˆ ˆ ˆ d

ˆ ˆ ˆ d .

n n n α
n

α
n α

n α α
n

α
n α

n α
n

α α
n α

2 †
0

†
0

1

2 † † 1
0

†
0

1

2 † 1
0

†
0

1

∣ ∣ ∣ (( ) ) (( ) )

∣ ∣ ( ( ) ) (( ) )

∣ ∣ (( ) ) ( ( ) )

∫

∫

∫

⟨ ⟩ =

=

=

−∞

∞
∗ −

−∞

∞
− ∗ −

−∞

∞
− ∗ −

(31)

Using (see Appendix A)

a a n aˆ , ˆ ˆ ,α α
n

α
n† † 1[ ( ) ] ( )= − (32)

we then have

ψ ψ A a ψ a a ψ

n a ψ x x

A a ψ n a ψ x x

n A a ψ a ψ x x

n A a ψ x x

ˆ ˆ ˆ

ˆ d

ˆ 0 ˆ d

ˆ ˆ d

ˆ d .

n n n α
n

α
n

α

α
n α

n α
n

α
n α

n α
n

α
n α

n α
n α

2 † 1
0

†
0

† 1
0

1

2 † 1
0

† 1
0

1

2 † 1
0

† 1
0

1

2 † 1
0
2 1

∣ ∣ ∣ (( ) ) (( )

( ) )
∣ ∣ (( ) ) ( ( ) )

∣ ∣ (( ) ) (( ) )

∣ ∣ ∣( ) ∣

∫

∫

∫

∫

⟨ ⟩ =

+

= +

=

=

−∞

∞
− ∗

− −

−∞

∞
− ∗ − −

−∞

∞
− ∗ − −

−∞

∞
− −

(33)

Making use of equation (30) and interchanging n by

n 1− , we have

ψ A a ψ
ψ

A
a ψ

ψ ψ n A
ψ

A
x x

n
A

A
ψ x x

ˆ ˆ

d

d ,

n n α
n n

n
α

n

n n n
n

n

α

n

n
n

α

1 1
† 1

0
1

1

† 1
0

2 1

1

2

1

1

2

1
2 1

( ) ( )

∣ ∣ ∣

∣ ∣

∫

∫

= → =

⟨ ⟩=

=

− − − −

−
−

−∞

∞
−

−
−

−
−∞

∞

−
−

where X X x xd dα
x

α α
α 1

α

= → = −

ψ ψ n
A

A
ψ X

n
A

A
ψ ψ

A
A

n

d

1

,

n n
n

n
n α

n

n
n n

n
n

1

2

1
2

1

2

1 1

1

∣ ∣ ∣

∣

∫⟨ ⟩ =

= ⟨ ⟩ =

→ =

−
−∞

∞

−

−
− −

−

where the inner product for ψn 1− is equal ψ ψ 1n n1 1∣⟨ ⟩ =− − .

Then we obtain

ψ ψ n
A

A
A

A

n

A
A

n

1

,

n n
n

n
n

n

n
n

1

2
1

1

∣⟨ ⟩ = = → =

=

−

−

−
(34)

where A 10 = . The eigenfunction for nth-excited state is

then

ψ
n

a ψ
1

ˆ .n α
n†

0( )=
! (35)
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3.3 Eigenfunctions in terms of Hermite

polynomial

The eigenfunctions for the excited state equation (35) can

be expressed in terms of the Hermite polynomials as fol-

lows. First, we rewrite equation (16) as

a
αm ω

X
αm ω

D

αm ω
X

αm ω
x

x

ˆ
1

2

1

2

d

d
.

α

α α

α
α α

α
α

α α x
α

α α

α
α α

α
α

α α
α

†

1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

=
ℏ

− ℏ

=
ℏ

− ℏ −

Using Xα
x

α

α

= , then x
X

α
x

d

d
1 d

dα
= − , and

a
αm ω

X
αm ω X

ˆ
1

2

d

d
.α

α α

α
α α

α
α

α α
α

† ⎡
⎣⎢

⎤
⎦⎥

=
ℏ

− ℏ

We define Y Xαm ω
α

α α

α
α

=
ℏ

, then Y Xd dαm ω
α

α α

α
α

=
ℏ

and
Y

d

d
=

αm ω X

d

d
α
α

α α
α

ℏ
. In terms of Y, we have

a Y
Y

ˆ
1

2

d

d
.α

† ⎛
⎝

⎞
⎠= − (36)

Substituting this equation in (35) we obtain

ψ
n

Y
Y

ψ
1

2

d

d
.n n

n

0
⎛
⎝

⎞
⎠=

!
− (37)

Making use of equation (26) in (37), and following ref.

[30], one may show

ψ
αm ω

π n
H Y

Y1

2
exp

2
.n

α α

α
α n

n

2
1
4

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

( ) ⎛
⎝

⎞
⎠=

ℏ !
− (38)

The eigenfunction for n-excited state in terms of Hermite

polynomials is then given as

ψ
αm ω

π n
H

αm ω
X

αm ω X

1

2

exp
2

.

n

α α

α
α n

n

α α

α
α α

α α
α

α
α

2

1
4

⎜ ⎟

⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=
ℏ ! ℏ

× −
ℏ

(39)

3.4 Eigenfunctions in terms of conformable

Hermite polynomial

The eigenfunctions for the excited state equation (35) can

be expressed in terms of the Hermite polynomials as fol-

lows. First, we rewrite equation (16)

a
αm ω x

α αm ω
Dˆ

1

2
.α

α α

α
α

α
α
α

α α x
α† ⎡

⎣⎢
⎤
⎦⎥

=
ℏ

− ℏ

We define yα αm ω x

α

α α

α
α

α

=
ℏ

, then αy y x xd dα αm ω α1 1
α α

α
α

=−
ℏ

− ,

and x
y

α y αm ω

α
x

d

d
1 d

d

α
α
α

α α

1

= ℏ −−
, so we get D D

α y
α

x
α1 = . In terms

of Y, we have

a y
α
Dˆ

1

2

1
.α

α
y
α† ⎛⎝ ⎞⎠= − (40)

Substituting this equation in (35) we obtain

ψ
n

y
α
D ψ

1

2

1
.n n

α
y
α

n

0
⎛⎝ ⎞⎠=
!
− (41)

From equation (26) ψ exp
αm ω

π

y
0 2

α α

α
α

α
1
4 2( ) ( )= −ℏ , we have

ψ
n

αm ω

π
y

α
D

y1

2

1
exp

2
.n n

α α

α
α

α
y
α

n α2
1
4

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
⎛⎝ ⎞⎠

⎛
⎝

⎞
⎠=

! ℏ
− − (42)

Making use of conformable Hermite polynomial [31]:

H y
α

y D y
1

exp exp .n
α

n

n
α

y
nα α2 2( ) ( ) ( ) ( )= − − (43)

Thus, using the relation (see Appendix B)

y
α
D

y y
H x

1
exp

2
exp

2
,α

y
α

n α α

n
α

2 2

⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )− − = − (44)

we adopt Dnα to denote the conformable derivative n-times.

The eigenfunction for n-excited state in terms of con-

formable Hermite polynomials is then given as

ψ
n

αm ω

π

y
H y

1

2
exp

2
.n n

α α

α
α

α

n
α

2
1
4

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )=

! ℏ
− (45)

4 Summary and conclusions

In this article, an algebraic method, using α-creation

operator âα
† and α-annihilation operator âα, is established

for the conformable harmonic oscillator. The Hamiltonian

for the systems is written in terms of these operators. It is

found that for a given order α, the α-creation operator has

the effect of promoting the present state of the system

while the α-annihilation operator demotes the state. The

system is quantized in terms of âα
† and âα and the energy

eigenvalues and eigenfunctions are obtained. The eigen-

functions are expressed in terms of the conformable

Hermite functions. The results for the traditional quantum

harmonic oscillator are found to be recovered by setting

α 1= . The formulation of the harmonic oscillator using âα
†

and âα may be useful in the formulation of conformable

field quantization.
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Appendix A

a a n aˆ , ˆ ˆ .α α
n

α
n† † 1[ ( ) ] ( )= − (46)

Proof. Using number operator

N a aˆ ˆ ˆ .α α
†= (47)

We calculate this commutation relation

N a Na a

a a N a

a a N a

n a a N

ˆ ˆ ˆ

ˆ ˆ ˆ

2 ˆ ˆ ˆ

ˆ ˆ .

α
n

α α
n

α α α
n

α α α
n

α
n

α
n

† † † 1

† † † 1

† 2 † 2 † 2

† †

( ) ( )
( )( )
( ( ) ( ) )( )

( ( ) ( ) )

=
= +
= +
=⋯= +

−

−

−

So, we have

N a n a, ˆ ˆ ,α
n

α
n† †[ ( ) ] ( )= (48)

and substituting equation (47) in this commutation rela-

tion we have

a a a a a a a a a

a a a n a

ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ , ˆ ˆ

ˆ ˆ , ˆ 0 ˆ .

α α α
n

α α α
n

α α
n

α

α α α
n

α
n

† † † † † †

† † †

[ ( ) ] [ ( ) ] [ ( ) ]
[ ( ) ] ( )

= +
= + =

Thus, we obtain

a a a n a a a n aˆ ˆ , ˆ ˆ ˆ , ˆ ˆα α α
n

α
n

α α
n

α
n† † † † † 1[ ( ) ] ( ) [ ( ) ] ( )= → = −

and a a a a n aˆ ˆ ˆ ˆ ˆα α
n

α
n

α α
n† † † 1( ) ( ) ( )= + − . □

Appendix B

Proof.

y
y

α
D

y
f y

α
D f yexp

2

1
exp

2

1
,

α
α

y
α

α

y
α

2 2

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
⎛⎝ ⎞⎠

⎛
⎝

⎞
⎠ ( ) ( )− − = − (49)

for n-times we get

y
α
D

y
f y

α

y
D f y

1
exp

2

1
exp

2
,

α
y
α

n α

n

n

α

y
α

2

2

⎜ ⎟

⎜ ⎟

⎛⎝ ⎞⎠
⎛
⎝

⎞
⎠ ( )

( )
( ) ⎛

⎝
⎞
⎠ ( )

−

= −
(50)

let f y exp
y

2

α2( ) ( )= − , we obtain

y
α
D

α

y
D

y1 1
exp

2
exp

2
,α

y
α

n n

n

α

y
nα

α2 2

⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠
( ) ⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠− = − − (51)

multiply this equation from right side by exp
y

2

α2( )− , thus,

we have

y
α
D

y

y

α
y D y

1
exp

2

exp
2

1
exp exp .

α
y
α

n α

α n

n
α

y
nα α

2

2
2 2

⎜ ⎟

⎜ ⎟

⎛⎝ ⎞⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎡
⎣
( ) ( ) ( )⎤⎦

− −

= − − −

So, using conformable Hermite polynomial in equation

(43), we obtain

y
α
D

y y
H x

1
exp

2
exp

2
.α

y
α

n α α

n
α

2 2

⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )− − = − (52)

□
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