
ar
X

iv
:1

71
0.

02
13

5v
1 

 [
m

at
h-

ph
] 

 5
 O

ct
 2

01
7

Quantization of Hamiltonian systems with a position dependent

mass: Killing vector fields and Noether momenta approach
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Abstract

The quantization of systems with a position dependent mass (PDM) is studied. We present a
method that starts with the study of the existence of Killing vector fields for the PDM geodesic
motion (Lagrangian with a PDM kinetic term but without any potential) and the construction of
the associated Noether momenta. Then the method considers, as the appropriate Hilbert space,
the space of functions that are square integrable with respect to a measure related with the PDM
and, after that, it establishes the quantization, not of the canonical momenta p, but of the Noether
momenta P instead. The quantum Hamiltonian, that depends on the Noether momenta, is obtained
as an Hermitian operator defined on the PDM Hilbert space. In the second part several systems with
position-dependent mass, most of them related with nonlinear oscillators, are quantized by making
use of the method proposed in the first part.
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1 Introduction

Suppose we are given a one-dimensional system described, in terms of a coordinate x, by a Lagrangian

L =
1

2
m(x)ẋ2 − V (x) , x ∈ R , m(x) > 0,

that is, the usual constant mass m is replaced by a strictly positive function of the position; then the
Hamiltonian H , that is given by

H(x, p) =
1

2

1

m(x)
p2 + V (x) ,

is correctly defined. The point is that there is an important problem with the construction of the quantum
version of H , that is, with the transition H → Ĥ from the classical system to the quantum one, because
if the mass m becomes a function of the spatial coordinate, m = m(x), then the quantum version of the
mass no longer commutes with the momentum. Therefore, different forms of presenting the kinetic term
in the Hamiltonian H , as for example

T =
1

4

[ 1

m(x)
p2 + p2

1

m(x)

]
, T =

1

2

[ 1√
m(x)

p2
1√
m(x)

]
, T =

1

2

[
p

1

m(x)
p
]
,

are equivalent at the classical level but they lead to different and nonequivalent Schrödinger equations.

This problem is important mainly for two reasons.

(i) There are a certain number of important areas, mainly related with problems on condensed-matter
physics (electronic properties of semiconductors, liquid crystals, quantum dots, etc), in which the
behaviour of the system depends of an effective mass that is position-dependent.

(ii) From a more conceptual viewpoint, the ordering of factors in the transition from a commutative to
a noncommutative formalism is an old question that remains as an important open problem in the
theory of quantization.

This question has been studied by many authors from different points of view that, in most of cases,
make use of the formalism (α, β, γ) that we present in the next paragraphs.

1.1 Formalism (α, β, γ)

The formalism we call (α, β, γ) makes use as a starting point of a rather general form of the kinetic term
that includes several possible alternatives. The main idea is to represent T as the following expression
depending on three (related) parameters

Tαβγ =
1

4

(
mα pmβ pmγ +mγ pmβ pmα

)
, α+ β + γ = −1 .

It was introduced by von Roos in [1] (generalizing a previous study by BenDaniel et al [2]) and then used
by other different authors [3]–[24]. We quote the following text appearing in [9]:
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One of the well-known problems of the position-dependent effective mass (PDEM) Schrödinger
equation (SE) consists on the momentum and mass-operator noncommutativity and the re-
sultant ordering ambiguity in the kinetic energy term. To cope with this difficulty, it is
advantageous to use the von Roos general two-parameter form of the effective mass kinetic
energy operator [1] which has an inbuilt Hermiticity and contains other plausible forms as
special cases.

Even if not explicitly stated, it is assumed that the configuration space is R with its natural coordinate
x, the Hilbert space of the quantum system is L2(R, dx) and that p is represented by the differential
operator p = −i~ d/dx in such space, and this is the reason for the symmetrization in the expression of
Tαβγ .

It is important to remark that different choices of the parameters, α, β, and γ, (known as von Roos
ambiguity parameters) lead to distinct non-equivalent quantum Hamiltonians. Therefore, this formalism
admits many particular cases; we first mention that BenDaniel et al [2] proposed (in a study previous
to that of von Roos) (α = 0, β = −1, γ = 0); other choices are for example, Zhu et al [3] which use
the choice (α = −1/2, β = 0, γ = −1/2), Li et al [4] (α = 0, β = γ = −1/2), and Mustafa et al [18]
(α = −1/4, β = −1/2, γ = −1/4). We also note that some authors simplify the number of parameters
and make use of a simpler expression: For example in Ref. [14], [17], the expression of T is

Tab =
1

2

(
ma pm2b pma

)
, a+ b = −1/2 ,

while in Ref. [19] the expression of T uses only a parameter r = a and then 2b = −1− 2r.

Lévy-Leblond studied this problem in [25] and, after analyzing some different possible quantizations,
he proposed (by making use of some arguments related with the Galilei transformations) as the most
appropriate form for Tαβγ to carry out the quantization the choice (α = 0, β = −1, γ = 0) that coincides
with the one used in [2]. That is,

TLL =
1

2

(
p

1

m(x)
p
)
.

He then asserts that if another different form of Tαβγ is chosen, then it is convenient to introduce an
effective potential Veff(x) that can be obtained by addition to the potential V (x) of an additional term
U(x) depending on m(x) and of its derivatives m′(x) and m′′(x) with (α, β, γ)-dependent coefficients (in
fact, this is a translation of the problem from the kinetic term T into the potential V ). As an example,
if the kinetic term T is written as

T =
1

4

( 1

m(x)
p2 + p2

1

m(x)

)
,

then the Hamiltonian must be modified by replacing V (x) with the following effective potential

Veff = V (x)− 1

2

m′2

m3
+

1

4

m′′

m2
.

A certain number of authors have studied this question and shown a certain preference for Lévy-Leblond
choice [26]–[38] (with or without the effective potential).
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1.2 Purpose and structure of the paper

The aim of this paper is to present a method of quantization of Hamiltonian systems with PDM that,
although it is not totally new (in fact, it has been already applied in some very particular cases [39, 40]),
it is now presented in a general form. It is formulated starting with two important points. First, we
consider that if the constant mass m is replaced by a positive function then it is convenient to introduce
this function as a factor on the metric and this property has an important influence in the form of the
Hilbert space of wave functions, and second, we consider that for obtaining the quantum Hamiltonian a
previous step is the quantization of the Noether momenta.

The structure of the paper is as follows. In the next Section 2 we present the main characteristics of
the method of quantization of Hamiltonian systems with a PDM by making use of Killing vector fields
and Noether momenta. The rest of the paper is devoted to illustrate this method with some different
particular systems. In Section 3 a nonlinear oscillator with quasi-harmonic behaviour is studied. In
Section 4 we study the quantization of three nonlinear oscillators with a position-dependent mass and
in Section 5 we consider the relation with the Laplace-Beltrami quantization formalism. We conclude in
the last section with some remarks and open problems.

2 Quantization by making use of Killing vector fields and Noether

momenta

2.1 Killing vector fields and Noether momenta

In order to study a quantum system (in the Schrödinger picture) we should first fix the Hilbert space H
and then the (essentially) selfadjoint operators corresponding to the relevant observables to be quantized.
Recall that there are obstructions for the quantization of all classical observables (see e.g. [41]), and
sometimes we are only interested in the explicit form of the Hamiltonian quantum operator.

The domain of quantum operators is quite important in the non-bounded case. So, the selfadjoint
character of an operator depends not only of the formal appearance of the operator, but also of the
particular domain of the Hilbert space in which it is defined. The same formal aspect of an operator can
lead to a selfadjoint operator in a case, or not selfadjoint in the other. Therefore the quantization of the
Hamiltonian of a system means two items:

(a) Definition of the appropriate Hilbert space of pure states.

(b) Construction of the quantum Hamiltonian (defined in the Hilbert space (a)).

Unfortunately many authors go directly to the point (b) without a previous detailed analysis of the
point (a). In the problem we are going to consider (quantization of a Hamiltonian system with a PDM)
the point (a) is of a great importance because the particular form of the measure dµ defining the Hilbert
space L2(R, dµ) strongly depends on the characteristics of the function m(x).

Let us begin by considering the classical one-dimensional free-particle motion in the real line charac-
terized by the x-dependent kinetic term T as a Lagrangian

L(x, v) = T (x, v) =
1

2
m(x) v2 , m(x) > 0 , (2.1)
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that leads to the following nonlinear differential equation

m(x) ẍ +
1

2
m′(x) ẋ2 = 0 ,

wherem′(x) = dm/dx. As indicated in [42] this kinetic Lagrangian possesses an exact Noether symmetry.
In fact, the function T is not invariant under translations but under the action of the vector field X given
by

X(x) =
1√
m(x)

∂

∂x
, (2.2)

(displacement δx = ǫ(m(x))−1/2, in the physicists language) in the sense that we have

Xt
(
T
)
= 0 ,

where Xt denotes the tangent lift to the velocity phase space R×R (that, in differential geometric terms,
is the tangent bundle TQ of the configuration space Q = R) of the vector field X ∈ X(R),

Xt(x, v) =
1√
m(x)

( ∂

∂x
−
(1
2

m′(x)

m(x)

)
v
∂

∂v

)
.

At this point we recall that given a Riemannian space (M, g), with local coordinates x1, x2, . . . , xn,
then a vector field X defined on M that is a symmetry of the metric g (in the sense that it satisfies
LXg = 0 where LX denotes the Lie derivative with respect to X) is called Killing vector field. We also
recall that Killing vector fields also preserve the volume Ωg determined by the metric, that is,

Ωg =
√
|g| dx1 ∧ dx2 ∧ . . . ∧ dxn , LXΩg = 0 ,

where |g| denotes the determinant of the matrix g defining the Riemann structure.

The following proposition relates geometry with mechanics.

Proposition 1 Let (M, g) a Riemannian space, X a vector field on M , Xt the tangent lift of X to TM ,

and Tg the kinetic energy function defined by the metric

Tg(x, v) =
1

2
gij(x)v

ivj .

Then the important property is true

Xt(Tg) = Tg̃ , g̃ = LXg .

For a proof of this proposition see [43].

Consequently, X is a Killing vector field for the Riemann structure g if and only if Xt is a symmetry
for the associated kinetic energy function Tg. Now, we can observe that the vector field X given by
(2.2), that preserve the PDM kinetic term (2.1), is in fact a Killing vector field of the one-dimensional
m-dependent metric

g = m(x) dx ⊗ dx , ds2 = m(x) dx2 .

The line element is invariant under the flow of the vector field X = f(x)∂/∂x when

f m′ + 2mf ′ = 0 ,
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and, therefore, in order to the vector field X to be a Killing vector, it should be proportional to the vector
field X given by (2.2).

The vector field X represents (the infinitesimal generator of) an exact Noether symmetry for the
geodesic motion. If we denote by θL the Lagrangian 1-form

θL =
(∂L
∂v

)
dx = m(x)v dx ,

then the associated Noether constant of the motion P for the free (geodesic) motion is given by

P = i
(
Xt

)
θL =

√
m(x) v .

In what follows the function P will be called Noether momentum associated to the Noether symmetry
determined by X .

2.2 Quasi-regular representation

The Hilbert space for a quantum system with a classical configuration space M is the linear space of
square integrable functions on M with respect to an appropriate measure, L2(M,dµ). In the case of a
natural system the measure to be considered must be invariant under the the Killing vector fields of the
metric. The reason is the following:

If Φ : G ×M → M denotes the action of a Lie group G on a differentiable manifold M , then the
associated quasi-regular representation is given by the following action ofG on the set of complex functions
on M :

(U(g)ψ)(x) = ψ(Φ(g−1, x)).

If M admits an invariant measure dµ we can restrict the action on the set L2(M,dµ) and the linear
representation so obtained is a unitary representation, because then

〈U(g)ψ1, U(g)ψ2〉 =
∫

M

((U(g)ψ1)(x))
∗(U(g)ψ2)(x) dµ(x)

i.e.

〈U(g)ψ1, U(g)ψ2〉 =
∫

M

(ψ1(Φ(g
−1, x)))∗ ψ2(Φ(g

−1, x)) dµ(x),

and consequently, defining y as y = Φ(g−1, x), we obtain

〈U(g)ψ1, U(g)ψ2〉 =
∫

M

(ψ1(y))
∗ ψ2(y) dµ(Φ(g, y)) =

∫

M

(ψ1(y))
∗ ψ2(y) dµ(y) = 〈ψ1, ψ2〉.

If a one-parameter subgroup γ(t) = exp(at), a ∈ g, is considered, then the fundamental vector field
Xa ∈ g, which is given by

(Xψ)(x) =
d

dt
ψ(Φ(exp(−ta), x))|t=0,

when restricted to the subspace L2(M,dµ) is a skew-selfadjoint operator provided that the measure µ is
γ(t)-invariant, because U(γ(t)) is a one-parameter group of unitary transformations. The infinitesimal
generator in the regular representation is a generator for a 1-parameter group of unitary transformations,
and consequently it is skew-self-adjoint operator. Of course if we want the generators of several one-
parameter groups be skew-self-adjoint, the measure defining the Hilbert space must be invariant under
each 1-parameter subgroup.

6



2.3 Quantization

Coming back to the one-dimensional PDM system, the quantum system must be described by the Hilbert
space of square integrable functions defined in R endowed with an invariant under X measure, dµx,
therefore determined by the metric. The Lebesgue measure dx is not invariant under X = f(x)∂/∂x, the
invariance condition for the measure dµ = ρ(x) dx being

f ρ′ + ρf ′ = 0 .

Therefore the only measure invariant under X given by (2.2) is any multiple of

dµx =
√
m(x) dx. (2.3)

This automatically implies that the first-order linear operator X is skew-symmetric. This means that the
operator P̂ representing the quantum version of the Noether momentum P must be selfadjoint, not in
the standard space L2(R) ≡ L2(R, dx), but in the space L2(R, dµx) of square integrable functions with
respect the PDM measure dµx.

Using the Legendre transformation the momentum p and velocity v are related by p = m(x) v, so that
the expressions of the Noether momenta and the Hamiltonian (kinetic term plus a potential) in the phase
space are

P =
1√
m(x)

p ,

and

H =
1

2
P 2 + V (x) .

As we have pointed out, the generator of the infinitesimal ‘translation’ symmetry, (1/
√
m(x)) d/dx,

is skew-Hermitian in the space L2(R, dµx) and therefore the transition from the classical system to the

quantum one is given by defining the operator P̂ as follows

P 7→ P̂ =
1√
m(x)

(
− i ~

d

dx

)
,

so that
1

m
p2 → − ~

2

( 1√
m(x)

d

dx

)( 1√
m(x)

d

dx

)
,

in such a way that the quantum Hamiltonian Ĥ is represented by the following Hermitian (defined on
the space L2(R, dµx)) operator

Ĥ = −~
2

2

( 1√
m(x)

d

dx

)( 1√
m(x)

d

dx

)
+ V (x) ,

= −~
2

2

1

m(x)

d2

dx2
+

~
2

4

(m′(x)

m2(x)

) d

dx
+ V (x) ,

and then the Schrödinger equation Ĥ Ψ = EΨ becomes

− ~
2

2

1

m(x)

d2Ψ

dx2
+

~
2

4

(m′(x)

m2(x)

) dΨ
dx

+ V (x)Ψ = EΨ . (2.4)
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We can summarize the method we have presented by emphasizing two important changes with respect
the standard method of quantizing in the normal case of a constant mass. First, the Hilbert space is now
related with a m(x)-dependent measure. Second, this method quantizes, not the canonical momenta p,
but the Noether momenta P . Then the method is carried out in two steps:

(i) Study of the properties of the classical free particle with PDM (kinetic term without potential)
using geometric techniques as an approach

Kinetic term T −→ Killing vector field X −→ Noether momentum P

(ii) Quantization (making use of the measure dµx) first of P and then of H

Noether momentum P −→ Hermitian operator P̂ −→ Quantum Hamiltonian Ĥ

In the following Sections, we will illustrate this method of quantization with a detailed study of some
particular cases. We will focus our attention on some systems related with nonlinear versions of the
harmonic oscillator.

3 Nonlinear quasi-harmonic oscillator with a PDM

As a first example we review the quantization of a nonlinear oscillator already studied in [39, 40]. The
nonlinear differential equation

(1 + λx2) ẍ− (λx) ẋ2 + α2 x = 0 , λ > 0 , (3.1)

was first studied by Mathews and Lakshmanan in [44] (see also [45]) as an example of a non-linear
oscillator; the most remarkable property is that its general solution is of the form

x = A sin(ω t+ φ) , ω2 =
α2

1 + λA2
, λ > 0 .

That is, the above equation represents a non-linear oscillator with periodic solutions having a simple
harmonic form. It can be proved that (3.1) can be obtained from the Euler-Lagrange equation of the
Lagrangian

L =
1

2

( 1

1 + λx2

)
(ẋ2 − α2 x2) . (3.2)

The generalization of this system to n = 2 and n > 2 dimensions (and also for both λ > 0 and λ < 0)
was studied in [46]. Since then it has been studied by different authors [47]–[58].

Let us consider the following Lagrangian

L(x, v;κ) =
1

2

( v2

1− κx2

)
−
(1
2

)
α2

( x2

1− κx2

)
, (3.3)

where use has been made of a change of sign, κ = −λ (the reason for this change is that, in the generalized
higher-dimensional case, the new parameter κ can be interpreted as a constant curvature), and the κ-
dependence is defined in such a way that the limit when κ → 0 is correctly defined and it leads to
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the linear harmonic oscillator. It is a system with a PDM m = m(x) = 1/(1 − κx2) that depends on
the position x. Remark that when κ > 0 we must restrict the configuration space to the open interval
(−1/

√
κ, 1/

√
κ) in order to the mass be positive and to avoid singularities.

The κ-dependent kinetic term

Tκ(x, v) =
1

2

( v2

1− κx2

)

is invariant under the action of the vector field Xκ given by

Xκ(x) =
√

1− κx2
∂

∂x
,

in the sense that we have
Xt

κ

(
Tκ

)
= 0 ,

where Xt
κ denotes the natural lift to the velocity phase space (tangent bundle TQ of the configuration

space Q) of the vector field Xκ in the configuration space,

Xt
κ(x, v) =

√
1− κx2

∂

∂x
−
( κxvx√

1− κx2

) ∂

∂vx
.

In differential geometric terms this property means that the vector field Xκ is a Killing vector field of
the one-dimensional metric

g =
( 1

1− κx2

)
dx⊗ dx , ds2κ =

( 1

1− κx2

)
dx2 .

It must also be considered as a Noether symmetry for the geodesic motion with an associated Noether
constant of the motion P for the geodesic motion that is given by

P = i
(
Xt

)
θL =

( 1√
1− κx2

)
v .

The expression of P in the phase space is

P =
√
1− κx2 px ,

so that the (classical) Hamiltonian of this κ-dependent oscillator can be written as follows

H =
(1
2

)
P 2 +

(1
2

)
α2

( x2

1− κx2

)
.

The quantum formalism is constructed by considering wave functions on the real line R (when κ < 0)
or in the interval (−1/

√
κ, 1/

√
κ), (if κ > 0), endowed with the measure dµκ given by

dµκ =
( 1√

1− κx2

)
dx ,

which is the only (up to a factor) measure invariant under Xκ. This means that the operator P̂ , represent-
ing the PDM linear momentum, must be Hermitian in the space L2(dµκ) of square integrable functions
with respect the PDM measure dµκ defined as

9



(i) In the negative κ < 0 case, the space L2(dµκ) is L
2(R, dµκ).

(ii) In the positive κ > 0 case, the space L2(dµκ) is L
2
0(Iκ, dµκ) where Iκ denotes the interval [−√

κ, 1/
√
κ]

and the subscript means that the functions must vanish at the endpoints x = −1/
√
κ and x = 1/

√
κ.

(iii) Of course in the κ = 0 case we recover the standard space L2(R, dx).

The quantization is given by

P 7→ P̂ = − i ~
√
1− κx2

d

dx
,

so that

(1− κx2) p2x → − ~
2

(√
1− κx2

d

dx

)(√
1− κx2

d

dx

)
,

in such a way that the quantum version Ĥ of the Hamiltonian H becomes

Ĥ = −~
2

2
(1 − κx2)

d2

dx2
+

(~2
2

)
κx

d

dx
+
(1
2

)
α2

( x2

1− κx2

)
.

Finally, introducing dimensionless variables (x̃, κ̃, e)

x =
(√

~

α

)
x̃ , κ =

(α
~

)
κ̃ , E = (~α) e ,

we arrive to

• The quantum Hamiltonian Ĥ becomes

Ĥ =
[
−1

2
(1 − κ̃ x̃2)

d2

dx̃2
+
(1
2

)
κ̃ x̃

d

dx̃
+
(1
2

) ( x̃2

1− κ̃ x̃2

) ](
~α

)
. (3.4)

• The Schrödinger equation reduces to the following dimensionless form

(1− k̃ x̃2)
d2

dx̃2
Ψ− k̃ x̃

d

dx̃
Ψ−

( x̃2

1− κ̃ x̃2

)
Ψ+ (2 e)Ψ = 0 . (3.5)

4 Three nonlinear oscillators with a position-dependent mass

In this section we consider three particular one-dimensional nonlinear oscillators with a position dependent
mass (PDM). They were studied in [14] with the formalism of creation-annihilation operators; now we
study the quantization by making use of the method presented in Section (2) as an approach.

4.1 λ-dependent nonlinear oscillator no. 1

The position dependent mass m1 and the potential V1 are

m1 =
m0

(1 + λ2x2)
and V1 =

(m0

2λ2
)
α2

(
arcsinh2(λx)

)
, m0 > 0,
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and therefore the Lagrangian is given by

L1(x, v;λ) = T1λ(x, v;λ) − V1(x;λ) =
1

2
m0

( v2

1 + λ2x2

)
−
(m0

2λ2
)
α2

(
arcsinh2(λx)

)
, (4.1)

where λ is a parameter such that λx is dimensionless. The λ dependence is defined in such a way that
the following limit is satisfied

lim
λ→0

L1(x, v;λ) =
1

2
m0v

2 − 1

2
m0 α

2x2 .

The kinetic term T1λ is invariant under the action of the vector field Xλ given by

Xλ(x) =
√

1 + λ2x2
∂

∂x
,

in the sense that we have
Xt

λ

(
T1λ

)
= 0 ,

whereXt
λ denotes the natural lift to the velocity phase space R×R (tangent bundle TQ of the configuration

space Q = R) of the vector field Xλ,

Xt
λ(x, v) =

√
1 + λ2x2

∂

∂x
+
( λ2 x v√

1 + λ2x2

) ∂

∂v
.

In differential geometric terms this property means that the vector field Xλ is a Killing vector field of
the one-dimensional metric

g =
( 1

1 + λ2x2

)
dx⊗ dx , ds2λ =

( 1

1 + λ2x2

)
dx2 ,

and, from a dynamial viewpoint, Xλ must be considered as a Noether symmetry for the geodesic motion.
The associated Noether constant of the motion P for such geodesic motion is given by

P = i
(
Xt

λ

)
θL =

( m0√
1 + λ2x2

)
v .

From this result we obtain that the (classical) Hamiltonian of this λ-dependent oscillator can be written
as follows

H1 =
( 1

2m0

)
P 2 + (

m0

2λ2
)α2 arcsinh2(λx) , P =

√
(1 + λ2x2) p .

The quantum formalism is constructed with wave functions defined on the real line R endowed with
the measure dµλ given by

dµλ =
( 1√

1 + λ2x2

)
dx ,

which is the particular measure determined by the metric and also the only (up to a constant factor)

measure invariant under Xλ. This means that the operator P̂ , representing the PDM linear momentum,
must be Hermitian, not in the standard space L2(R), but in the space L2(R, dµλ); of course L

2(R, dµλ)

reduces in the limit λ→ 0 to L2(R, dx) ≡ L2(R). The correspondence P → P̂ is given by

P 7→ P̂ = − i ~
√
1 + λ2x2

d

dx
,

11



so that

(1 + λ2x2) p2 → P 2 → − ~
2

(√
1 + λ2x2

d

dx

)(√
1 + λ2x2

d

dx

)
,

in such a way that the quantum version Ĥ1 of the Hamiltonian H1 is

Ĥ1 = − ~
2

2m0

(1 + λ2x2)
d2

dx2
−
( ~

2

2m0

)
λ2x

d

dx
+
(m0

2λ2
)
α2

(
arcsinh2(λx)

)
.

and then the Schrödinger equation
Ĥ1 Ψ = EΨ ,

turns out to be

[
− ~

2

2m0

(1 + λ2x2)
d2

dx2
−
( ~

2

2m0

)
λ2x

d

dx
+
(m0

2λ2
)
α2

(
arcsinh2(λx)

) ]
Ψ = e (~α)Ψ .

It is convenient to simplify this equation by introducing dimensionless variables (x̃,Λ, e) defined by

x =
(√

~

m0α

)
x̃ , λ =

(√m0 α

~

)
Λ , E = (~α) e ,

in such a way that then

• The quantum Hamiltonian Ĥ1 becomes

Ĥ1 =
[
−1

2
(1 + Λ2x̃2)

d2

dx̃2
−
(1
2

)
Λ2x̃

d

dx̃
+
( 1

2Λ2

)
arcsinh2(Λx̃)

]
(~α) . (4.2)

• The Schrödinger equation reduces, in terms of dimensionless variables, to the following form:

(1 + Λ2x̃2)
d2

dx̃2
Ψ + Λ2x̃

d

dx̃
Ψ−

( 1

Λ2

) (
arcsinh2(Λx̃)

)
Ψ+ (2 e)Ψ = 0 . (4.3)

4.2 λ-dependent nonlinear oscillator no. 2

The position dependent mass m2 and the potential V2 are

m2 =
m0

(1 + λx)2
and V2(x;λ) =

(m0

2λ2
)
α2

(
log2(1 + λx)

)
,

where we restrict the configuration space to the interval (−1/λ,∞). Therefore the Lagrangian, that is
given by

L2(x, v;λ) = T2λ(x, v;λ) − V2(x;λ) =
1

2
m0

( v2

(1 + λx)2

)
−
(m0

2λ2
)
α2

(
log2(1 + λx)

)
, (4.4)

is correctly defined in Iλ = (−1/λ,∞) and also in this case the following limit is satisfied

lim
λ→0

L2(x, v;λ) =
1

2
m0v

2 − 1

2
m0 α

2x2 .
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The kinetic term T2λ is invariant under the action of the vector field Xλ given by

Xλ(x) = (1 + λx)
∂

∂x
,

in the sense that we have
Xt

λ

(
T2λ

)
= 0 ,

where Xt
λ denotes the natural lift to the velocity phase space R×Iλ (tangent bundle TQ of Q = Iλ) of

the vector field Xλ,

Xt
λ(x, v) = (1 + λx)

∂

∂x
+ λ v

∂

∂v
.

In differential geometric terms this property means that the vector field Xλ is a Killing vector field of
the one-dimensional metric

g =
( 1

(1 + λx)2

)
dx⊗ dx , ds2λ =

( 1

(1 + λx)2

)
dx2 .

It must also be considered as a Noether symmetry for the geodesic motion. The associated Noether
constant of the motion P for the geodesic motion is given by

P = i
(
Xt

λ

)
θL =

( m0

(1 + λx)

)
v ,

so that the (classical) Hamiltonian of this λ-dependent oscillator can be written as follows

H2 =
( 1

2m0

)
P 2 +

(m0

λ2
)(

log2(1 + λx)
)
, P = (1 + λx) p .

The quantum formalism is constructed with wave functions defined on the interval Iλ = (−1/λ,∞)
endowed with the measure dµλ given by

dµλ =
( 1

(1 + λx)

)
dx ,

which is the measure determined by the one-dimensional metric and it is the only (up to a constant
factor) measure invariant under Xλ. Note also that in the limit for λ → 0, dµλ reduces to dx. This

means that the operator P̂ , representing the PDM linear momentum, must be Hermitian, not in the
standard space L2(Iλ) with Iλ = (−1/λ,∞), but in the space L2

0(Iλ, dµλ) with dµλ as defined above (the

subscript means that the functions must vanish at the point x = −1/λ). The transition P → P̂ is given
by

P 7→ P̂ = − i ~ (1 + λx)
d

dx
,

so that

(1 + λx)2 p2 → − ~
2

(
(1 + λx)

d

dx

)(
(1 + λx)

d

dx

)
,

in such a way that the quantum version Ĥ2 of the Hamiltonian H2 becomes

Ĥ2 = − ~
2

2m0

(1 + λx)2
d2

dx2
−
( ~

2

2m0

)
λ(1 + λx)

d

dx
+
(m0

2λ2
)
α2

(
log2(1 + λx)

)
,
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and then the Schrödinger equation
Ĥ2 Ψ = EΨ ,

is [
− ~

2

2m0

(1 + λx)2
d2

dx2
−
( ~

2

2m0

)
λ(1 + λx)

d

dx
+
(m0

2λ2
)
α2

(
log2(1 + λx)

) ]
Ψ = eΨ ,

It is convenient to simplify this equation by introducing dimensionless variables (x̃,Λ, e) defined by

x =
(√

~

m0α

)
x̃ , λ =

(√m0 α

~

)
Λ , E = (~α) e ,

in such a way that λx = Λx̃ and then we see that:

• The quantum Hamiltonian Ĥ2 becomes

Ĥ2 =
[
−1

2
(1 + Λx̃)2

d2

dx̃2
−
(1
2

)
Λ(1 + Λx̃)

d

dx̃
+
( 1

2Λ2

)
log2(1 + Λx̃

]
(~α) . (4.5)

• The Schrödinger equation reduces, in terms of dimensionless variables, to the following form:

(1 + Λx̃)2
d2

dx̃2
Ψ+ Λ(1 + Λx̃)

d

dx̃
Ψ−

( 1

Λ2

) (
log2(1 + Λx̃)

)
Ψ+ (2 e)Ψ = 0 . (4.6)

4.3 λ-dependent nonlinear oscillator no. 3

The position dependent mass m3 and the potential V3 are

m3 =
m0

(1− λ2x2)2
and V3(x;λ) =

(m0

2λ2
)
α2

(
arctanh2(λx)

)
, λ ≥ 0,

and therefore the Lagrangian L3 is given by

L3(x, v;λ) = T3λ(x, v;λ) − V3(x;λ) =
1

2
m0

( v2

(1 − λ2x2)2

)
−

(m0

2λ2
)
α2

(
arctanh2(λx)

)
, (4.7)

so the dynamics is only defined in Iλ = (−1/λ, 1/λ) and also in this case the limit λ→ 0 is

lim
λ→0

L3(x, v;λ) =
1

2
m0v

2 − 1

2
m0 α

2x2 .

The kinetic term T3λ is invariant under the action of the vector field Xλ given by

Xλ(x) = (1− λ2x2)
∂

∂x
,

in the sense that we have
Xt

λ

(
T3λ

)
= 0 ,

where Xt
λ denotes the natural lift to the velocity phase space R×Iλ (tangent bundle TQ of Q = Iλ) of

the vector field Xκ,

Xt
λ(x, v) = (1 − λ2x2)

∂

∂x
− 2λ2xv

∂

∂v
.
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In differential geometric terms this property means that the vector field Xλ is a Killing vector field of
the one-dimensional metric

g =
( 1

(1 − λ2x2)2

)
dx⊗ dx , ds2λ =

( 1

(1 − λ2x2)2

)
dx2 .

It must also be considered as a Noether symmetry for the geodesic motion. The associated Noether
constant of the motion P for the geodesic motion is given by

P = i
(
Xt

λ

)
θL =

( m0

(1− λ2x2)

)
v ,

and the (classical) Hamiltonian of this λ-dependent oscillator can be written as follows

H3 =
( 1

2m0

)
P 2 +

(m0

2λ2
)(

arctanh2(λx)
)
, P = (1− λ2x2) p .

The quantum formalism is constructed with wave functions defined on the interval Iλ = (−1/λ, 1/λ)
endowed with the measure dµλ given by

dµλ =
( 1

(1− λ2x2)

)
dx ,

which is the measure determined by the one-dimensional metric and it is the only (up to a constant factor)
measure invariant under Xλ. Note also that in the limit for λ→ 0, dµλ reduces to dx. This means that
the operator P̂ , representing the PDM linear momentum, must be Hermitian, not in the standard space
L2(Iλ) ≡ L2(Iλ, dx) with Iλ = (−1/λ, 1/λ), but in the space L2

0(Iλ, dµλ) (the subscript means that the

functions must vanish at the endpoints x = −1/λ and x = 1/λ). The transition P → P̂ is given by

P 7→ P̂ = − i ~ (1− λ2x2)
d

dx
,

so that

(1 + λ2x2) p2 → − ~
2

(
(1− λ2x2)

d

dx

)(
(1− λ2x2)

d

dx

)
,

in such a way that the quantum version Ĥ3 of the Hamiltonian H3 is

Ĥ3 = − ~
2

2m0

(1− λ2x2)2
d2

dx2
+
( ~

2

2m0

)
2λ2x(1− λ2x2)

d

dx
+
(m0

2λ2
)
α2

(
arctanh2(λx)

)
.

and then the Schrödinger equation turns out to be

Ĥ3 Ψ = EΨ ,

becomes

[
− ~

2

2m0

(1 − λ2x2)2
d2

dx2
+
( ~

2

2m0

)
2λ2x(1 − λ2x2)

d

dx
+
(m0

2λ2
)
α2

(
arctanh2(λx)

) ]
Ψ = EΨ .

It is convenient to simplify this equation by introducing dimensionless variables (x̃,Λ, e) defined by

x =
(√

~

m0α

)
x̃ , λ =

(√m0 α

~

)
Λ , E = (~α) e ,

in such a way that then
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• The quantum Hamiltonian Ĥ3 becomes

Ĥ3 =
[
−1

2
(1 − Λ2x̃2)2

d2

dx̃2
−
(1
2

)
2λ2x̃(1− Λ2x̃2)

d

dx̃
+
( 1

2Λ2

)
arctanh2(Λx̃)

]
(~α) . (4.8)

• The Schrödinger equation reduces, in terms of dimensionless variables, to the following form:

(1 − Λ2x̃2)2
d2

dx̃2
Ψ− 2λ2x̃(1− Λ2x̃2)

d

dx̃
Ψ−

( 1

Λ2

)(
arctanh2(Λx̃)

)
+ (2 e)Ψ = 0 . (4.9)

5 Relation with the Laplace-Beltrami quantization formalism

It is known that the quantization rule pi → p̂i , with the operator p̂i represented by the linear operator
p̂i = −i ~ (∂/∂xi) is only correct when the configuration space Q of the system is an Euclidean space (as
for example R

2 or R3) and then a classical Hamiltonian H , assumed of mechanical type, can be written
as a function of the Cartesian-Rectangular coordinates xi. Nevertheless, the momentum conjugate to
an arbitrary generalized coordinate q is, in general, not represented by −i ~ (∂/∂q). For example, if the
classical Hamiltonian H is presented in spherical coordinates (r, θ, φ) then the quantization rule pr → p̂r
with p̂r = −i ~ (∂/∂r) is not correct [59].
In the Euclidean case, the kinetic term of the classical Hamiltonian is transformed into the Laplacian

p2x + p2y + p2z → p̂2x + p̂2y + p̂2z = − ~
2∇2 , ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

and this fact suggests that the quantification of the kinetic term of a Hamiltonian written in curvilinear
(non-Cartesian) coordinates is given by the Laplace operator in such coordinates [59]. In the non-
Euclidean case, Schrödinger [60] and Stevenson [61] studied the spherical model (see also [62]) and Infeld
and Shild [63] studied the corresponding problem in Lobachevsky plane (see also, e.g. [64, 65]), and it is
now well established that we can consider an analogous rule in Riemann spaces (see e.g. [66] and Section
2 of [67]).

So, if the configuration space Q is endowed with a Riemann metric g given by

g = gij(q) dq
i ⊗ dqj , ds2 = gij(q)dq

idqj ,

the kinetic part of the quantum Hamiltonian is chosen to be given by

Ĥ0 = − ~
2

2m
∇2 ,

where ∇2 denotes the Laplace-Beltrami operator

∇2f = div
(
grad f

)
=

1√
|g|

∂

∂qi

(√
|g|

(
gij

∂f

∂qj
))
.

That is, the Laplace-Beltrami quantization formalism quantizes directly the Hamiltonian (that is, H →
Ĥ) without the previous quantization of the momenta. A particular example is that of the motion on a
surface in R

3, the metric been the pull-back of the Euclidean metric.
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As we have stated in Section (2), the kinetic term of a one-dimensional system with a PDM can be
considered as associated to a one-dimensional metric g with only one component

g11 = m(x) , g11 =
1

m(x)
, |g| = g11 ,

so that the one-dimensional version of the Laplace-Beltrami operator is given by

∇2f =
1√
m(x)

d

dx

[√
m(x)

( 1

m

df

dx

)]
=

1

m(x)

d2f

dx2
− 1

2

(m′(x)

m2(x)

) df

dx
,

and it leads to a Hamiltonian Ĥ that takes the form

Ĥ = − ~
2

2

1

m(x)

d2

dx2
+

~
2

4

(m′(x)

m2(x)

) d

dx
+ V (x) . (5.1)

It is important to remark that it coincides with the Hamiltonian (2.4) obtained by making use of the
quantization of the Noether momenta.

It is also to be remarked that it is known since the well known paper [68] that some quantum geometry
induced potential terms related to curvatures can appear in some quantizations as constrained systems,
but we can always absorbe such terms by defining a effective potential (see e.g. [69, 70, 71] or [67] for a
more recent paper).

6 Concluding remarks and outlook

We have studied the quantization of Hamiltonian systems with a position-dependent mass by making
use of the quantization of the Noether momenta (instead of the canonical momenta) as an approach.
This means a first analysis of the PDM geodesic motion (motion with PDM but without potential) for
obtaining the Noether momenta (integral of motion for the free particle but not for the total Hamiltonian).
This is so because for a natural system the symplectic form only depends on the kinetic term and not
of the potential term. In addition we have pointed out that the Hilbert space of wave functions must
also depend on the PDM. Actually, only if an invariant measure is considered the operators obtained as
generators of Killing transformations are Hermitean.

It is important to underline that this method, that represents an approach to the problem rather
different to the formalism (α, β, γ) (see the references mentioned in Section (1.1)), is more than a simple
practical recipe; it is in fact a method constructed on well defined mathematical bases. In addition, (as
was proved in Section (5)), it leads to an expression of the quantum Hamiltonian that coincides with
the one obtained by making use of the Laplace-Beltrami quantization formalism, a property which is
not true anymore for the so called (α, β, γ) formalism. Nevertheless there is an important difference:
the Laplace-Beltrami quantization formalism gives directly the expression of the Hamiltonian without
the previous quantization of the momenta and the method we have studied is a two step quantization
procedure (similar to the quantization of systems with constant mass): first quantization of momenta
and then quantization of the Hamiltonian.

We finalize with the following comments. First, as we have mentioned in the Section (1), the interest for
the Hamiltonian systems with PDM has increased in these last years; so the method we have studied must
be applied to the quantization of all these systems (we have only considered some particular examples
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mainly related with the harmonic oscillator). Second, we have limited our study to one-dimensional
systems but this method must be studied in the more general case of several degrees of freedom. Finally,
the quantization rule p → p̂ , with the operator p̂ represented by the linear operator p̂ = −i ~ ∂/∂q is
not valid either on non-Euclidean spaces, or on non-Cartesian coordinates. How to proceed then in a
non-Euclidean one-dimensional systems, where Cartesian coordinates do not exist?. It seems natural
to consider the quantization of systems defined on curved spaces by making use of the quantization of
Noether momenta.
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