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The transverse magnetic excitation continuum of purely one-dimensional Ising-like
antiferromagnets is formed from one magnon state and the odd-number-magnon (3-magnon,
5-magnon,---) bound states, which are mixed by the off-diagonal exchange interaction. The
interchain molecular field causes a decoupling of these bound states and leads to quantization
of the excitation continuum. This quantization effect can explain fine structures of magnon
Raman spectrum of CsCoCls and CsCoBrs, which have been observed recently at low
temperatures and remain unexplained so far.

§ 1. Introducltion

The excitation spectrum in one-dimensional (1D) spin systems has been a
subject of considerable experimental and theoretical interest.” In a previous paper,?
which will be referred to as IS, we proposed a theory of magnetic excitation
line shape for 1D spin 1 Ising-like antiferromagnets (AF):

Ho=2J I[85+ (8,555 +8,5%,0) ]
J
Eﬂzz"—j{xy I} <1>

where ¢ is assumed to be small, The ¢ termin (1) removes the high degeneracy
of the energy spectrum of the pure Ising model (e=0). This effect leads to
propagating domain walls (solitons)® and to the magnetic excitation continuum
in transverse (S* and SY) spin fluctuation spectrum.? The theoretical studies of
the model (1) are expected to be useful to understand CsCoCl,¥ and CsCoBr,,”
which are believed to be typical 1D Ising-like AF’s.9~" Recent neutron scattering

experiments®™®

on CsCoCl,, in particular, have revealed the transverse magnetic
excitation continuum, whose line shape is asymmetric in energy and whose width
becomes small at antiferromagnetic Brillouin zone boundary. This result for the
line shape is consistent with the prediction of IS.

The purpose of this paper is to extend IS to low temperature region by taking
the interchain coupling into account. We show, first, that the moleculdr field
of neighboring chains causes quantization of the excitation continuum and leads
to a series of discrete lines below 3D ordering temperature. As we will show,

this is mathematically an analogue of Stark ladder of 1D tight-binding electrons
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Quantization of Magnetic Excitation Continuum 467

in a uniform electric field;"® therefore we call this quantization effect Zeeman
ladder.

Secondly we wish to propose the Zeeman ladder as an explanation of a series
of discrete lines of “magnon” spectrum, which has recently been observed in
CsCoCly™™ below the 3D ordering temperature with high-resolution Raman spec-
)

troscopy. The magnon Raman spectrum of CsCoBry® shows similar discrete lines

at low temperatures.
This paper is arranged as follows: In §2 the effect of interchain coupling

on the magnetic excitation continuum is studied and the concept of Zeeman ladder
is explained. In §3 the theory of Zeeman ladder is applied to interpret magnon
Raman spectra in CsCoCl; at low temperatures. A summary is given in § 4.
[n order to estimate the magnitude of interchain coupling, the 3D ordering of
CsCoCl, and CsCoBr, is described in the Appendix by treating the intrachain

Ising interaction exactly and the interchain coupling in the molecular field appro-

ximation.™

§2. Effect of interchain moleccular field on the transverse

]nagnetic excitation continuum

Let us study the magnetic excitation spectrum of nearly 1D spin $ TIsing-
like AF, taking a wealk interchain coupling into account. Our model Hamiltonian
is then = 1,90,%+3, 9.7 where J,(1) is the intrachain Hamiltonian (1)
of the Ath chain and 9(,** represents the interchain coupling between nearest
neighbor chains:

F B =231 T (878, + e (STaST+ShSt)). (2
&
Sloo and X g, denote a summation over nearest neighbor chain pairs and nearest
neighbor intrachain spin pairs, respectively. In the case of CsCoCl; and CsCoBr,
the anisotropy of the exchange interaction comes mainly from the anisotropy of
wave function in the lowest Kramers doublet” so that &~v¢ is expected. Since
c is estimated as e~0.1 for those materials, the ¢'J term in (2) may be ignored
in a first approximation. If we treat the remaining Ising interchain interaction
in (2) in the molecular field approximation, we are led to the following effective

single-chain Hamiltonian:

H =9+ 4, (3)
where H, is given by (1) and

ﬂ[':~%]h]-5jz (€))

with A;= (—1)’-h (h==0). Having CsCoCl; and CsCoBr; in mind, we assume &

and &J are much smaller than J.
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468 11 Shiba

An extension of the perturbation theory of IS to include the molecular field
term (4) is straightforward. In order to make the present paper self-contained,
however, we repeat partly the argument in IS. Up to first order of ¢ the grouad
state |g> of (3) is simply

1 g> = 2[/‘Nccl 1T 23(~4[XY ?[fl\"ccl 19

N
971
S

-~

where ¥y 1s one of the two Neel states, which is favorable under the staggered
field 7, and 2J+2/ has been approximated by 2J.  The excited states with St=1,
which are separated from the ground state by ~2.J, consist of

12 o .
yﬁl (/C) - \/ I’V’ }’J_‘ ez‘kRij’F@Nocl Lk O(E),

i{’pg (/C) — \/’/I%/' ? eikRij'l‘é ']i;,lS]'l,‘ 2?‘[/‘NOQ11 -1- O (C) 5 (6)

/ N/ —
2 . (N/2)—1
Py a(lk) = V/ N E]‘} CUCR]-SJ’+ J;[ (S;\ z»AS; v2) Ueet1 + O <C> .

o

The corresponding excited states with 5= -—1 are obtained from (6) by inter-
2

changing 5 and §7. Clearly &, ¥, -+ are 3-magnon, 5magnon, -+ bound states

4

ts of H within (6) have the form**

®oT

respectively. e matrix elemen

o d R NIHN o (R) 5

27 <1 ¥ %eh %ol) Y2@v—Dh for v —y
Vv, {for v/ =yp+1
=¢V,* for v =y—-1 (7
Ve for v =p+2
Vy* for v =y—-2
[0 otherwise

= ([ H @) ),

where Vi=e/(1+e ) and V,= — L®J 1+, Here the diagonal terms are
measured from the energy of the Neel state Py, : Ey=—NGJ A+ +1A).

® The even-number-magnon (2-magnon, 4-magnon,++) bound states belonging to S7=0 also
glve rise to cxcitations around 2J, which appear as a weak continuum in S, (Q; 0).?

# Here we calculate the excitation energy up to sccond order of & The second order term
does not change the first order result qualitatively; however we have included the second order
term to comparc the theoretical spectrum quantitatively with the experiment.
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Fig. 1. Energy spectrum of magnetic cxcitation (7) for Fig 2. Energy specirum of (75
La=~0 or 7 as a function of interchain molccular function of ka. The cnergy
field 7. ¢ is chosen as 0.13. The levels higher than higher than 24 are omitted
the 19-th are omitted here. The region indicated by B2 --1.55107% and ¢=0.13 are cho-
the arrows is the continuum for A== sen. The broken 1 the

oxcitation continuaum for - 0.

ent to the [Hamiltonian matrix of 1D

One notices immediately that (7) is equival

tight-binding election in a uniforin electiic field: V', Vi, and & oare tl

preted as nearest and next nearest neighbor transfer matrix dnd the elect
. " . ; o
respectively.  The solution of the Iatter problem is w ell knowin: inth

of the clectric field the energy spectrum consists of a continuum due to band

motions, while the uniform e}ectric field quantizes the continuwm into discrete
excltation

levels. which are often called “Staric ladder”. Therefore the magneti
7 o
continuum® % of purely 1D I\ ng-ltike AF is also quantized under the molecular
{ield into discrete ievcls which we call “Zeeman ladder”.

The energy spectrum of (7) for ka=0 or 7 has been evaluated nume ically
As is well

gy lines 1

and is shown in Fig. 1 as a function of 2/2J 1

[

known in the Stark-ladder problem the level
2 shows the wave

not constant, but decreases with increasing energy.

vector dependence of energy levels for nonzero Jr, the co

o shown for compe

ison,

trum for =0 is ¢

ation line shape for T'=0"K can be

The transverse magnelic exe
from

Sor(Q, 0) =SS0 (01 £, ®)

g> and |f) are the ground stute and an excited state of the system,

respeetively: K and E, are corresponding energies.  As shown in IS, using the
{ ' i b bty k) ford

) This value was chiosen here because I8's analysis” of the spin wave spectrum

led to =013,

in CsCoCly
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perturbational wave functions (5) and (6), one finds for S,,(Q.w) the following
expression:

S, (0, 0) = — 4?; Im[(l—e cos Qa)’G (1, 1)

— (i—¢ cos Oa) ng(l, 2) + ;/:;G @, 1>> +O(e2)J, )
where
. 1 AN
G(V’p)*<p‘w—I§'(Q)+z’6“)> (60— +0) 10

is the Green’s function defined with (7). If the eigenfunctions of I-AI(Q) defined
by ﬁ(Q) [y =El{> are used, (9) may be written as

See (Q, 0) =22 350 (0 —E) [(1—¢ cos Qa)*| (1]¢,) |’

1
4
—2(1—¢ecos Qa)Re{(2]¢,) (1|¢p)*} +O () ]. (11)
Thus we can easily evaluate S, (Q, w) from the diagonalization of ﬁ(Q),
Fig. 3 shows an example of the results. Notice that the intensity is the largest
for the lowest-energy line and that it decreases in a monotonic way with the

energy increased. This feature can be explained as follows: The magnetic ex-

citation for £=0 forms a continuum

oors| Sx(0w because  odd-number-magnon bound
00501 (a)2%=0.75x|0'2 states, ¥, ¥, -+ in (6), are equal in
0.0251 I l i energy, if €=0, to the single magnon
1., - . .
8 ' 20 "2"21 o/l state ¥;, and mix well with each
other for ¢=~=0. Under a finite inter-
07| Sod0,) chain molecular field (4>>0), however,
0650 h magnon bound states cost more ener-
g (b)2'3=|‘5X|O'2 .
0025 l | I gy than 77, so that the main part of
- (1., i . . . . .
L S e e B the magnetic excitation intensit 18
B8 20 @ 22 w/J € : v
concentrated on the lowest line having
SyxlO, @) the largest ¥, component. For a
0100 large & the weak side lines appearing
00751 . ) . : )
0050] (c)a%=340x10'2 in the energy feglon higher than the
0025, I lowest-energy line may be regarded as
—d I L. magnon bound state lines, which are
fts ~ 20 " 22 w/J

slightly mixed with each other and
Fig. 3. S:(Qa=0,w) as a function of »/J. o/L/ZJ with 7.
is chosen as (a) 0.75x107%, (b) 1.5%107? and
(¢) 30%107% The arrows indicate the region ) -
of excitation continuum expected for A=0. tion that the Zeeman ladder proposed

Let us point out in this connec-
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in this paper is closely related to the multiple-magnon bound states in nearly 1D
Ising-like ferromagnets (CoCl,-2H,0, ete.)."™™ As we have already seen, the Zee-
man ladder is the multiple-magnon bound states in nearly 1D Ising-like aniiferro-
magnets. An important difference is that the off-diagonal term of the exchange
interaction can mix the multiple-magnon bound states well in the AI’s since they
belong to the same S%. Thus the mixing due to the &J term shows up clearly in
the spectrum. On the other hand, in the F’s the bound states belong to different
S* states so that they do not mix with each other.

§ 3. Interpretation of finc structures of magnon Raman
spectra in CsCoCl;

As we have already pointed out in § 1, recent high-resolution magnon Raman
scattering in CsCoCl*”"*? is remarkable in that it shows a number of sharp lines
at low temperatures, i.e., below 3D ordering temperature. The Raman experiment
on CsCoBry® also shows discrete lines, which have presumably the same origin
as those in CsCoCl,. These two AF’s are known to have two ordered phases:
low temperature phase at T< 1y (Tw=8K" or 9.2°K" for CsCoCl, and 1"y, =10
~14°K® for CsCoBry) and intermediate phase at Ty<T<Ty (Ty%=21.3"K" for
CsCoCl; and Ty, =28.3°K” for CsCoBry). According to Mekata they are “ferri-
magnetic” and “antiferromagnetic” phases, which are shown in IMig. 1. Here we shall
propose an interpretation of discrete lines in low-temperature Raman spectra on
the basis of Zeeman ladder and Mekata’s assignment of magnetic phases. We shall
focus our discussion mainly on CsCoCl, for which high resolution data are avail-
able.

The magnon Raman spectra of CsCoCly,"” whose peak position is listed
in Table I, have the following features:

[F1] The magnetic-field dependence of these lines shows that they are magnetic
excitations changing S* by unity. Therefore a possibility of “two-magnon” Raman
scattering is excluded.

[F2] For T<Ty 3 strong lines (series A) and several weak lines (series B)
are observed.

[F3] For TuywW<T< Ty the intensity of series B grows up remarkably and the

relative intensity of series B and series A 1is reversed.

Fig. 4. Magnetic ordering'” of CsCoCls and
CsCoBr; for (@)7<Tw: and for (b) T
<T<Ty. --and — denote up and down
spins, while 0 represents a paramagnetic

chain.
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Table 1.

R;unarin(lqi%lzo?cm'l) proposed assignment o calculated (em™)
85.6 B. ! 86.3
88.8 i B ; 90. 3
90.5 A \ 93.6
94.3 B: } 3.0

100. 1 | B: ‘ 98. 4
101.0 ‘ B 100. 9
105.0 ‘ B: ‘ 103. 2
106. 6 A ! 107. 2
109. 0 | B: ‘ 107. 4
| I
110.0 | B, i 109. 1
112.9 B ‘ 111. 4
116. 3 | A B I 117. 4 116. 1
Table 1I.
‘ molecular field % weight assignment
_ | o
|
‘ 671 = A
. S5
T< T ‘ )
| ) = | C
‘ 3 ;
| : B! ‘
s i RV
‘ 671 | 873 12 ‘ A
3 2 1
4 X
. ) ‘ ' 875 4 1 b
Ty <T<T: ‘ | I
2] 4 ! — X : = Pz
! §°8 3 >
1. 1 5 ‘
A,4_5 \
0 TR | C

N
L

[F4] The peak position of lines at T ,<T'<T} is, within the experimental
accuracy, the same as that at T<Ty,.
[F5] In the series A the lowest-energy peak has the largest intensity. In the
series B the lowest-energy two peaks are the strongest lines.
[F6] These discrete lines are superposed on a plateau, which extends {from ~~80
cm” ! to ~120 em™L

Before going into analysis we have to estimate the magnitude of various mag-
netic interactions in CsCoCl,. The intrachain interaction is estimated as J~75°K"
and ¢~0.13.2 Interchain Ising interaction can be estimated from 7y, and Ty, by
assuming antiferromagnetic nearest-neighbor chain interaction (J;) and ferromag-
netic next nearest neighbor chain interaction (J,”). We applied to this problem

)

the molecular field theory,” which takes into account the intrachain Ising interac-
) >
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tion exactly and the interchain interactions in the mean field approximation. It is
described in the Appendix, where J,” and J,) are estimated as .J,"/J~0.6x107"
and J,/J/~107% Therefore we conclude that the main interchain coupling is
the nearest neighbor antiferromagnetic Ising interaction J. The off-diagonal term
of interchain exchange interaction is smaller than J,” by factor of ¢(~~0.1) as noted
in §2. Thus the magnetic excitations in CsCoCl, may be regarded, in a good
approximation, as confined in each chain so that we apply our theory for S,. (0, ®)

)

to the Raman experiment by taking Qa=0. Neutron scattering” did not see

any dispersion of magnons perpendicular to the chain, which is consistent with the

present model.

Let us explain theoretically the peak position of Raman lines and the temper-
ature dependence of the intensity on the basis of the following model:
(A) Tor T<Ty, one third of the total chains (denoted by « in Fig. 4(a)),
surrounded by six AF nearest neighbor chains give the lines of scries Aj; the
remaining two thirds {(denoted by § and 7), to which the molecular field /v due
to n.n. chains cancels, give rise to excitation continuum, ie., plateau.
(B) TFor 1< T< Ty one third of the total chains (denoted by 7in Fig. 4())
remain paramagnetic'” so that we regard the spins on 7 chains as taking up or
down state with the probability 1/2 for cach without any correiation to other
chains.®  Thus the molecular field 2 to « and @ chains takes 0, 2J,, 4J,, or 6J,
with the probability &, 2, %, or & respectively; the molecular field to 7 chains is
zero,

Our model predicts for T<T'y, one series ¢f discrete lines (assigned as series
A) and a continuum. On the other hand, for T y<T'< T, we have three series
of diserete lines (assigned as scries A, B, and B,) and a continuum. In this way
the present model can give a simple explanation of complicated 12 lines. The
result is summarized in Table 1I. The assignment of series A is unique; the
assignment of series B to series B, and B, in Table I has been made by comparing
theoretical line splitting (shown in Fig. 1) with observed line position and intensity
of series B. To calculate the theoretical line position we have changed J," to
make a fit to the observed twelve lines with the J value fixed at 75°K.  Among
several trials we show a typical result corresponding to J/J=0.96 x107%; the
calculated line position for this case is shown in Table I. J,” is the only param-

eter for fitting the absolute position of the twelve lines so that the overall agree-

I R S s J T . ‘. C e .
© The correlation length €(T) (~ae’™) along the * paramagnetic > chain as well as the
characteristic time of spin flipping © in the chain {(~ (e)™ h&(T) /@) is large for T<J. Therelore
it is expected that for T<J the random molecular field 44 (~JY) due to the “paramagnetic”

¢ distance (~&) and changes its sign only

chain has an almost constant saturation value over a lar

occasionally (~1/¢). According to a general theory of line shape'™ the effect of the random

molecular field on the spectrum can be regarded as static when 4hr>f is satisfied. Thus the

present treatment is Jjustified when Al /B~ (/e ™ T >1, ie, T<WJ/k In(eJ/J/)~24K using
e

e~0.13 and J/J~0.6X107".
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ment is encouraging. In particular the features [F1]~[F6], which we pointed
out before, are in accord with the present model. Let us make some additional
comments:
[1] Several weak lines (series B) for T<(7'y, are explained as magnetic excita-
tions at domain boundaries of possible three domains, where chains with 2=2J,
and 4J,” are present.®
[2] The states with $*=—1, which are obtained from (6) by interchanging
ST with S7 also give the same spectrum as (6) so that every line is doubly
degenerate for zero external magnetic field. Zeeman splitting is expected for a
finite field. Therefore this model can explain [F1] easily.
[3] According to our assignment the series B, and B, have the same weight,
which is three times as large as series A. This is in agreement with the observed
intensity (compare three lines at 86.5, 88.8 and 90.5cm™).
[4] In each series of A, B, and B, the line intensity decreases in a monotonic
way with the increase of energy. This is again what the present theory pre-
dicts.
[5] To regard the interchain molecular field as static is justified, as noted before,
for dh-t/#>1, where dh~J," and v~ (fi/eJ) e”*". When 4ht/# becomes smaller
than unity with the increase of temperature, the Zeeman ladder cannot be resolved
due to averaging of the molecular field by rapid fluctuations. We do not expect
any sharp change of Raman line shape at 7 'y,.

Although the present model can explain a number of features of the Raman
experiment, there remain some unanswered questions:
[1] According to Refs. 11) and 12), once the magnon Raman peaks shifted
to high energy by the external field cross the E,, phonon line at 118em™, the
peaks disappear and cannot be traced. The present author does not have any
explanation for this.
[2] The present theory predicts three series of lines whose intensity decreases
in a monotonic way for each series. The Raman experiment seems to show that

' are fairly strong. It might be due to an accidental

the lines around 116 em™
overlap of lines belonging to different series. If this is not the case, a new
mechanism is required to explain this phenomenon.

Let us discuss briefly the recent Raman experiment on CsCoBr,”, which
15 believed to have magnetic properties similar to CsCoCl,. Although the resolu-
tion of the data is not so good as in Refs. 11) and 12), the spectra at the lowest
temperature 8.5°K (<(T'y,) do show a series of discrete lines. The position is
100.5, 111.5, 123.7, 133 and 141l cm™". We tentatively assign these lines as cor-
responding to series A in CsCoCl,. We note that the Raman spectrum reported
for 49°K shows an asymmetric broad line shape, which is similar to S,, (2a =0, )

® In the case of nearly 1D Ising-like ferromagnet, which is a counterpart of the present AF,

magnetic excitations at domain boundaries have becn observed.?V

2e0z Isnbny |z uo ysenb Ag 9656981/991/2/79/0101HE/did/wod dno-olwepese//:sdiy woly papeojumoq



G

Quantization of Magnetic Excitation Continumn 47

calculated in IS. More work is certainly needed on CsCoBr,.

§4. Summary

It is widely accepted that magnetic excitations form a continuum in purely 1D
quantum-mechanical spin 4 antiferromagnets. In the Ising-like case the physical
picture of this continuum is clear: The continuum consists of one-magnon state
and odd-number-magnon (3-magnon, 5-magnon, ---) bound states, which are mixed
up with each other by the ¢ term of (1). We have shown that a weak interchain
molecular field tends to decouple these multiple-magnon bound states; it results
in a series of discrete lines, which we call Zeeman ladder in analogy with Stark
ladder of 1D tight-binding electrons in a uniform electric flield. We have also
shown that this Zeeman ladder is capable of explaining complicated magnon Raman

lines reported on CsCoCl,; and CsCoDBr,.
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Appendix
—Theory of Magnetic Ordering in CsCoCly, and CsCoBr;—

Mekata'® developed a theory of magnetic ordering in CsCoCl; and CsCoBr,
by using a two-dimensional model (ie., by assuming the intrachain correlation
length is infinite). He could explain the nature of low temperature phase
(T Ty as well as intermediate phase (1T'y<T'<Ty). In order to estimate the
magnitude of interchain coupling from T, and 7'y, however, the two-dimensional
model is insufficient. Here we apply to this problem Scalapino-Imry-Pincus theory,"”
in which the intrachain interaction is taken into account exactly and the interchain
coupling is treated in the mean field approximation. This approximation is ex-
pected to be adequate if 3D ordering temperature is much lower than intrachain
coupling strength.

We start with the following model:

I=2T 3N 85,8%, 2T 385,85, + 2 ; 38585, (A-1)
PR Lo j N

where the three terms represent intrachain, nearest neighbor chain and next nearest
neighbor chain couplings, respectively. J>0, J,” >0 and J,” <0 are assumed in (A-1).
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The small off-diagonal exchange term has been ignored in the intrachain
term. It is important for discussing dynamics, but is expected to give a small
correciion to thermodynamic properties. Having three sublattices shown in Fig. 4

in mind, we apply the mean field approximation to (A-1) as
H=2J 2, Z S5S% 2+ 6J7 20 ZS§1(<SfA'>+\SJ~>+CL<S )
—3JY ; ; S5 (S50 + S50+ alST),  (A-2)

where a=2J,"/J," and (A, 1°,2”) denote three different sublattices. (A-2) can
be solved by the well-known exact solution of 1D Ising model. Introducing the

sublattice magnetizations as
Sip=(-17 ~<f71> {Shp=(=1)7 %<02> , Shwp=(-1)7 —%<Us> ,

we obtain the following self-consistency equations:
O =S(K, Ly, (A-3)

where K=J/kT and f(zx,y) =e°sh y/V/1+ (e’shy)®. The L’s are defined as

Li= =20 (@ + <00+ ko),
L= ; (oo + <0y +a(0), (A-4)
L= 2] (<51> +{05) +al0s)).

As in Mekata’s two-dimensional model, (A-3) leads to successive phase
transitions. For small « we have three ordered phases: (I) <g,>= —{0,>=~0,
Osp=0; (D) <03, <0, <6.>50; () <{0,p=<0sp >0, {0» 0. When the
temperature is decreased, the transitions (I)— (II) - ({II) occur. For moderate
« only (I) and (III) are realized via a first-order transition between (I) and
(ITIT). When |« is increased {urther, onc finally reaches a point where (III)
is the only ordered phase.

The temperature dependence of sublattice magnetizations determined by (A-3)
and (A-4) is shown in Fig. 5. At T'=T, given by

e/F T

1= (3 —6J3)

lAL' 5
T o ; (A-5)

the paramagnetic state becomes unstable against the phase (I) or the phase (III).

The “antiferromagnetic” phase becomes unstable at 7'=7T, where
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Tns
1O L (o>
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20 (b) (o3>
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T(°k) Lo

10 The 20 213 T(K)

Fig. 3. (a) Phase diagram expected for (A-2). Tm defined by (A-5) is chosen as
21.3°K, which is the eszperimental value for CsCoCls. J=75"K is used. The tcmper-
ature 7o defined in (A-6) is a parameter to show the importance of Jo'. The
broken line corresponds to the first-order transition. The other transitions are of
sccond order. (b) The temperature dependence of the order parameters. J=75°K,
Tr1=2L3K and Tr.=T:=9K (a=-—0. 0034) are assumcd (¢) The temperature
dependence of the order parameters. J=75K, Ty=21.3K and To=14K (a=
—0.117) are assumed.

¢7/E T

= X (—6J57). AL6)
21T, ( 2") ( 2

When (I} is present as a stable Intermediate phase, 77 is the second order tran-
sition point from (I) to (I}, ie., Ty="T5. However, if the first-order transition
occurs from (I) to (III) at ]WWT,,, T'ws is higher than 7.

Identlfymg Ty as experimental Ty, and using J=75"KK we can estimate J,’
and J, for CsCoCly as J'/J~0.56 X 1077 and av=2J,"/J,"~ —0.46 X 1‘072. On the
other hand, for C:C()Brg we obtain J;"/ JNOL) <107 and a=2J,"/J, ~—0.6x107’
using Ty =28.3'K, Ty,=14°K and J=80"K.

The present theory does not (,11(11157'{: so much Mekata’s picture of the successive

phase transitions. The magnitude of interchain coupling estimated above from Ty,
and 1y, is, however, different from the prediction of the two-dimensional model,
since we take into account the temperature dependence of correlation length along

each chain. The present theory predicts that .J,” is much smaller than .7 .
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