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The transverse magnetic excitation continuum of purely one-dimensional Ising-like 

antiferromagnets is formed from one magnon state and the odd-number-magnon (3-magnon, 

5-magnon, · · ·) bound states, which are mixed by the off-diagonal exchange interaction. The 

interchain molecular field causes a decoupling of these bound states and leads to quantization 

of the excitation continuum. This quantization effect can explain fine structures of magnon 

Raman spectrum of CsCoCla and CsCoBra, which have been observed recently at low 

temperatures and remain unexplained so far. 

§ 1. Introduction 

The excitation spectrum in one-dimensional (1D) spin systems has been a 

subject of considerable experimental and theoretical interest.!) In a previous paper/) 

which will be referred to as IS, we proposed a theory of magnetic excitation 

line shape for 1D spin t Ising-like antiferromagnets (AF): 

!J{o=2J IIS/Sj+l + 8 (S/:S~+l +S/S}+I)] 
j 

- !J{zz + !}{ xy' (1) 

where 8 1s assumed to be small. The 8 term in (1) renwves the high degeneracy 

of the energy spectrum of the pure Ising model (8 = 0). This effect leads to 

propagating domain walls (solitons) 3) and to the magnetic excitation continuum 

in transverse (S" and SY) spin fluctuation spectrum. 2J The theoretical studies of 

the model (1) are expected to be useful to understand CsCoCl 3
4l and CsCoBr3 , 5J 

which are believed to be typical 1D Ising-like AF's. 4 J~ 7 J Recent neutron scattering 

experimentssJ,gJ on CsCoCl 3, in particular, have revealed the transverse magnetic 

excitation continuum, whose line shape is asymmetric in energy and whose width 

becomes small at antiferromagnetic Brillouin zone boundary. This result for the 

line shape is consistent with the prediction of IS. 

The purpose of this paper is to extend IS to low temperature region by taking 

the interchain coupling into account. We show, first, that the molecular field 

of neighboring chains causes quantization of the excitation continuum and leads 

to a series of discrete lines below 3D ordering temperature. As we will show, 

this is mathematically an analogue of Star!? ladder of 1D tight-binding electrons 
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Quantization of 111agnetic Excitation Continuum 467 

111 a uniform electric field;!O) therefore we call this quantization effect Zeeman 

ladder. 

Secondly we wish to propose the Zeeman ladder as an explanation of a series 

of discrete lines of "magnon" spectrum, which has recently been observed in 

CsCoCl,w.12l below the 3D ordering temper<1ture with high-resolution Raman spec­

troscopy. The magnon Raman spectrum of CsCoBr 3
13l shows sirnilar discrete lines 

at low temperatures. 

This paper is arranged ilS follows: In § 2 the effect of interchain coupling 

on the magnetic excitation continuum is studied and the concept of Zeeman ladder 

is explained. In § 3 the theory of Zeeman ladder is applied to interpret milgnon 

Raman spectra in CsCoCI 3 at low temperatures. A summary is given in § 4. 

In order to estimate the n1agnitude of interchain coupling, the 3D ordering of 

CsCoCI 3 and CsCoBr3 is described in the Appendix by treating the intrachain 

Ising interaction exactly and the interchain coupling in the molecular field appro­

ximation. w 

§ 2. Effect of iutcrchain molecular field on the transverse 

Jnagnetic excitation continuum 

Let us study the magnetic excitation spectrum of nearly lD spin } Ising­

like AF, taking a weak interchain coupling into account. Our model Hamiltonian 

is then !}{ = -z.=,L1(0 °.J + 2.::"·"!1(/'· 1') where !1(0 (A) is the intrachain Hamiltonian (1) 

of the l-th chain and !}{1 o.. 1'l represents the interchain coupling between nearest 

neighbor chains: 

!}{1<"'") = 2 2.:: J' (Sj,SL, + c;' (Sj,Sfl' + S}1.Sil')). (2) 
u. l) 

l.::u .. 1,l and .z.=rj,ll denote a summation over nearest neighbor chain pa1rs and nearest 

neighbor intrachain spin pairs, respectively. In the case of CsCoCl, and CsCoBr 3 

the anisotropy of the exchange interaction comes mainly from the anisotropy of 

wave function 111 the lowest Kramers doublet4) so that r:;' ~c; is expected. Since 

c is estimated as c;~O.l for those materials, the c;' J' term in (2) may be ignored 

111 a first approximation. If we treat the remaining Ising interchain interaction 

111 (2) in the molecular field approximation, vve are led to the following effective 

sing 1 e-chain Hamiltonian: 

!}{ = !}{0 + !}{'' (3) 

where !}{0 1s given by (1) and 

!}{' =- ~ hjS/ (4) 
j 

with hi= ( -1) i · h (h>O). Having CsCoC1 3 and CsCoBr3 111 mind, we assume h 

and c;J are much smaller than J. 
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468 ~I. Shiba 

An extension of the perturbation theory of IS to include the molecular ticld 

term (4) is straightforward. In order to make the pre.sent paper self-crmtainecl, 

hovveYer, we repeat partly the argument in IS. Up to first order of::; the ground 

stc1tc Ia) of C3) is simply 

lu)c·jW l (/( W 
•'-' --t Nccll- 2Jocx1·'1' Nc·cll, 

\vhere 1FNeell is one of the two Nee! stales, which is favonrble under the staggered 

field h, and 2J+2h has been approximated 2J. The excited ~tales with S'=l, 

which arc separated from the ground state l>y ~2J. consist of 

(6) 

(N/'2) ·1 

r1 (S-; cv-lS;Icv) 1FNcclJ+0(::;). 
).1-=1 

The corresponding· cc~citccl states with S' -~ -1 are obtained from (6) by inter-

changing s~ and S-. Clearly 1[3 , ~'~" 5 , • • • are 3-magnon, 5-nngrwn, · · · bound states 

respectively.*' The matrix elem.cnts of ,r;{ within (G) have the form**J 

( 1F2,-l (1-::) I .r;{IIP.2v'-1 (!.:) > 

r2J(l+ ~ 8 2
- ~ 82Cl,,l) +2(2v-l)h for V 1 =V 

I'Vl for v'=v+l 

V * for v' = v -1 

=1v: for v'=v+2 

I v- * for v' = v- 2 I 2 

1, 0 otherwise 

= (vli-l(k) lv'), 

where vj = eJ(l + and v2 =- J(l + Here the diagonal terms are 

measnrecl from the energy of the Neel state lf1ucc1 1: Eo= -N ('ts-f (1 + -+-~h). 

*) The even-nun1her-rnagnon (2-nlagnon, 'i-lnc_lgnon,···) bound states belonging to S" ---_;0 also 

give rise to excitations around 'l,J, vlhich appear as a \Veak continLunn in Szz (Q,, tu) .2) 

**l Here we calculate the excitation energy up to second order of E. The scecond order tcerm 
docs not change the first order result qualitatively; ho·Never we have included the second order 
term to compare the theoretical spectrum quantitatively with the experiment. 
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Qumzti.zation of 1\Iagnctic Excitation Continuum 

2.4 w/J 

2.3 

2.2 

2.1 

20 

1.9 

1.8 

Fig. 1. Energy ~pectrurn ol magneti~ excitation (7) for 

!~a: -O or n as a function uf iatercb<-l..in n1olccular 

fwlcl h. E is choc,en as 0.13. Tlw levels higher than 

the 1~-th :~rc OtDittecl here. rfhe rc,L;ion inclic<:lh'd by 

the arnnvs is the conti:1unn1 for h ~--=0. 

One nDtictcS immediately that 

tiglz elccfi·-on in a 

0 _2!:_ 

2 

ka 

Fig. 2. Energy spectrcnn of (7) as a 

function of ka. 'The c1-:cergy levels 

hj_ghcr than :zA ar~ ornlttccl l1crc. 

h-'2-.1=1.5>< 10- 2 and [c-=().J_:-j an_' c}1o­

sen. rrhc btolzen 1in-(_'~ ::b()l,"i; the 

·~·xcit::ttion cor'JlEL1Un1 for ,\=0. 

preted as llt::\::tre~~t ;::; ;J_d next bor tran~fer matrix and the electric held, 

respeci]yel;'. rfhe solution of the Lllter prob1en1 is \\'ell kno\'\rn:]()) In the (Lbsence 

of the electric .Geld the energy spectrum ccmsists uf a continuum due to band 

motions, while the uniform electric iiclcl q~t;tntizes the continuum into discrete 

leYels, which <ire often called "St«rk ladder". Therefore the excilC~tion 

continuum"'·"'·' 61 of purely lD Ising-like AF is also quantized under the molecular 

field into discrete levels, which vve call "/~ecman ladder''. 

The energy spectrum of en for l-ea= 0 or ,, ha:o been C\'211 uatecl numerically 

and 1s shown in Fig. 1 as a function of h/2J assumm;~- 2=0.13.*J J~s is well 

knovnt in the Stark-}adcler nroblen1 the L:::,rel 1o\\r energy lines is 

not constant, but decreases \vith 2 sh0ws the wave 

·vector depende11ce of energy levels for n·.mzero h; the continuum of etiergy spec­

trum for h = 0 is abo shown for 

The tnmsvcrse 

from 

(Q, iO) = ~ I<JI (6) 
J 

excited state uf the s~-7::;ten1, 

,_,. 
) ' a ncl <1 re c11ergte.s. As the 

Tlli~ "J;:-tluc \V;:_t:-; cho,sc·n here becau~:e rs·~ {_i_fialy:-;is~) of the :spin Yv~(-1\-Te spect-curr:'l in c~;CoCl3 

led to E ~ O.l::l. 
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470 H. Shiba 

perturbational wave functions (5) and (6), one finds for S.u (Q. ru) the following 

expressiOn: 

(9) 

1vhere 

G(v,v')=(vl_ ~ 1 1 v') 
I uJ -H (Q) + ia, 

(o---++0) (10) 

1s the Green's function defined with (7). If the eigenfunctions of H (Q) defined 

by H (Q) I(/')= E, I <f',) are used, (9) may be written as 

SxxCQ, co)=::~-~ o(co--E;) [(1-8 cos Qarl (1[¢;.) [2 

-2(1- 8 cos Qa)Re { (2[¢;) (1[¢,) *} + O(c: 2)]. (11) 

Thus we can easily evaluate S.rr (Q, oJ) from the diagonalization of H (Q); 
Fig. 3 shows an example of the results. Notice that the intensity is the largest 

for the lowest-energy line and that it decreases in a monotonic way with the 

energy increased. This feature can be explained as follows: The magnetic ex-

0.075 
Sxx(O,w) 

0.050 

0.025 

h 0-2 
(a) 2J =0.75 xl 

w/J 

Sxx(O,w) 

OD75 

0.050 

0.025 

w/J 

Sxx(O,w) 

0.100 

0.075 

0.050 

0.025 

w/J 

Fig. 3. Sxx(Qa=O, UJ) as a function of UJ/J. h/2J 

is chosen as (a) 0.75 X 10- 2 , (b) 1.5 X 10·' and 

(c) 3.0X 10- 2 • The arrows indicate the region 

of excitation continuum expected for h=O. 

citation for h = 0 forms a continuum 

because odcl-number-magnon bound 

states, 1Jr3, lf/5, • • • in (6), are equal in 

energy, if 8 = 0, to the single magnon 

state IF1o and mix well with each 

other for c:=FO. Under a finite inter­

chain molecular field (h>O), however, 

magnon bound states cost more ener­

gy than 1Jr, so that the main part of 

the magnetic excitation intensity is 

concentrated on the lowest line having 

the largest IF, component. For a 

large h the weak side lines appearing 

in the energy region higher than the 

lowest-energy line may be regarded as 

magnon bound state lines, which are 

slightly mixed with each other and 

with If/,. 

Let us point out in this connec­

tion that the Zeeman ladder proposed 
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Quantization of 1\fagnetic Excitation Continuurn 471 

in this paper is closely related to the multiple-magnon bound states 111 nearly 1D 

Ising-like ferromagncts (CoCl 2 • 2H20, etc.) _m. 18) As we have already seen, the Zee­

man ladder is the multiple-magnon bound states in nearly 1D Ising-like antiferro­

magnets. An important difference is that the off-diagonal term of the exchange 

interaction can mix the multiple-magnon bound states well in the AF's since they 

belong to the same sz. Thus the mixing due to the c.J term shows up clearly in 

the spectrum. On the other hand, in the F's the bound states belong to different 

S states so that they clo not mix with each other. 

§ 3. Interpretation of fine structures of magnon Raman 

spectra in CsCoCls 

As we have already pointed out in § 1, recent high-resolution magnon Raman 

scattering in CsCoCl 3w, 121 is remarkable in that it shows a number of sharp lines 

at low temperatures, i.e., below 3D ordering temperature. The Ran'lan experiment 

on CsCoBr3
13l also shows discrete lines, which have presumably the same origin 

as those in CsCoCl 3 • These two AF's are known to have two ordered phases: 

low temperature phase at T<TN, (TN2 = SoKw or 9.2°K7l for CsCoCl 3 and Ts2 = 10 

~l4°K 5 l for CsCoBr3) and intermediate phase at TN2<T<Tm (TN1 =21.:3oKn for 

CsCoCl 3 and T;n = 28.3"K51 for CsCoBr3). According to Mekata19l they are "ferri­

magnetic" and "antiferromagnetic" phases, which are shown in Fig. -L Here we shall 

propose an interpretation of discrete lines in low-temperature Raman spectra on 

the basis of Zeeman ladder and Mekata's assignment of magnetic phases. vV e shall 

focus our discussion mainly on CsCoCl 3 for which high resolution data are avail­

able. 

The magnon Raman spectra of CsCoC1 3 , 111 ' !2l whose peak position 1s listed 

in Table I, have the following features: 

[Fl] The magnetic-field dependence of these lines shows that they are magnetic 

excitations changing sz by unity. Therefore a possibility of "two-magnon" Raman 

sea ttering is excluded. 

[F2] For T<TN2 3 strong lines (series A) and several weak lines (series B) 

are observed. 

[F3] For TN2<T<Tm the intensity of series B grows up remarkably and the 

relative intensity of series B and series A is reversed. 

(a) (b) 

Fig. 4. Magnetic ordering 101 of CsCoCl, and 

CsCoBr, for (a) T <T N2 and for (b) TN2 

<T<TN1- -l-and - denote up and down 

spins, while 0 represents a paramagnetic 

chain. 
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472 H. Shiba 

Table I. 
--- ----·--· 

magnon 
Raman line (cm- 1) 

proposed assignment 

85.6 B, 

88.8 B, 

90.5 A 

94.:3 B, 

100. 1 B, 

101.0 B, 

105.0 B, 

106.6 A 

109.0 B, 

110.0 B, 

112.9 B, 

116.:3 A Br 
-------

Table II. 

i molecular field h 

~- ---~J~--

! 

0 

6J/ 

4J/ 

2J/ 

0 

--~---------------

calculated 

90.:3 

9:3.6 

107.2 

117.4 

weight 

1 

3 

2 

:3 

1 2 1 
-X-=-
8 3 12 

:3 2 1 
-X-=-
8 :3 4 

:3 2 1 
-X-=-
8 :3 4 

1 1 5 
3+12=12 

100. 9 

109. 1 

116.1 

(cm- 1) 

86.3 

9:3.0 

98.4 

103.2 

107.4 

111.4 

assignment 

A 

c 

A 

c 

[F4] The peak position of lines at TN2<T<TNI is, within the experimental 

accuracy, the same as that at T<TN2. 

[F5] In the series A the lowest-energy peak has the largest intensity. In the 

series B the lowest-energy two peaks are the strongest lines. 

[F6] These discrete lines are superposed on a plateau, which extends from "'-'80 

cm- 1 to ~120 cm- 1• 

Before going into analysis we have to estimate the magnitude of various mag­

netic interactions in CsCoCl3• The intrachain interaction is estimated as J "-'75°K7J 

and 8"'-'0.13. 2) Interchain Ising interaction can be estimated from T N 2 and TN! by 

assuming antiferromagnetic nearest-neighbor chain interaction (J1') and ferromag­

netic next nearest neighbor chain interaction (J,'). We applied to this problem 

the molecular field theory, 14J which takes into account the intrachain Ising interac-
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Quantization o.f Jfagnctic Excila tion Con tinuu 1!1 473 

tion exactly and the interchain interactions 111 the mean field appruxim;di~m. It i" 

described in the Appendix, ~where .1/ ancl J/ c<rc estimated as J,' /J~JO.G X 10 2 

and .1//.1/ -~·10~- 2 • Therefore vvc cond ucle thc:t the main interchain coupling is 

the nearest neighbor antiferromagnetic Ising inter<1ction J,'. Tlw off-cliilgonal term 

of interchain exch;mgc interaction is smaller than .1/ Lctor of E ('~0.1) as noted 

tnay be _regarded, in a good in § 2. Thw; the magnetic excitations in 

approxiniation, as confined in each chain so that vve apply our theory for w) 

to the I~aman experiment by taking = 0. Neutron scattering") did not see 

any dispers1on of n1agnons perpendicular to the cha-in, \\/hic:h is consistent \:Y'ith the 

present model. 

Let us explain theoretically the peak position of Raman lines and the temper­

ature dependence of the intensity on the basis of the following model: 

(A) For T<T,,2 one third of the total chains (denoted by a in Fig. 4(a)), 

surrounded by six AF nearest neighbor chains give the lines of series A; the 

remaining t1vo thirds (denoted by /3 and r), to which the molecular field h due 

to n.n. chains cancels, give rise to excitation continuum, i.e., plateau. 

(B) For TN2<T<Tn one third of the total chains (denoted by r in Fig. 4 (b)) 

remain paramagneticm so that we regard the spins on r chains <ts taking up or 

clown state \Yith the probability 1/2 for each without any correlation to o~her 

chains.~') Thus the rnolccular field h to a and (3 chains takes 0, '2]1', 'Ll/, or G.J/ 

with the probability ~' -~, iL or ~ respectively; the molecular field to r chains is 

zero. 

Our model predicts for T <TN, one senes cif discrete lines (assigned as senes 

A) and a continuum. On the other hand, for TN2<T<TNb vve have three senes 

of discrete lines (assigned as series A, B1 and B 2) and a continuum. In this way 

the present model can give a simple explanation of complicated 12 lines. The 

result is summarized in Table II. The assignment of series A is unique; the 

assignment of series B to series B1 and B, in Table I has been made by comparing 

theoretical line splitting (shown in Fig. 1) with observed line position and intensity 

of series B. To calculate the theoretical line position we have changed J/ to 

make a fit to the observed twelve lines with the J v~due fixed at 75°K. Ar:1ong 

several trials we show a typical result c-::Juespcmcling to J/ / J = 0.96 X 10-'; the 

calculated line position for this case 1s shown in Table I. J/ is the only param­

eter for fitting the a bsol ule posilion of the twelve lines so that the overall agree-

rfhc COrreJation length_ t(7') c----aeJ/k1') along the '" paranLagr1etic" chn_in 3S VVC1l HS the 

characteristic tirne of spin flipping -r ln the chain ( ----.._. (cJ) -l h~ (1') i a) i~ large for 1'<(~.1. T'hcrefore 

it is expected that {ur T<J the random mokccular field :Jh ( ~Jt') due tu the "pmamagnctic ,. 

chain ha:-> an aln1o~t co11stant saturation yalue over a large distance C'-'~) and changes its sign onhr 

occasionally ( ~ 1./r-). _i\ccorcling to a gencrai theory· of line :::hape18 l the effect of the randon1 

molecular Jicld on the spectrum c'm be rcgarckd a~ static when :Jh::>h j,; satisficcl. Thus the 

present treatment is jcbtifiecl when :Jhr, h ~ (J// E]) cJ 1 '~"> 1, i. c., T<J;'lc ln (EJ/.1/) ~24oK using 

E~O. U ancl J / J ·~0.6 >< 10 2• 
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474 H. Shiba 

ment 1s encouraging. In particular the features [F1 J ~ [F6], which we pointed 

out before, are in accord with the present model. Let us make some additional 

comments: 

[1] Several weak lines (series B) for T <Tv2 are explained as magnetic excita­

tions at domain boundaries of possible three domains, where chains with h = 2J., 

and 4J,' are present. *1 

[2] The states with S' = -1, which are obtained from (6) by interchanging 

s+ with s- also give the same spectrum as (6) so that every line is doubly 

degenerate for zero external magnetic field. Zeeman splitting is expected for a 

finite field. Therefore this model can explain [F1] easily. 

[3] According to our assignment the series B 1 and B 2 have the same vveight, 

which is three times as large as series A. This is in agreement with the observed 

intensity (compare three lines at 86.5, 88.8 and 90.5 cni- 1). 

[ 4] In each series of A, B 1 and B 2 the line intensity decreases in a monotonic 

way with the increase of energy. This is again what the present theory pre­

dicts. 

[5] To regard the interchain molecular field as static is justified, as noted before, 

for dh·-c/h>1, where Jh~J,' and -:~(h/sJ)eJ!kT. When dh-:/h becomes smaller 

than unity with the increase of temperature, the Zeeman ladder cannot be resolved 

due to averaging of the molecular field by rapid :fluctuations. We do not expect 

any sharp change of Raman line shape at T N 1• 

Although the present model can explain a number of features of the Raman 

experiment, there remain some unanswered questions: 

[1 J According to Refs. 11) and 12), once the magnon Raman peaks shifted 

to high energy by the external field cross the E 1g phonon line at 118 em-\ the 

peaks disappear and cannot be traced. The present author does not have any 

explanation for this. 

[2] The present theory predicts three series of lines whose intensity decreases 

in a monotonic way for each series. The Raman experiment seems to show that 

the lines around 116 cm- 1 are fairly strong. It might be clue to an accidental 

overlap of lines belonging to different series. If this Is not the case, a new 

mechanism is required to explain this phenomenon. 

Let us discuss briefly the recent Raman experiment on CsCoBr3
13\ which 

is believed to have magnetic properties similar to CsCoCl 3 • Although the resolu­

tion of the data is not so good as in Refs. 11) and 12), the spectra at the lowest 

temperature 8.5'K ( <TN2) do shovv a series of discrete lines. The position is 

100.5, 111.5, 123.7, 133 and 141 ern - 1. We tentatively assign these lines as cor­

responding to series A in CsCoC1 3 • We note that the Raman spectrum reported 

for 49oK shows an asymmetric broad line shape, which is similar to S".x (Qa = 0, UJ) 

*1 In the case of nearly lD Ising-like ferromagnet, which is a counterpart of the present AF, 

magnetic excitations at domain boundaries have been observccl. 211 
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Quantization of ltfagnetic Excitation Continuum 475 

calculated m IS. More work is certainly needed on CsCoBr3• 

§ 4. Summary 

It is widely accepted that magnetic excitations form a continuum in purely 1D 

quantum-mechanical spin ~ antiferromagnets. In the Ising-like case the physical 

picture of this continuun1 is clear: The continuum consists of one-magnon state 

and odd-number-magnon (3-magnon, 5-magnon, ···) bound states, which are mixed 

up with each other by the 8 term of (1). We have shown that a weak interchain 

molecular field tends to decouple these multiple-magnon bound states; it results 

in a series of discrete lines, which we call Zeeman ladder in analogy with Stark 

ladder of 1D tight-binding electrons in a uniform electric field. We have also 

shown that this Zeeman ladder is capable of explaining complicated magnon Raman 

lines reported on CsCoCl 3 and CsCoBr3• 
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Appendix 

-Theory of Afagnetic Ordering in CsCoCl3 and CsCoBr3-

Mekata19> developed a theory of magnetic ordering in CsCoC1 3 and CsCoBr3 

by using a two-dimensional model (i.e., by assuming the intrachain correlation 

length is infinite). He could explain the nature of low temperature phase 

(T <T N2) as well as intermediate phase (T N2<T <T NJ). In order to estimate the 

magnitude of interchain coupling from T NJ and T N2' however, the two-dimensional 

model is insufficient. Here we apply to this problem Scalapino-Imry-Pincus theory/4> 

in which the intrachain interaction is taken into account exactly and the interchain 

coupling is treated in the mean field approximation. This approximation is ex­

pected to be adequate if 3D ordering temperature is much lower than intrachain 

coupling strength. 

We start with the following model: 

n.n n.n.n 

!!{ = 2J _E _E Sj,Sj+u + 2J/ _E ,E Sj,Sj'" + 2J2' ,E ,E Sj,Sj'", 
l j l, t< j l, t< j 

(A·l) 

where the three terms represent intrachain, nearest neighbor chain and next nearest 

neighbor chain couplings, respectively. J>O, J/ >O and J/ <O are assumed in (A ·1). 
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476 H. Shiba 

The small off-diagonal exchange term has been ignored in the intrachain 

term. It is important for discussing dynamics, but is expected to give a small 

correction to thermodynamic properties. Having three sublattices shown in Fig. 4 

m mind, we apply the mean field approximation to (A ·1) as 

where a= 2J/ / J/ and (A, ).', J.") denote three different sublattices. (A· 2) can 

be solved by the well-known exact solution of lD Ising model. Introducing the 

sublattice magnetizations as 

we obtain the following self-consistency equations: 

where K=Jj!?T and f(x,y) =exsh yjvi+ (exshy) 2• The L's are defined as 

(A·4) 

As in Mekata's two-dimensional model, (A· 3) leads to successive phase 

transitions. For small a we have three ordered phases: (I) <(J1)= -<(J2)=FO, 

<(J3)=0; (II) <(J1), <(J3), <(J2)=FO; (III) <(J1)=<(J3) >O, ((J2) <O. When the 

temperature is decreased, the transitions (I)-> (II)~ (III) occur. For moderate 

a only (I) and (III) are realized via a first-order transition between (I) and 

(III). When /a/ is increased further, one finally reaches a point where (III) 

is the only ordered phase. 

The temperature dependence of sublattice magnetizations determined by (A· 3) 

and (A· 4) is shown in Fig. 5. At T = T m given by 

JjkTNt 

1 = e (3J '-6J ') 
2kTN1 1 2 

' 

(A·5) 

the paramagnetic state becomes unstable against the phase (I) or the phase (III). 

The "antiferromagnetic" phase becomes unstable at T= T 0, where 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/6

4
/2

/4
6
6
/1

8
6
9
5
9
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Quantization of Magnetic Excitation Continuum 

(b) 

20 

----
15 lll 

' 
,.,.-

T0 (K) 
paramagnetic 

1.0 

(a) 
10 T., 

(c) 0.5 

50 10 15 20 T., (21.3° Kl 
T(•K) 

Fig. 5. (a) Phase diagram expected for (A· 2). T Nl defined by (A· 5) is chosen as 

21.3°K, which is the experimental value for CsCoCla. J=75oK is used. The temper­

ature To defined in (A·6) is a parameter to show the importance of Jl. The 

broken line corresponds to the first-order transition. The other transitions are of 

second order. (b) The temperature dependence of the order parameters. J =75°K, 

TN1 =21.3oK and TN,=To=9oK (a=-0.0034) are assumed. (c) The temperature 

dependence of the order parameters. J=75°K, TN,=21.3oK and To=14oK (a= 

-0.117) are assumed. 
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(A-6) 

\Vhen (II) is present as a stable intermediate phase, T 0 is the second order tran­

sition point from (I) to (II), i.e., T 0 = Tm. However, if the first-order transition 

occurs from (I) to (III) at T = T m, T m is higher than T 0 • 

Identifying Tx2 as experimental TN 2 and using J=75oK we can estimate Jr' 

and J/ for CsCoCl 3 as Jr' I J~0.56 X 10-2 and a=2J/ I J,' ~ -0.46 X 10-2• On the 

other hand, for CsCoBr3 we obtain Jr'IJ~0.13x10- 1 and a=2J/IJ;'~-0.6xl0-\ 

using TN!= 28.3°K, T N2 = 14°K and J = 80°K. 

The present theory does not change so much Mekata's picture of the successive 

phase transitions. The magnitude of interchain coupling estimated above from T NJ 

and T~- 2 is, however, different from the prediction of the two-dimensional model, 

since -vve take into account the temperature dependence of correlation length along 

each chain. The present theory predicts that J/ is much smaller than Jr'. 
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