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Simple cosmological models are used to show that gravitation can be quantized as
an ordinary gauge system if the Hamilton—Jacobi equation for the model under
consideration is separable. In this situation, a canonical transformation can be per-
formed such that in terms of the new variables the model has a linear and homo-
geneous constraint, and therefore canonical gauges are admissible in the path inte-
gral. This has the additional practical advantage that gauge conditions that do not
generate Gribov copies are then easy to choose19@8 American Institute of
Physics[S0022-24888)02906-3

I. INTRODUCTION

The evolution of a cosmological model is given by the dynamics of the figld6X) and of
the matter field$, which yield from the extremal condition imposed on the Einstein action. The
change from the variables,, to the set

gab(x’ T)! N(X,’T), Na(xr T)

whereN andN? are the lapse and shift functions defined by Kutlear a generalization of those
introduced by Arnowitt, Deser and Misnel = (—g°) ~2, N2=g?"g,,, gives the Einstein ac-
tion the forn?

G0 D NN, 1= | 07 [ 0 (00~ NH- N7, W

where the Hamiltonian and momentum constraints

H=3Gapca PP~ (°9) "4 °R—2A) + Himar=0, @
Ha=—20acVy pCd+ Ha,matt™ 0
reflect the general covariance of the theory.

The restriction to minisuperspace models and the choice of an homogeneous lapse and zero
shift lead to a single constraint of the fotm

H=3f;; p'p'+V(9)~0, 3
wheref;; is the reduced version of the DeWitt supermetric. The constidint a generator of

gauge transformations giving rise to an infinite number of physically equivalent paths in phase
space. If the action

Sta'pi NI= [ dr (pal—NH) @
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is used to quantize the system by means of a path integral, the propagator diverges because of the
sum over equivalent paths. This is solved by imposing a gauge condition that selects one path
from each class of equivalent paths. Admissible gauge conditions are those which can be reached
from any path by performing a gauge transformation that does not modify the action, so that a first
restriction on admissible gauge conditions appears. A second—and general—condition is that
gauge fixing must not generate Gribov copies, that is, the diibéts the points of the phase space
connected by gauge transformatipmsust have no more than one intersection with the surface
defined by the gauge.

Under the gauge transformation

5eqi:€(7-)[qivH]! 5epi:€(7)[pi vH]! 56N:.E(7-)! (5)

the action changes by

6.5=|€e(71)

s H ? 6
Pigo R (6)
1
so that for a quadratic Hamiltonian like that of Ed) &.S vanishes only if

€(m1)=0=¢(7). @)

This introduces a restriction on admissible gauges: derivative gauge conditions like

xN—=xo(d',p; ,N)=0 ®)

should be used?® reflecting a difference between gravitation and ordinary gauge systems, which
have linear and homogeneous constraints so #&tvanishes even if the boundaries are not
mapped onto themselves, allowing then for canonical gauge conditions

X(qirpi!T):O' (9)

However, a system with a quadratic Hamiltonian can be made gauge invariant at the end points,
improving the action with end point termidn a previous papéwe have shown that these terms

can be seen as the result of a canonical transformation which identifies the constraint with one of
the new momenta, yielding an action like that of an ordinary gauge system. In the present work we
apply this idea to some minisuperspace models; we solve the Hamilton—Jacobi equation for them,
and find the gauge-invariant action which makes simple canonical gauges admissible in the path
integral. We show that this gauge fixing procedure makes it easy to avoid the Gribov problem,
and, from a different point of view, we find that the path integral resulting after the gauge choice
clearly manifests théarbitrary separation between true degrees of freedom and time.

Il. GAUGE-INVARIANT ACTION

Let us consider the canonical transformatiay,6;)—(Q',P;) generated by the solution
W(q',, ,E) of the 7-independent Hamilton—Jacobi equation

=E, (10

H q'M
1aq|

matching the constants(, ,E) to the new momentaﬁ ,50). The new coordinates and momenta

verify
[Q*,Po]=[Q*H]=0,
[P,,Po]=[P,,H]=0, (12)

[Q%Po]=[Q%H]=1.
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Q* andP,, do not change under a gauge transformation and are then called observableg%While

has nonzero bracket with the constraint, suggesting its use to fix the gauge: In terms of the new
variables the constraint is linear and homogeneous in the momenta, so that canonical gauges are
admissible, and the condition that guarantees that the sugfad® is not tangent to the orbits

(which will be used to ensure that it does not intersect them more than anédfilled by yx

EQO:
det[x,H])=[Q%H]#0. (12)
A second transformation, now in the space of observables, generated by
F=PoQ°+f(Q*P,,7), (13

yields a new nonzero Hamiltonian

K—NP-i-af 14
=NPo+ -, (14

and a new set of nonconserved observab@s,P,,) that are therefore appropriate to characterize
the trajectories in phase space. As a functionaDbfnd P; the new gauge-invariant action reads

72
s-|
1
so that the system is now an ordinary gauge system, i.e., one with a linear and homogeneous
constraintPy=~0 and a nonzero Hamiltonia#f/d7. The path integral then has the form

dQ' of
= NPy— —|d7, (15)
aT

T

. (18

0 “ (7 _ dQ of
J DQ” DP, DQ* DP, DN &(x) |[x,Pollex 'Ll PiF_NPO_a_T dr

where|[ x,Py]| is the Fadeev—Popov determinant and admits any canonical gauge. In terms of the
original variables the gauge invariant action is written

s—fz 99 _ | dreB 1
- Pig, T 17
with®

B=[Q'P;~W+Q"P,— ]2 (18)

The existence of a gauge such that 7(q') (intrinsic time° and the vanishing of the end point
termsB in that gauge and on the constraint surface assure that the new &diwh the original
oneS weigh the paths in the same w&ifhis requirement determines the functibin Eq. (13).

lll. MINISUPERSPACES

The procedure we have shown depends on the possibility of finding a solution to the
Hamilton—Jacobi equation for the system. The separability of this equation and its application to
cosmological models has been widely studitfHere we will study simple models for which the
Hamilton—Jacobi equation can be easily solved. Consider an isotropic and homogeneous
Friedmann—Robertson—Walk&RW) metric

2

1—kr?

ds®’=N2?dr?—a?(7) +r?d6?+r? sir? 6de?|.

The Hamiltonian constraint
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H=%e 3(n}—7g) + Ae®?~0, (19

with Q~In a(7) corresponds to a FRW metric with massless scalar field, nonzero cosmological
constant and null curvature. The evolution is restricted to one of the two surfaces

mo=*+\m5+4Ae™

separated byro=0; from a geometrical point of view this means that the topology of the surface
where the gauge choice must select only one point from each orbit is that of half a plane. The
7-independent Hamilton—Jacobi equation has the solutions

W, =Pg+ f dQ\P2— 4Pye3?+ 4A €52, (20)
which are of the form
W=w(q°,Po,P)+C(d")P, (2D)
with q°=Q, q= ¢. Fixing the gauge by means of the canonical condition
x=Q°~g(P,T(7)=0 (22
with T(7) a monotonous function of, asQ®= dW. /9P, = Q%P Py,P), if we choose
9(P.T(7))=Q%q°=T(7),Po=0pP)
in terms of the original variables we have
q°=T(7). (23
The surfacey=0 is thus a plan€)=constant for each value of This guarantees that the gauge
(22) does not produce Gribov copies, because if it did so atamgt another one it would be

[x,H]=0, which is prevented by the gauge fixing procedure.
The additional end point ternB for the action of this system vanish in gau@?) if

f=QP—w(T(7),Py=0,P=P).
Thus, in this gauge and on the constraint surface we have

_(9f_ i
Q=75 =C(d),

which together with Eq(23) means that) and = define a hypersurface in the original configu-
ration space. The Hamiltonian for the reduced syst&@yP( is

af

dT
=T PTraNeT o,

and it resembles that of a relativistic particleTotlependent masa=2A*%%". In gauge(22) and
on the constraint surface the path integral for the system then has the simple form

<¢~,Q~|¢',Q'>=f DQDPex;{iLT,”(Pin VPZ+4Ae%TdT)|, (24)

where the endpoints are given By=' andT"=Q", while the paths go fronQ'=¢’ to Q"
:d)ll‘

Another easily solvable constraint is
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H=3e 3%3(m5— m5) +e3*V(¢)~0 (25)

with V(¢)=1e%?, which corresponds to a FRW metric with a massless scalar field and an
exponential potential which can reproduce an increasing cosmological constant. The topology is
again like that of two disjoint planes. Multiplying by the positive-definite funcedfi an equiva-

lent constraint is obtained:

H' = 4(2— m) + A8 ¥~ 0, 6

This is an example in which the new momentlﬁn differs from the constraint by a nonzero

factor, so that the bracket 6 with the constraint is zero only on the constraint surface,@tiﬂ
still an observable. The solution of theindependent Hamilton—Jacobi equation is

W=P(¢— Q)+ %(Eo(wm— %e“”*/’) (27)

and has the forni21) if 9°=¢+Q andgq= ¢— Q. The canonical gauge

=00~ T(ET) =0 (29)

gives
=+ Q=T(7),

corresponding to a planeé+Q =constant for each value of. This gauge does not generate
Gribov copies, because if at anythe plane intersected an orbit, at anothethey should be
tangent, yielding y,H]=0. As in the former example, with the choice of the functfosuch that
the end pointdB vanish in gaugd28) the new coordinat€ and r define a hypersurface in the
original configuration space. The Hamiltonian for the reduced system describ®daby P is

o N g, dT

a7 P dr

and the path integral in gaudg@8) and on the constraint surface has the form

: (29

<¢”,Q"|¢’,Q’>:f DQDPex;{iJ’TT,"(PdQ— %eSTdT)

whereT'=¢'+Q’ andT"=¢"+Q", and the paths go fro®'=¢'— Q' to Q"=¢"—Q". As
before, the evolution of the system described by the observa®lg?)(is given by aT-dependent
Hamiltonian.

In a more general cadeyhenever the Hamiltonian constraint has the form

H=G(¢,Q) (75— m5)+V($,Q)~0 (30

with G andV positive definite functions such th¥(¢,Q)/G(¢,Q) =L(d+Q)Lo(p—Q) the
change to the null coordinates

U=R1(¢—Q), v=Ry(¢+Q)
with the choicel,(z)=R’(z) yields the equivalent constraint
H'=mm,+iL(v) (3D

related toH by H_=X(¢>,Q)H’, with L(v)= Lq(v)/Ls(v). The generator functioW which
identifies the set®',P,) is
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— Py 1
W= Pu+:v——_f L(v)duv, (32
P 4P
and has the form
W=w(v,Py,P)+C(u)P. (33
The canonical gauge
— T1(7)
x=Q°- —=0 (34

is equivalent to
v=Ry(¢p+Q)=T(7).

The Gribov problem is avoided in the same way it was before, as the constraint hypersurface splits

in
Y X
¢ G(¢,Q)
The generator functiofi giving the change to nonconserved observables is

f—QP+ ! L(T)dT (395

and the new variables are related to the null ones by

Q=Y. 0=u+ L(1-Py- — f L(T)dT
“p Ut p(mPo g2 ’
(36)
Po—L(v
m,=P, WUZOT()-
The system Q,P) is governed by the nonzero Hamiltoniaf/ g7 = (1/4P) L(T) dT/dr, so that
the path integral on the constraint surface and in gd@dkeis

<¢”,Q”|¢’,Q’):j DQDPexp[ifTT (PdQ—ﬂdT” 37)

whereT'=R,(¢’'+Q') andT"=R,(4"+Q"), and the paths go fro®'=R;(¢'— Q') to Q"
=R;(¢"—Q"). The evolution of the reduced system is given by-dependent Hamiltonian. As

in the preceding examples, this is nothing more, however, than a consequence of the fact that the
gauge choice is not only a procedure to remove divergences from the path integral, but also a
reduction procedure to physical degrees of freedom, giving rise to time and dynamical evdlution.
This can soon be realized by examining the result of a “wrong” gauge choice, like a
7-independent one. We would then obtain a zero Hamiltonian for the reduced system, yielding no
dynamical evolution.

IV. CONCLUSIONS

The presence of a quadratic constraint in the action of gravitation would make impossible, in
principle, the quantization of cosmological models by means of the usual path integral procedure
for gauge systentsHowever, when the Hamilton—Jacobi equation for the system can be solved,
this can mean nothing more than an inappropriate choice of coordinates and momenta. The change
to variables such that the constraint is linear and homogeneous in the momenta provides the action
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with invariance at the end points, making canonical gauges admissible in the path integral. In
terms of the original variables the gauge-invariant action has additional end point terms, but these
terms do not modify the dynamical trajectories of the system. The vanishing of the end point terms
in a gauge that defines a hypersurface in the original configuration space guarantees that the
improved action weighs the paths in the same way as the original one. However, because the new
action is gauge invariant, the path integral can be computed in any canonical gauge. Canonical
gauges make it easy to avoid Gribov copies, and also to define a global time.

It should be emphasized that our procedure will only work in a limited class of minisuper-
space models; even in the case of homogeneous and isotropic models, for an arbitrary potential
V(¢,Q)—yielding a topologically nontrivial constraint surface—it is most unlikely to work in
general. However, the Hamilton—Jacobi equation is separable for constraints more general than
those considered here: For example, solutions are known for models with more than one scalar
field, or with a potentiaV(¢)~ 1/¢?, which reproduces an inflationary model with a decaying
cosmological constarit The existence of an intrinsic time and the possibility to avoid the Gribov
problem in these and other separable models should be the object of a further analysis.
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