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Simple cosmological models are used to show that gravitation can be quantized as
an ordinary gauge system if the Hamilton–Jacobi equation for the model under
consideration is separable. In this situation, a canonical transformation can be per-
formed such that in terms of the new variables the model has a linear and homo-
geneous constraint, and therefore canonical gauges are admissible in the path inte-
gral. This has the additional practical advantage that gauge conditions that do not
generate Gribov copies are then easy to choose. ©1998 American Institute of
Physics.@S0022-2488~98!02906-5#

I. INTRODUCTION

The evolution of a cosmological model is given by the dynamics of the fieldsgmn(X) and of
the matter fieldf, which yield from the extremal condition imposed on the Einstein action. The
change from the variablesgmn to the set

gab~x,t!, N~x,t!, Na~x,t!

whereN andNa are the lapse and shift functions defined by Kucharˇ1 as a generalization of those
introduced by Arnowitt, Deser and Misner,2 N5(2g00)21/2, Na5gabgb0, gives the Einstein ac-
tion the form3

S@gab ,pab,N,Na,f#5E dtE d3x ~pabġab2NH2NaHa!, ~1!

where the Hamiltonian and momentum constraints

H5 1
2Gabcd pabpcd2~3g!1/2~3R22L!1Hmatt'0,

~2!

Ha522 gac¹d pcd1Ha,matt'0

reflect the general covariance of the theory.
The restriction to minisuperspace models and the choice of an homogeneous lapse and zero

shift lead to a single constraint of the form4

H5 1
2 f i j pipj1V~q!'0, ~3!

where f i j is the reduced version of the DeWitt supermetric. The constraintH is a generator of
gauge transformations giving rise to an infinite number of physically equivalent paths in phase
space. If the action

S@qi ,pi ,N#5E dt ~piq̇
i2NH! ~4!
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is used to quantize the system by means of a path integral, the propagator diverges because of the
sum over equivalent paths. This is solved by imposing a gauge condition that selects one path
from each class of equivalent paths. Admissible gauge conditions are those which can be reached
from any path by performing a gauge transformation that does not modify the action, so that a first
restriction on admissible gauge conditions appears. A second—and general—condition is that
gauge fixing must not generate Gribov copies, that is, the orbits~i.e., the points of the phase space
connected by gauge transformations! must have no more than one intersection with the surface
defined by the gauge.

Under the gauge transformation

deq
i5e~t!@qi ,H#, depi5e~t!@pi ,H#, deN5 ė~t !, ~5!

the action changes by

deS5Fe~t!S pi

]H

]pi
2H D G

t1

t2

, ~6!

so that for a quadratic Hamiltonian like that of Eq.~4! deS vanishes only if

e~t1!505e~t2!. ~7!

This introduces a restriction on admissible gauges: derivative gauge conditions like

xṄ2x0~qi ,pi ,N!50 ~8!

should be used,5,6 reflecting a difference between gravitation and ordinary gauge systems, which
have linear and homogeneous constraints so thatdeS vanishes even if the boundaries are not
mapped onto themselves, allowing then for canonical gauge conditions

x~qi ,pi ,t!50. ~9!

However, a system with a quadratic Hamiltonian can be made gauge invariant at the end points,
improving the action with end point terms.7 In a previous paper8 we have shown that these terms
can be seen as the result of a canonical transformation which identifies the constraint with one of
the new momenta, yielding an action like that of an ordinary gauge system. In the present work we
apply this idea to some minisuperspace models; we solve the Hamilton–Jacobi equation for them,
and find the gauge-invariant action which makes simple canonical gauges admissible in the path
integral. We show that this gauge fixing procedure makes it easy to avoid the Gribov problem,
and, from a different point of view, we find that the path integral resulting after the gauge choice
clearly manifests the~arbitrary! separation between true degrees of freedom and time.

II. GAUGE-INVARIANT ACTION

Let us consider the canonical transformation (qi ,pi)→(Q̄i ,P̄i) generated by the solution
W(qi ,am ,E) of the t-independent Hamilton–Jacobi equation

HS qi ,
]W

]qi D5E, ~10!

matching the constants (am ,E) to the new momenta (P̄m ,P̄0). The new coordinates and momenta
verify

@Q̄m,P̄0#5@Q̄m,H#50,

@ P̄m ,P̄0#5@ P̄m ,H#50, ~11!

@Q̄0,P̄0#5@Q̄0,H#51.
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Q̄m andP̄m do not change under a gauge transformation and are then called observables, whileQ̄0

has nonzero bracket with the constraint, suggesting its use to fix the gauge: In terms of the new
variables the constraint is linear and homogeneous in the momenta, so that canonical gauges are
admissible, and the condition that guarantees that the surfacex50 is not tangent to the orbits9

~which will be used to ensure that it does not intersect them more than once! is fulfilled by x

[Q̄0:

det~@x,H# !5@Q̄0,H#5” 0. ~12!

A second transformation, now in the space of observables, generated by

F5P0Q̄01 f ~Q̄m,Pm ,t!, ~13!

yields a new nonzero Hamiltonian

K5NP01
] f

]t
, ~14!

and a new set of nonconserved observables (Qm,Pm) that are therefore appropriate to characterize
the trajectories in phase space. As a functional ofQi andPi the new gauge-invariant action reads

S5E
t1

t2S Pi

dQi

dt
2NP02

] f

]t Ddt, ~15!

so that the system is now an ordinary gauge system, i.e., one with a linear and homogeneous
constraintP0'0 and a nonzero Hamiltonian] f /]t. The path integral then has the form

E DQ0 DP0 DQm DPm DN d~x! u@x,P0#uexpF i E
t1

t2S Pi

dQi

dt
2NP02

] f

]t D dtG , ~16!

whereu@x,P0#u is the Fadeev–Popov determinant and admits any canonical gauge. In terms of the
original variables the gauge invariant action is written

S5E
t1

t2S pi

dqi

dt
2NHDdt1B ~17!

with8

B5@Q̄i P̄i2W1QmPm2 f #t1

t2. ~18!

The existence of a gauge such thatt5t(qi) ~intrinsic time!10 and the vanishing of the end point
termsB in that gauge and on the constraint surface assure that the new actionS and the original
oneS weigh the paths in the same way.8 This requirement determines the functionf in Eq. ~13!.

III. MINISUPERSPACES

The procedure we have shown depends on the possibility of finding a solution to the
Hamilton–Jacobi equation for the system. The separability of this equation and its application to
cosmological models has been widely studied.11,12Here we will study simple models for which the
Hamilton–Jacobi equation can be easily solved. Consider an isotropic and homogeneous
Friedmann–Robertson–Walker~FRW! metric

ds25N2dt22a2~t!S dr2

12kr2 1r 2du21r 2 sin2 udw2D .

The Hamiltonian constraint
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H5 1
4e

23V~pf
2 2pV

2 !1Le3V'0, ~19!

with V; ln a(t) corresponds to a FRW metric with massless scalar field, nonzero cosmological
constant and null curvature. The evolution is restricted to one of the two surfaces

pV56Apf
2 14Le6V

separated bypV50; from a geometrical point of view this means that the topology of the surface
where the gauge choice must select only one point from each orbit is that of half a plane. The
t-independent Hamilton–Jacobi equation has the solutions

W65 P̄f6E dVAP̄224P̄0e3V14Le6V, ~20!

which are of the form

W5w~q0,P̄0 ,P̄!1C~qi !P̄, ~21!

with q05V, q5f. Fixing the gauge by means of the canonical condition

x[Q̄02g~ P̄,T~t!!50 ~22!

with T(t) a monotonous function oft, asQ̄05]W6 /] P̄0 5Q̄0(q0,P̄0 ,P̄), if we choose

g~ P̄,T~t!!5Q̄0~q05T~t!,P̄050,P̄!

in terms of the original variables we have

q05T~t!. ~23!

The surfacex50 is thus a planeV5constant for each value oft. This guarantees that the gauge
~22! does not produce Gribov copies, because if it did so at anyt, at another one it would be
@x,H#50, which is prevented by the gauge fixing procedure.

The additional end point termsB for the action of this system vanish in gauge~22! if

f 5Q̄P2w~T~t!,P̄050,P̄5P!.

Thus, in this gauge and on the constraint surface we have

Q5
] f

]P
5C~qi !,

which together with Eq.~23! means thatQ and t define a hypersurface in the original configu-
ration space. The Hamiltonian for the reduced system (Q,P) is

] f

]t
57AP214Le6T

dT

dt
,

and it resembles that of a relativistic particle ofT-dependent massm52L1/2e3T. In gauge~22! and
on the constraint surface the path integral for the system then has the simple form

^f9,V9uf8,V8&5E DQDPexpF i E
T8

T9
~PdQ6AP214Le6TdT!G , ~24!

where the endpoints are given byT85V8 andT95V9, while the paths go fromQ85f8 to Q9
5f9.

Another easily solvable constraint is
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H5 1
4e

23V3~pf
2 2pV

2 !1e3VV~f!'0 ~25!

with V(f)5le6V, which corresponds to a FRW metric with a massless scalar field and an
exponential potential which can reproduce an increasing cosmological constant. The topology is
again like that of two disjoint planes. Multiplying by the positive-definite functione3V an equiva-
lent constraint is obtained:

H85 1
4~pf

2 2pV
2 !1le6~V1f!'0. ~26!

This is an example in which the new momentumP̄0 differs from the constraintH by a nonzero
factor, so that the bracket ofQ̄ with the constraint is zero only on the constraint surface, butQ̄ is
still an observable. The solution of thet-independent Hamilton–Jacobi equation is

W5 P̄~f2V!1
1

P̄
S P̄0~f1V!2

l

6
e6~V1f!D ~27!

and has the form~21! if q05f1V andq5f2V. The canonical gauge

x[Q̄02
T~t!

P̄
50 ~28!

gives

q05f1V5T~t!,

corresponding to a planef1V5constant for each value oft. This gauge does not generate
Gribov copies, because if at anyt the plane intersected an orbit, at anothert they should be
tangent, yielding@x,H#50. As in the former example, with the choice of the functionf such that
the end pointsB vanish in gauge~28! the new coordinateQ and t define a hypersurface in the
original configuration space. The Hamiltonian for the reduced system described byQ andP is

] f

]t
5

l

P
e6T~t!

dT

dt
,

and the path integral in gauge~28! and on the constraint surface has the form

^f9,V9uf8,V8&5E DQDPexpF i E
T8

T9S PdQ2
l

P
e6TdTD G , ~29!

whereT85f81V8 andT95f91V9, and the paths go fromQ85f82V8 to Q95f92V9. As
before, the evolution of the system described by the observables (Q,P) is given by aT-dependent
Hamiltonian.

In a more general case,8 whenever the Hamiltonian constraint has the form

H5G~f,V!~pf
2 2pV

2 !1V~f,V!'0 ~30!

with G andV positive definite functions such thatV(f,V)/G(f,V) 5L1(f1V)L2(f2V) the
change to the null coordinates

u5R1~f2V!, v5R2~f1V!

with the choiceL2(z)5R8(z) yields the equivalent constraint

H85pupv1 1
4L~v ! ~31!

related toH by H5V(f,V)H8, with L(v)[ L1(v)/L2(v). The generator functionW which
identifies the set (Q̄i ,P̄i) is
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W5 P̄u1
P̄0

P̄
v2

1

4P̄
E L~v !dv, ~32!

and has the form

W5w~v,P̄0 ,P̄!1C~u!P̄. ~33!

The canonical gauge

x[Q̄02
T~t!

P̄
50 ~34!

is equivalent to

v5R2~f1V!5T~t!.

The Gribov problem is avoided in the same way it was before, as the constraint hypersurface splits
in

pV56AV~f,V!

G~f,V!
1pf

2 .

The generator functionf giving the change to nonconserved observables is

f 5Q̄P1
1

4PE L~T!dT ~35!

and the new variables are related to the null ones by

Q05
v
P

, Q5u1
v
P2 ~12P0!2

1

4P2E L~T!dT,
~36!

pu5P, pv5
P02L~v !

P
.

The system (Q,P) is governed by the nonzero Hamiltonian] f /]t 5 (1/4P) L(T) dT/dt , so that
the path integral on the constraint surface and in gauge~34! is

^f9,V9uf8,V8&5E DQDPexpF i E
T8

T9S PdQ2
L~T!

4P
dTD G , ~37!

whereT85R2(f81V8) andT95R2(f91V9), and the paths go fromQ85R1(f82V8) to Q9
5R1(f92V9). The evolution of the reduced system is given by aT-dependent Hamiltonian. As
in the preceding examples, this is nothing more, however, than a consequence of the fact that the
gauge choice is not only a procedure to remove divergences from the path integral, but also a
reduction procedure to physical degrees of freedom, giving rise to time and dynamical evolution.3

This can soon be realized by examining the result of a ‘‘wrong’’ gauge choice, like a
t-independent one. We would then obtain a zero Hamiltonian for the reduced system, yielding no
dynamical evolution.

IV. CONCLUSIONS

The presence of a quadratic constraint in the action of gravitation would make impossible, in
principle, the quantization of cosmological models by means of the usual path integral procedure
for gauge systems.6 However, when the Hamilton–Jacobi equation for the system can be solved,
this can mean nothing more than an inappropriate choice of coordinates and momenta. The change
to variables such that the constraint is linear and homogeneous in the momenta provides the action
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with invariance at the end points, making canonical gauges admissible in the path integral. In
terms of the original variables the gauge-invariant action has additional end point terms, but these
terms do not modify the dynamical trajectories of the system. The vanishing of the end point terms
in a gauge that defines a hypersurface in the original configuration space guarantees that the
improved action weighs the paths in the same way as the original one. However, because the new
action is gauge invariant, the path integral can be computed in any canonical gauge. Canonical
gauges make it easy to avoid Gribov copies, and also to define a global time.3

It should be emphasized that our procedure will only work in a limited class of minisuper-
space models; even in the case of homogeneous and isotropic models, for an arbitrary potential
V(f,V)—yielding a topologically nontrivial constraint surface—it is most unlikely to work in
general. However, the Hamilton–Jacobi equation is separable for constraints more general than
those considered here: For example, solutions are known for models with more than one scalar
field, or with a potentialV(f); 1/f2 , which reproduces an inflationary model with a decaying
cosmological constant.12 The existence of an intrinsic time and the possibility to avoid the Gribov
problem in these and other separable models should be the object of a further analysis.
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