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Abstract: The Hamilton-Jacobi theory is used to obtain the Hamilton function for 
nonholonomic constraints in addition to the equations of motion. The technique of 
separation of variables and canonical transformation is applied here to solve the Hamilton-
Jacobi partial differential equation for nonholonomic systems. The Hamilton-Jacobi 
function is then used to construct the wave function and to quantize these systems using the 
WKB approximation. 
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Introduction 

Nonholonomic systems are [1] mechanical 
systems with constraints on their velocity that 
are not derivable from position constraints. The 
construction of Hamilton-Jacobi partial 
differential equations (HJPDEs) for 
nonholonomic constrained system is of prime 
importance. The Hamilton-Jacobi theory 
provides a bridge between classical and quantum 
mechanics; it implies that quantum mechanics 
should reduce to classical mechanics in the 
limit 0 . The principal interest in this theory 
is based on the hope that it might provide some 
guidance concerning the form of a Schrödinger-
type quantum theory for constrained fields. The 
fact that [2-4] solving the Hamilton-Jacobi 
equation gives a generating function for the 
family of canonical transformation of the 
dynamics is the theoretical basis for the powerful 
technique of exact integration of Hamilton's 
equations that are often employed with the 
technique of separation of variables. In addition 
[5, 6], calculating the Hamilton-Jacobi function 
enables us to construct the wave function of 
constrained systems, for which the constraints 
become conditions on it in the semiclassical 
limit. This limit also is known as the WKB 
approximation and it is named after physicists 

Wentzel, Kramers and Brillouin who all 
developed it in 1962. The WKB method is a 
powerful tool to obtain solutions for many 
physical problems and it is generally applicable 
to problems of wave propagation in which the 
frequency of the wave is very high or 
equivalently, the wave length of the wave is very 
short, so that the motivation of this work is 
furnished by the desire to understand the 
quantization of nonholonomic constrained 
systems within the framework of the WKB 
approximation. 

Generalized Lagrange and Hamilton 
Equation for Nonholonomic System 

Nonholonomic system [7] originated in the 
Lagrange-d'Alembert principles. Ferrers by 
adding constraints in the form of Euler-Lagrange 
equations derived nonholonomic system of 
equations of motion. We assume that the 
Lagrange function for nonholonomic system has 
the following form: 

),,( qqLL 
           

(1)
 

and the nonholonmic constraints are time 
independent and linear in the velocities: 
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0),(  iijj qqff             (2) 

The Hamiltonian equations of motion are 
derived below [8]; we start from the correct 
equation of state:  
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This equation is called the constrained Euler-
Lagrange equation. 

With     
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the Hamiltonian is defined in the usual way as:  

).,,(),,(0 tqqLqptqq ii  
        

(5) 

Theory for Determining Hamilton-
Jacobi Function for Nonholonomic 
Constraints 

In classical mechanics [2, 9], the Hamilton-
Jacobi equation is first introduced as a partial 
differential equation that the action integral 
satisfies: 

  .
0

0 dtqpS
t

  

         
(6) 

By taking variation of the endpoints, one 
obtains a partial differential equation satisfied 
by: 

00 



t

S
.            (7) 

This is the Hamilton-Jacobi equation (HJE). 
If ),( tqS is a solution of the Hamilton-Jacobi 

equation, then ),( tqS  is the generating function 
for the family of canonical transformations that 
describe the dynamic defined by Hamilton's 
equations. 

When the Hamiltonian does not depend on 
time explicitly, the time t can be separated. In 

this case, the time derivative
 

t

S




 in the HJE 

must be a constant, usually denoted by 
E giving the separated solution: 

EtEqWtEqS  ),(),,(  .          (8) 

Eq. 7 can then be written as:  
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For our purposes, we write the solution of 
Hamilton-Jacobi (H-J) as: 

),,......,,,......,( 11 tqqSS nn  .        (10) 

The transformation equations for S give:  
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i can be thus found from the initial 
conditions. 

Following [10-13], the corresponding set of 
the HJPDEs for constrained systems can be 
written as:  
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For nonholonomic systems, this reduces to:  
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Quantization of Nonholonomic 
Constraints Using the WKB 
Approximation  

The WKB method is a formal   expansion 
for the wave function that expresses its rapid 
oscillations in the semi - classical limit. Using 
this expansion, combined with an approximate 
quantization condition, we start from the 
Schrödinger equation for a single particle in a 
potential )(qV : 
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We can rewrite this equation by using [14]: 
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as 
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Assuming 0 , this leads to an equation: 
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Now, taking the formal limit 0 , we 
obtain the classical Hamilton-Jacobi equation: 
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One can use this equation and consider an 
expansion: 

  2
2

10),( SSStqS        (20) 

This is an expansion in  . Plugging in the 
expansion into Eq. 18 and collecting the powers 
of  , we find:  
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and similarly for the higher in  . The leading 
equation has only 0S , and it is exactly the same 
as Hamilton-Jacobi equation. Once you solve 
these equations starting from .,..., 10 etcSS  you 

have solved the wave function  in a systematic 

expansion in  . 

The WKB approximation is used mostly for 
the time-independent case. Then, the wave 
function has the ordinary time 

dependence 





 



iEt
exp . For one-dimensional 

problem, the Hamilton-Jacobi function S takes 
the form:  

EtqStqS  )(),(  .         (23) 

Therefore, only 0S  has the time dependence 

EtqStqS  )(),( 00 , while higher-order terms 

do not depend on time. The lowest term 0S  in 
Eq. 21 satisfies the Hamilton-Jacobi equation 
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This differential equation can be solved 
immediately to yield: 

  .)()(2)(0   qdqpqdqVEmqS (25) 

Once we have known 0S , we can solve for 1S  
starting from Eqs. 21 and 22, and using 
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we find:  
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which has the solution 
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Now, the general solution of Schrödinger 
equation becomes: 
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where C is constant. The present approximation 
breaks down when )(qp goes to zero. 

However, the semi - classical expansion 
(WKB approximation) of the Hamilton-Jacobi 
function of unconstrained systems has been 
studied [15]. This expansion leads to the 
following wave function: 
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where 
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1
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i
ii

qp
q  . The above wave 

function satisfies the condition: 
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00            (31)
 

in the semi - classical limit 0 . 

This condition is obtained when the 
dynamical coordinates and momenta are turned 
into their corresponding operators: 

;ˆii qq 
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Illustrative Examples 

1. The Sliding of a Balanced Skate  

Let us consider as an illustrating example the 
problem of a balanced skate on horizontal ice. 
One can choose units of length, time and mass so 
that the Lagrangian would take the following 
form: 

 222

2

1
zyxL   .         (32) 

Here, x and y are the coordinates of the point 
of contact, z is the angle of rotation of the skate. 
The constraint equation is:  

0cossin  zyzxf  .         (33) 

Eq. 33 can be rewritten as: 

zxy tan  .          (34) 

According to Eq. 3, we obtain: 

zx sin
        

(35) 

zy cos           (36) 

0z .           (37) 

From Eqs. 34 and 35, we find: 

.
tanz

x
y







        
(38) 

Differentiating constraint Eq. 34 with respect 
to time to eliminate , we find: 

zxzzxy 2sectan   .         (39) 

Inserting Eq. 38 into Eq. 39 and multiplying 
the result by   tan  lead to: 

zzxzzxx tansectan 22   .        (40) 

By using the identity:  

,sectan1 22 zz   

Eq. 40 becomes: 

zxzx tan  .          (41) 

From Eq. 37, we can solve )(tz  as follows: 

11)(  tatz .          (42) 

Differentiating Eq. 42 with respect to time, 
we obtain: 

1z .           (43) 

Integrating Eq. 41, we get: 

 
dt

dz
zdzzdt

x

x





,tan  .        (44) 

This gives: 

zx coslnln            (45) 

or 

zx cos .          (46) 

Substituting Eq. 42 into Eq. 46 and 
integrating the resulting equation: 

,)(cos 11 dttdtx            (47) 

lead to:  

22 sin)(  ztx .         (48) 

Substituting Eq. 46 into Eq. 34, we obtain: 

.sin zy 
        

(49) 

Now, inserting Eq. 42 into Eq. 49 and 
integrating the resulting equation: 

dttdty )(sin 11     ,        (50) 

we find:  

,cos)( 33   zty
       

(51) 

where 
1

2
1
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1
3

1


  . 

Here, 21,  and 3  are constants of 

integration related to the initial values of  yxz ,, ; 

while 21,  and 3 are the initial values of 
velocities. 

We rewrite Eqs. 42, 48 and 51, respectively 
as: 
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Solving Eqs. 52, 53 and 54, we obtain: 
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Now, we collect Eqs. 55, 56 and 57, which 
give the Hamilton- Jacobi function 
 tyxzS ,,,,,, 321  . 
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The generalized momenta can be derived as:  
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From these equations, we can obtain 

321 ,,   as functions of ip  and iq :  
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The Hamiltonian is defined as: 

2
10 2

1






t

S
.         (65) 

Inserting Eq. 62 into Eq. 65, we get the 
following expression for the Hamiltonian: 
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Now, we will quantize our example; first let 
us apply the HJPDEs to the wave function:  

0 0 0
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We can rewrite Eq. 67 as:  
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and again we can rewrite Eq. 68 as:  
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After a simplification, we get: 



Article  Al-Ajaleen and Nawafleh 

 84





  z

i
zz sin

2
sin

4
sin

4
ˆ 2

2
2
3

2
20



 

         
(70) 

Taking the limit 0 , we have: 

0ˆ
0   .          (71)  

2. The Snakeboard  

The snakeboard is a modified version [16, 17] 
of a skate board in which the front and back 
pairs of wheels are independently actuated.  

Let m be the total mass of the board, J  the 

inertia of the board, 0J  the inertia of the rotor, 

1J  the inertia of each wheel, and assume the 

relation 2
10 mrJJJ  . 

The Lagrangain is given by:  

 2 2 2 2

2 2

0 1 0

1

2 2 2

m x y r
L

J J J



 

  
 
     

 

  
.            (72) 

The system has two nonholonomic 
constraints: 

 cotcos1
 rxf           (73) 

 cotsin2
 ryf   .         (74) 

The equations of motion can be obtained 
from Eq. 3 as:  

1xm            (75) 

2ym            (76) 

 sincotcoscot2 210
2 rrJmr 

 
         

(77) 

 tConsp tan          (78) 

 tConsp tan          (79) 

The Hamiltonian H is calculated by using Eq. 
5 as: 

     22 2

0 2

0

2 2

1 0

1 1

2 2

1 1

4 2

x yp p p p
m mr J

p p
J J









      

  

 

           (80) 

According to Eq. 78 and Eq. 79, we can 
rewrite this equation as: 
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Following Eq. 11, the generalized momenta 
are:  
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According to Eq. 7, the Hamilton-Jacobi 
equation becomes: 
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Using Eq. 8, we get: 
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where )(tf  in this example can be written as: 

tEtEtEtf yx )(  .         (85) 

Here, we consider: 

 EEEE yx .           (86) 

We can rewrite Eq. 83 as: 
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Again we can rewrite Eq. 87 as: 
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We will separate the variables as follows:  
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Then we obtain: 
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Integrating Eqs. 91, 92 and 93, we get: 
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Now, the Hamilton-Jacobi function takes the 
form: 
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Then, applying the HJDEs to the wave 
function using Eq. 14, we obtain: 
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where 
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After some simplification, we get: 

0ˆ
0   .        (100) 

It is worth mentioning that there exist other 
examples for a continuous constrained systems 
such as the mobile robot which is a classical 
example of a continuous nonholonomic system 
that has smellier Lagrangian and constraint 
equation for the first example [18]. If we apply 
the process applied in the first example to this 
suggested example, we will get the same results. 
Although examples of constraints that are non -  
linear in velocities are frequent in mechanics and 
engineering, the solution is usually not available 
and the mechanical behavior of systems is often 
surprising or even unpredictable. Therefore, in 
the future one hopes to investigate this type of 
nonholonomic constraints for example the 
Appell-Hamel.  

Conclusion  

The nonholonomic constrained systems are 
investigated using the Hamilton-Jacobi 
quantization scheme to yield the complete 
equations of motion of the system. The principal 
function S is determined using the method of 
separation of variables in the same manner as for 
regular systems. Further, this function enables us 
to formulate the wave function. We illustrate 
through two examples how the Hamilton-Jacobi 
equation can be used to exactly integrate the 
equations of motion: The sliding of a balanced 
skate and the snakeboard. It is found that the 
nonholonomic constraints become new condition 
on the wave function to be satisfied in the semi-
classical limit. 
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