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QUANTIZATION OF SYMPLECTIC VECTOR SPACES
OVER FINITE FIELDS

Shamgar Gurevich and Ronny Hadani

In this paper, we construct a quantization functor, associating a
complex vector space H(V ) to a finite-dimensional symplectic vector
space V over a finite field of odd characteristic. As a result, we obtain
a canonical model for the Weil representation of the symplectic group
Sp(V ). The main new technical result is a proof of a stronger form of
the Stone–von Neumann property for the Heisenberg group H(V ). Our
result answers, for the case of the Heisenberg group, a question of Kazh-
dan about the possible existence of a canonical vector space attached
to a coadjoint orbit of a general unipotent group over finite field.

0. Introduction

Quantization is a fundamental procedure in mathematics and in physics.
Although it is widely used in both contexts, its precise nature remains to
some extent unclear. From the physical side, quantization is the procedure
by which one associates to a classical mechanical system its quantum coun-
terpart. From the mathematical side, it seems that quantization is a way to
construct interesting vector spaces out of symplectic manifolds, suggesting
a method for constructing representations of the corresponding groups of
symplectomorphisms [15, 17].

0.1. Main results

0.1.1. Quantization functor. In this paper, we construct a quantization
functor

H : Symp −→ Vect,

where Symp denotes the (groupoid) category whose objects are finite-
dimensional symplectic vector spaces over the finite field Fq, and morphisms
are linear isomorphisms of symplectic vector spaces and Vect denotes the
category of finite-dimensional complex vector spaces.
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0.1.2. Canonical model for the Weil representation. As a conse-
quence, for a fixed symplectic vector space V ∈ Symp, we obtain, by func-
toriality, a homomorphism

H : Sp(V ) −→ GL (H(V )) ,

which is isomorphic to the Weil representation [19] of the group Sp(V ) and
we refer to it as the canonical model of the Weil representation.

Remark 0.1. The symplectic group acts on the canonical model H(V )
in a natural way. This should be contrasted with the classical approach
[7, 13, 19] in which one constructs a projective representation of the sym-
plectic group (invoking the Stone–von Neumann (S-vN) theorem) and then
deriving the linear action, implicitly, by invoking the fact that every projec-
tive representation of Sp(V ) can be linearized.

0.1.3. Properties of the quantization functor. We show that the func-
tor H is a monoidal functor, compatible with duality and with the opera-
tion of linear symplectic reduction. The last compatibility means that given
V ∈ Symp and a pair I◦ = (I, oI), where I ⊂ V is an isotropic subspace and
oI ∈ ∧topI is a non-zero vector,1 there exists a natural isomorphism

(0.1) HI(V ) ≃ H
(

I⊥/I
)

,

where HI(V ) stands for the subspace of I-invariant vectors in H(V ) (an
operation which will be made precise in the sequel) and I⊥/I ∈ Symp is the
symplectic reduction of V with respect to I [3]. A particular situation is
when I = L is a Lagrangian subspace. In this situation, L⊥/L = 0 and (0.1)
yields an isomorphism HL (V ) ≃ H (0) = C, which associates to 1 ∈ C a
well-defined vector in H(V ). This establishes a mechanism which associates
to every pair L◦ = (L, oL) a well-defined vector vL◦ ∈ HV . To the best of our
knowledge (cf. [11, 20, 21]), this kind of structure, which exists in the setting
of the Weil representation of the group Sp(V ), was not observed before.

0.1.4. The strong S-vN theorem. The main technical result of this paper
is a proof ([8, 12] unpublished) of a strong form of the S-vN theorem for the
Heisenberg group over Fq (see also the survey [9]). We supply two proofs;
in the first proof we use only basic considerations from linear algebra and
in the second proof we construct an algebra geometric object (an ℓ-adic
perverse Weil sheaf) which is interesting in its own sake and in particular
implies the strong S-vN theorem.

We devote the rest of the introduction to an intuitive explanation of the
main ideas and results of this paper.

1We will call the pair I◦ = (I, oI) an oriented isotropic subspace.
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0.2. The Heisenberg representation

0.2.1. The Heisenberg group. Let (V, ω) be a 2n-dimensional symplectic
vector space over the finite field Fq. The vector space V considered as an
abelian group admits a non-trivial central extension called the Heisenberg
group

0 −→ Fq −→ H(V ) −→ V −→ 0.

Choosing a section V → H(V ), the Heisenberg group can be presented
as H(V ) = V × Fq with the center given by Z = Z(H) = {(0, z) : z ∈ Fq}.
The symplectic group Sp(V ) acts on H(V ) by group automorphisms via its
tautological action on the V -coordinate.

0.2.2. The Heisenberg representation. The representation theory of
the Heisenberg group is relatively simple. Given a non-trivial central char-
acter ψ : Z → C×, there exist a unique (up to isomorphism) irreducible
representation

π : H(V ) −→ GL(H),

such that the center acts by ψ, i.e., π|Z = ψ · IdH. This is the content of
the celebrated S-vN theorem. The representation π is referred to as the
Heisenberg representation.

0.2.3. Models of the Heisenberg representation. The Heisenberg rep-
resentation admits a family of models which are associated with oriented
Lagrangian subspaces in V [1, 18]. An oriented Lagrangian subspace is a
pair L◦ = (L, oL), where L ⊂ V is a Lagrangian subspace and oL ∈ ∧topL is
a non-zero vector. Every oriented Lagrangian L◦ is associated with a model

πL◦ : H(V ) −→ GL (HL◦) ,

where the vector space HL◦ is the space of functions C (L \ H(V ), ψ), con-
sisting of functions f : H(V ) → C such that f (z · l · h) = ψ (z) f (h), for
every z ∈ Z, l ∈ L and the action πL◦ is given by right translation.

Remark 0.2. The definition of the model (πL◦ , H(V ), HL◦) does not depend
on the orientation oL. The role of the orientation will appear later when we
explain the relation between different models — the strong S-vN property.

0.3. The strong S-vN property. The collection of models {HL◦} can be
thought of as a vector bundle H on the set OLag(V ) of oriented Lagrangians,
with fibers H|L◦ = HL◦ . The vector bundle H is equipped with the following
tautological structures:

• An action of the group H(V ) on each fiber.
• An Sp(V )-equivariant structure.

The content of the strong S-vN theorem is that H admits a canonical
trivialization:
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Theorem 0.3 (Strong S-vN theorem). There exists a canonical sys-
tem of intertwining morphisms TM◦,L◦ ∈ HomH(V ) (HL◦ , HM◦), for every

(M◦, L◦) ∈ OLag(V )2, satisfying the following multiplicativity property:

TN◦,M◦ ◦ TM◦,L◦ = TN◦,L◦ ,

for every (N◦, M◦, L◦) ∈ OLag (V )3.

Remark 0.4. The definition of the trivialization {TM◦,L◦} depends on the
orientation structure.

0.3.1. Canonical vector space. The vector space H(V ) is the space of
“horizontal sections” of H

H(V ) = Γhor (OLag(V ), H) ,

where a vector in H(V ) is a compatible system (vL◦ ∈ HL◦ : L◦ ∈ OLag(V ))
such that TM◦,L◦ (vL◦) = vM◦ , for every (M◦, L◦) ∈ OLag(V )2. The sym-
plectic group Sp(V ) acts on the vector space H(V ) in an obvious manner.
We denote this action by

ρV : Sp(V ) −→ GL (H(V )) ,

and refer to it as the canonical model of the Weil representation.
We proceed to explain an algebra geometric construction of the triviali-

zation {TM◦,L◦}.

0.3.2. Canonical trivialization. The construction will be close in spirit
to the procedure of “analytic continuation”. Let U2 ⊂ OLag(V )2 denote
the subset consisting of pairs (M◦, L◦) ∈ OLag(V )2 such that M + L = V .
On the set U2, the canonical intertwining morphisms are given by a uniform
explicit formula — ansatz. The problem is how to extend this formula to the
set of all pairs. An appealing way to do this is through the use of algebraic
geometry.

0.3.3. Kernel functions. Every intertwining morphism TM◦,L◦ can be
uniquely presented by a function KM◦,L◦ ∈ C (M\H(V )/L, ψ), which we
refer to as the canonical kernel function. The collection of kernel functions
{KM◦,L◦ : (M◦, L◦) ∈ U2} can be thought of as a single function KO on
O = U2 × H(V ) which is given by KO (M◦, L◦, −) = KM◦,L◦ (−), for every
(M◦, L◦) ∈ U2. The problem now translates to the problem of extending the
function KO to the set X = OLag(V )2 × H(V ). To this end, we invoke the
procedure of geometrization.

0.4. Geometrization. A general ideology due to Grothendieck is that any
meaningful set-theoretic object is governed by a more fundamental algebra–
geometric one. The procedure by which one translate from the set-theoretic
setting to algebraic geometry is called geometrization, which is a formal
procedure by which sets are replaced by algebraic varieties and functions
are replaced by certain sheaf-theoretic objects.
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The precise setting consists of:

• A set X = X (Fq) of rational points of an algebraic variety X, defined
over Fq.

• A complex valued function f ∈ C(X) governed by an ℓ-adic Weil
sheaf F .

The variety X is a space equipped with an automorphism Fr : X → X
(called Frobenius), such that the set X is naturally identified with the set
of fixed points X = XFr.

The sheaf F can be thought of as a vector bundle on the variety X,
equipped with an endomorphism θ : F → F which lifts Fr.

The relation between the function f and the sheaf F is called
Grothendieck’s sheaf-to-function correspondence: Given a point x ∈ X, the
endomorphism θ restricts to an endomorphism θx : F|x → F|x of the fiber
F|x. The value of f on the point x is given by

f(x) = fF (x) = Tr(θx : F|x −→ F|x).

0.5. Solution to the extension problem. The extension problem of the
function KO fits nicely to the geometrization setting:

• The sets O, X are sets of rational points of corresponding algebraic
varieties O = O (Fq) and X = X (Fq). In addition, the imbedding
j : O →֒ X is induced from an open imbedding j : O →֒ X.

• The function KO comes from a Weil sheaf KO on the variety O

KO = fKO .

The extension problem is solved as follows: First extend the sheaf KO to a
sheaf K on the variety X and then take the corresponding function K = fK,
which establishes the desired extension. The reasoning behind this strategy
is that in the realm of sheaves there exist several functorial operations of
extension, probably the most interesting one is called perverse extension [2].
The sheaf K is defined as the perverse extension of KO.

0.6. Structure of the paper. Apart from the introduction, the paper
consists of two sections and two appendices.

In Section 1, the classical construction of the Weil representation is
described. We begin with the definition of the Heisenberg group and the
Heisenberg representation, then we briefly describe the classical construc-
tion of the Weil representation. In Section 2 we develop the framework of
canonical vector spaces. Specifically, we introduce the canonical system of
intertwining morphisms between different models of the Heisenberg repre-
sentation and formulate the strong S-vN property of the Heisenberg repre-
sentation (Theorem 2.5). Using Theorem 2.5, we construct a quantization
functor H. We finish this section by showing that H is a monoidal func-
tor and it is compatible with duality and the operation of linear symplectic
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reduction. In Section 3, we construct a sheaf-theoretic counterpart of the
canonical system of intertwining morphisms. Finally, in Appendix A, we
provide proofs for all statements which appear in the body of the paper.

1. The Weil representation

1.1. The Heisenberg group. Let (V, ω) be a 2n-dimensional symplectic
vector space over the finite field Fq, where q is odd. Considering V as an
abelian group, it admits a non-trivial central extension H(V ) called the
Heisenberg group, namely

0 −→ Fq −→ H(V ) −→ V −→ 0.

Concretely, the group H(V ) can be presented as the set H(V ) = V × Fq

with the multiplication given by

(v, z) · (v′, z′) =

(

v + v′, z + z′ +
1

2
ω(v, v′)

)

.

The center of H(V ) is Z = ZH(V ) = {(0, z) : z ∈ Fq}. The symplec-
tic group Sp(V ) = Sp(V, ω) acts by automorphism on H(V ) through its
tautological action on the V -coordinate.

1.2. The Heisenberg representation. One of the most important
attributes of the group H(V ) is that it admits, principally, a unique irre-
ducible representation — this is the S-vN property. The precise statement
goes as follows. Let ψ : Z → C× be a non-trivial character of the center. For

example we can take ψ (z) = e
2πi

p
tr(z)

.

Theorem 1.1 (S-vN property). There exists a unique (up to
isomorphism) irreducible unitary representation (π, H, H) with the center
acting by ψ, i.e., π|Z = ψ · IdH.

The representation π which appears in the above theorem will be called
the Heisenberg representation.

1.3. The Weil representation. A direct consequence of Theorem 1.1 is
the existence of a projective representation ρ̃ : Sp(V ) → PGL(H). The
construction of ρ̃ out of the Heisenberg representation π is due to Weil [19]
and it goes as follows. Considering the Heisenberg representation π and an
element g ∈ Sp(V ), one can define a new representation πg acting on the
same Hilbert space via πg (h) = π (g (h)). Clearly both π and πg have the
same central character ψ hence by Theorem 1.1 they are isomorphic. Since
the space HomH(V )(π, πg) is one dimensional, choosing for every g ∈ Sp(V ) a
non-zero representative ρ̃(g) ∈ HomH(V )(π, πg) gives the required projective
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representation. In more concrete terms, the projective representation ρ̃ is
characterized by the formula

(1.1) ρ̃ (g) π (h) ρ̃
(

g−1
)

= π (g (h)) ,

for every g ∈ Sp(V ) and h ∈ H(V ).
It is known [7, 13] that

Theorem 1.2 (The Weil representation). There exists a linear repre-
sentation ρ : Sp(V ) → GL (H) lying over ρ̃.

In the next section we will show that the linear representation ρ appears
as a consequence of the existence of a canonical vector space H(V ) associated
with the symplectic vector space V.

2. Canonical vector space

2.1. Models of the Heisenberg representation. Although the represen-
tation π is unique, it admits a multitude of different models (realizations), in
fact this is one of its most interesting and powerful attributes. These models
appear in families, in this work we will be interested in a particular family
of such models which are associated with Lagrangian subspaces in V .

Let Lag(V ) denote the set of Lagrangian subspaces in V . Let C (H(V ), ψ)
denote the subspace of functions f ∈ C (H(V )) satisfying the equivariance
property f (z · h) = ψ (z) f (h) for every z ∈ Z.

We associate with each Lagrangian subspace L ∈ Lag(V ) a model
(πL, H(V ), HL) of the Heisenberg representation as follows: The vector
space HL consists of functions f ∈ C (H(V ), ψ) satisfying f (l · h) = f (h)
for every l ∈ L and the Heisenberg action is given by right translation
πL (h) [f ] (h′) = f (h′ · h) for every f ∈ HL.

Definition 2.1. An oriented Lagrangian L◦ is a pair L◦ = (L, oL), where

L ∈ Lag(V ) and oL ∈
∧top L is a non-zero vector.

Let us denote by OLag(V ) the set of oriented Lagrangian subspaces in
V . Similarly, we associate with each oriented Lagrangian L◦ ∈ OLag(V ) a
model (πL◦ , H, HL◦) of the Heisenberg representation, taking HL◦ = HL and
πL◦ = πL. The collection of models {HL◦} forms a vector bundle H(V ) →
OLag(V ) with fibers HL◦ = HL◦ . The vector bundle H = H(V ) is equipped
with an additional structure of an action πL◦ of H(V ) on each fiber. This
suggests the following terminology:

Definition 2.2. Let k ∈ N. An H(V )k-vector bundle on OLag(V ) is a vector
bundle E → OLag(V ) equipped with a fiberwise action πL◦ : H(V )k →
GL(EL◦), for every L◦ ∈ OLag(V ).

In addition, our H is equipped with a natural Sp(V )-equivariant structure,
defined as follows: For every g ∈ Sp(V ), let g∗H be the H(V )-vector bundle
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with fibers g∗HL◦ = HgL◦ and the g-twisted Heisenberg action πg
L◦ : H(V ) →

GL (HgL◦), given by πg
L◦ (h) = πgL◦ (g (h)). The equivariant structure is the

isomorphisms of H(V )-vector bundles

(2.1) θg : g∗
H −→ H,

which on the level of fibers, sends f ∈ HgL◦ to f ◦ g ∈ HL◦ .

2.2. The strong S-vN property. By Theorem 1.1, for every pair (M◦,
L◦) ∈ OLag(V )2, the models HL◦ and HM◦ are isomorphic as represen-
tations of H(V ), moreover, since the Heisenberg representation is irre-
ducible, the vector space HomH (HL◦ , H◦

M ) of intertwining morphisms is
one dimensional. Roughly, the strong S-vN property asserts the existence
of a distinguished element FM◦,L◦ ∈ HomH (HL◦ ,HM◦), for every pair
(M◦, L◦) ∈ OLag(V )2. The precise statement involves the following defi-
nition:

Definition 2.3. Let E → OLag(V ) be an H(V )k-vector bundle. A tri-
vialization of E is a system of intertwining isomorphisms {EM◦,L◦ ∈
HomH(V )k(EL◦ , EM◦) : (M◦, L◦) ∈ OLag(V )2} satisfying the following mul-
tiplicativity condition:

EN◦,M◦ ◦ EM◦,L◦ = EN◦,L◦ ,

for every N◦, M◦, L◦ ∈ OLag(V ).

Remark 2.4. Intuitively, a trivialization of a H(V )k-vector bundle E →
OLag(V ) can be thought of as a flat connection, compatible with the Heisen-
berg action and admitting a trivial monodromy.

Theorem 2.5 (The strong S-vN property). The H(V )-vector bundle
H admits a natural trivialization {TM◦,L◦}.

The intertwining morphisms TM◦,L◦ in the above theorem will be referred
to as the canonical intertwining morphisms.

2.3. A linear algebra proof of the strong S-vN property. The proof of
Theorem 2.5 proceeds in several steps. First, we note that the vector bundle
H admits a natural partial trivialization: let us denote by U2 ⊂ OLag(V )2

the subset consisting of pairs of oriented Lagrangians (M◦, L◦) ∈ OLag(V )2

which are in general position, that is L + M = V . For every (M◦, L◦) ∈ U2,
define the intertwining morphisms

(2.2) TM◦,L◦ = AM◦,L◦ · FM◦,L◦ ,

where FM◦,L◦ : HL◦ → HM◦ is the averaging morphism given by

FM◦,L◦ [f ] (h) =
∑

m∈M

f (m · h) ,
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for every f ∈ HL◦ and AM◦,L◦ is a normalization constant given by

(2.3) AM◦,L◦ = (G1/q)n σ((−1)(
n
2 ) ω∧ (oL, oM )),

where

• σ is the unique quadratic character (also called the Legendre charac-
ter) of the multiplicative group Gm = F×

q .
• G1 is the one dimensional Gauss sum

G1 =
∑

z∈Fq

ψ

(

1

2
z2

)

.

• ω∧ :
∧top L ×

∧top M → Fq is the pairing induced by the symplectic
form.

Let us denote by U3 ⊂ OLag(V )3 the subset consisting of triples of ori-
ented Lagrangians (N◦, M◦, L◦) which are in general position pairwisely.

Proposition 2.6. For every (N◦, M◦, L◦) ∈ U3

TN◦,L◦ = TN◦,M◦ ◦ TM◦,L◦ .

For a proof, see Appendix A.
Theorem 2.5, now, follows from

Proposition 2.7. The sub-system {TM◦,L◦ : (M◦, L◦) ∈ U2} extends in a
unique manner to a trivialization of H.

For a proof, see Appendix A.
We will refer to {TM◦,L◦} as the system of canonical intertwining mor-

phisms.

2.4. Explicit formulas for the canonical intertwining morphisms.
The canonical intertwining morphism TM◦,L◦ can be written in a closed form
for a general pair (M◦, L◦) ∈ OLag(V )2. In order to do that we need to fix

some additional terminology: Denote I = M ∩ L and let nI =
dim(I⊥/I)

2 .
There are canonical decompositions

∧top
M =

∧top
I

⊗ ∧top
M/I,

∧top
L =

∧top
I

⊗ ∧top
L/I.

In terms of these decompositions, the orientations on M and L can be
written in the form oM = ιM ⊗ oM/I and oL = ιL ⊗ oL/I , respectively. Let
FM◦,L◦ : HL◦ → HM◦ denote the averaging morphism

FM◦,L◦ [f ] (h) =
∑

m̄∈M/I

f (m · h) ,
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for every f ∈ HL◦ where in the above summation, m ∈ M is any element
lying over m̄ ∈ M/I. Define the normalization constant

AM◦,L◦ = (G1/q)nI σ

(

(−1)(
nI

2 ) ιL
ιM

· ω∧

(

oL/I , oM/I

)

)

,

where ω∧ :
∧top L/I ×

∧top M/I → Fq is the pairing induced by the sym-
plectic form ω.

Proposition 2.8. For every (M◦, L◦) ∈ OLag(V )2

TM◦,L◦ = AM◦,L◦ · FM◦,L◦ .

For a proof, see Appendix A.

2.5. Kernel presentation of an intertwining morphism. An explicit
way to present an intertwining morphism is via a kernel function. Fix a pair
(M◦, L◦) ∈ OLag(V )2 of oriented Lagrangians and let C (M \ H(V )/L, ψ) ⊂
C (H(V ), ψ) be the subspace of functions K ∈ C (H(V ), ψ), satisfying the
equivariance property K (m · h · l) = K (h), for every m ∈ M and l ∈ L.
Given a function K ∈ C (M \ H(V )/L, ψ), we can associate to it the inter-
twining morphism I [K] ∈ HomH(V )(HL◦ ,HM◦) defined by

I [K] (f) = K ∗ f = m! (K ⊠Z·L f) ,

for every f ∈ HL◦ , where K ⊠Z·L f is the descent of the function K ⊠ f ∈
C (H(V ) × H(V )) to H(V )×Z·L H(V ) — the quotient of H (V )×H (V ) by
the action x · (h1, h2) = (h1x, x−1h2) for x ∈ Z · L — and m! denotes the
operation of summation along the fibers of the multiplication mapping m :
H(V )×H(V ) → H(V ). We call the function K an intertwining kernel. The
procedure that we just described defines an isomorphism of vector spaces

I : C (M \ H(V )/L, ψ) −→ HomH(V )(HL◦ ,HM◦).

Fix a triple (N◦, M◦, L◦) ∈ OLag(V )3. Given kernels K1 ∈ C(N \ H(V )/
M, ψ) and K2 ∈ C (M \ H(V )/L, ψ), their convolution K1 ∗ K2 = m!

(K1 ⊠Z·M K2) lies in C (N \ H(V )/L, ψ). Moreover, the transform I sends
convolution of kernels to composition of operators

I [K1 ∗ K2] = I [K1] ◦ I [K2] .

2.5.1. Canonical system of intertwining kernels. Below, we formulate
a version of Theorem 2.5 in the setting of kernels.

Definition 2.9. A system {KM◦,L◦ ∈ C (M \ H(V )/L, ψ) : (M◦, L◦) ∈
OLag(V )2} of kernels is called multiplicative if for every triple (N◦, M◦, L◦)
∈ OLag(V )3 the following equation holds:

KN◦,L◦ = KN◦,M◦ ∗ KM◦,L◦
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A multiplicative system of kernels {KM◦,L◦} can be equivalently thought
of as a single function K ∈ C(OLag(V )2×H(V )) defined by K (M◦, L◦, −) =
KM◦,L◦ (−) satisfying the following multiplicativity relation on OLag(V )3 ×
H(V )

(2.4) p∗
12K ∗ p∗

23K = p∗
13K,

where pij ((L◦
1, L

◦
2, L

◦
3) , h) =

((

L◦
i , L

◦
j

)

, h
)

are the projections on the i, j

copies of OLag(V ) and the left-hand side of (2.4) means fiberwise convolu-
tion, namely p∗

12K ∗ p∗
23K(L◦

1, L
◦
2, L

◦
3, −) = K (L◦

1, L
◦
2, −) ∗ K (L◦

2, L
◦
3, −).

For every (M◦, L◦) ∈ OLag(V )2, there exists a unique kernel KM◦,L◦

such that TM◦,L◦ = I [KM◦,L◦ ]. We will refer to {KM◦,L◦} as the system of
canonical intertwining kernels. We will denote the corresponding function
on OLag(V )2 × H(V ) by K.

Proposition 2.10. The function K ∈ C(OLag(V )2 × H(V )) satisfies

p∗
12K ∗ p∗

23K = p∗
13K.

In case (M◦, L◦) ∈ U2, the kernel KM◦,L◦ is given by the following explicit
formula

(2.5) KM◦,L◦ = AM◦,L◦ · K̃M◦,L◦ ,

where K̃M◦,L◦ =
(

τ−1
)∗

ψ where τ = τM◦,L◦ is the isomorphism given by the
composition Z →֒ H ։ M \H(V )/L. The system {KM◦,L◦ : (M◦, L◦) ∈ U2}
yields a well-defined function KU2

∈ C (U2 × H(V )). In Section 3, we will
give an algebra geometric interpretation to the description of the kernels
KM◦,L◦ when (M◦, L◦) /∈ U2.

2.6. The canonical vector space. Let us denote by Symp the category
whose objects are finite-dimensional symplectic vector spaces over the finite
field Fq and morphisms are linear isomorphisms of symplectic vector spaces.
In addition, let us denote by Vect the category of finite-dimensional complex
vector spaces. Using Theorem 2.5, we can associate, in a functorial manner,
a vector space H(V ) to a symplectic vector space V ∈ Symp as follows:
Define H(V ) to be the space of “horizontal sections” of the trivialized vector
bundle H(V )

H(V ) = Γhor (OLag(V ),H(V )) ,

where Γhor (OLag(V ), H(V )) ⊂ Γ (OLag(V ),H(V )) is the sub-space consist-
ing of sections (vL◦ ∈ HL◦ : L◦ ∈ OLag(V )) satisfying TM◦,L◦ (vL◦) = vM◦

for every (M◦, L◦) ∈ OLag(V )2. The vector space H(V ) will be referred to
as the canonical vector space associated with V .

Notation 2.11. The definition of the vector space H(V ) depends on a
choice of a central character ψ. Sometime, we will use the notation H (V, ψ)
to emphasize this point.
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Proposition 2.12 (Functoriality). The rule V �→ H(V ) establishes a
contravariant (quantization) functor

H : Symp −→ Vect.

For a proof, see Appendix A.
Considering a fixed symplectic vector space V , we obtain as a consequence

a representation (ρV , Sp(V ),H(V )), with ρV (g) = H
(

g−1
)

, for every g ∈
Sp(V ). The representation ρV is isomorphic to the Weil representation and
will be referred to as the canonical model of the Weil representation.

Remark 2.13. The canonical model ρV can be viewed from another per-
spective: We begin with the total vector space Γ(V ) = Γ (OLag(V ),H(V ))
and make the following two observations. First observation, is that the sym-
plectic group Sp(V ) acts naturally on Γ(V ), the action is of a geometric
nature — induced from the diagonal action on OLag(V ) × H(V ). Sec-
ond observation, is that the system {TM◦,L◦} defines an Sp(V )-invariant
idempotent, which should be thought of as a total Fourier transform,
T : Γ(V ) → Γ(V ) given by

T (vL◦) =
1

# (OLag(V ))

⊕

M◦∈OLag(V )

TM◦,L◦ (vL◦) ,

for every L◦ ∈ OLag(V ) and vL◦ ∈ HL◦ . The situation is summarized in the
following diagram:

Sp(V ) � Γ(V ) � T.

The canonical model is given by the image of T , that is, H(V ) = T (Γ(V )).
The nice thing about this point of view is that it shows a clear distinction
between operators associated with action of the symplectic group and oper-
ators associated with intertwining morphisms. Finally, we remark that we
can, also, consider the Sp(V )-invariant idempotent T⊥ = Id − T and the
associated representation

(

ρ⊥
V , Sp(V ), H(V )⊥

)

, with H(V )⊥ = T⊥ (Γ(V )).
The meaning of this representation is unclear.

2.7. Properties of the quantization functor

2.7.1. Compatibility with Cartesian products. The category Symp

admits a monoidal structure given by Cartesian product of symplectic vector
spaces. The category Vect admits the standard monoidal structure given by
tensor product. The functor H is a monoidal functor with respect to these
monoidal structures.

Proposition 2.14. For every V1, V2 ∈ Symp, there exists a natural isomor-
phism

αV1×V2
: H (V1 × V2)

≃
→ H (V1) ⊗ H (V2) .
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For a proof, see Appendix A.
As a result, we obtain the following compatibility condition between the

canonical models of the Weil representation

(2.6) αV1×V2
: (ρV1×V2

)|Sp(V1)×Sp(V2)
≃

−→ ρV1
⊗ ρV2

.

Remark 2.15. Condition (2.6) has an interesting consequence in case the
ground field is F3 [5]. In this case, the group Sp(V ) is not perfect when
dimV = 2, therefore, in this particular situation, the Weil representation is
not uniquely defined. Nevertheless, since the group Sp(V ) becomes perfect
when dimV > 2, the canonical model gives a natural choice for the Weil
representation in the “singular” dimension, dimV = 2.

2.7.2. Compatibility with symplectic duality. Let V = (V, ω) ∈ Symp

and let us denote by V̄ = (V, −ω) the symplectic dual of V .

Proposition 2.16. There exists a natural non-degenerate pairing

〈·, ·〉V : H
(

V̄
)

× H(V ) −→ C,

where V ∈ Symp.

For a proof, see Appendix A.

2.7.3. Compatibility with symplectic reduction. Let V ∈ Symp. Let
I be an isotropic subspace in V considered as an abelian subgroup in H(V ).
The fiberwise action of H(V ) on the vector bundle H induces an action of
H(V ) on H(V ), using this action we can associate to I the subspace H(V )I

of I-invariant vectors. In addition, we can form the symplectic reduction2

I⊥/I and consider the canonical vector space H
(

I⊥/I
)

. Roughly, we claim

that the vector spaces H
(

I⊥/I
)

and H(V )I are naturally isomorphic. The
precise statement involves the following definition

Definition 2.17. An oriented isotropic subspace in V is a pair I◦ = (I, oI),

where I ⊂ V is an isotropic subspace and oI ∈
∧top I is a non-trivial vector.

Proposition 2.18. There exists a natural isomorphism

α(I◦,V ) : H(V )I ≃
→ H

(

I⊥/I
)

,

where V ∈ Symp and I◦ an oriented isotropic subspace in V . The naturality
condition is

H (fI) ◦ α(J◦,U) = α(I◦,V ) ◦ H (f) ,

for every f ∈ MorSymp (V, U) such that f (I◦) = J◦ and fI ∈ MorSymp(I
⊥/I,

J⊥/J) is the induced morphism.

2Note that since I is isotropic, I ⊂ I⊥ and I⊥/I is equipped with a natural symplectic
structure.
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For a proof, see Appendix A.
As a result, we obtain the following compatibility condition between the

canonical models of the Weil representation: Fix V ∈ Symp and let I◦ be an
enhanced isotropic subspace in V . Let P ⊂ Sp(V ) be the subgroup of ele-
ments g ∈ Sp(V ) such that g (I◦) = I◦. The isomorphism α(I◦,V ) establishes
the following isomorphism:

(2.7) α(I◦,V ) : (ρV )|P
≃

−→ ρI⊥/I ◦ π,

where π : P → Sp
(

I⊥/I
)

is the canonical homomorphism.

3. Geometric canonical intertwining kernels

In this section, we construct a geometric counterpart to the set-theoretic
system of canonical intertwining kernels. In particular, we obtain an algebra–
geometric interpretation for the kernels KM◦,L◦ when (M◦, L◦) /∈ U2, and
an alternative proof for the strong S-vN theorem.

3.1. Preliminaries from algebraic geometry. We denote by k an alge-
braic closure of the field Fq. Next, we have to use some space to recall notions
and notations from algebraic geometry and the theory of ℓ-adic sheaves.

3.1.1. Varieties. In the sequel, we are going to translate back and forth
between algebraic varieties defined over the finite field Fq and their corre-
sponding sets of rational points. In order to prevent confusion between the
two, we use bold-face letters to denote a variety X and normal letters X to
denote its corresponding set of rational points X = X(Fq). For us, a variety
X over the finite field is a quasi-projective algebraic variety, such that the
defining equations are given by homogeneous polynomials with coefficients
in the finite field Fq. In this situation, there exists a (geometric) Frobenius
endomorphism Fr : X → X, which is a morphism of algebraic varieties. We
denote by X the set of points fixed by Fr, i.e.,

X = X(Fq) = XFr = {x ∈ X : Fr(x) = x}.

The category of algebraic varieties over Fq will be denoted by VarFq
.

3.1.2. Sheaves. Let Db(X) denote the bounded derived category of con-
structible ℓ-adic sheaves on X [2]. We denote by Perv(X) the Abelian cat-
egory of perverse sheaves on the variety X, that is the heart with respect
to the autodual perverse t-structure in Db(X). An object F ∈ Db(X) is
called N -perverse if F [N ] ∈ Perv(X). Finally, we recall the notion of a Weil
structure (Frobenius structure) [4]. A Weil structure associated to an object
F ∈ Db(X) is an isomorphism

θ : Fr∗F
∼

−→ F .
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A pair (F , θ) is called a Weil object. By an abuse of notation we often
denote θ also by Fr. We choose once an identification Q̄ℓ ≃ C, hence all
sheaves are considered over the complex numbers.

Remark 3.1. All the results in this section make perfect sense over the field
Q̄ℓ, in this respect the identification of Q̄ℓ with C is redundant. The reason
it is specified is in order to relate our results with the standard constructions.

Given a Weil object (F , Fr∗F ≃ F) one can associate to it a function
fF : X → C to F as follows:

fF (x) =
∑

i

(−1)iTr(Fr|Hi(Fx)).

This procedure is called Grothendieck’s sheaf-to-function correspondence
[10]. Another common notation for the function fF is χFr(F), which is called
the Euler characteristic of the sheaf F .

3.2. Geometrization. We shall now start the geometrization procedure.

3.2.1. Replacing sets by varieties. The first step we take is to replace all
sets involved by their geometric counterparts, i.e., algebraic varieties. The
symplectic space (V, ω) is naturally identified as the set V = V(Fq), where
V is a 2n-dimensional symplectic vector space in VarFq

. The Heisenberg
group H is naturally identified as the set H = H(Fq), where H = V× Ga is
the corresponding group variety. Finally, OLag(V ) = OLag(V) (Fq), where
OLag (V) is the variety of oriented Lagrangians in V.

3.2.2. Replacing functions by sheaves. The second step is to replace
functions by their sheaf-theoretic counterparts [6]. The additive character
ψ : Fq −→ C× is associated via the sheaf-to-function correspondence to
the Artin–Schreier sheaf Lψ on the variety Ga, i.e., we have fLψ = ψ. The
Legendre character σ on F×

q ≃ Gm(Fq) is associated to the Kummer sheaf
Lσ on the variety Gm. The one-dimensional Gauss sum G1 is associated with
the Weil object

G1 =

∫

Ga

Lψ((1/2)z2) ∈ Db(pt),

where, for the rest of this paper,
∫

=
∫

! denotes integration with compact
support [2]. Grothendieck’s Lefschetz trace formula [10] implies that, indeed,

fG1 = G1. In fact, there exists a quasi-isomorphism G1
q.i

−→ H1(G1)[−1] and
dimH1(G1) = 1, hence, G1 can be thought of as a one-dimensional vector
space, equipped with a Frobenius operator, sitting at cohomological degree 1.

3.3. Canonical system of geometric intertwining kernels. Let U2 ⊂
OLag (V)2 be the open subvariety consisting of pairs (M◦, L◦) ∈ OLag (V)2
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which are in general position. We define a sheaf “of kernels” KU2
on the vari-

ety U2 × H (V) as follows:

KU2
= A⊗K̃U2

,

where

• K̃U2
is the sheaf of non-normalized kernels given by

K̃U2
(M◦, L◦) =

(

τ−1
)∗

Lψ,

where τ = τM◦,L◦ is the isomorphism given by the composition

Z →֒ H ։ M\H/L.

• A is the “Normalization coefficient” sheaf given by

(3.1) A (M◦, L◦) = G⊗n
1 ⊗ Lσ

(

(−1)(
n
2 ) ω∧ (oL, oM )

)

[2n] (n) .

Let nk = dim(OLag (V)k) + n + 1 for k ∈ N. By construction, the sheaf
KU2

is a local system (lissé) of rank 1, normalized to sit in cohomological
degree −n2 and consequently of pure weight w(KU2

) = 0.

Proposition 3.2. The local system KU2
can be extended in a unique manner

to a geometrically irreducible [n2]-perverse Weil sheaf K on OLag (V)2 ×
H (V) of pure weight w(K) = 0. Moreover, there exists an isomorphism

p∗
13K ≃ p∗

12K∗p∗
23K.

The proof of Proposition 3.2 proceeds in several steps. The construction
of K uses the functor of middle extension, namely, take

(3.2) K = j!∗KU2
,

where j : U2×H (V) →֒ OLag (V)2×H (V) is the open imbedding and j!∗ is
the functor of middle extension [2]. It follows directly from the construction
that the sheaf K is irreducible [n2]-perverse of pure weight 0.

Remark 3.3. Proposition 3.2 establishes an alternative proof of Proposition
2.10 as follows: let K = fK. The multiplicativity condition for the sheaf K
implies that K is multiplicative. Moreover, since KU2

= fKU2 , it implies
that K extends the function KU2

. In addition, the geometric construction
yields a description of the kernels KM◦,L◦ when (M◦, L◦) /∈ U2 in terms of
the middle extension of KU2

.

3.4. Proof of the multiplicativity property. Denote by U3 ⊂ OLag
(V)3 the open subvariety consisting of triples (N◦, M◦, L◦) which are in
general position pairwisely.

Lemma 3.4. There exists an isomorphism on U3 × H (V)

p∗
13K ≃ p∗

12K∗p∗
23K.
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For a proof, see Appendix A.
Let V3 ⊂ OLag (V)3 denote the open subvariety consisting of triples

(N◦, M◦, L◦) such that (N◦, M◦) , (M◦, L◦) ∈ U2.

Lemma 3.5. There exists an isomorphism on V3 × H (V)

p∗
13K ≃ p∗

12K∗p∗
23K.

For a proof, see Appendix A.
Using Lemma 3.4 we conclude that the sheaves p∗

13K and p∗
12K∗p∗

23K
are isomorphic on the open subvariety U3 × H (V). The sheaf p∗

13K is
irreducible [n3]-perverse as a pull-back by a smooth, surjective with con-

nected fibers morphism, of an irreducible [n2]-perverse sheaf on OLag (V)2×
H(V), hence, it is enough to show that the sheaf p∗

12K∗p∗
23K is irreducible

[n3]-perverse.

Let us denote by V4 ⊂ OLag (V)4 the open subvariety consisting of

quadruples (N◦, S◦, M◦, L◦) ∈ OLag (V)4 such that (N◦, S◦) , (S◦, M◦) ∈

U2. The projection p134 : V4 × H (V) → OLag (V)3 × H (V) is smooth,
surjective and admits connected fibers, therefore, it is enough to show that
the pull-back p∗

134 (p∗
12K∗p∗

23K) is irreducible [n4]-perverse. Using Lemma 3.5
and also invoking some direct diagram chasing we obtain

(3.3) p∗
134 (p∗

12K∗p∗
23K) ≃p∗

12K ∗ p∗
23K ∗ p∗

34K.

The right-hand side of the above formula is principally a subsequent appli-
cation of properly normalized, Fourier transforms (see formula (A.6) below)
on p∗

34K, hence by the Katz–Laumon theorem [16] it is irreducible [n4]-
perverse.

Let us summarize. We showed that both sheaves p∗
13K and p∗

12K∗p∗
23K

are irreducible [n3]-perverse and are isomorphic on an open subvariety. This
implies that they must be isomorphic.

This concludes the proof of the multiplicativity property.

Appendix A. Proofs of statements

A.1. Proof of Proposition 2.6. For every (N◦, M◦, L◦) ∈ U3 the inter-
twining morphisms FN◦,M◦ ◦FM◦,L◦ , FN◦,L◦ ∈ HomH(V ) (HL◦ ,HN◦) are pro-
portional, namely

FN◦,M◦ ◦ FM◦,L◦ = C (N◦, M◦, L◦) · FN◦,L◦ ,

for some C (N◦, M◦, L◦) ∈ C. This follows from the fact that HL◦ and HN◦

are irreducible and isomorphic as representations of the Heisenberg group
H(V ).

The proof will proceed in two steps.
Step 1. We calculate the proportionality coefficient C (N◦, M◦, L◦).
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Let δL ∈ HL◦ denote the unique function supported on L · Z norma-
lized such that δL (0) = 1. On the one hand, it is easy to verify that
FN◦,L◦ (δL) (0) = 1 therefore

C (N◦, M◦, L◦) = FN◦,M◦ ◦ FM◦,L◦ (δL) (0) .

On the other hand, explicit calculation reveals that

FN◦,M◦ ◦ FM◦,L◦ (δL) (0) =
∑

m∈M

ψ

(

1

2
ω(rL (m) , m

)

,

where rL : M → N is the linear map defined by the condition rL (m)−m ∈ L
for every m ∈ M . Furthermore, an easy diagonalization argument implies
that

∑

m∈M

ψ
(

1
2ω

(

rL (m) , m
))

= Gn
1 · σ(d

[

ω
(

rL (−) , −
)])

,

where d
[

ω
(

rL (−) , −
)]

∈ F×
q /F×2

q denotes the discriminant of the symmet-

ric form ω
(

rL (−) , −
)

. The map rL : M → N induces a map rL
∧ :

∧top M →
∧top N .

Lemma A.1. We have

d
[

ω
(

rL (−) , −
)]

= (−1)(
n
2 ) ω∧

(

rL
∧ (oM ) , oM

)

.

Summarizing, we get that

(A.1) C (N◦, M◦, L◦) = Gn
1 · σ((−1)(

n
2 ) ω∧

(

rL
∧ (oM ) , oM

)

).

Step 2. Denote A (N◦, M◦, L◦) = AN◦,M◦ ·AM◦,L◦ ·A−1
N◦,L◦ . We will show

that

A (N◦, M◦, L◦) = C (N◦, M◦, L◦)−1 .

Using formula (2.3) for the normalization coefficients, we can write
A (N◦, M◦, L◦) in the form

(G1/q)n σ((−1)(
n
2 ) ω∧ (oM , oN ) ω∧ (oL, oM ) ω∧ (oL, oN )−1).

Lemma A.2. We have

ω∧

(

rL
∧ (oM ) , oM

)

= (−1)n ω∧ (oM , oN ) ω∧ (oL, oM ) ω∧ (oL, oN )−1 .

Using Lemma A.2, we get that A (N◦, M◦, L◦) is equal to

(G1/q)n σ((−1)(
n
2 )+n ω∧

(

rL
∧ (oM ) , oM

)

) = C (N◦, M◦, L◦)−1 ,

where in the second equality we use the identity G2n
1 = qnσ ((−1)n).

This concludes the proof of the proposition.
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A.1.1. Proof of Lemma A.1. Choose an isomorphism ϕ : M
≃
→ Fn

q . Let
B : M × M → Fq be the symmetric form defined by B = ϕ∗ (

∑

xiyi).
Present the symmetric form ω

(

rL (−) , −
)

as

ω
(

rL (−) , −
)

= B (A (−) ,−) ,

where A ∈ Matn×n (Fq) is a symmetric matrix. By definition d[ω(rL(−),
−)] = detA mod F×2

q .
Let e1, e2, . . . , en be an orthonormal basis with respect to the form B.

The argument now follows from

det A =
∑

σ∈Σn

(−1)σ
n

∏

i=1

ω(rL (ei) , eσ(i))

= (−1)(
n
2 ) ω∧(rL

∧ (e1 ∧ · · · ∧ en) , e1 ∧ · · · ∧ en)

= (−1)(
n
2 ) ω∧(rL (oM ) , oM ) mod F×2

q .

This concludes the proof of the lemma.

A.1.2. Proof of Lemma A.2. We can write rL
∧ (oM ) = a · oN , for some

a ∈ Fq. The constant a can be computed as follows: on the one hand, since
rL (m) − m ∈ L, we have that ω∧(rL

∧ (oM ) , oL) = ω∧ (oM , oL). On the other
hand, we have that ω∧

(

rL
∧ (oM ) , oL

)

= aω∧ (oN , oL), hence

a =
ω∧ (oM , oL)

ω∧ (oN , oL)
.

Therefore we obtain that

ω∧

(

rL
∧ (oM ) , oM

)

= ω∧ (oM , oL) ω∧ (oN , oL)−1 ω∧ (oN , oM )

= (−1)n ω∧ (oM , oN ) ω∧ (oL, oM ) ω∧ (oL, oN )−1 ,

where in the second equality we used the relation ω∧ (o, o′) = (−1)n ω∧ (o′, o).
This concludes the proof of the lemma.

A.2. Proof of Proposition 2.7. The trivialization of the vector bundle H

is constructed as follows: Let (N◦, L◦) ∈ OLag(V )2. In order to construct
TN◦,L◦ , choose a third M◦ ∈ OLag(V ) such that (N◦, M◦) , (M◦, L◦) ∈ U2

(such a choice always exists). Define

TN◦,L◦ = TN◦,M◦ ◦ TM◦,L◦ ,

where we note that both operators in the composition on the left-hand side
are well defined. We are left to show that the definition of TN◦,L◦ does
not depends on the choice of M◦. Let M◦

i ∈ OLag(V ), i = 1, 2, such that
(N◦, M◦

i ) , (M◦
i , L◦) ∈ U2. We want to show that

TN◦,M◦

1
◦ TM◦

1
,L◦ = TN◦,M◦

2
◦ TM◦

2
,L◦ .
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Choose M◦
3 ∈ OLag(V ) such that (M◦

3 , M◦
i ) ∈ U2 for i = 1, 2 and, in

addition, (M◦
3 , L◦) , (N◦, M◦

3 ) ∈ U2. We have

TN◦,M◦

1
◦ TM◦

1
,L◦ = TN◦,M◦

1
◦ TM◦

1
,M◦

3
◦ TM◦

3
,L◦

= TN◦,M◦

3
◦ TM◦

3
,L◦ ,

where the first and second equalities are the multiplicativity property for
triples which are in general position pairwisely (Proposition 2.6). In the
same fashion, we show that TN◦,M◦

2
◦ TM◦

2
,L◦ = TN◦,M◦

3
◦ TM◦

3
,L◦ .

Finally, the same kind of argument shows that the complete system
{TM◦,L◦ : (M◦, L◦) ∈ OLag(V )2} forms a trivialization.

This concludes the proof of the proposition.

A.3. Proof of Proposition 2.8. Denote I = M ∩ L. Using the canon-
ical decompositions

∧top M =
∧top I ⊗

∧top M/I and
∧top L =

∧top I ⊗
∧top L/I, we can write the orientations on M and L in the form oM =
ιM ⊗ oM/I and oL = ιL ⊗ oL/I , respectively.

Choose a third S◦ ∈ OLag(V ) such that (M◦, S◦) , (S◦, L◦) ∈ U2. By
Theorem 2.7, we conclude that TM◦,L◦ = TM◦,S◦ ◦TS◦,L◦ , furthermore, using
the explicit formula (2.2), we can write the composition TM◦,S◦ ◦ TS◦,L◦

explicitly in the form

(A.2) (G1/q)2n σ (ω∧ (oS , oM ) ω∧ (oL, oS)) FM◦,S◦ ◦ FS◦,L◦ .

Direct computation reveals that

FM◦,S◦ ◦ FS◦,L◦ =

[

∑

m∈M

ψ

(

1

2
ω(m, rL(m))

)

]

· FM◦,L◦(A.3)

=

⎡

⎣#I ·
∑

m̄∈M/I

ψ

(

1

2
ω

(

m̄, rL (m̄)
)

)

⎤

⎦ · FM◦,L◦ ,

where rL : M → S is the linear map defined by the condition rL (m)−m ∈ L,
for every m ∈ M ; moreover, ker

(

rL
)

= I, hence, rL factors to an injective

map rL : M/I → S. This also explains the second equality in (A.3).
Let us denote by B : M/I × M/I → Fq the symmetric form on M/I

given by B (m̄1, m̄2) = 1
2ω

(

m̄1, r
L (m̄2)

)

. An easy diagonalization argument
implies that

∑

m̄∈M/I

ψ

(

1

2
ω

(

m̄, rL (m̄)
)

)

= GnI

1 · σ (d [B]) ,

where d [B] ∈ F×
q /F×2

q denotes the discriminant of the symmetric form B.

Let us denote by B∧ the form on
∧top M/I induce from B.

Lemma A.3. We have

d [B] = (−1)(
nI

2 ) B∧

(

oM/I , oM/I

)

.
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Summarizing, we obtain that TM◦,S◦ ◦ TS◦,L◦ is equal to
(A.4)

(G1/q)nI σ
(

(−1)(
nI

2 )+n B∧

(

oM/I , oM/I

)

ω∧ (oS , oM ) ω∧ (oL, oS)
)

FM◦,L◦ .

Finally use

Lemma A.4. We have

B∧

(

oM/I , oM/I

)

= (−1)n ω∧

(

oL/I , oM/I

)

ω∧ (oS , oM ) ω (oL, oS)−1 ιL
ιM

.

So we see that TM◦,S◦ ◦ TS◦,L◦ is equal to

(G1/q)nI σ

(

(−1)(
nI

2 ) ω∧

(

oL/I , oM/I

) ιL
ιM

)

FM◦,L◦ .

This concludes the proof of the proposition.

A.3.1. Proof of Lemma A.3. Choose an isomorphism ϕ : M/I
≃
→ FnI

q .
Let B0 : M/I × M/I → Fq be the symmetric form defined by B0 =
ϕ∗ (

∑

xiyi). Present the symmetric form B as

B (−,−) = B0 (A (−) ,−) ,

where A ∈ MatnI×nI
(Fq) is a symmetric matrix. By definition d [B] =

det A mod F×2
q .

Let e1, e2, . . . , enI
be an orthonormal basis with respect to the form B0.

The argument follows from the following equalities:

det A =
∑

σ∈ΣnI

(−1)σ
nI
∏

i=1

ω(ei, r
L

(

eσ(i)

)

)

= (−1)
nI(nI−1)

2 ω∧(e1 ∧ · · · ∧ enI
, rL

∧ (e1 ∧ · · · ∧ enI
))

= (−1)
nI(nI−1)

2 ω∧(oM/I , r
L

(

oM/I

)

) mod F×2
q .

This concludes the proof of the lemma.

A.3.2. Proof of Lemma A.4. Let us denote by rL
∧ :

∧top M/I →
∧top rL (M/I) the map induced from rL : M/I → rL (M/I). There is a

canonical decomposition
∧top S =

∧top rL (M/I) ⊗
∧top S/rL (M/I) and

consequently the orientation oS can be written in the form oS = rL
∧

(

oM/I

)

⊗
o. On the one hand,

ω∧ (oM , oS) = ω∧

(

ιM ⊗ oM/I , r
L
∧

(

oM/I

)

⊗ o
)

= ω∧ (ιM , o) · ω∧

(

oM/I , r
L
∧

(

oM/I

))

.
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On the other hand,

ω∧ (oL, oS) = ω∧

(

ιL ⊗ oL/I , r
L
∧

(

oM/I

)

⊗ o
)

= ω∧ (ιL, o) · ω∧

(

oL/I , r
L
∧

(

oM/I

))

=
ιL
ιM

ω∧ (ιM , o) · ω∧

(

oL/I , oM/I

)

which implies that

ω∧ (ιM , o) = ω∧ (oL, oS) ω∧

(

oL/I , oM/I

)−1 ιM
ιL

.

Altogether, we obtain that

ω∧

(

oM/I , r
L
∧

(

oM/I

))

= (−1)N ω∧

(

oL/I , oM/I

)

ω∧ (oS , oM ) ω∧ (oL, oS)−1 ιL
ιM

.

This concludes the proof of the lemma.
A.4. Proof of Proposition 2.12. Let f ∈ MorSymp (V1, V2) be an isomor-
phism of symplectic vector spaces. The map f induces a pair isomorphisms

r : H (V1)
≃

−→ H (V2) ,

s : OLag (V1)
≃

−→ OLag (V2) .

The first is the isomorphism of groups given by r (v1, z) = (f (v1) , z) and
the second is the evident-induced bijection of sets. For every L◦ ∈ OLag (V1),

we have a pull-back isomorphism r∗
L◦ : Hs(L◦) (V2)

≃
→ HL◦ (V1).

Lemma A.5. For every (M◦, L◦) ∈ OLag (V1)
2

TM◦,L◦ ◦ r∗
L◦ = r∗

M◦ ◦ Ts(M◦),s(L◦).

The system of isomorphisms {r∗
L◦} yields the required isomorphism

of vector spaces H (f) : H (V2)
≃
→ H (V1); evidently, for every f ∈

MorSymp (V1, V2), g ∈ MorSymp (V2, V3)

H (g ◦ f) = H (g) ◦ H (f) .

This concludes the proof of the proposition.
A.4.1. Proof of Lemma A.5. It will be convenient to work with the sys-
tem of kernels {KM◦,L◦} (Theorem 2.10). Recall, TM◦,L◦ = I [KM◦,L◦ ]. It is
enough to show

(A.5) r∗Ks(M◦),s(L◦) = KM◦,L◦ ,

for every (M◦, L◦) ∈ OLag (V1)
2. Direct verification reveals that (A.5) holds

when (M◦, L◦) ∈ U2. Given (M◦, L◦) ∈ OLag (V1)
2, let S◦ ∈ OLag (V1) be

an oriented Lagrangian such that (M◦, S◦) , (S◦, L◦) ∈ U2. Write

r∗Ks(M◦),s(L◦) = r∗
(

Ks(M◦),s(S◦) ∗ Ks(S◦),s(L◦)

)

= r∗Ks(M◦),s(S◦) ∗ r∗Ks(S◦),s(L◦)

= KM◦,S◦ ∗ KS◦,L◦ = KM◦,L◦ ,
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where the first and fourth equalities are by the multiplicativity property of
the system {KM◦,L◦} (see Theorem 2.10) and the second equality follows
from the fact that r is a morphism of groups.

This concludes the proof of the lemma.

A.5. Proof of Proposition 2.14. Let Vi ∈ Symp, i = 1, 2. There are two
maps

r : H (V1) × H (V2) −→ H (V1 × V2) ,

s : OLag (V1) × OLag (V1) −→ OLag (V1 × V2) .

The map r is a surjective morphism of groups given by r((v1, z1),
(v2, z2)) = ((v1, v2) , z1 + z2). The map s is a bijection of sets given by

s (L◦
1, L

◦
2) = (L1 × L2, oL1

⊗ oL2
) ,

for Li = (Li, oLi
), i = 1, 2, where we use the canonical isomorphism of vector

spaces
∧top

(L1 × L2) ≃
∧top

L1 ⊗
∧top

L2.

For every (L◦
1, L

◦
2) ∈ OLag (V1) × OLag (V1), the map r induces a pull

back isomorphism r∗
(L◦

1
,L◦

2)
: Hs(L◦

1
,L◦

2)
≃
→ HL◦

1
⊗ HL◦

2
.

The proof of the following lemma follows along similar lines as the proof
of Lemma A.5.

Lemma A.6. For every (L◦
1, L

◦
2) , (M◦

1 , M◦
2 ) ∈ OLag (V1) × OLag (V1)

TM◦

1
,L◦

1
⊗ TM◦

2
,L◦

2
◦ r∗

(L◦

1
,L◦

2)
= r∗

(M◦

1
,M◦

2 ) ◦ Ts(M◦

1
,M◦

2 ),s(L◦

1
,L◦

2)
.

The system {r∗
(L◦

1
,L◦

2)
} gives the required isomorphism αV1×V2

.

This concludes the proof of the proposition.

A.6. Proof of Proposition 2.16. Let r : H(V ) → H
(

V̄
)

be the isomor-
phism of Heisenberg groups, given by r (v, z) = (v,−z). For every oriented
Lagrangian L◦ ∈ OLag(V ) = OLag

(

V̄
)

, the map r induces a the pull-back
isomorphism

r∗
L◦ : HL◦

(

V̄ , ψ
) ≃

→ HL◦

(

V, ψ−1
)

.

We denote by T̄M◦,L◦ and TM◦,L◦ the trivializations of H
(

V̄ , ψ−1
)

and
H (V, ψ), respectively.

Lemma A.7. For every (M◦, L◦) ∈ OLag(V )2

r∗
M◦ ◦ T̄M◦,L◦ = TM◦,L◦ ◦ r∗

L◦ .
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The system {r∗
L◦} gives an isomorphism r∗ : H

(

V̄ , ψ
) ≃

→ H
(

V, ψ−1
)

.
Finally, there is a natural non-degenerate pairing

〈·, ·〉′
V : H

(

V, ψ−1
)

× H (V, ψ) −→ C,

induced from the system pairings 〈·, ·〉′
L◦ : HL◦

(

V, ψ−1
)

× HL◦ (V, ψ) → C,
given by

〈f, g〉′
L◦ =

∑

v∈V/L

g(v)f(v),

for every f ∈ HL◦

(

V, ψ−1
)

and g ∈ HL◦ (V, ψ); we note that the function
g · f : H(V ) → C descends to a function on V/L. Define

〈·, ·〉V = 〈r∗ (·) , ·〉′
V .

This concludes the proof of the proposition.

A.6.1. Proof of Lemma A.7. It is enough to prove the condition for
(M◦, L◦) ∈ U2. Let f ∈ HL◦

(

V̄ , ψ
)

. On the one hand,

r∗
M◦ T̄M◦,L◦ [f ] (v, z) = T̄M◦,L◦ [f ] (v,−z)

= ĀM◦,L◦

∑

m∈M

f

(

m + v,−z −
1

2
ω (m, v)

)

.

On the other hand,

TM◦,L◦ [r∗
L◦ (f)] (v, z) = AM◦,L◦

∑

m∈M

r∗
L◦ (f)

(

m + v, z +
1

2
ω (m, v)

)

= AM◦,L◦

∑

m∈M

f

(

m + v,−z −
1

2
ω (m, v)

)

.

Noting that ĀM◦,L◦ = AM◦,L◦ , the result follows.
This concludes the proof of the lemma.

A.7. Proof of Proposition 2.18. Let V ∈ Symp. Let I◦ = (I, oI) be
an oriented isotropic subspace in V . There is a map s : OLag

(

I⊥/I
)

−→
OLag(V ), given by

s (L, oL) =
(

pr−1 (L) , oI ⊗ oL

)

,

for (L, oL) ∈ OLag
(

I⊥/I
)

, where pr : I⊥ → I⊥/I is the natural projection
and we use the canonical isomorphism

∧top
pr−1 (L) ≃

∧top
I ⊗

∧top
L.

For every L◦ ∈ OLag
(

I⊥/I
)

there is a “pull-back” map r∗
L◦ : Hs(L◦)(V ) →

HL◦

(

I⊥/I
)

defined as follows: given f ∈ Hs(L◦)(V ), the function r∗
L◦ (f) is
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the restriction f|Z·I⊥ , which descends to a function on H
(

I⊥/I
)

. It is easy

to verify that r∗
L◦ maps Hs(L◦)(V )I isomorphically onto HL◦

(

I⊥/I
)

.

Lemma A.8. For every (M◦, L◦) ∈ OLag
(

I⊥/I
)

FM◦,L◦ ◦ r∗
L◦ = r∗

M◦ ◦ Fs(M◦),s(L◦).

The system {r∗
L◦} gives the required isomorphism α(I◦,V ) : H(V )I ≃

→

H
(

I⊥/I
)

.
This concludes the proof of the proposition.

A.7.1. Proof of Lemma A.8. It will be convenient to work with the
canonical system of kernels {KM◦,L◦} (Proposition 2.10), recall we have

FM◦,L◦ = I [KM◦,L◦ ]. Let pr : I⊥ → I⊥/I be the canonical projection and

let i : I⊥ → V denote the inclusion. It is enough to show that

i∗Ks(M◦),s(L◦) = pr∗KM◦,L◦ ,

for every (M◦, L◦) ∈ OLag
(

I⊥/I
)2

. This is done by direct verification using
the formulas from Proposition 2.8. This concludes the proof of the lemma.

A.8. Proof of Lemma 3.4. The proof will proceed in several steps.
Step 1. First, we prove that the sheaf p∗

12K∗p∗
23K is irreducible [n3]-

perverse on U3 × H (V) and for this, it is enough to show that p∗
12K̃∗p∗

23K̃
is irreducible [n3]-perverse on U3 × H (V).

The convolution p∗
12K̃∗p∗

23K̃ can be written explicitly as

p∗
12K̃∗p∗

23K̃(N◦, M◦, L◦, h) ≃

∫

n∈N

K̃
(

N◦, M◦, h · n−1
)

⊗ K̃(M◦, L◦, n).

It is enough to consider the case when h = m ∈ M where we get

(A.6) p∗
12K̃∗p∗

23K̃(N◦, M◦, L◦, m) ≃

∫

n∈N

Lψ (ω (n, m)) ⊗ K̃(M◦, L◦, n).

We see that p∗
12K̃∗p∗

23K̃ (N◦, M◦, L◦, −)|M is an application of ℓ-adic

Fourier transform to K̃(M◦, L◦,−)|N, hence, by the Katz–Laumon theorem

[16] p∗
12K̃∗p∗

23K̃ is irreducible [n3]-perverse.

Remark A.9. A more functorial way to describe the previous development
is as follows: Let Ci → U3, i = 1, 2, 3, denote the tautological vector bundle
with fibers (Ci)|(L◦

1
,L◦

2
,L◦

3)
= Li. What we showed is that

(

p∗
12K̃∗p∗

23K̃
)

|C2

≃ FourC2,C1

(

p∗
23K̃|C1

)

,

where FourC2,C1
is the ℓ-adic Fourier transform from Db (C1) to Db (C2),

induced from the pairing w : C1 ×U3
C2 → Ga,U3

.
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Step 2. It is enough to show that the sheaves p∗
13K and p∗

12K∗p∗
23K are

isomorphic on the zero section U3 × {0} ⊂ U3 × H (V). We have

p∗
12K∗p∗

23K ≃ p∗
12A ⊗ p∗

23A ⊗ p∗
12K̃∗p∗

23K̃.

Direct computation reveals that

p∗
12K̃∗p∗

23K̃(N◦, M◦, L◦, 0) ≃

∫

n∈N

Lψ(1
2ω

(

rM (n) , n
)

),

where rM : N → L is the linear map defined by the relation rM (n)−n ∈ M

for every n ∈ N. The map rM induces a map rM
∧ :

∧top N →
∧top L. There

exists an isomorphism
∫

n∈N

Lψ

(

1

2
ω

(

rM (n) , n
)

)

≃ G⊗n
1 ⊗ Lσ((−1)(

n
2 ) ω∧

(

rM
∧ (oN ) , oN

)

).

Combining everything together we obtain

p∗
12K∗p∗

23K(N◦, M◦, L◦, 0)

≃ G⊗3n
1 ⊗ Lσ((−1)(

n
2 ) ω∧(oM , oN ) · ω∧(oL, oM )

· ω∧(rM
∧ (oN ), oN )))[4n](2n)

≃ G⊗n
1 ⊗ Lσ((−1)(

n
2 )+n ω∧(oM , oN )

· ω∧(oL, oM )· ω∧(rM
∧ (oN ), oN ))) [2n](n)

≃ G⊗n
1 ⊗ Lσ((−1)(

n
2 ) ω∧ (oL, oN )) [2n] (n)

≃ p∗
13K(N◦, M◦, L◦, 0).

where in the second isomorphism we used G⊗2n
1 ≃ Lσ((−1)n)[−2n](−n) and

the third isomorphism follows from the identity

ω∧

(

rM
∧ (oN ) , oN

)

) = (−1)n ω∧ (oN , oL) · ω∧ (oM , oN ) ω∧ (oM , oL)−1 ,

which holds by Lemma A.2.
This concludes the proof of Lemma 3.4.

A.9. Proof of Lemma 3.5. Lemma 3.4 implies that the sheaves p∗
13K and

p∗
12K∗p∗

23K are isomorphic on the open subvariety U3×H (V) ⊂ V3×H (V).
The sheaf p∗

13K is irreducible [n3]-perverse as a pull-back by a smooth, surjec-
tive with connected fibers morphism, of an irreducible [n2]-perverse sheaf on

OLag (V)2 ×H (V) . Hence, it is enough to show that the sheaf p∗
12K∗p∗

23K
irreducible [n3]-perverse.

The last assertion follows from the fact that p∗
12K∗p∗

23K is principally
an application of a, properly normalized, Fourier transform (see formula
(A.6)) on p∗

23K, hence by the Katz–Laumon theorem [16] it is irreducible
[n3]-perverse.
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Let us summarize. We showed that both sheaves p∗
13K and p∗

12K∗p∗
23K

are irreducible [n3]-perverse and are isomorphic on an open subvariety. This
implies that they must be isomorphic. This concludes the proof of the lemma.
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