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Abstract

We study different quantization schemes for the Com-

pressed Histogram of Gradients (CHoG) image feature de-

scriptor. We propose a scheme for compressing distribu-

tions called Type Coding, which offers lower complexity

and higher compression efficiency compared to tree-based

quantization schemes proposed in prior work. We construct

optimal Entropy Constrained Vector Quantization (ECVQ)

code-books and show that Type Coding comes close to

achieving optimal performance. The proposed descriptors

are 16× smaller than SIFT and perform on par. We im-

plement the descriptor in a mobile image retrieval system

and for a database of 1 million CD, DVD and book covers,

we achieve 96% retrieval accuracy using only 4 kilobytes of

data per query image.

1. Introduction

Mobile phones have evolved into powerful image and

video processing devices, equipped with high-resolution

camera, color displays, and hardware-accelerated graphics.

This enables a class of applications which use the camera

phone to initiate search queries about objects in visual prox-

imity to the user. Such applications can be used for identi-

fying products, comparison shopping, finding information

about movies, CDs, real estate or products of the visual

arts. For these applications, a query photo is taken by a

mobile device and compared against a database on a remote

server. The size of the data sent over the network needs

to be as small as possible to reduce latency and improve

user experience. In this work, we study descriptor compres-

sion techniques and show that compressed descriptors can

reduce query latency significantly in mobile image retrieval

systems.

1.1. Prior Work

Low bitrate descriptors are of increasing interest in the

computer vision community. Often, feature vectors are re-

duced in size by decreasing the dimensionality of descrip-

tors via Principle Component Analysis (PCA) or Linear

Discriminant Analysis (LDA) [13, 11]. In [4, 21], we study

dimensionality reduction and entropy coding of SIFT and

SURF descriptors. Winder et al. [23] combine the use

of PCA with additional optimization of gradient and spa-

tial binning parameters as part of the training step. The

disadvantages of PCA and LDA approaches is high com-

putational complexity, and the risk of overtraining for de-

scriptors from a particular data set. Further, with PCA and

LDA, descriptors cannot be compared in the compressed

domain if entropy coding is employed. Yeo et al. [24] re-

duce the bitrate of descriptors by using random projections

on SIFT descriptors to build binary hashes. Shakhnarovich,

in his thesis [19], uses a machine learning technique called

Similarity Sensitive Coding to train binary codes on image

patches. However, hashing schemes do not perform well

at low bitrates [5]. In [5], we propose construction of low-

bitrate feature descriptors by using Compressed Histogram

of Gradients (CHoG). CHoG descriptors can be compared

directly in the compressed domain eliminating the need for

decompression in the descriptor matching process.

1.2. Contributions

In this work, we use the framework of CHoG [5] and

study alternate techniques that can be used for quantization

and compression of descriptor data. Our contributions in

this paper are as follows:

• We propose a new scheme for compressing distribu-

tions called Type Coding. Type Coding provides a better

trade-off in bitrate versus Equal Error Rate (EER) com-

pared to tree based quantization schemes employed by

the original CHoG design [5]. Compared to Huffman-
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Figure 1. The DAISY spatial binning configurations used for n =
9,13,17 spatial bins.

tree coding, we obtain 20% to 50% decrease in bi-

trate at a given EER. We show that descriptors com-

pressed with Type Coding scheme can be compared

in the compressed domain. We compute the Entropy

Constrained Vector Quantization (ECVQ) performance

bound for descriptor’s data and show that Type Coding

comes close to achieving it.

• We compare our low bitrate descriptors with several

other schemes from the literature, and show that that

our proposed descriptors outperform them.

• Finally, we evaluate the performance of CHoG descrip-

tors in a mobile image retrieval system. For a database

of 1 million CD, DVD and book covers, we achieve

96% retrieval accuracy using only 4 kilobytes of data

per query image. Similar retrieval accuracy with SIFT

would require 16× as much data, and with compressed

JPEG images, would require 10× as much data.

1.3. Paper Outline

In Section 2, we review the Histogram-of-

Gradients (HoG) descriptor used in our work. In Sec-

tion 3, we discuss three different schemes for compressing

distributions, and compare their performance. Finally,

in Section 4, we evaluate performance of compressed

descriptors in a mobile image retrieval system.

2. Descriptor Design

A number of different feature descriptors are based

on the distribution of gradients within a patch of pixels.

Lowe [14], Bay et al. [2], Dalal and Triggs [10], Winder

et al. [23], as well as current authors et al. [5] have pro-

posed histogram of gradient based descriptors. Our present

design is based on the CHoG descriptor [5].

2.1. Computing Histograms of Gradients

We start with a canonical patch extracted around an in-

terest point at the detected scale and orientation. We nor-

malize the pixel values of each patch and compute local

image gradients dx and dy. The patch is divided into local-

ized cells based on the the DAISY configurations proposed

in [22, 23]. We use overlapping regions for spatial binning
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Figure 2. The joint (dx,dy) gradient distribution (a) over a large

number of cells, and (b), its contour plot. The greater variance

in y-axis results from aligning the patches along the most domi-

nant gradient after interest point detection. The quantization bin

constellations VQ-3, VQ-5, VQ-7 and VQ-9 and their associated

veronoi cells are shown at the bottom.

which improves the performance of the descriptor by mak-

ing it more robust to interest point localization error. The

soft assignment is made such that each pixel contributes to

multiple spatial bins with normalized Gaussian weights that

sum to 1.

Next, we quantize the gradient histogram in each spa-

tial bin. Let PDx,Dy(dx,dy) be the normalized joint (x,y)-
gradient histogram in each spatial bin. We coarsely quan-

tize the 2D gradient histogram and capture the histogram

directly into the descriptor. We approximate PDx,Dy(dx,dy)

as P̂D̂x,D̂y
(d̂x, d̂y) for (d̂x, d̂y) ∈ S, where S represents a small

number of quantization centroids or bins as shown in Fig-

ure 2. Based on underlying gradient statistics, we perform a

Vector Quantization (VQ) of the gradient distribution into a

small set of bin centers, S, shown in Figure 2. We call these

gradient bin configurations VQ-3, VQ-5, VQ-7 and VQ-9.

Similar to soft spatial binning, we assign each (dx,dy) pair

to multiple bin centers with normalized Gaussian weights.

As we increase the number of bin centers, we obtain a more

accurate approximation of the gradient distribution. Before

we study different compression schemes, we briefly discuss

the evaluation procedure used.

2.2. Descriptor Performance Evaluation

For evaluating the performance of low bitrate descrip-

tors, we use the two data sets provided by Winder and

Brown in their most recent work [23], Notre Dame and Lib-

erty. For algorithms that require training, we use use the

Notre Dame data set, while we perform our testing on the

Liberty set. We use the methodology proposed in Winder



and Brown [23] for evaluating descriptors. We compute

symmetric Kullback-Leibler (KL) distance between each

matching and non-matching pair of descriptors. From these

distances, we obtain a Receiver Operating Characteristic

(ROC) curve which plots correct match fraction against in-

correct match fraction. We compare our low bitrate descrip-

tors to the SIFT descriptor.We focus on descriptors that per-

form on par with SIFT and are in the range of 50-100 bits.

3. Descriptor Compression

Our goal is to produce low bitrate CHoG descriptors

while maintaining the highest possible fidelity. In this Sec-

tion, we discuss three different schemes for compressing

histograms: Huffman Coding, Type Coding and ECVQ. For

each scheme, we quantize the gradient histogram in each

cell individually and map it to an index. The indices are

then encoded with fixed-length or entropy codes, and the

bitstream is concatenated together to form the final descrip-

tor. We also experimented with joint coding of the gradient

histograms in different cells, but this did not yield any prac-

tical gain.

Let m represent the number of gradient bins. Let P =
[p1, p2, ...pm] ∈ R

m
+ be the original distribution as described

by histogram, and Q = [q1,q2, ....qm]∈R
m
+ be the quantized

probability distribution defined over the same sample space.

There are several measures that can be used for determin-

ing the degree of mismatch between distributions [9],

• Lα -norms over a vector of probability differences:

||P−Q||α =
(

∑
i

|pi −qi|
α
)1/α

, α > 1 ,

• KL (Kullback-Leibler) divergence:

D(P||Q) = ∑
i

pi log2

pi

qi

,

• Symmetric KL divergence:

J(P,Q) = D(P||Q)+D(Q||P).

These measures are related [9], for example,
1

2 ln2
||P−Q||21 6 D(P||Q) 6

1
ln2

||P−Q||2∞ ∑
i

1
qi

.

As mentioned earlier, we are primarily interested in the

symmetric KL distance.

3.1. Huffman Tree Coding

Given a probability distribution, one to way to compress

it is to construct and store a Huffman tree for this distribu-

tion [5]. The reconstructed distribution Q = Q(ℓ1, . . . , ℓm)
becomes

qi = 2−ℓi , ℓi ∈ Z+ , ∑
i

2−ℓi = 1 (1)

where ℓ1, . . . , ℓm denote the lengths of Huffman code words

(paths from root to leaves in the Huffman tree).
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SIFT (1024 bits)

Huffman VQ−5 (50 bits)

Huffman VQ−7 (88 bits)

Huffman VQ−9 (171 bits)

Figure 3. ROC curves for compressing distributions with Huffman

scheme for the DAISY-9 configuration for the Liberty data set. The

CHoG descriptor at 88 bits outperforms SIFT at 1024 bits.

The number of Huffman trees T (m) utilized by such a

scheme can be estimated by considering labeling of all pos-

sible rooted binary trees with m leaves

T (m) < m! Cm−1 ,

where Cn = 1
n+1

(

2n
n

)

is a Catalan number. Hence, the index

of a Huffman tree representing distribution P with fixed-

length encoding requires at most

RHuf(m) 6 ⌈log2 T (m)⌉ ∼ m log2 m+O(m) . (2)

bits to encode.

Implementation. Quantization is implemented by a

standard Huffman tree construction algorithm, requiring

O(m logm) operations, where m is the number of bins in the

gradient histogram. All unique Huffman trees are enumer-

ated and their indices are stored in memory. The number of

Huffman trees for m = 3,5,7,9 are 3,75,4347 and 441675

respectively. The number of trees grows very rapidly with

m and tree enumeration becomes impractical beyond m = 9.

We implemented both fixed-length and entropy coding of

tree indices. For m 6 7, we found entropy coding to be

useful, resulting in savings of approximately 10− 20% in

the bitrate. This compression is achieved by using context

adaptive binary arithmetic coding.

Example. Let m = 5 corresponding to the VQ-5 gradi-

ent bin configuration. Let P = [0.1,0.3,0.2,0.25,0.15] be

the original distribution as described by the histogram. We

build a Huffman tree on P, and thus quantize the distri-

bution to Q = [0.125,0.25,0.25,0.25,0.125]. The quan-

tized distribution Q is then mapped to one of 75 Huffman

trees, and can be communicated with a fixed length code of

⌈log2 75⌉ = 7 bits.

Results. Figure 3 shows the performance of the Huffman

compression scheme for the DAISY-9 configuration. The

bitrate in Figure 3 is varied by increasing the number of

gradient bins from 5 to 9. For the DAISY-9, VQ-7 config-

uration, the descriptor at 88 bits outperforms SIFT at 1024

bits.
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Figure 4. Type lattices for m = 3

3.2. Type Coding

The idea of type coding is to construct a lattice of distri-

butions (or types) Q = Q(k1, . . . ,km) with probabilities

qi =
ki

n
, ki, n ∈ Z+ , ∑

i

ki = n (3)

and then pick and transmit the index of the type that is clos-

est to the original distribution P. Parameter n is used to con-

trol the number/density of reconstruction points. We note

that type coding is related to the An lattice proposed in [8].

The main difference between the two is that the type lat-

tice is naturally defined within a bounded subset of the R
m

space, which is the unit m− 1-simplex. This is precisely

the space containing all possible input probability vectors.

We show several examples of type lattices constructed for

m = 3 and n = 1, . . . ,5 in Figure 4.

The total number of types in lattice (3) is essentially the

number of partitions of parameter n into m terms k1 + . . .+
km = n, given by a multiset coefficient:

((

m

n

))

=

(

n+m−1

m−1

)

. (4)

Consequently, the rate needed for encoding of types satis-

fies:

RType(m,n) 6
⌈

log2

((

m
n

))⌉

∼ (m−1) log2 n . (5)

We next discuss quantization algorithm and combinato-

rial enumeration techniques needed for the design of codes.

Quantization. In order to quantize a given input distribu-

tion P to the nearest type, we use the following algorithm1:

1. Compute numbers (best unconstrained approximation)

k′i =
⌊

npi +
1
2

⌋

, n′ = ∑
i

k′i .

1This algorithm is similar to Conway and Sloane’s quantizer for An

lattice [8], but it works within a bounded subset of R
m

2. If n′ = n we are done. Otherwise, compute errors

δi = k′i −npi ,

and sort them such that

− 1
2

6 δ j1 6 δ j2 6 . . . 6 δ jm < 1
2
,

3. Let d = n′−n. If d > 0 then we decrement d values k′i
with largest errors

k ji =

[

k′ji j = 1, . . . ,m−d −1 ,

k′ji −1 i = m−d, . . . ,m ,

otherwise, if d < 0 we increment |d| values k′i with

smallest errors

k ji =

[

k′ji +1 i = 1, . . . , |d| ,

k′ji i = |d|+1, . . . ,m .

Enumeration of types. We compute a unique index

ξ (k1, . . . ,km) for a type with coordinates k1, . . . ,km using:

ξ (k1, . . . ,kn) =
n−2

∑
j=1

k j−1

∑
i=0

((

m− j

n− i−∑
j−1
l=1 kl

))

+ kn−1. (6)

This formula follows by induction (starting with m = 2,3,

etc.), and it implements lexicographic enumeration of types.

For example:

ξ (0,0, . . . ,0,n) = 0 ,

ξ (0,0, . . . ,1,n−1) = 1 ,

. . .

ξ (n,0, . . . ,0,0) =

((

m

n

))

−1 .

This direct enumeration allows encoding/decoding opera-

tions to be performed without storing any “codebook” or

“index” of reconstruction points. It can be shown that the

algorithm is optimal in ||P−Q||1,

Implementation. We implement enumeration of types

according to formula in Equation 6 by using an array of pre-

computed multiset coefficients. This reduces complexity of

enumeration to just about O(n) additions. In implementing

type quantization, we observed that the mismatch d = n′−n

is typically very small, and so instead of performing full

sorting step (3) we simply search for d largest or smallest

numbers. With such optimization, the complexity of the al-

gorithm becomes close to O(m), instead of O(m logm) im-

plied by the use of full search.

We also found it useful to bias type distributions as fol-

lows

qi =
ki +β

n+βm
. (7)

where parameter β > 0 is called the prior. The most

commonly used values of β in statistics are Jeffrey’s prior

β = 1/2, and Laplace prior β = 1. A value of parameter

β that works well is the scaled prior β = β0
n
n0

, where n0 is

the total number of samples in the original (non-quantized)
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SIFT (1024 bits)

Type n=2 (37 bits)

Type n=3 (49 bits)

Type n=4 (60 bits)

Type n=5 (68 bits)

(a) (b)

Figure 5. Figure (a) shows the ROC curves of a type coded CHoG

descriptor with and without priors. The performance of the de-

scriptor is better with the scaled prior. Figure (b) shows ROC

curves for compressing distributions with type coding scheme for

DAISY-9 and VQ-7 configuration for Liberty data set. CHoG de-

scriptor at 60 bits outperforms SIFT at 1024 bits.

histogram, and β0 = 0.5 is the prior used in computation of

probabilities P.

Finally, for encoding of type indices, we use both fixed-

length and entropy coding schemes. We find that entropy

coding with an arithmetic coder saves approximately 10−
20% in the bitrate. When fixed-length codes are used, we

perform fast compressed domain matching.

Example. Let m = 5, corresponding to the VQ-5 gra-

dient bin configuration. Let the original type described

by the histogram be T = [12,28,17,27,16] and P =
[0.12,0.28,0.17,0.27,0.16] be the corresponding distribu-

tion. Let n = 10 be the quantization parameter chosen

for type coding. The approximation of the type T is

K = [1,3,2,3,2] based on Step (1) of the quantization al-

gorithm. Since ∑i ki 6= 10, we use the proposed quantiza-

tion algorithm to obtain quantized type K = [1,3,2,3,1].
The number of samples n0 in the original histogram is

100, and hence, the scaled prior is computed as β = 0.5×
10/100 = 0.05, and the quantized distribution with prior is

Q = [0.1024,0.2976,0.2,0.2976,0.1024]. The total number

of quantized types is
(

14
4

)

= 1001, and Q can be communi-

cated with a fixed length code of ⌈log2 1001⌉ = 10 bits.

Results. Figure 5(a) illustrates the advantage of using bi-

ased types (7). Figure 5(b) shows performance of the type

compression scheme for the DAISY-9, VQ-7 configuration.

For this configuration, the descriptor at 60 bits outperforms

SIFT at 1024 bits.

3.3. Lloyd Vector Quantization

We use Entropy Constrained Vector Quantization

(ECVQ) based on the generalized Lloyd algorithm [7] to

compute a bound on the performance that can be achieved

with the CHoG descriptor framework. The ECVQ algo-

rithm sweeps the optimal Rate-Distortion trade-off curve

and we expect it to provide close to optimal bitrate-Equal

Error Rate(EER) trade-off. The ECVQ scheme is computa-

tionally complex, and it is not practical for mobile applica-

tions. We show in Section 3.4 that the Type Coding scheme

comes close to achieving the performance bound provided

by ECVQ.

Quantization. The ECVQ algorithm resembles the k-

means clustering in the statistics community, and, in fact,

contains it as a special case. Like k-means clustering, gen-

eralized Lloyd algorithm assigns data to the nearest cluster

centers, next computes new cluster centers based on this as-

signment, and then iterates the two steps until convergence

is reached. What distinguishes the generalized Lloyd al-

gorithm from k-means (aka the basic Lloyd algorithm) is a

Lagrangian term which biases the distance measure to re-

flect the different number of bits required to indicate dif-

ferent clusters. With entropy coding, likely cluster centers

will need fewer bits, while unlikely cluster centers require

more bits. To properly account for bitrate, cluster probabil-

ities are updated in each iteration of the generalized Lloyd

algorithm, much like the cluster centers. We show how the

ECVQ scheme can be adapted to the current CHoG frame-

work.

Let Xm = [p1, p2, p3, ..pm] ∈ R
m
+ denote a distribution.

Let PXm be the distribution of Xm. Let ρ be the distance

measure used to compare distributions. Let λ be the La-

grange multiplier. Let ψ be an index set, and let α : Xm 7→
ψ quantize input vectors to indices. Let β : ψ 7→C map in-

dices to a set of centroids C ∈ R
m
+. Let the initial size of the

codebook be K = |ψ|. Let γ(i) be the rate of transmitting

centroid i, i ∈ ψ .

The iterative algorithm used is discussed below. The in-

put of the algorithm is a set of points Xm, and the output

is the codebook C = {β (i)}i∈ψ . We initialize the algorithm

with C as K random points and γ(i) = log2(K).

1. α(xn) = argmini∈ψ ρ(xn,β (i))+λ |γ(i)|

2. |γ(i)| = − log2 PXn(α(Xn) = i)

3. β (i) = E[Xm|α(Xm) = i]

We repeat steps (1)-(3) until convergence. Step (1) is

the “assignment step”, and steps (2) and (3) are the “re-

estimation steps” where the centroids β (i) and rates γ(i)
are updated. In [5], we show that comparing gradient

histograms with symmetric KL divergence provides better

ROC performance than using L1 or L2−norm. It is shown

in [1, 18] that the Lloyd algorithm can be used for the

general class of distance measures called Bregman diver-

gences. Since the symmetric KL-divergence is a Bregman

divergence, it can be used as the distance measure in step

(1) and the centroid assignment step (3) is nevertheless op-

timal.
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SIFT (1024 bits)

Lloyd l =0    (90 bits)

Lloyd l =0.06 (56 bits)

Lloyd l =0.10 (41 bits)

Lloyd l =0.14 (33 bits)

Figure 6. ROC curves for compressing distributions with Lloyd

scheme for DAISY-9 and VQ-7 configuration for the Liberty data

set. CHoG descriptor at 56 bits outperforms SIFT at 1024 bits.

Implementation. We start with an initial codebook size

of K = 1024 and sweep across λ to vary the bitrate for each

gradient configuration. The rate decreases and the distor-

tion increases as we increase the parameter λ . The algo-

rithm itself reduces the size of the codebook as λ increases

as certain cells become unpopulated. We add a prior of

β0 = 0.5 to all bins to avoid singularity problems. Once the

histogram is quantized and mapped to an index, we entropy

code the indices with an arithmetic coder. Entropy coding

typically provides a 10−20% reduction in bitrate compared

to fixed length coding. The compression complexity of the

scheme is O(mk), where k is the number of cluster centroids

and m is the number of gradient bins. Note that the Lloyd

algorithm is computationally expensive and is not suitable

for mobile applications.

Results. We show the performance of this scheme in Fig-

ure 6 for the DAISY-9, VQ-7 configuration. In Figure 6, the

bitrate is varied by increasing λ with an initial codebook

size of K = 1024. For λ = 0, we represent the descriptor

with fixed-length codes in 90 bits. For this configuration,

the descriptor at 56 bits outperforms SIFT at 1024 bits.

3.4. Compression Results

In this section, we compare the performance of the dif-

ferent histogram compression schemes. For a fair compar-

ison at the same bit rate, we consider the Equal Error Rate

(EER) point on the different ROC curves for each scheme.

First, we compare bitrate vs. EER trade-off for the dif-

ferent quantization schemes for DAISY-9 cell configuration

in Figure 7. We observe that the Type Coding scheme out-

performs the Huffman tree compresion scheme. The gain

in bitrate increases as the number of gradient bins m in-

creases. Compared to the Huffman scheme, Type Coding

gives a 20% reduction in bitrate for VQ-7 at a fixed EER,

and a 50% reduction in bitrate for VQ-9 at a fixed EER.

Further, note that Type Coding enables a wider range of

possible bitrate EER trade-offs. Next, we observe in Fig-

ures 7 and 8 that the performance of Type Coding comes

close to the bound provided by Lloyd ECVQ. With Type
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Figure 7. Figure (a) and (b) compares Huffman, Type and Lloyd

Coding Schemes for DAISY-9, VQ-7 and DAISY-9 VQ-9 bin con-

figurations respectively. The gain in bitrate for Type Coding com-

pared to Huffman Coding increases as the number of gradient bins

increases. Further, note that Type Coding comes close to achieving

the bound provided by ECVQ.
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Figure 8. Comparison of EER versus bitrate for all compression

schemes for the Liberty data set. Better performance is indicated

by a lower EER. We observe that CHoG outperforms all other

schemes.

Coding, we are able to match the performance of SIFT

with about 60 bits. Finally, we compare CHoG descrip-

tors to several other compression schemes. We consider

the gradient bininng parameters VQ-3, VQ-5, VQ-7, VQ-

9 and spatial binning parameters DAISY 9, 13, 17 for each

quantization scheme, and compute the convex hull of the

bitrate vs. EER trade-off. Figure 8 compares CHoG de-

scriptors against the following schemes: Patch Compres-

sion with JPEG [15], Random Projections [24], Boosting

Similarity Sensitive Coding [19], SIFT and SURF Trans-

form Coding [4], Tree Structured Vector Quantization [16]

and MPEG-7 Image Signatures [3]. We use the same pa-

rameters used in prior work in [5]. We observe in Figure 8

that CHoG descriptors proposed in this work outperform all

other schemes.

4. Mobile Image Retrieval

In this Section, we show how low bit-rate CHoG descrip-

tors enable low latency for mobile visual search applica-

tions. For such applications, one approach is to transmit the



Figure 9. A mobile CD cover recognition system where the server

is located at a remote location. Feature descriptors are extracted on

the mobile-phone and query feature data is sent over the network.

Figure 10. A clean database picture (top) is matched against a real-

world picture (bottom) with various distortions.

JPEG compressed query image over the network. An alter-

nate approach is to extract feature descriptors on the mobile

device and transmit them over the network as illustrated in

Figure 9. Feature extraction can be carried out quickly (< 1

second) on current generation phones making this approach

feasible [20]. In this Section, we study the Classification

Accuracy vs. bitrate trade-off for the two approaches.

For evaluation, we use a database of one million

CD/DVD/book cover images, and a set of 1000 query im-

ages [6] exhibiting challenging photometric and geometric

distortions, as shown in Figure 10. Each image has 500 ×
500 pixels resolution. We define Classification Accuracy as

the percentage of query images correctly retrieved in the top

50 images with our pipeline.

We briefly describe the retrieval pipeline for CHoG de-

scriptors which resembles the state-of-the-art proposed in

[16, 17]. We extract Difference-of-Gaussian (DoG) inter-

est points in each image. We train a vocabulary tree [16]

with depth 6 and branch factor 10, resulting in a tree with

106 leaf nodes. One key difference is that we use sym-

metric KL divergence as the distance in the clustering al-

gorithm as KL distance performs better than L2 norm for

comparing CHoG descriptors. Since symmetric KL is a

Bregman divergence [1], it can be incorporated into the

k-means clustering framework. For retrieval, we use the

standard TF-IDF (Term Frequency-Inverse Document Fre-

quency) scheme [16] that represents query and database im-

ages as sparse vectors of visual word occurences, and com-

pute a similiarity between each query and database vector.

We use geometric constraints to rerank the list of top 500

images [12]. The top 50 query images are subject to pair-

wise matching with a RANSAC affine consistency check.

We compare three different schemes: (a) Transmitting

JPEG compressed images, (b) Transmitting SIFT descrip-

tors and (c) Transmitting CHoG descriptors. Figure 11

shows the performance of the three schemes. For Scheme

(a), we transmit a 480× 480 gray-scale JPEG compressed

image accross the network. The bitrate is varied by chang-
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Figure 11. Retrieval results for a database containing 1 million

images. We achieve 96 percent accuracy with only 4 kilobytes of

data. Note that the retrieval performance of CHoG is similar to

SIFT and JPEG compression schemes, while the bitrate savings is

16× and 10× respectively.

Scheme Upload Time Upload Time

(20 kbps) (60 kbps)

JPEG+SIFT 20.0 6.7

SIFT 32.0 10.7

CHoG 1.6 0.5

Table 1. Transmission times for different schemes at varying net-

work uplink speeds

ing the quality of JPEG compression. Feature extraction

and matching are carried out on the JPEG compressed im-

age on the server. We observe that the performance of the

scheme deteriorates rapidly at low bitrates. At low bitrates,

interest point detection fails due to blocking artifacts intro-

duced by JPEG image compression.

For Schemes (b) and (c), we extract descriptors on the

mobile device and transmit them over the network. The bi-

trate is varied by varying the number of descriptors from

200 to 700. We pick the features with the highest Hes-

sian response [14] for a given feature budget. We ob-

serve that transmitting 1024-bit SIFT descriptors is almost

always more expensive than transmitting the entire JPEG

compressed image. For Scheme (c), we use a low bit-rate

Type coded CHoG descriptor. We use spatial bin configu-

ration DAISY-9, gradient bin configuration VQ-7 and type

coding parameter n = 7, which generates a ∼70 bit descrip-

tor. We observe that CHoG descriptor achieves a compa-

rable Classification Accuracy to SIFT with bitrate savings

of 16×. Compared to sending JPEG compressed images,

CHoG descriptor achieves bitrate savings of 10×. We com-

pare transmission times for typical cellular uplink speeds in

Table 1 for the different schemes. At 20 kbps, the difference

in latency between CHoG and the other schemes is about 20

seconds. We conclude that transmitting CHoG descriptors

reduces query latency significantly for mobile visual search

applications.



5. Conclusion

We study different quantization schemes for the Com-

pressed Histogram of Gradients (CHoG) image feature de-

scriptor. We propose a scheme for compressing distribu-

tions called Type Coding, which offers lower complexity

and higher compression efficiency compared to tree-based

quantization schemes. We construct optimal Entropy Con-

strained Vector Quantization (ECVQ) code-books and show

that Type Coding comes close to achieving optimal per-

formance. The proposed descriptors are 16× smaller than

SIFT and can be compared in the compressed domain. We

implement the descriptor in a mobile image retrieval sys-

tem, and for a database of 1 million CD, DVD and book

covers, we achieve 96% retrieval accuracy with only 4 kilo-

bytes of data per query image.
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