
Neuromorphic Computing and Engineering

TOPICAL REVIEW • OPEN ACCESS

Quantization, training, parasitic resistance
correction, and programming techniques of
memristor-crossbar neural networks for edge
intelligence
To cite this article: Tien Van Nguyen et al 2022 Neuromorph. Comput. Eng. 2 032001

View the article online for updates and enhancements.

You may also like
Roadmap on emerging hardware and
technology for machine learning
Karl Berggren, Qiangfei Xia, Konstantin K
Likharev et al.

-

The viability of analog-based accelerators
for neuromorphic computing: a survey
Mirembe Musisi-Nkambwe, Sahra Afshari,
Hugh Barnaby et al.

-

A memristor crossbar array of titanium
oxide for non-volatile memory and
neuromorphic applications
Haider Abbas, Yawar Abbas, Son Ngoc
Truong et al.

-

This content was downloaded from IP address 136.0.88.131 on 21/09/2023 at 17:40

https://doi.org/10.1088/2634-4386/ac781a
/article/10.1088/1361-6528/aba70f
/article/10.1088/1361-6528/aba70f
/article/10.1088/2634-4386/ac0242
/article/10.1088/2634-4386/ac0242
/article/10.1088/1361-6641/aa6a3a
/article/10.1088/1361-6641/aa6a3a
/article/10.1088/1361-6641/aa6a3a

Neuromorph. Comput. Eng. 2 (2022) 032001 https://doi.org/10.1088/2634-4386/ac781a

OPEN ACCESS

RECEIVED

25 November 2021

REVISED

19 May 2022

ACCEPTED FOR PUBLICATION

13 June 2022

PUBLISHED

7 July 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

TOPICAL REVIEW

Quantization, training, parasitic resistance correction,
and programming techniques of memristor-crossbar neural
networks for edge intelligence

Tien Van Nguyen1, Jiyong An1, Seokjin Oh1,
Son Ngoc Truong2 and Kyeong-Sik Min1,∗

1 School of Electrical Engineering, Kookmin University, Seoul, Republic of Korea
2 Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
∗ Author to whom any correspondence should be addressed.

E-mail: mks@kookmin.ac.kr

Keywords: memristor crossbars, neural networks, edge intelligence, quantization, training, parasitic resistance correction

Abstract
In the internet-of-things era, edge intelligence is critical for overcoming the communication and
computing energy crisis, which is unavoidable if cloud computing is used exclusively. Memristor
crossbars with in-memory computing may be suitable for realizing edge intelligence hardware.
They can perform both memory and computing functions, allowing for the development of
low-power computing architectures that go beyond the von Neumann computer. For
implementing edge-intelligence hardware with memristor crossbars, in this paper, we review
various techniques such as quantization, training, parasitic resistance correction, and low-power
crossbar programming, and so on. In particular, memristor crossbars can be considered to realize
quantized neural networks with binary and ternary synapses. For preventing memristor defects
from degrading edge intelligence performance, chip-in-the-loop training can be useful when
training memristor crossbars. Another undesirable effect in memristor crossbars is parasitic
resistances such as source, line, and neuron resistance, which worsens as crossbar size increases.
Various circuit and software techniques can compensate for parasitic resistances like source, line,
and neuron resistance. Finally, we discuss an energy-efficient programming method for updating
synaptic weights in memristor crossbars, which is needed for learning the edge devices.

1. Introduction

Many internet-of-things (IoT) sensors and edge devices have recently been widely used to make human life
more comfortable and safe. To accomplish this, a massive number of IoT sensors and edge devices must con-
tinuously collect massive amounts of unstructured data from nature and human life (Plastiras et al 2018,
Keshavarzi and van den Hoek 2019, Krestinskaya et al 2019, Zhou et al 2019, Deng et al 2020, Keshavarzi et al
2020, Xue et al 2020, Qin et al 2020a, Amin and Hossain 2021, Ghosh and Grolinger 2021). One issue with
dealing with big data from IoT devices is energy. If all of the collected data is delivered to cloud servers, energy
consumption for not only data communication but also big-data computing will be increased to unacceptable
level.

Figure 1 depicts a conceptual block diagram of the computing device hierarchy, which includes IoT sensors,
edge devices and cloud servers (Sun and Ansari 2016, Gusev and Dustdar 2018, Premsankar et al 2018, James
2019, Krestinskaya et al 2019, Pham et al 2019a). IoT sensors can detect data from the physical world, such
as nature, human life, and so on. On a higher level, we can think about edge devices like mobile phones,
wearable watches, and so on. Cloud servers are positioned at the top of the hierarchy, where high-performance
computing can be prioritized over energy efficiency. In contrast to cloud servers, edge devices and IoT sensors
should perform computing with high energy efficiency in order to extend battery life.

Figure 2 depicts the amount of data created, captured, copied, and consumed globally from 2010 to 2025
(Holst 2021). In 2025, the amount of data is expected to reach 181 zeta bytes. The rate of data volume growth

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2634-4386/ac781a
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1518-7037
mailto:mks@kookmin.ac.kr

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 1. The conceptual block diagram of hierarchy of computing devices such as cloud servers, edge devices, and IoT sensors.

Figure 2. Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2025 (in zettabytes).

appears to be increasing with time. This rapid increase in figure 2 can be attributed to the recent explosion in
the number of IoT sensors and edge devices.

Figure 3(a) depicts a conceptual block diagram of a traditional edge-cloud system for connecting IoT sen-
sors to cloud servers, where the IoT sensors are assumed to lack edge intelligence functions such as neural
networks (Shang et al 2014, Ronao and Cho 2016, Nguyen et al 2021a). As shown in figure 3(a), IoT sensors
lacking edge intelligence must send all sensed data to cloud servers. As a result, cloud servers should consume
a tremendous amount of energy in both computing and communication.

Let us instead assume that the IoT sensors have some level of edge intelligence, as shown in figure 3(b).
Despite the fact that the amount of data sensed from the physical world in figure 3(b) is the same as in
figure 3(a), IoT sensors with edge intelligence can send much less data to cloud servers. This is due to the
edge intelligence’s ability to extract important features from raw data sensed by IoT sensors. As a result, IoT

2

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 3. (a) The block diagram of edge-cloud system without edge intelligence. (b) The block diagram of edge-cloud system
with edge intelligence. The edge intelligence can reduce amounts of data to be sent to the cloud servers significantly, because the
near-IoT-sensor computing can extract important features from the unstructured raw data collected from IoT sensors. (c) IoT
sensors and memristor crossbar for near-IoT-sensor computing.

sensors can deliver only important features to cloud servers rather than sending all sensed data to the cloud.
This data compression due to edge intelligence can significantly reduce the computation and communication
burden for cloud servers.

Another point to consider is computing architecture. The traditional von Neumann architecture that has
been used thus far is becoming increasingly inadequate and inefficient, especially for edge-intelligence hard-
ware. This is due to the memory access bottleneck in the von Neumann architecture, which separates a memory
block from a computing block. To process the large amounts of unstructured data generated by IoT sensors,
the computing block should frequently access the memory block in order to move large amounts of data back
and forth between the two blocks. If the two blocks are separated, frequent and mass memory access can
significantly increase power consumption.

To overcome the von Neumann bottleneck, a new computing architecture based on brain-inspired architec-
ture, analog arithmetic, processing-in-memory, parallel computing, new emerging memories, and so on can be
considered (Linn et al 2012, Wright et al 2013, Bohr and Young 2017, Sebastian et al 2019). This brings us closer
to energy-efficient computing hardware, which is required for implementing hardware of edge intelligence
such as IoT sensors.

A memristor crossbar in figure 3(c) can be one promising candidate for implementing energy-efficient
and low-precision AI hardware including edge-intelligence (Keshavarzi and van den Hoek 2019, Krestinskaya
et al 2019, Zhou et al 2019, Deng et al 2020, Keshavarzi et al 2020, Ran et al 2020, Xue et al 2020, Qin et al
2020a, Singh et al 2021). In-memory computing with the memristor crossbar in figure 3(c) can be used to
overcome the von Neumann machine’s memory access bottleneck mentioned earlier. Memristors are non-
volatile memories that allow for fast and energy-efficient read and write operations and they can be stacked
layer by layer for forming 3D structure (Strukov et al 2008, Jo et al 2010, Truong et al 2014, Hu et al 2014,
2018, Adam et al 2016, Bhat et al 2017, Chakrabarti et al 2017, Li et al 2018b, Li and Belkin 2018, Li et al 2018a,
Jeong and Shi 2018, Sheng et al 2019, James 2019, Amirsoleimani et al 2020, Lin et al 2020, Wang et al 2020).
Memristor fabrication can be combined with conventional CMOS processing technology, where memristor
crossbars can be integrated with CMOS devices.

3

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Furthermore, the current–voltage relationship of memristors make it possible physical vector-matrix mul-
tiplication performed in crossbars (Hu et al 2018, Amirsoleimani et al 2020). By doing so, memristor crossbars
can be used for in-memory computing. In-memory computing with memristor crossbars, in particular, can be
useful for implementing edge intelligence near IoT sensors, where computing should be very energy-efficient.
IoT sensors and a memristor crossbar are shown in figure 3(c) for near-IoT sensor computing.

In this paper, we discuss many technical issues of memristor crossbars for implementing hardware of edge-
intelligence. In next section 2, we try to use memristor crossbars to realize quantized neural networks having
binary and ternary synapses for simple but robust operation of in-memory computing with memristors. In
section 3, we discuss the chip-in-the-loop training of memristor crossbars for not allowing memristor defects
to degrade performance of edge intelligence. One more non-ideal effect in memristor crossbars is parasitic
resistances such as source, line, and neurons resistance, which become more severe as the crossbar size is big-
ger. In section 4, we discuss various techniques to compensate the parasitic resistances such as source, line,
and neuron resistance. In section 5, we explain energy-efficient programming method for updating synaptic
weights in memristor crossbars, which is required for low-power learning of edge devices. Finally, in section 6,
we summarize this paper.

2. Binary and ternary neural networks with memristor crossbars

Quantized neural networks such as binary neural network (BNN) and ternary neural network (TNN) have
been studied extensively for many years to alleviate the hardware burden of high-precision computation (Alem-
dar et al 2017, Qin et al 2020b). Only binary synaptic weights of −1 and +1 are used in BNN. TNN makes use
of three synaptic weights: −1, 0 and +1. BNN and TNN are particularly well suited for memristor crossbars,
where the binary and ternary weights can be represented by some combinations of high resistance state (HRS)
and low resistance state (LRS) (Truong et al 2014, Pham et al 2018, 2019a, Kim et al 2019, Chen et al 2021).

Figure 4(a) depicts a conceptual block diagram of an artificial neural network (ANN), which can be realized
with memristor crossbars with binary and ternary weights (Pham and Min 2019, Pham et al 2019a, Pham et al
2019c). The ANN is made up of synaptic weights, input, hidden, and output neurons, as shown in figure 4(a).
In this case, X1, X2, and so on are input neurons. Y1, Y2, and so on represent hidden neurons. Z1, Z2, and so
on are output neurons. The numbers m, n, and k represent the number of input, hidden, and output neurons,
respectively, in figure 4(a).

Figure 4(b) depicts a neural network realized using a memristor crossbar. Like figure 4(a), X1 and X2 apply
input voltages to the crossbar, with open and solid circles representing HRS and LRS, respectively. The plus and
minus column currents are represented by I1+ and I1−, respectively. I1+ and I1− are transferred to Y1 neuron,
which is hidden. I2+ and I2− are similarly transferred to Y2, which is hidden neuron, too. The hidden and
output neurons can be binary or multi-bit precision. If we assume binary neuron in figure 4(b), the neuron
can be implemented simply with a comparator circuit. In figure 4(b), I1+ and I1− are compared to each other
in the binary neuron. If I1+ exceeds I1−, Y1 becomes +1. On the other hand, if I1+ is less than I1−, Y1 becomes
−1. C1 represents the comparator circuit for I1+ and I1− in this case.

Figure 4(c) depicts a detailed schematic of a memristor crossbar in figure 4(b), with each memristor acces-
sible via a metal oxide field effect transistor. The sneak leakage problem can be mitigated in this 1T–1M
architecture, because the memristors can be electrically isolated column by column by turning off the access
transistors.

The memristor crossbars shown in figures 4(b) and (c) were trained and tested for the CIFAR-10 data
set. Convolutional neural network (CNN) is the neural network architecture used in training and testing the
crossbars for CIFAR-10 data set (Duan et al 2015, Yakopcic et al 2016, Krizhevsky et al 2018, Yao et al 2020).
The simulated architecture is made up of four convolution layers and two fully connected layers. The CIFAR-10
data set contains 50 000 training images and 10 000 testing images divided into 10 categories. The input image
of CIFAR-10 data set has a resolution of 32 × 32 × 3 (RGB). PyTorch is used in the simulation of CNN with
memristor crossbars. The quantization-aware training method is used to calculate binary and ternary synaptic
weights when training the memristor-crossbar CNN (Bengio et al 2013, Courbariaux et al 2016).

The CIFAR-10 recognition rate for the simulated memristor crossbar with different neuron and synapse
types is shown in figure 5(a). Here FW-FN denotes the floating-point synapse and floating-point neuron
in figure 5(a). BW-BN is an abbreviation for binary synapse and binary neuron. TW-BN stands for ternary
synapse and binary neuron. As previously stated, the binary synapse can only have weight =+1 and weight =
−1. Synaptic weight=+1, synaptic weight= 0, and synaptic weight=−1 are the values of the ternary synapse.
Weight = +1 is realized in the memristor crossbar by LRS on the plus column and HRS on the minus one.
Similarly, weight = −1 denotes HRS on the plus side and LRS on the minus side. Weight = 0 indicates that
HRS cells are present on both the plus and minus columns.

4

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 4. (a) The block diagram of two-layer artificial neural networks with input, hidden, and output neurons. (b) The
memristor crossbars for implementing two-layer artificial neural networks. (c) The detailed schematic of the memristor crossbar
with 1Transistor–1Memristor cell.

Figure 5. (a) Simulation of CIFAR-10 recognition rate of three cases of synapses and neurons (FW-FN, BW-BN, and TW-BN).
(b) The percentages of weight =+1 and weight =−1 of BW-BN. (c) The percentages of weight =+1, weight = 0, and weight =
−1 of TW-BN. (d) The numbers of LRS cells in the memristor crossbars for BW-BN and TW-BN.

According to figure 5(a), FW-FN has a CIFAR-10 recognition rate of up to 74.5 percent. In comparison to
FW-FN, BW-BN and TW-BN are only 70.4 and 70.8 percent, respectively. In figure 5(a), the difference between
BW-BN and TW-BN is insignificant (Nguyen et al 2021a).

5

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 6. (a) The double-column memristor crossbar with binary synapse. (b) The single-column memristor crossbar with
binary synapse. (c) MNIST recognition rate versus percentage of memristance variation (0%–30%).

Figure 5(b) depicts the percentages of synaptic weight = +1 and synaptic weight = −1 of BW-BN after
the quantization-aware training. Figure 5(c) depicts the percentages of active bits of synapses of TW-BN.
Figure 5(d) compares the number of LRS cells in the BW-BN and TW-BN memristor crossbars.

Because LRS cells are much more conductive than HRS cells, the power consumption of the memristor
crossbar is proportional to the number of LRS cells. The HRS-LRS ratio is assumed to be 100 in this case.
This means that the LRS cell is 100 times more conductive than the HRS cell. As a result, the column current
increases significantly in proportion to the number of LRS cells in the corresponding column. In figure 5(d),
the number of LRS cells in TW-BN is 42.9 percent lower than in BW-BN. This is due to the fact that synaptic
weight = 0 in TW-BN can be implemented with two HRS on both the plus and minus columns. HRS consumes
much less current than LRS.

The number of LRS cells can be reduced further by increasing the percentage of inactive bits in synapses
in the crossbar. The lower the number of LRS cells, the lower the power consumption in the memristor cross-
bar. This means that ternary synapse can thus be more energy-efficient than binary synapse. Furthermore, if
possible, a smaller number of LRS cells can significantly reduce the crossbar’s power consumption more. This
low power consumption of TNN memristor crossbars with as many zeros as possible can be useful in realizing
low-power edge hardware.

One thing to comment here is the CIFAR-10 recognition rate shown in figure 5 can be improved better if
we use a deeper neural network such as RESNET (He et al 2016). As the numbers of convolution layers and
fully-connected layers in the tested neural networks are increased, the neural network’s simulation can show
better recognition rate.

As mentioned earlier, two columns are required in memristor crossbars to represent both positive and
negative binary synaptic weights, as shown in figure 6(a). The current difference between the (+) and (−)
columns in figure 6(a) enters the activation function circuit in the double-column crossbar. To reduce the
number of memristor cells more, an alternative approach to the double-column crossbar in figure 6(a) can
be considered. Figure 6(b) shows a single-column crossbar can represent both positive and negative binary
weights. G0,0 denotes a binary synaptic connection between x0 and y0 in figure 6(b). In Figure 6(b), gb is used
to generate the current Ib in order to calculate both positive and negative values using the single-memristor

6

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

column. When compared to the double-column crossbar in figure 6(a), the single-column memristor crossbar
in figure 6(b) can cut crossbar size in half. Furthermore, the energy consumption in the single-column can be
reduced by half, which can be useful for implementing hardware of edge-intelligence (Pham et al 2018).

The Ib copy current circuit in figure 6(b) can be implemented by a simple OP amp circuit, as explained in
the reference (Pham et al 2018). The delay time of the Ib current copy circuit is about 20 ns, when the circuit
is simulated with SAMSUNG 0.13 μm CMOS technology (Pham et al 2018). The VDD used in the circuit
simulation was 1.3 V and HRS/LRS ratio of memristors was 100. Here, the circuit simulation was performed
by CADENCE SPECTRE. The delay time of the Ib current copy circuit is comparable to the delay time of the
activation function circuit, f , in figure 6(b), which is also implemented with the OP amp circuit. Thus, the
delay time of Ib current copy circuit can be hidden in the delay time caused from the activation circuit, f , in
figure 6(b).

In addition to the computing latency due to the activation function circuit, if parasitic capacitance in the
memristor crossbar is combined with parasitic line resistance, this resistance-capacitance delay time can make
the computing latency worse when performing the vector-matrix multiplication performed in the memristor
crossbar (Sah et al 2015).

One more thing to discuss here is memristance variation that may degrade the neural network’s perfor-
mance (Pham et al 2018). For considering memristance variation in the neural network’s simulation, Monte
Carlo method can be used with MATLAB. Figure 6(c) compares 5 cases of neural networks. The base line (box
symbol) is analog neural network (ANN), where the synaptic weights are real numbers. For the ANN (box
symbol) in figure 6(c), no memristance variation is assumed. The 6 bit and 4 bit memristor neural networks
(NNs) mean the synaptic weight’s precision is 6 bit and 4 bit, respectively. The 6 bit and 4 bit NNs are rep-
resented with circle and up-triangle symbols, respectively. The binary neural networks (BNNs) in figure 6(c)
means the synaptic weights are binary. Here the BNNs can be implemented with the double-column crossbar
in figure 6(a) and the single-column one in figure 6(b). The double-column and single-column are represented
with down-triangle and diamond, respectively, in figure 6(c). The memristance variation is varied from 0% to
30%, in the simulation. The memristance variation is not considered in the ANN (box symbol). The recogni-
tion rate of ANN can be as high as 98.3%. The 6 bit NN and 4 bit NN show 97.7% and 97.3% for the mem-
ristance variation = 0%. Both the double-column and single-column BNNs show 96.1% for the variation =

0%. As the memristance variation is increased to 30%, the neural network’s accuracy becomes degraded. Com-
paring the multi-bit NNs and the BNNs, the BNNs show better recognition rate than the 6 bit and 4 bit NNs.
This is because the binary weights are more robust to the memristance variation than the weights with 6 bit
and 4 bit precision. Figure 6(c) indicates the double-column and single-column BNNs are able to work well
until the memristance variation becomes as large as 20%. However, when the percentage variation exceeds
20%, the recognition rate seems to fall very sharply. For the variation = 30%, the single-column BNN has the
rate as high as 53.9%, whereas the 6 bit NN’s accuracy is as low as 39.7%.

3. Crossbar-in-the-loop training for defect-tolerant neural networks

Unfortunately, most of fabricated memristor crossbars suffer the non-ideal effects such stuck-at-fault defects
and process variations (Tunali and Altun 2017, Chakraborty et al 2018). Figure 7(a) depicts a conceptual
schematic of memristor crossbar containing defects. In the crossbar, the solid and open circles represent LRS
and HRS, respectively. Here, memristor defects are represented by red star symbols. In this section, we will look
at two types of memristor defects. They are stuck-at-LRS defect and stuck-at-HRS one, respectively. Figure 7(b)
depicts a random-defect map for a 400 × 256 memristor crossbar, with the percentage of memristor defects
as large as 10% (Nguyen et al 2019), (Pham et al 2019b). The percentage of random defects as large as 10% in
figure 7(b) was obtained from the memristor crossbars fabricated (Yeo et al 2019).

Aside from memristor defects, there is also the issue of memristor’s conductance variation. Figures 7(c)
and (d) depict the statistical distributions of LRS and HRS, respectively, from the measurement and simulation
(Pham et al 2019a). In figures 7(c) and (d), the percentage of variation in memristor conductance is as large
as 30%.

The non-ideal effects such as stuck-at-fault defects and memristance variation can affect the neural
network’s performance significantly, as explained in the reference (Pham et al 2019b). When the percentage
of defects = 10% and memristance variation = 5%, the MNIST recognition rate becomes degraded as low as
78.4%. Though the non-ideal effects such as memristor defects and process variations can degrade the neural
network’s performance severely, the defect-tolerant re-training scheme can minimize the recognition rate loss
(Pham et al 2019b). From the MATALB simulation, it was observed that the chip-in-the-loop learning scheme
considering the memristor defects during the training could improve the recognition rate very obviously. The
rate loss was reduced from 16.9% to 0.2%, when the defect-aware training was used (Pham et al 2019b).

7

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 7. (a) The real memristor crossbar with defects. (b) The defect map of 400 × 256 memristor crossbar with the percentage
of random defects = 10%. (c) The statistical distribution of HRS with the percentage σ variation = 30%. (d) The statistical
distribution of LRS with the percentage σ variation = 30%.

Figure 8. (a) The chip-in-the-loop training. The training loop is composed of three steps: the weight calculation, the crossbar
programming, and the crossbar execution of inference. (b) The memristor crossbar with the VDD/2 write scheme and the pulse
modulation of the crossbar programming like the incremental step pulse programming ISPP.

As mentioned in the previous paragraph, the chip-in-the-loop training should be used to compensate
for memristor defects such as stuck-at-faults and process variations when training memristor crossbars, as
shown in figure 8(a) (Klein et al 1995, Pham et al 2019d). The training-loop incorporating memristor defects
is required because the recognition rate will be greatly reduced if the memristor defects are not considered
during the training of the memristor neural networks. As illustrated in figure 8(a), the training loop consists
of three phases: weight calculation, crossbar programming, and crossbar’s execution of inference. Among the
three steps, the crossbar programming necessitates a lengthy programming time and a significant amount of
crossbar programming energy. This is due to the fact that the crossbar should be programmed cell by cell using
a flash memory programming method such as incremental step pulse programming (ISPP) (Suh et al 1995).
Figure 8(b) depicts the memristor crossbar with the VDD/2 write scheme and the pulse amplitude modulation
for programming the crossbar (Pham et al 2019a).

As another learning method for making the crossbar tolerant against the non-ideal effects, the offline learn-
ing method can be applied to the memristor crossbar-based neural networks (Zhang et al 2021). Here, the
pre-trained network is mapped to the memristor crossbar. In this learning method, the memristor crossbar

8

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 9. (a) The ideal memristor crossbar without parasitic resistances. (b) The non-ideal memristor with parasitic resistances
such as source, neuron, and line resistance.

only performs the inference operation. The non-ideality of weight updates can be concealed by iterative pro-
gramming with a write-verify technique, reading the conductance and rewriting it iteratively for achieving
better accuracy.

The online learning or in situ learning can allow the weight updating process to take into account the
hardware imperfections. The in situ learning helps the crossbar adapt itself to the hardware non-ideal effects
such as process variations, cell defects, and non-linearity problems (Li and Belkin 2018). The hybrid learn-
ing scheme has demonstrated to be effective for training the memristor-based neural networks. It combines
the offline learning and online learning for training the memristor neural networks to achieve better neural
network’s performance (Li and Belkin 2018). The pre-trained neural network is mapped to the memristor
crossbar and the adaptation process is performed on the crossbar for adapting the network’s parameters to the
target synaptic weights.

4. Parasitic resistance correction techniques

4.1. Correction technique of inference error due to parasitic source and neuron resistance in memristor
crossbar
Figure 9(a) depicts an ideal memristor crossbar with HRS and LRS memristor cells. White and grey boxes
represent HRS and LRS, respectively. The input voltages V IN,1, V IN,2, and V IN,m are applied to row #1, row #2,
and row #m, respectively. I1, I2, and In are the column currents for columns #1, #2, and #n, respectively. The
numbers ‘m’ and ‘n’ in this figure represent the number of rows and columns in the crossbar, respectively. In
figure 9(a), parasitic crossbar resistances such as line resistance, neuron resistance, and source resistance are
assumed to be zero in the ideal crossbar.

Figure 9(b) depicts a non-ideal memristor crossbar schematic with parasitic crossbar resistances such as
RS, RW, and RN taken into account (Chakraborty et al 2018). Source resistance, line resistance, and neuron
resistance are represented by RS, RW, and RN, respectively. HRS and LRS are represented in this diagram by
white and grey boxes, respectively. V IN,1, V IN,2, and V IN,m are the input row voltages for row #1, row #2, and
row #m, respectively, in figure 9(b). The numbers ‘m’ and ‘n’ represent the number of rows and columns in
the crossbar, respectively. The source voltages on the rows are denoted by VS,1, VS,2, and VS,m. Because of RS

and RW, the source voltages are degraded. The crossbar currents cause voltage drops on RS and RW, which can
degrade the source voltages in proportion to the amounts of current flowing through the resistances. I1, I2,
and In are the column currents of columns #1, #2, and #n, respectively. Similarly, for column #1, column #2,
and column #n, VN,1, VN,2, and VN,n are neuron voltages on the columns, respectively. The neuron voltages
are affected by RN and RW, similarly with the source voltages. M11 and M12 in the crossbar are the transistors
for controlling memristors RM,11 and RM,12.

RM,11 is a memristor cell that is linked to row #1 and column #1. Similarly, RM,12 is a memristor cell that
is linked to row #1 and column #2. When compared to the ideal crossbar in figure 9(a), the source, line, and
neuron resistance in the non-ideal crossbar can change the source voltages and column currents in figure 9(b),
resulting in degrading neural network’s performance.

Figure 10 depicts a schematic of a memristor crossbar with parasitic RS and RN correction. The correction
circuit on the left compensates for the loss of source voltage. Figure 10 shows V IN,1 entering row #1 and making
VR1. Then, VR1 is an amplified version of the input voltage with RR,1 and R1. The amplifier with RR,1 and R1

9

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 10. The schematic of memristor crossbar with correction of source and neuron resistance. Here the correction circuit in
the left is for compensating the loss of source voltage. The correction circuit added to the bottom is for reducing the loss of
neuron voltage.

can compensate for the source voltage degradation, which is caused primarily by the voltage drop across the
source resistance. The correction circuit added at the bottom is for reducing the neuron voltage loss. The
neuron voltages in figure 10 can be affected by RN and RW along the crossbar columns in the same way that
the source voltages are degraded. VN,1 is a neuron voltage from column #1 that is amplified with RC,1 and R2

to compensate for the neuron voltage degradation (Nguyen et al 2021b).
Figure 11(a) depicts a memristor crossbar HRS-LRS map with 64 rows and 64 columns. Figure 11(b) shows

the percentage error in source voltage from row #1 to row #64. In this case, RS = 2 kΩ, RN = 2 kΩ, and RW = 1Ω
per cell. In the red line, the percentage error between the crossbars without and with parasitic resistances. The
correction circuit is not considered in the red line. The correction circuit significantly reduces the percentage
error, as shown by the black line in figure 11(b).

Without the parasitic resistance correction, the average percentage error can reach as high as 36.7 percent.
The percentage error of the source voltage can be reduced from 36.7 percent to 7.5 percent when the correction
circuit is used in the black line in figure 11(b). Figure 11(c) depicts the neuron voltage percentage error from
column #1 to column #64. Without the correction, the average percentage error is as high as 65.5 percent. The
correction circuit reduces the percentage error from 65.5 to 8.6 percent. If the correction circuit is used, the
percentage error seems decreased to about 1/7.

In figures 11(b) and (c), the line resistance value as small as 1 Ω was obtained from the experimental mea-
surement, where the 40 nm 128× 128 RRAM crossbar was fabricated in TSMC foundry with the line resistance
of ∼1.1Ω per cell (Murali et al 2020). The source and neuron resistance used in this paper were obtained from
the circuit simulation. The maximum limits of parasitic neuron and source resistance can be decided from
the number of LRS cells per column and that per row in the crossbar, respectively. In addition, the LRS con-
ductance value can affect the maximum limits of neuron and source resistance, too. In figure 11(b), if the
parasitic neuron and source resistance become larger than 2 kΩ, the voltage drops on the parasitic resistance
can be comparable to the voltage drops on the memristor cells. If so, the column current can be affected more
by the parasitic resistance than the memristor cells. As the parasitic resistance becomes larger, the read volt-
age becomes smaller, resulting in the read failure. Thus, the parasitic neuron and source resistance should be
limited within the maximum values. In this paper, the maximum neuron and source resistance allowable was
calculated as large as 2 kΩ, considering the read voltage margin.

4.2. Correction technique of parasitic line resistance in memristor crossbar programming
In memristor crossbars, parasitic line resistance can exist between two crossing points. An amount of voltage
drop on line resistance can make difference between the calculation and measurement. By doing so, the neural
network’s performance realized with memristor crossbars having parasitic line resistance can be degraded from
the ideal calculation. Moreover, the line resistance problem becomes more significant, as crossbar’s array size
is increased. To mitigate the impact of parasitic line resistance, the device selector circuit or external circuit

10

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 11. (a) The HRS-LRS map of memristor crossbar with 64 rows and 64 columns. Here the white and black pixels represent
LRS and HRS, respectively. (b) The percentage error of source voltage from row #1 to row #64. Here RS = 2 kΩ, RN = 2 kΩ, and
RW = 1 Ω. The percentage error due to parasitic resistances is shown in the red line. The percentage error is shown in the black
line for the correction circuit. (c) The percentage error of neuron voltage from column #1 to column #64.

could be added into the crossbar array (Shin et al 2015, Levisse et al 2017). However, the memristor crossbar
without selection device is more potential for neuromorphic computing systems, and for neural network at
least.

An adaptive programming technique considering parasitic resistance correction was developed, to avoid
to use the additional correction circuit or selecting devices. Figure 12(a) show a conventional programming
method, where each memristive crossing-point is programmed to corresponding memristance value (Truong
2019). In figure 12(a), for the ith column, the jth input produces the column current, Ij,i, represented by the
dashed line. In the ideal case, where parasitic line resistance is omitted, the column line current, Ij,i, depends on
the memristive crossing-point, Mj,i. The equivalent resistance of the memristive crossing-point Mj,i is as high as
Mj,i + iRW + (m − j + 1)RW, as the parasitic line resistance is taken into account, as implied from figure 12(a).
To compensate the parasitic line resistance, the memristive crossing-point, Mj,i, should be programmed to
a target value that is smaller than the original value presented in figure 12(a). In particular, the memristive
crossing-point of Mj,i should be programmed to the target value of Mj,i − (iRW + (m − j + 1)RW), instead of
Mj,i.

Figure 12(b) shows a conceptual diagram of parasitic line resistance-adapted programing approach, where
parasitic line resistance is compensated during the programming phase. The equivalent parasitic line resis-
tance matrix is carried out and the connection matrix is updated by subtracting the equivalent parasitic line
resistance matrix from the original connection matrix.

Figure 13 shows the comparison of recognition rate between the conventional programming method and
the adaptive programming approach when the parasitic line resistance varies from 0.5 Ω to 3 Ω (Truong 2019).
Here, a single-layer network with 26 nodes for character image recognition was implemented on a memristor
crossbar array circuit made up of a single crossbar array circuit and a constant term circuit. The crossbar
circuit composed 26 columns and a constant term circuit was simulated using CADENCE SPECTRE circuit
simulator. The network was trained using MATLAB software and the obtained synaptic weights were mapped
to the memristance values of memristor crossbar array. The memristor crossbar array was then programmed
to the target values using the VDD/3 write scheme.

The improvement of neural network’s performance of the adaptive programming scheme seems obvious
as shown in figure 13. Here the conventional crossbar programming is compared with the adaptive program-
ming. In the adaptive technique, the trained synaptic weights is mapped to the connection matrix, where the
weights are updated using the parasitic line resistance matrix. The updated connection matrix is used for pro-
gramming the crossbar, as explained earlier. The recognition rate of the conventional programming method

11

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 12. (a) The conventional programming method, (b) the parasitic line resistance correction programming method where
the value of connection matrix is updated by subtracting the equivalent line resistance matrix from the original connection matrix.

seems declined dramatically when the line resistance is increased from 0.5 Ω to 3 Ω. In contrast, the memristor
crossbar with the adaptive programming scheme could maintain the recognition rate without loss until the
line resistance = 3 Ω.

5. Energy-efficient programming of memristor crossbars

LRS cells in memristor crossbars can act as active bits in binary-memristor neural networks. On the contrary,
HRS cells can be considered inactive bits. The active bits affect the crossbar’s column current more significantly
than the inactive ones when calculating vector-matrix multiplication (Pham et al 2019a). As a result, calculat-
ing exactly the crossbar’s column current decided by active bits is critical for achieving the neural network’s
performance better. To do so, a precise programming of LRS cells is needed in transferring the calculated
synaptic weights into the memristor crossbar. The fine programming scheme of memristors in figure 14(a)
can be used to program LRS precisely, where the number of programming pulses should be large because of
the fine modulation of pulse amplitude (Pham et al 2019a). Figure 14(a) indicates that the fine programming
scheme of memristors has as many as 30 programming pulses. By doing so, the modulation of programming
pulse’s amplitude can be controlled little by little for precise tuning of memristor’s conductance.

On the contrary, the coarse scheme can be used for programming the inactive bits. As mentioned earlier,
the inactive bits are HRS cells. The coarse programming scheme, as shown in figure 14(b), uses only three
pulses to program memristors to HRS coarsely. The small number of the programming pulses in figure 14(b)
is extremely beneficial in saving a significant amount of programming energy of memristor crossbars.

In figures 14(a) and (b), the open-circle symbols and the red line represent the measured data and the
behavioural model, respectively. The behavioural model equations of memristors used in figure 1(b) were
obtained from the reference (Truong et al 2016). The equations are implemented in VERILOG-A in the

12

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 13. The comparison of recognition rate between the conventional programming method and the adaptive programming
approach when the parasitic line resistance is varied from 0.5 Ω to 3 Ω.

CADENCE SPECTRE. The measured memristor devices in figures 14(a) and (b) are also explained in the
reference (Truong et al 2016).

For analysing various combinations of the fine and coarse amplitude modulation schemes for active LRS
and inactive HRS bits, four cases are compared in figures 15(a) and (b). The four cases are Fine-HRS and
Fine-LRS (F-F), Coarse-HRS and Fine-LRS (C-F), Fine-HRS and Coarse-LRS (F-C), and Coarse-HRS and
Coarse-LRS (F-C) (C-C), respectively. HRS and LRS programmed with the fine scheme are referred to as Fine-
HRS and Fine-LRS, respectively. Coarse-HRS and Coarse-LRS are HRS and LRS that have been programmed
using the coarse scheme, respectively. C-F has the lowest error-energy product among the four cases. As shown
in figure 15(b), C-F reduces the product by nearly 50% more than F-F. Here, the neural network for testing
MNIST data set is implemented by memristor crossbars. The neural network architecture used in the sim-
ulation is composed of 784 input neurons, 100 hidden neurons, and 10 output neurons. In the simulation,
HRS/LRS ratio is assumed 10, as shown in figures 15(a) and (b).

The fine and coarse programming schemes of memristors shown in figures 14(a) and (b) can control the
memristor’s conductance variation within 5% and 30%, respectively. For the fine programming scheme, the
variation of programmed memristor’s conductance as small as 5% can be improved better in the recent mem-
ristor devices based on WOx, where the variation measured was only as small as ∼2% (Choi et al 2021). The
memristor’s conductance variation seems to be controlled by not only the programming method but also the
material property.

The fine and coarse programming schemes can be combined for reducing the number of programming
pulses for multi-state memristor crossbars (Le et al 2021). The range-dependent adaptive resistance tuning
scheme used the coarse programming pulse to reach a target conductance roughly in the starting programming
phase (Le et al 2021). Then, as the target conductance is approached, the fine programming scheme start to
be applied to the memristor to tune the programmed conductance precisely. Combining the coarse and fine
programming schemes can save the programming time and energy.

Finally, it should be noted that the other non-ideal effects such as retention, endurance, drift, etc may affect
the neural networks implemented with memristor crossbars (Chih et al 2021). The various circuit techniques
were developed to mitigate these reliability problems (Chou et al 2018). The non-ideal effects related to the
reliability issues are very important and should be considered in implementing hardware of edge intelligence,
too, as memristor defects and process variations were considered in realizing the memristor-crossbar neural
networks.

6. Summary

In the IoT era, edge intelligence is critical for overcoming the communication and computing energy crisis,
which is unavoidable if cloud computing is used exclusively. Memristor crossbars with in-memory computing

13

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Figure 14. (a) Memristor’s conductance programmed with the fine amplitude-modulation scheme of 30 programming pulses.
(b) Memristor’s conductance programmed with the coarse amplitude modulation scheme of 3 programming pulses.

Figure 15. (a) Recognition errors of (1) Fine-HRS and Fine-LRS (F-F), (2) Coarse-HRS and Fine-LRS (C-F), (3) Fine-HRS and
Coarse-LRS (F-C), and (4) Coarse-HRS and Course-LRS (C-C). (b) Error-programming energy products of the four schemes.

may be suitable for realizing edge intelligence hardware. They can perform both memory and computing func-
tions, allowing for the development of low-power computing architectures that go beyond the von Neumann
computer.

This paper discussed various techniques for implementing edge-intelligence hardware with memristor
crossbars, such as quantization, training, parasitic resistance correction, and low-power crossbar program-
ming. In particular, the memristor crossbars were used in section 2 to realize quantized neural networks
with binary and ternary synapses for implementing simple but robust operation of in-memory computing
with memristors. In section 3, the chip-in-the-loop training of memristor crossbars was discussed in order to

14

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

prevent memristor defects from degrading edge intelligence performance. Another undesirable effect in mem-
ristor crossbars is parasitic resistances such as source, line, and neuron resistance, which worsens as crossbar
size increases. In section 4, we talked about how to compensate for parasitic resistances like source, line, and
neuron resistance. We discussed the energy-efficient programming method for updating synaptic weights in
memristor crossbars in section 5.

Acknowledgments

The work was financially supported by NRF-2019K1A3A1A25000279, NRF-2021R1A2C1011631, and NRF-
2021M3F3A2A01037972, NRF-2022R1A5A7000765, N62909-20-1-2021-P00001-Memristor-based Neural
Net, and SRFC-TA1903-01. The CAD tools were supported from IC Design Education Center (IDEC), Korea.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Kyeong-Sik Min https://orcid.org/0000-0002-1518-7037

References

Adam G C et al 2016 3D memristor crossbars for analog and neuromorphic computing applications IEEE Trans. Electron Devices 64 312–8

Alemdar H et al 2017 Ternary neural networks for resource-efficient AI applications 2017 Int. Joint Conf. Neural Networks (IJCNN)
(Piscataway, NJ: IEEE) pp 2547–54

Amin S U and Hossain M S 2021 Edge intelligence and internet of things in healthcare: a survey IEEE Access 9 45–59

Amirsoleimani A et al 2020 In-memory vector-matrix multiplication in monolithic complementary metal–oxide–semiconductor-
memristor integrated circuits: design choices, challenges, and perspectives Adv. Intell. Syst. 2 2000115

Bengio Y, Léonard N and Courville A 2013 Estimating or propagating gradients through stochastic neurons for conditional computation
(arXiv:1308.3432)

Bhat S et al 2017 SkyNet: memristor-based 3D IC for artificial neural networks 2017 IEEE/ACM Int. Symp. Nanoscale Architectures
(NANOARCH)

Bohr M T and Young I A 2017 CMOS scaling trends and beyond IEEE Micro 37 20–9

Chakrabarti B et al 2017 A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit Sci. Rep. 7
42429

Chakraborty I, Roy D and Roy K 2018 Technology aware training in memristive neuromorphic systems for nonideal synaptic crossbars
IEEE Trans. Emerg. Top. Comput. Intell. 2 335–44

Chen J, Wen S, Shi K and Yang Y 2021 Highly parallelized memristive binary neural network Neural Netw. 144 565–72

Chih Y-D et al 2021 Design challenges and solutions of emerging nonvolatile memory for embedded applications 2021 IEEE Int. Electron
Devices Meeting (IEDM) (Piscataway, NJ: IEEE) pp 2–4

Choi W et al 2021 Hardware neural network using hybrid synapses via transfer learning: WO× nano-resistors and TiO× RRAM synapse
for energy-efficient edge-AI sensor 2021 IEEE Int. Electron Devices Meeting (IEDM) (Piscataway, NJ: IEEE) pp 21–3

Chou C-C et al 2018 An N40 256 K × 44 embedded RRAM macro with SL-precharge SA and low-voltage current limiter to improve read
and write performance 2018 IEEE Int. Solid-State Circuits Conf. (ISSCC) (Piscataway, NJ: IEEE) pp 478–80

Courbariaux M et al 2016 Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or
−1 (arXiv:1602.02830)

Deng S, Zhao H, Fang W, Yin J, Dustdar S and Zomaya A Y 2020 Edge intelligence: the confluence of edge computing and artificial
intelligence IEEE Internet Things J. 7 7457–69

Duan S, Hu X, Dong Z, Wang L and Mazumder P 2015 Memristor-based cellular nonlinear/neural network: design, analysis, and appli-
cations IEEE Trans. Neural Netw. Learn. Syst. 26 1202–13

Ghosh A M and Grolinger K 2021 Edge-cloud computing for internet of things data analytics: embedding intelligence in the edge with
deep learning IEEE Trans. Ind. Inf. 17 2191–200

Gusev M and Dustdar S 2018 Going back to the roots ×2014; the evolution of edge computing, an IoT perspective IEEE Internet Comput.
22 5–15

He K et al 2016 Deep residual learning for image recognition Proc. IEEE Conf. Computer Vision and Pattern Recognition pp 770–8

Holst A 2021 Amount of data created, consumed and stored 2010–2025, Statista available at: https://statista.com/statistics/
871513/worldwide-data-created/

Hu M, Li H, Chen Y, Wu Q, Rose G S and Linderman R W 2014 Memristor crossbar-based neuromorphic computing system: a case study
IEEE Trans. Neural Netw. Learn. Syst. 25 1864–78

Hu M et al 2018 Memristor-based analog computation and neural network classification with a dot product engine Adv. Mater. 30 1705914

James A P 2019 A hybrid memristor-CMOS chip for AI Nat. Electron. 2 268–9

Jeong H and Shi L 2018 Memristor devices for neural networks J. Phys. D: Appl. Phys. 52 023003

15

https://orcid.org/0000-0002-1518-7037
https://orcid.org/0000-0002-1518-7037
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1109/access.2020.3045115
https://doi.org/10.1109/access.2020.3045115
https://doi.org/10.1109/access.2020.3045115
https://doi.org/10.1109/access.2020.3045115
https://doi.org/10.1002/aisy.202000115
https://doi.org/10.1002/aisy.202000115
https://arxiv.org/abs/1308.3432
https://doi.org/10.1109/mm.2017.4241347
https://doi.org/10.1109/mm.2017.4241347
https://doi.org/10.1109/mm.2017.4241347
https://doi.org/10.1109/mm.2017.4241347
https://doi.org/10.1038/srep42429
https://doi.org/10.1038/srep42429
https://doi.org/10.1109/tetci.2018.2829919
https://doi.org/10.1109/tetci.2018.2829919
https://doi.org/10.1109/tetci.2018.2829919
https://doi.org/10.1109/tetci.2018.2829919
https://doi.org/10.1016/j.neunet.2021.09.016
https://doi.org/10.1016/j.neunet.2021.09.016
https://doi.org/10.1016/j.neunet.2021.09.016
https://doi.org/10.1016/j.neunet.2021.09.016
https://arxiv.org/abs/1602.02830
https://doi.org/10.1109/jiot.2020.2984887
https://doi.org/10.1109/jiot.2020.2984887
https://doi.org/10.1109/jiot.2020.2984887
https://doi.org/10.1109/jiot.2020.2984887
https://doi.org/10.1109/tnnls.2014.2334701
https://doi.org/10.1109/tnnls.2014.2334701
https://doi.org/10.1109/tnnls.2014.2334701
https://doi.org/10.1109/tnnls.2014.2334701
https://doi.org/10.1109/TII.2020.3008711
https://doi.org/10.1109/TII.2020.3008711
https://doi.org/10.1109/TII.2020.3008711
https://doi.org/10.1109/TII.2020.3008711
https://doi.org/10.1109/MIC.2018.022021657
https://doi.org/10.1109/MIC.2018.022021657
https://doi.org/10.1109/MIC.2018.022021657
https://doi.org/10.1109/MIC.2018.022021657
https://statista.com/statistics/871513/worldwide-data-created/
https://statista.com/statistics/871513/worldwide-data-created/
https://doi.org/10.1109/tnnls.2013.2296777
https://doi.org/10.1109/tnnls.2013.2296777
https://doi.org/10.1109/tnnls.2013.2296777
https://doi.org/10.1109/tnnls.2013.2296777
https://doi.org/10.1002/adma.201705914
https://doi.org/10.1002/adma.201705914
https://doi.org/10.1038/s41928-019-0274-6
https://doi.org/10.1038/s41928-019-0274-6
https://doi.org/10.1038/s41928-019-0274-6
https://doi.org/10.1038/s41928-019-0274-6
https://doi.org/10.1088/1361-6463/aae223
https://doi.org/10.1088/1361-6463/aae223

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nanoscale memristor device as synapse in neuromorphic systems
Nano Lett. 10 1297–301

Keshavarzi A and van den Hoek W 2019 Edge intelligence-on the challenging road to a Trillion smart connected IoT devices IEEE Des.
Test 36 41–64

Keshavarzi A, Ni K, van Den Hoek W, Datta S and Raychowdhury A 2020 FerroElectronics for edge intelligence IEEE Micro 40 33–48

Kim Y et al 2019 Memristor crossbar array for binarized neural networks AIP Adv. 9 045131

Klein J-O, Garda P and Pujol H 1995 Chip-in-the-loop learning algorithm for Boltzmann machine Electron. Lett. 31 986–8

Krestinskaya O, James A P and Chua L O 2019 Neuromemristive circuits for edge computing: a review IEEE Trans. Neural Netw. Learn.
Syst. 31 4–23

Krizhevsky A, Nair V and Hinton G 2018 CIFAR-10 and CIFAR-100 datasets available online: https://cs.toronto.edu/kriz/cifar.html
(accessed on 20 October 2018)

Le B Q et al 2021 RADAR: a fast and energy-efficient programming technique for multiple bits-per-cell RRAM arrays IEEE Trans. Electron
Devices 68 4397–403

Levisse A et al 2017 Architecture, design and technology guidelines for crosspoint memories Proc. IEEE/ACM Int. Symp. Nanoscale
Architectures (NANOARCH) pp 55–60

Li C and Belkin D 2018 Efficient and self-adaptive in situ learning in multilayer memristor neural networks Nat. Commun. 9 2385

Li C et al 2018a Analogue signal and image processing with large memristor crossbars Nat. Electron. 1 52–9

Li Y, Wang Z, Midya R, Xia Q and Yang J J 2018b Review of memristor devices in neuromorphic computing: materials sciences and device
challenges J. Phys. D: Appl. Phys. 51 503002

Lin P et al 2020 Three-dimensional memristor circuits as complex neural networks Nat. Electron. 3 225–32

Linn E, Rosezin R, Tappertzhofen S, Böttger U and Waser R 2012 Beyond von Neumann-logic operations in passive crossbar arrays
alongside memory operations Nanotechnology 23 305205

Murali G et al 2020 Heterogeneous mixed-signal monolithic 3D in-memory computing using resistive RAM IEEE Trans. Very Large Scale
Integr. Syst. 29 386–96

Nguyen T-V, Pham K-V and Min K-S 2019 Hybrid circuit of memristor and complementary metal–oxide–semiconductor for defect-
tolerant spatial pooling with Boost-factor Adjustment Materials 12 2122

Nguyen T V, An J and Min K S 2021a Comparative study on quantization-aware training of memristor crossbars for reducing inference
power of neural networks at the edge 2021 Int. Joint Conf. Neural Networks (IJCNN) (Piscataway, NJ: IEEE) pp 1–6

Nguyen T V, An J and Min K-S 2021b Memristor-CMOS hybrid neuron circuit with nonideal-effect correction related to parasitic
resistance for binary-memristor-crossbar neural networks Micromachines 12 791

Pham K V and Min K-S 2019 Non-ideal effects of memristor-CMOS hybrid circuits for realizing multiple-layer neural networks 2019
IEEE Int. Symp. Circuits and Systems (ISCAS) (Piscataway, NJ: IEEE) pp 1–5

Pham K V, Nguyen T V, Tran S B, Nam H, Lee M J, Choi B J, Truong S N and Min K-S 2018 Memristor binarized neural networks J.
Semicond. Technol. Sci 18 568–77

Pham K, Tran S, Nguyen T and Min K-S 2019a Asymmetrical training scheme of binary-memristor-crossbar-based neural networks for
energy-efficient edge-computing nanoscale systems Micromachines 10 141

Pham K V, Nguyen T V and Min K-S 2019b Defect-tolerant crossbar training of memristor ternary neural networks 2019 26th IEEE Int.
Conf. Electronics, Circuits and Systems (ICECS) (Piscataway, NJ: IEEE) pp 486–9

Pham K V, Nguyen T V and Min K-S 2019c Partial-gated memristor crossbar for fast and power-efficient defect-tolerant training
Micromachines 10 245

Pham K V, Nguyen T V and Min K-S 2019d Defect-tolerant and energy-efficient training of multi-valued and binary memristor crossbars
for near-sensor cognitive computing Proc. Int. Conf. ASIC (Piscataway, NJ: IEEE) pp 1–4

Plastiras G et al 2018 Edge intelligence: challenges and opportunities of near-sensor machine learning applications 2018 IEEE 29th Int.
Conf. Application Specific Systems, Architectures and Processors (ASAP) (Piscataway, NJ: IEEE) pp 1–7

Premsankar G, Di Francesco M and Taleb T 2018 Edge computing for the internet of things: a case study IEEE Internet Things J. 5 1275–84

Qin H, Gong R, Liu X, Bai X, Song J and Sebe N 2020b Binary neural networks: a survey Pattern Recogn. 105 107281

Qin Y-F, Bao H, Wang F, Chen J, Li Y and Miao X-S 2020a Recent progress on memristive convolutional neural networks for edge
intelligence Adv. Intell. Syst. 2 2000114

Ran H et al 2020 Memristor-based edge computing of ShuffleNetV2 for image classification IEEE Trans. Comput. -Aided Des. Integr.
Circuits Syst. 2 324–34

Ronao C A and Cho S-B 2016 Human activity recognition with smartphone sensors using deep learning neural networks Expert Syst.
Appl. 59 235–44

Sah M P, Yang C, Kim H, Muthuswamy B, Jevtic J and Chua L 2015 A generic model of memristors with parasitic components IEEE Trans.
Circuits Syst. I 62 891–8

Sebastian A, Le Gallo M and Eleftheriou E 2019 Computational phase-change memory: beyond von Neumann computing J. Phys. D: Appl.
Phys. 52 443002

Shang C, Yang F, Huang D and Lyu W 2014 Data-driven soft sensor development based on deep learning technique J. Process Control 24
223–33

Sheng X, Graves C E, Kumar S, Li X, Buchanan B, Zheng L, Lam S, Li C and Strachan J P 2019 Low-conductance and multilevel
CMOS-integrated nanoscale oxide memristors Adv. Electron. Mater. 5 1800876

Shin S, Byeon S-D, Song J, Truong S N, Mo H-S, Kim D and Min K-S 2015 Dynamic reference scheme with improved read voltage margin
for compensating cell-position and background-pattern dependencies in pure memristor array J. Semicond. Technol. Sci. 15 685–94

Singh A et al 2021 Low-power memristor-based computing for edge-AI applications 2021 IEEE Int. Symp. Circuits and Systems (ISCAS)
(Piscataway, NJ: IEEE) pp 1–5

Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found Nature 453 80–3

Suh K-D et al 1995 A 3.3 V 32 Mb NAND flash memory with incremental step pulse programming scheme IEEE J. Solid-State Circuits 30
1149–56

Sun X and Ansari N 2016 EdgeIoT: mobile edge computing for the internet of things IEEE Commun. Mag. 54 22–9

Truong S N 2019 A parasitic resistance-adapted programming scheme for memristor crossbar-based neuromorphic computing systems
Materials 12 1–12

16

https://doi.org/10.1021/nl904092h
https://doi.org/10.1021/nl904092h
https://doi.org/10.1021/nl904092h
https://doi.org/10.1021/nl904092h
https://doi.org/10.1109/mdat.2019.2899075
https://doi.org/10.1109/mdat.2019.2899075
https://doi.org/10.1109/mdat.2019.2899075
https://doi.org/10.1109/mdat.2019.2899075
https://doi.org/10.1109/mm.2020.3026667
https://doi.org/10.1109/mm.2020.3026667
https://doi.org/10.1109/mm.2020.3026667
https://doi.org/10.1109/mm.2020.3026667
https://doi.org/10.1063/1.5092177
https://doi.org/10.1063/1.5092177
https://doi.org/10.1049/el:19950685
https://doi.org/10.1049/el:19950685
https://doi.org/10.1049/el:19950685
https://doi.org/10.1049/el:19950685
https://doi.org/10.1109/TNNLS.2019.2899262
https://doi.org/10.1109/TNNLS.2019.2899262
https://doi.org/10.1109/TNNLS.2019.2899262
https://doi.org/10.1109/TNNLS.2019.2899262
https://cs.toronto.edu/kriz/cifar.html
https://doi.org/10.1109/ted.2021.3097975
https://doi.org/10.1109/ted.2021.3097975
https://doi.org/10.1109/ted.2021.3097975
https://doi.org/10.1109/ted.2021.3097975
https://doi.org/10.1038/s41467-018-04484-2
https://doi.org/10.1038/s41467-018-04484-2
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1088/1361-6463/aade3f
https://doi.org/10.1088/1361-6463/aade3f
https://doi.org/10.1038/s41928-020-0397-9
https://doi.org/10.1038/s41928-020-0397-9
https://doi.org/10.1038/s41928-020-0397-9
https://doi.org/10.1038/s41928-020-0397-9
https://doi.org/10.1088/0957-4484/23/30/305205
https://doi.org/10.1088/0957-4484/23/30/305205
https://doi.org/10.3390/ma12132122
https://doi.org/10.3390/ma12132122
https://doi.org/10.3390/mi12070791
https://doi.org/10.3390/mi12070791
https://doi.org/10.5573/jsts.2018.18.5.568
https://doi.org/10.5573/jsts.2018.18.5.568
https://doi.org/10.5573/jsts.2018.18.5.568
https://doi.org/10.5573/jsts.2018.18.5.568
https://doi.org/10.3390/mi10020141
https://doi.org/10.3390/mi10020141
https://doi.org/10.3390/mi10040245
https://doi.org/10.3390/mi10040245
https://doi.org/10.1109/jiot.2018.2805263
https://doi.org/10.1109/jiot.2018.2805263
https://doi.org/10.1109/jiot.2018.2805263
https://doi.org/10.1109/jiot.2018.2805263
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1002/aisy.202000114
https://doi.org/10.1002/aisy.202000114
https://doi.org/10.1109/TETCI.2018.2829911
https://doi.org/10.1109/TETCI.2018.2829911
https://doi.org/10.1109/TETCI.2018.2829911
https://doi.org/10.1109/TETCI.2018.2829911
https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/10.1109/tcsi.2014.2373674
https://doi.org/10.1109/tcsi.2014.2373674
https://doi.org/10.1109/tcsi.2014.2373674
https://doi.org/10.1109/tcsi.2014.2373674
https://doi.org/10.1088/1361-6463/ab37b6
https://doi.org/10.1088/1361-6463/ab37b6
https://doi.org/10.1016/j.jprocont.2014.01.012
https://doi.org/10.1016/j.jprocont.2014.01.012
https://doi.org/10.1016/j.jprocont.2014.01.012
https://doi.org/10.1016/j.jprocont.2014.01.012
https://doi.org/10.1002/aelm.201800876
https://doi.org/10.1002/aelm.201800876
https://doi.org/10.5573/jsts.2015.15.6.685
https://doi.org/10.5573/jsts.2015.15.6.685
https://doi.org/10.5573/jsts.2015.15.6.685
https://doi.org/10.5573/jsts.2015.15.6.685
https://doi.org/10.1038/nature06932
https://doi.org/10.1038/nature06932
https://doi.org/10.1038/nature06932
https://doi.org/10.1038/nature06932
https://doi.org/10.1109/4.475701
https://doi.org/10.1109/4.475701
https://doi.org/10.1109/4.475701
https://doi.org/10.1109/4.475701
https://doi.org/10.1109/mcom.2016.1600492cm
https://doi.org/10.1109/mcom.2016.1600492cm
https://doi.org/10.1109/mcom.2016.1600492cm
https://doi.org/10.1109/mcom.2016.1600492cm
https://doi.org/10.3390/ma12244097
https://doi.org/10.3390/ma12244097
https://doi.org/10.3390/ma12244097
https://doi.org/10.3390/ma12244097

Neuromorph. Comput. Eng. 2 (2022) 032001 Topical Review

Truong S N, Ham S-J and Min K-S 2014 Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for
speech recognition Nanoscale Res. Lett. 9 1–9

Truong S N, Pham K V, Yang W, Shin S, Pedrotti K and Min K-S 2016 New pulse amplitude modulation for fine tuning of memristor
synapses Microelectron. J. 55 162–8

Tunali O and Altun M 2017 A survey of fault-tolerance algorithms for reconfigurable nano-crossbar arrays ACM Comput. Surv. 50 1–35

Wang T-Y et al 2020 Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and
processing application Nano Lett. 20 4111–20

Wright C D, Hosseini P and Diosdado J A V 2013 Beyond von Neumann computing with nanoscale phase-change memory devices Adv.
Funct. Mater. 23 2248–54

Xue C et al 2020 15.4 A 22 nm 2 Mb ReRAM compute-in-memory macro with 121-28 TOPS/W for multibit MAC computing for Tiny AI
edge devices 2020 IEEE Int. Solid-State Circuits Conf. (ISSCC) pp 244–6

Yakopcic C, Alom M-Z and Taha T-M 2016 Memristor crossbar deep network implementation based on a convolutional neural network
Int. Joint Conf. Neural Networks (IJCNN) pp 963–70

Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang J J and Qian H 2020 Fully hardware-implemented memristor convolutional neural
network Nature 577 641–6

Yeo I, Chu M, Gi S-G, Hwang H and Lee B-G 2019 Stuck-at-fault tolerant schemes for memristor crossbar array-based neural networks
IEEE Trans. Electron Devices 66 2937–45

Zhang W et al 2021 ROA: a rapid learning scheme for in-situ memristor networks Front. Artif. Intell. 4 692065

Zhou Z, Chen X, Li E, Zeng L, Luo K and Zhang J 2019 Edge intelligence: paving the last mile of artificial intelligence with edge computing
Proc. IEEE 107 1738–62

17

https://doi.org/10.1186/1556-276x-9-629
https://doi.org/10.1186/1556-276x-9-629
https://doi.org/10.1186/1556-276x-9-629
https://doi.org/10.1186/1556-276x-9-629
https://doi.org/10.1016/j.mejo.2016.07.010
https://doi.org/10.1016/j.mejo.2016.07.010
https://doi.org/10.1016/j.mejo.2016.07.010
https://doi.org/10.1016/j.mejo.2016.07.010
https://doi.org/10.1021/acs.nanolett.9b05271
https://doi.org/10.1021/acs.nanolett.9b05271
https://doi.org/10.1021/acs.nanolett.9b05271
https://doi.org/10.1021/acs.nanolett.9b05271
https://doi.org/10.1002/adfm.201202383
https://doi.org/10.1002/adfm.201202383
https://doi.org/10.1002/adfm.201202383
https://doi.org/10.1002/adfm.201202383
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1109/ted.2019.2914460
https://doi.org/10.1109/ted.2019.2914460
https://doi.org/10.1109/ted.2019.2914460
https://doi.org/10.1109/ted.2019.2914460
https://doi.org/10.3389/frai.2021.692065
https://doi.org/10.3389/frai.2021.692065
https://doi.org/10.1109/jproc.2019.2918951
https://doi.org/10.1109/jproc.2019.2918951
https://doi.org/10.1109/jproc.2019.2918951
https://doi.org/10.1109/jproc.2019.2918951

	Quantization, training, parasitic resistance correction, and programming techniques of memristor-crossbar neural networks for edge intelligence
	1. Introduction
	2. Binary and ternary neural networks with memristor crossbars
	3. Crossbar-in-the-loop training for defect-tolerant neural networks
	4. Parasitic resistance correction techniques
	4.1. Correction technique of inference error due to parasitic source and neuron resistance in memristor crossbar
	4.2. Correction technique of parasitic line resistance in memristor crossbar programming

	5. Energy-efficient programming of memristor crossbars
	6. Summary
	Acknowledgments
	Data availability statement
	ORCID iDs
	References

