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Abstract. We define and study category O for a symplectic resolution, generalizing the

classical BGG category O, which is associated with the Springer resolution. This includes

the development of intrinsic properties paralleling the BGG case, such as a highest weight

structure and analogues of twisting and shuffling functors, along with an extensive discussion

of individual examples.

We observe that category O is often Koszul, and its Koszul dual is often equivalent to

category O for a different symplectic resolution. This leads us to define the notion of a

symplectic duality between symplectic resolutions, which is a collection of isomorphisms

between representation theoretic and geometric structures, including a Koszul duality

between the two categories. This duality has various cohomological consequences, includ-

ing (conjecturally) an identification of two geometric realizations, due to Nakajima and

Ginzburg/Mirković-Vilonen, of weight spaces of simple representations of simply-laced

simple algebraic groups.

An appendix by Ivan Losev establishes a key step in the proof that O is highest weight.

1 Introduction

In this paper, we have two main goals:

• to introduce a version of category O attached to a symplectic variety with extra structure,

• to describe a conjectured relationship, which we call symplectic duality, between pairs

of symplectic varieties. The most striking manifestation of this duality is a Koszul duality

between the associated categories O.
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The motivating example is the classical BGG category O, and the remarkable theorem of

Beilinson, Ginzburg and Soergel [BGS96] showing that a regular integral block of category O
is Koszul self-dual. In our formulation, this means that the Springer resolution of the nilpotent

cone is self-dual as a symplectic variety.

Our perspective throughout is to study the geometry of symplectic varieties using deforma-

tion quantizations and their representation theory. The specific varieties that we want to study

are called conical symplectic resolutions. The prequel to this paper [BPW] introduced

these varieties, their quantizations, and the categories of modules over these quantizations.

Here we will concentrate on a particular subcategory of this module category: category O.

Versions of category O have appeared in many places in the literature: for representations

of U(g) in [BGG76], for rational Cherednik algebras in [GGOR03], for W-algebras in [BGK08,

Los12c], and for hypertoric enveloping algebras in [BLPW12]. Our general definition includes

all of these particular examples as particular cases, and we are able to prove many basic facts

about these categories in a unified way. We will discuss the details of their structure further

below.

There is a one striking observation about these categories that we wish to give special

prominence: they are often standard Koszul, and Koszul dual to the category O attached to a

different variety. This is the heart of our definition of symplectic duality; much of this paper is

concerned with fleshing out the structures surrounding this observation and explaining how it

looks in the various examples where it is known to hold.

We interpret symplectic duality as evidence of a hidden mirror symmetry-like connection

between the two varieties, though at the moment it is difficult to make the nature of this

connection mathematically precise. However, the same pairs of examples have arisen in moduli

spaces of vacua for certain S-dual pairs of field theories in physics, suggesting this is not pure

coincidence.

BGG category O. Let us discuss the content of the paper in more detail. As mentioned

above, our motivating example is the representation theory of U(g), whose geometric avatar

is the Springer resolution of the nilcone by the cotangent bundle T ∗(G/B). Fix a regular

class λ ∈ h∗ ∼= H2(G/B;C) and let Oa be the subcategory of of BGG category O consisting of

modules over U(g) with the same generalized central character as the simple highest weight

module with highest weight λ− ρ. The subscript stands for algebraic, since Oa is defined as a

category of modules over an algebra.

Let Og be the category of finitely generated (λ− ρ)-twisted D-modules5 on G/B that are

smooth with respect to the Schubert stratification. Here the subscript stands for geometric,

since Og is defined as a category of sheaves. The following list gives some of the known

5That is, modules over the sheaf of twisted differential operators denoted by Dλ in [BB81]; if λ is integral,
this is simply the sheaf of differential operators on the line bundle with Euler class λ.

2



structures and properties of the categories Oa and Og. Our main goal in the paper will be to

generalize these statements from T ∗(G/B) to arbitrary conical symplectic resolutions.

1. There exist localization and section functors relating Oa and Og. These functors are

always inverse derived equivalences, and they are Abelian equivalences if λ is dominant

[BB81].

2. The two categories are both highest weight [CPS88] and have graded lifts which are

Koszul [BGS96].

3. If λ is integral, then the center of the Yoneda algebra of Og is canonically isomorphic to

H∗(G/B;C) [Soe90].

4. The Grothendieck group K(Og) is isomorphic, via the characteristic cycle map, to the top

Borel-Moore homology group of the union of the conormal varieties to the Schubert strata

on G/B. This isomorphism intertwines the Euler form with a geometrically-defined

intersection form.

5. The group K(Og) decomposes as a direct sum over all nilpotent orbits by looking

at microlocal supports of D-modules. The top Borel-Moore homology group of the

union of the conormal varieties to the Schubert strata on G/B decomposes as a direct

sum over all nilpotent orbits via the Beilinson-Bernstein-Deligne (BBD) decomposition

[BBD82, CG97]. If λ is integral and G ∼= SLr, then these two decompositions agree.

6. There are two collections of derived auto-equivalences of Oa, and of its graded lift, given

by twisting and shuffling functors [AS03, Irv93]. These functors define two commuting

actions of the Artin braid group of g [AS03, MOS09, BBM04], and they categorify the

left and right actions of the Weyl group on its group algebra.

7. The category Oa is Koszul self-dual [BGS96]. The induced derived auto-equivalence of

the graded lift of Oa exchanges twisting and shuffling functors [MOS09, 6.5].

Category O in general. We now explain how these results generalize. Let M0 be a Poisson

cone, and let M→M0 be a symplectic resolution of M0, equivariant with respect to the conical

scaling action of S := C×. Let D be an S-equivariant quantization of M, and let A be the ring

of S-invariant global sections of D. Many rings of independent interest arise this way, such as

spherical rational Cherednik algebras [EG02], central quotients of finite W-algebras [Pre02],

central quotients of hypertoric enveloping algebras [BK12], and (conjecturally) quotients of

shifted Yangians [KWWY14] (see Section 2.3 for more details).

Let T := C× act on M by Hamiltonian symplectomorphisms that commute with S, and

assume that the fixed point set MT is finite. The action of T on M lifts to D and induces
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a Z-grading on A. Let A+ ⊂ A be the non-negatively graded part. We define Oa to be the

category of finitely generated A-modules that are locally finite with respect to A+. Versions

of this category have already been studied for Cherednik algebras [GGOR03, Rou08, GL14],

for finite W-algebras [BGK08, Los12c, Web11, BG13], and for hypertoric enveloping algebras

[BLPW10, BLPW12]. The classical case is where M = T ∗(G/B) and A is a central quotient

of the universal enveloping algebra of g; if the period of the quantization is a regular element

of h∗ ∼= H2(M;C), then Oa is equivalent to the BGG category Oa (Remark 3.11).6

Let

M+ := {p ∈M | lim
T3t→0

t · p exists}.

We define Og to be the category of D-modules that are set-theoretically supported on M+ and

admit a particularly nice lattice for a certain subalgebra D(0) ⊂ D; see Sections 2.5 and 3.15

for a precise definition. If M = T ∗(G/B) and T is a generic cocharacter of G, then M+ is

equal to the union of the conormal varieties to the Schubert strata, and Og is equivalent to

the category Og above. The aforementioned results generalize as follows.

1. There exist localization and section functors relating Oa and Og (Corollary 3.19). These

functors are inverse derived equivalences for most quantizations (Theorem 2.9), and they

are Abelian equivalences if λ is sufficiently positive (Theorem 2.8).

2. The category Oa is highest weight for most quantizations (Theorem 5.127), and Og is

always highest weight (Proposition 5.17). We conjecture that both categories are Koszul

(Conjectures 5.14 and 5.18). We can verify this conjecture in many examples, including

cotangent bundles of partial flag varieties, S3-varieties, hypertoric varieties, Hilbert

schemes on ALE spaces, and some quiver varieties (Section 9).

3. There is a natural graded ring homomorphism from H∗(M;C) to the Yoneda algebra of

Og. We conjecture that, whenever Og is indecomposable (this will depend on the choice

of quantization), this homomorphism will be an isomorphism (Conjecture 5.23). We

can prove this conjecture for cotangent bundles of partial flag varieties, S3-varieties in

type A, and hypertoric varieties (Section 9). We also formulate a stronger version of

Conjecture 5.23, relating the equivariant cohomology of M to the center of the universal

deformation of the Yoneda algebra (Conjecture 10.32), which we prove in the latter two

cases.

4. The Grothendieck group K(Og) is isomorphic, via the characteristic cycle map, to the

top Borel-Moore homology group of M+. This isomorphism intertwines the Euler form

on the Grothendieck group with the equivariant intersection form defined using the

localization formula (Theorem 6.5).

6This statement really requires regularity of the period, otherwise it fails.
7The proof of this theorem relies heavily on an appendix by Ivan Losev.
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5. The group K(Og) decomposes as a direct sum over all symplectic leaves of M0 by

looking at supports of sheaves (Equation (5)). The top Borel-Moore homology group

of M+ decomposes via as a direct sum over all symplectic leaves of M0 via the BBD

decomposition (Equation (7)). Under special assumptions that are satisfied by hypertoric

varieties and S3-varieties in type A, these two decompositions agree (Corollary 7.15). A

weakening of this relationship holds more generally (Theorem 7.14).

Twisting and shuffling. To state the appropriate generalization of item 6, we need some

more definitions. Let W be the Namikawa Weyl group of M0; this is a finite group that acts

faithfully on H2(M;R). Namikawa shows that there is a hyperplane arrangement Htw in

H2(M;R) whose chambers are equal to the W -translates of the ample cones of the collection

of symplectic resolutions of M0 (Remark 2.4). Let Etw ⊂ H2(M;C) be the complement of the

complexification of Htw; this space may also be interpreted as the locus of points over which

the universal deformation of M is affine. In the special case where M is the cotangent bundle

of G/B, W is the Weyl group of G, and Htw is the Coxeter arrangement.

Next, let W be the Weyl group of the group of Hamiltonian symplectomorphisms of M

that commute with S, and let T be a maximal torus. Let Hsh be the arrangement in tR whose

hyperplanes describe the cocharacters of T with infinite fixed-point sets, and let Esh ⊂ t be

the complement of the complexification of Hsh. If M is the cotangent bundle of G/B, then

the group of Hamiltonian symplectomorphisms commuting with S is G, and everything is the

same as in the previous paragraph. This example, however, is misleading; in general, W and

W are unrelated, as are Htw and Hsh. For example, if M is a crepant resolution of C2/Γ, then

W is isomorphic to the Weyl group corresponding to Γ under the McKay correspondence, but

W is trivial unless Γ = Z/2Z.

6. We construct two commuting collections of derived endomorphisms of Oa, called twisting

and shuffling functors. We construct an action of π1(Etw/W ) on Db(Oa) via twisting

functors (Theorem 8.3) and an action of π1(Esh/W) on Db(Oa) via shuffling functors

(Theorem 8.13).

Symplectic duality. Item 7 cannot generalize verbatim because, as mentioned above, the

groups that act by twisting and shuffling functors are in general unrelated. The correct

generalization involves two different symplectic resolutions, M→M0 and M! →M!
0.

7. We define a symplectic duality between M and M! to be a pair of isomorphisms

Etw/W ∼= E!
sh/W! and Esh/W ∼= E!

tw/W
!

and a Koszul duality between Oa and O!
a that exchanges twisting and shuffling functors

(see Definition 10.1 for a more precise formulation). We have already seen that T ∗(G/B)
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is self-dual (or, more naturally, dual to its Langlands dual). Furthermore, we show

that every type A S3-variety is dual to a different type A S3-variety (Theorem 10.4),

every hypertoric variety is dual to a different hypertoric variety (Theorem 10.8), and

every affine type A quiver variety is dual to a different affine type A quiver variety

(Theorem 10.9 and Corollary 10.11). We conjecture the existence of dualities between

quiver varieties and slices in the affine Grassmannian (Remark 10.7) and between pairs

of moduli spaces of instantons on ALE spaces (Remark 10.13).

The simplest examples of symplectic duality are between T ∗P`−1 and a crepant resolution

of C2
/

(Z/`Z). These are special cases of every class of examples mentioned above. Part of the

interest in twisting and shuffling functors is that they can be used to construct braid group

actions and homological invariants of knots. The exchange of twisting and shuffling functors

under symplectic duality then provides an explanation for different geometric constructions of

the same knot homology (see Section 10.7).

Symplectic duality appears to be closely related to a mirror duality in physics. Seiberg

and Intrilligator [IS96] propose a notion of mirror duality8 between three dimensional gauge

theories which carry N=4 supersymmetry . Such a gauge theory has a moduli space attached

to it with a number of different components, including two distinguished components called the

Higgs branch and the Coulomb branch. Mirror duality exchanges these two components;

that is, the Higgs branch of one theory is isomorphic to the Coulomb branch of the dual theory.

It was pointed out to us by Gukov and Witten that our list of known and conjectural

examples of symplectic duality coincides almost perfectly with the known list of Higgs branches

of mirror dual gauge theories (or, equivalently, with the known list of Higgs/Coulomb pairs for

a single gauge theory). For example:

• Type A S3-varieties are mirror to other type A S3-varieties [dBHOO97, §3.3].

• Hypertoric varieties are mirror to other hypertoric varieties [dBHOO97, §4].

• Affine type A quiver varieties are mirror to other affine type A quiver varieties [dBHOO97,

§3.3].

• An ALE space is mirror to the instanton moduli space for the corresponding simply-laced

Lie group on R2 [IS96].

These examples strongly suggest that symplectic duality and mirror duality are two

perspectives on the same phenomenon. Unfortunately, mirror duality and Coulomb branches

do not yet have precise mathematical definitions, so there is not yet a rigorous mathematical

8This duality should not be confused with the homological mirror symmetry of Calabi-Yau manifolds, which
is perhaps better known to algebraic and symplectic geometers.
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statement for us to propose in an attempt to relate symplectic duality to mirror duality in full

generality. After the appearance of the first version of this paper, the authors became aware of

work in progress of Nakajima, Braverman, and Finkelberg [Nak], as well as simultaneous work

by Bullimore, Dimofte, and Gaiotto [BDG], which proposes a construction of the Coulomb

branch of the gauge theory associated to a symplectic representation of a compact Lie group

(for which the Higgs branch would be the hyperkähler quotient). One may therefore regard

this construction as a conjectural construction of the symplectic dual of any conical symplectic

resolution that arises via a hyperkähler quotient construction. Preliminary calculations suggest

that their approach agrees with ours in the special cases which we understand well, but a

precise comparison of these two theories will have to be left for future work.

Cohomology. A symplectic duality between M and M! has two interesting cohomological

implications. First, consider the decomposition of K(Og)C from item 5 into direct summands

indexed by symplectic leaves of M0. A consequence of symplectic duality is that the summand

indexed by a leaf in M0 is canonically dual to the summand indexed by a corresponding leaf

in M!
0 (Proposition 10.22). In the case of type A S3-varieties, this duality of vector spaces

is known as skew Howe duality. In the case of affine type A quiver varieties, it is rank-level

duality. For hypertoric varieties, it is a reflection of the behavior of the Tutte polynomial

under Gale duality (Example 10.24). When M is a finite type ADE quiver variety and M!

is a transverse slice in the affine Grassmannian, this duality relates Nakajima’s geometric

construction of weight spaces of simple representations to Ginzburg and Mirkovic-Vilonen’s

geometric construction of the same weight spaces (Example 10.27).

The second cohomological implication comes from the last sentence of item 3, in which

we conjecture that H∗T (M;C) is isomorphic to the center of the universal deformation of the

Yoneda algebra of Og. If this conjecture holds, then symplectic duality implies a relationship

between the equivariant cohomology rings of M and M! that was previously studied in several

examples by Goresky and MacPherson [GM10] (Theorem 10.35). Thus, symplectic duality may

be regarded as a categorification of many different previously studied dualities. Interestingly,

neither of these two cohomological phenomena seems to have been familiar to physicists who

study mirror duality.

Summary. The paper is structured as follows. Section 2 is a review of all of the relevant

background on conical symplectic resolutions that do not involve choosing a Hamiltonian

action of T. Most of this material is taken from [BPW]. Section 3 is devoted to the definitions

and basic properties of Oa and Og, including the localization and section functors that relate

them. Section 4 is a review of the background material on Koszul, highest weight, and standard

Koszul categories, which we apply to Oa and Og in Section 5. Sections 6-8 deal with items 4-6

on our list. Section 9 consists of analyses of all of the structures that we have defined in the

special cases of cotangent bundles of partial flag varieties, S3-varieties, hypertoric varieties,
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Hilbert schemes on ALE spaces, quiver varieties, and slices in the affine Grassmannian. Finally,

Section 10 is devoted to the definition, examples, and consequences of symplectic duality.

Acknowledgments: The authors would like to thank Roman Bezrukavnikov, Justin Hilburn,

Dmitry Kaledin, and Ivan Losev for useful conversations. In addition, the authors are grateful

to the Mathematisches Forschungsinstitut Oberwolfach for its hospitality and excellent working

conditions during the initial stages of work on this paper.

2 Quantizations of conical symplectic resolutions

In this section we review the necessary background on conical symplectic resolutions. Roughly,

the section is a summary of all of the definitions and constructions in this paper that do not

involve choosing a Hamiltonian action of T.9 Most of the material that appears here is taken

from [BPW]; the main exception is Section 2.4, which is new.

2.1 Conical symplectic resolutions

Let M be a smooth, complex algebraic variety with an algebraic symplectic form ω. Suppose

that M is equipped with an action of the multiplicative group S ∼= C× such that s∗ω = snω

for some integer n ≥ 1. We will assume that S acts on the coordinate ring C[M] with only

non-negative weights and that the trivial weight space C[M]S is 1-dimensional, consisting only

of the constant functions. Geometrically, this means that the affinization M0 := SpecC[M] is

contracted by the S-action to a single cone point o ∈M0. We will assume that the minimal

symplectic leaf of M0 consists only of the point o, thus eliminating the possibility that M0

contains a factor of a symplectic vector space.10 Finally, we assume that the canonical map

from M to M0 is a projective resolution of singularities (that is, it must be an isomorphism

over the smooth locus of M0). We will refer to this collection of data as a conical symplectic

resolution.

Examples of conical symplectic resolutions include the following:

• M is a crepant resolution of M0 = C2/Γ, where Γ is a nontrivial finite subgroup of SL2.

The action of S is induced by the inverse of the diagonal action on C2, and n = 2.

• M is the Hilbert scheme of a fixed number of points on the crepant resolution of C2/Γ,

and M0 is the symmetric variety of unordered collections of points on the singular space.

Once again, S acts by the inverse diagonal action on C2, and n = 2.

9This is not quite accurate, as twisting functors, which are not introduced until Section 8.1, also do not
involve the torus T. We wait until Section 8 to introduce twisting functors in order to emphasize the similarities
between twisting functors and shuffling functors, which do involve the choice of T.

10We did not include this condition as part of the definition of a conical symplectic resolution in [BPW], but
it will be useful in the current work.
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• M = T ∗(G/P ) for a reductive algebraic group G and a parabolic subgroup P , and M0 is

the affinization of this variety (when G = SLr, this always be the closure of a nilpotent

orbit in the Lie algebra of G). The action of S is the inverse scaling action on the

cotangent fibers, and n = 1.

• M is a hypertoric variety associated to a simple, unimodular, hyperplane arrangement

in a rational vector space [BD00, Pro08], and M0 is the hypertoric variety associated to

the centralization of this arrangement. These varieties admit an action of S with n = 1

if and only if the arrangement has a bounded chamber; they always admit an action of S
with n = 2.

• M and M0 are Nakajima quiver varieties [Nak94, Nak98]. These varieties admit an

action of S with n = 1 if and only if the quiver has no loops; they always admit an action

of S with n = 2.

• M0 is a transverse slice to Grµ inside of Grλ, where Grµ and Grλ are Schubert varieties

inside of the affine Grassmannian for a reductive group G. When λ is a sum of minuscule

coweights for G, M0 has a natural conical symplectic resolution constructed from a

convolution variety; in most other cases, it seems to possess no such resolution. This

example is discussed in greater generality in [KWWY14].

Remark 2.1 The fifth class of examples overlaps significantly with each of the others. The

first two examples are special cases of quiver varieties, where the underlying graph of the

quiver is the extended Dynkin diagram corresponding to Q. The third and sixth examples can

be realized as quiver varieties if the group G is of type A. Finally, a hypertoric variety is a

quiver variety if and only if the associated hyperplane arrangement is cographical.

Remark 2.2 All of these examples admit complete hyperkähler metrics, and in fact we know

of no examples that do not admit complete hyperkähler metrics. (Such spaces do exist if we

drop the hypothesis that M is projective over M0; some examples will appear in subsequent

work by Arbo and the third author.) The unit circle in S acts by hyperkähler isometries, but

is Hamiltonian only with respect to the real symplectic form. Our assumptions about the

S-weights of C[M] translate to the statement that the real moment map for the circle action is

proper and bounded below.

2.2 Deformation theory and birational geometry

Let M be a conical symplectic resolution. The following result is stated in [BPW, 2.7]; it is

due in this form to Namikawa [Nam08], and is closely related to earlier results of Kaledin and

Verbitsky [KV02].
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Theorem 2.3 The variety M has a universal Poisson deformation π : M → H2(M;C) which

is flat. The variety M admits an action of S extending the action on M ∼= π−1(0), and π is

S-equivariant with respect to the weight −n action on H2(M;C). This family is trivial in the

category of smooth manifolds with circle actions.

For any η ∈ H2(M;C), we will also be interested in the twistor deformation

Mη := M ×H2(M;C) A1.

Let Mη(∞) := (Mη r M)/S be the generic fiber of Mη. A fundamental result of Kaledin

[Kal08, 2.5] says that, if η is the Euler class of an ample line bundle on M, then Mη(∞) is

affine. More generally, Namikawa [Nam] shows that there is a finite set Htw of hyperplanes in

H2(M;R) such that the union
⋃
H∈Htw

HC ⊂ H2(M;C) is equal to the locus over which the

fibers of π fail to be affine.11

Namikawa constructs a universal Poisson deformation of M0 over the base HP 2(M0)

[Nam08]. Since SpecC[M ] is itself a Poisson deformation of M0, we obtain a map from

H2(M;C) to HP 2(M0). Namikawa shows that this map is a quotient by a finite subgroup W

of the general linear group of H2(M;C) [Nam10, 1.1]. In the case of the Springer resolution,

H2(M;C) is isomorphic to the Cartan subalgebra and W is isomorphic to the Weyl group.

For this reason, we refer to W more generally as the Namikawa Weyl group.

Remark 2.4 The Namikawa Weyl group in fact acts on H2(M;R), with a fundamental

domain equal to the closure of the movable cone of M [BPW, 2.17]. This movable cone can be

further divided into chambers given by ample cones of various conical symplectic resolutions of

M0. (For any conical symplectic resolution M′, its second cohomology group and its movable

cone are canonically identified with those of M.) Namikawa [Nam] proves that M is a relative

Mori dream space over M0 in the sense of [AW, 2.4], and that the chambers of Htw are exactly

equal to the W -translates of the ample cones of the various resolutions of M0. If M is obtained

as a symplectic quotient of a vector space by the action of a group G and the Kirwan map

from χ(G)R to H2(M;R) is an isomorphism, these chambers coincide with the maximal cones

of the GIT fan.

2.3 Quantizations

Let M be a conical symplectic resolution. A quantization of M is defined to be

• an S-equivariant sheaf Q of flat C[[h]]-algebras on M, complete in the h-adic topology,

where S acts on h with weight n (see [BPW, §3.2] for a precise definition of S-equivariance)

11The subscript tw stands for “twisting”, and is explained by Theorem 8.3. There will also be a “shuffling”
arrangement Hsh, and an analogous Theorem 8.13.
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• an S-equivariant isomorphism from Q/hQ to the structure sheaf SM of M

satisfying the condition that, if f and g are functions over some open set and f̃ and g̃ are lifts

to Q, the image in SX
∼= Q/hQ ∼= hQ/h2Q of the element [f̃ , g̃] ∈ hQ is equal to the Poisson

bracket {f, g}.
Using the work of Bezrukavnikov and Kaledin [BK04], who classify quantizations in a (much

more general) non-equivariant setting, Losev [Los12b, 2.3.3] proves the following classification

result (see also [BPW, 3.5]).

Theorem 2.5 Quantizations of a conical symplectic resolution M are in bijection with

H2(M;C) via the period map of [BK04].

Fix a quantization Q of M. Let D(0) := Q[h1/n], and let D(m) := h−m/nD(0) for all m ∈ Z.

Let

D := Q[h
−1/n] =

∞⋃
m=0

D(m);

we will often abuse notation by referring to D as a quantization of M. Let

A := ΓS(D)

be the ring of S-invariant sections of D. This ring inherits an N-filtration

A(0) ⊂ A(1) ⊂ . . . ⊂ A

given by putting

A(m) := ΓS(D(m)).

The associated graded of A may be canonically identified with C[M] as an N-graded ring. Many

of our examples of conical symplectic resolutions in the previous section admit quantizations

for which the ring A is of independent interest.

• If M is the Hilbert scheme of k points on a crepant resolution of C2/Γ, then is A is

isomorphic to a spherical symplectic reflection algebra for the wreath product Sk o Γ
[EGGO07, 1.4.4].

• If M = T ∗(G/B) for a reductive algebraic group G and a Borel subgroup B ⊂ G, then

A is a central quotient of the universal enveloping algebra U(g) [BB81, Lemma 3].

• If M is the resolution of a Slodowy slice to a nilpotent orbit in g, then A is a central

quotient of a finite W-algebra [Pre02, 6.4].

• If M is a hypertoric variety, then A is a central quotient of a hypertoric enveloping

algebra [BK12, §5], [BLPW12, 5.9].
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• If M0 is a slice to one affine Schubert variety inside another, then A is conjecturally

isomorphic to a quotient of a shifted Yangian [KWWY14].

Note that D and A also carry a grading by the group Z/nZ, where Q ⊂ D lies in degree 0̄

and h1/n has degree 1̄. The grading on A is compatible with the filtration and thus descends to a

grading on grA, which is equal to the grading induced by the natural semigroup homomorphism

from N to Z/nZ.

2.4 Integrality

We would like to have some notion of what it means for a quantization to be integral. Let

H2(M;Z)free be the quotient of H2(M;Z) by its torsion subgroup.12 The naive definition

would be that Q or D is integral if its period lies in the lattice H2(M;Z)free ⊂ H2(M;C), but

this is not suitable for our purposes. For example, if M = T ∗X for a projective variety X and

D is the quantization with period λ ∈ H2(M;C) ∼= H2(X;C), then A is isomorphic to ring of

differential operators on X, twisted by λ+ 1
2$X , where $X is the Euler class of the canonical

bundle of X [BPW, 4.4]. In this case, we would like to say that D is integral if and only if

λ+ 1
2$X ∈ H2(M;Z)free. More generally, the set of integral periods should be a coset Λ of

H2(M;Z)free ⊂ H2(M;C) that satisfies the following properties.

• We have λ ∈ Λ if and only if −λ ∈ Λ. Equivalently, 2Λ is contained in H2(M;Z)free. We

include this condition because the quantization with period −λ is the opposite ring of

the quantization with period λ [BPW, 3.2], and the opposite of an integral quantization

should be integral.

• If X ⊂ M is a smooth Lagrangian subvariety, then the restriction of Λ to X is equal

to 1
2$X +H2(X;Z)free. In particular, this uniquely determines Λ if M is a cotangent

bundle.

• Suppose that G is a reductive group acting on a symplectic vector space V , and M

is a smooth symplectic quotient of V by G. (For example, all quiver varieties and

smooth hypertoric varieties are of this form.) Given a Lagrangian G-subspace L ⊂ V ,

we may identify the Weyl algebra of V with the ring of differential operators on L.

Consider the quantized moment map µL : U(g) → Diff(L) that takes an element of g

to the induced vector field on L, and consider the induced quantization DL of M, as in

[KR08, 2.8(i)]. The period of this quantization can be calculated from [BPW, 3.16]. We

should choose Λ to be the coset of this period. Note that if L and L′ are two different

Lagrangian G-subspaces, then DL and DL′ need not be equal, but [BPW, 3.16] shows

12In the situation of greatest interest to us, when there is a Hamiltonian C∗-action commuting with S that
has isolated fixed points, there is no torsion in this group, as we show in Proposition 3.1.
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that their periods will always differ by an element of H2(M;Z)free, corresponding to the

determinant character of G acting on L′/(L′ ∩ L).

Remark 2.6 By the first property above, the coset Λ is uniquely determined by the image cΛ

of 2Λ in H2(M;Z)free/H
2(M; 2Z)free ⊂ H2(M;Z/2Z). The second property above is equivalent

to the statement that the restriction of cΛ to any smooth Lagrangian subvariety should equal

the second Stiefel-Whitney class of that subvariety. Unfortunately, this condition may not

uniquely determine cΛ, as it is possible that M has no smooth Lagrangian subvarieties at all.

Very little of what we do in this paper depends on the notion of integrality. In Sections

2-9, we will only refer to integral quantizations in the context of cotangent bundles, hypertoric

varieties, and quiver varieties, in which case the meaning is completely determined by the

second and third conditions above. In Section 10, the notion of integrality will become

important; in that section, we simply assume that every conical symplectic resolution comes

with a choice of Λ that is consistent with our three conditions.

2.5 Sheaves of modules

Let M, Q, and D be as in Section 2.3. A D(0)-module N (0) is called coherent if it is a

quotient of a sheaf which is locally free of finite rank. Setting N (m) := h−m/nN (0), Nakayama’s

lemma tells us that the following three conditions are equivalent:

• N (0) is coherent

• N (0)/N (−1) is a coherent sheaf of modules over D(0)/D(−1) ∼= SM

• N (0)/N (−n) = N (0)/hN (0) is a coherent sheaf of modules over Q/hQ ∼= SM.

An S-equivariant D-module N is called good if it admits a coherent S-equivariant D(0)-lattice

N (0). We call a good D-module holonomic if it has Lagrangian support.

Given a choice of lattice N (0), we will refer to the coherent sheaf N (0)/N (−n) as the big

classical limit of N , and to N (0)/N (−1) as the small classical limit of N . Note that the

big classical limit is an n-fold extension of the small classical limit, and this extension need

not split.

2.6 Localization

Let M, Q, D, and A be as in Section 2.3. Let D -mod denote the category of good S-equivariant

D-modules. Note that the choice of lattice is not part of the data of an object of D -mod.

Let A -mod be the category of finitely generated A-algebras. A good filtration of an

A-module N is defined to be a filtration such that grN is finitely generated over grA. For
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any N , we can choose a good filtration by picking a finite generating set Q ⊂ N and putting

N(m) := A(m) ·Q.

We have a functor

ΓS : D -mod→ A -mod

given by taking S-invariant global sections. The left adjoint functor

Loc : A -mod→ D -mod

is defined by putting Loc(N) := D ⊗A N. To see that Loc(N) is indeed an object of D -mod,

choose a good filtration of N . We define the Rees algebra R(A) to be the h-adic completion

of

A(0)[[h
1/n]] + h

1/nA(1)[[h
1/n]] + h

2/nA(2)[[h
1/n]] + . . . ⊂ A[[h

1/n]]

and the Rees module R(N) to be the h-adic completion of

N(0)[[h
1/n]] + h

1/nN(1)[[h
1/n]] + h

2/nN(2)[[h
1/n]] + . . . ⊂ N [[h

1/n]].

Note that R(N) is a module over R(A) ∼= Γ(D(0)), and D(0)⊗R(A) R(N) is a coherent lattice

in Loc(N).

Remark 2.7 If N is an object of A -mod, we have shown that Loc(N) always admits a

coherent lattice, but the construction of that lattice depends on a choice of filtration of

N . Conversely, any coherent lattice N (0) for an object N of D -mod induces a filtration of

N := ΓS(N ) by putting N(m) := ΓS
(
N (m)

)
.

If ΓS and Loc are quasi-inverse equivalences of categories, we will say that localization

holds for Q or localization holds for D or localization holds at λ, where λ is the period

of Q. If their derived functors induce quasi-inverse equivalences of derived categories, we say

that derived localization holds. Localization and/or derived localization is known to hold

in many special cases, including quantizations of the Hilbert scheme of points in the plane

[KR08, 4.9], the cotangent bundle of G/P [BB81], resolved Slodowy slices [Gin09, 3.3.6] &

[DK, 7.4], and hypertoric varieties [BK12, 5.8]. In [BPW, A & B.1], we have shown that

localization and derived localization hold for “many” quantizations.

Theorem 2.8 If η is the Euler class of an ample line bundle on M, then for any λ, localization

holds at λ+ kη for sufficiently large integers k.

Theorem 2.9 If η is the Euler class of an ample line bundle on M, then for any λ, derived

localization holds at λ+ kη for all but finitely many complex numbers k.
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Forthcoming work of McGerty and Nevins [MN] gives a considerable strengthening of Theorem

2.8, showing that the locus where localization fails is contained in countably many translates of

hyperplanes from the discriminant locus. In earlier work [MN14], they also gave a cohomological

criterion for when derived localization holds: when the section algebra has finite global

dimension.

2.7 Modules with supports

Let M, Q, D, and A be as in Section 2.3. Let L0 ⊂ M0 be the subscheme defined by a

graded ideal J ⊂ C[M0], and let L ⊂ M be the subscheme defined by a graded ideal sheaf

J ⊂ SM. We will often assume that L is the scheme-theoretic preimage of L0, which is

equivalent to saying that J = SM ⊗C[M0] J (see Propositions 2.13 and 2.14). We denote by

J + h ·R(A) ⊂ R(A) the preimage of J ⊗ C[h1/n]/〈h〉 under the natural map

R(A)→ C[M0]⊗ C[h
1/n]/〈h〉.

The following definitions appeared in [BPW, §6.1].

Definition 2.10 Let CL0 be the full subcategory of A -mod consisting of all modules N that

admit good filtrations with either of the following two equivalent properties:

• Let a ∈ A(k) be homogeneous of degree k̄ for the Z/nZ grading, and suppose that its

symbol ā ∈ A(k)/A(k − 1) ∼= C[M0]k lies in J . Then a ·N(m) ⊂ N(k +m− n).

• For any a ∈ J + h ·R(A), we have a ·R(N) ⊂ h ·R(N).

Let Db
L0

(A -mod) be the full subcategory of Db(A -mod) consisting of objects with cohomology

in CL0 .

Remark 2.11 Note that if N is an object of CL0 , then the associated graded grN will be

killed by the ideal J , but the converse is not true unless n = 1.

Definition 2.12 Let CL be the full subcategory of D -mod consisting of modules with big

classical limits that are scheme-theoretically supported on L. More precisely, a D-module N is

in CL if it admits a lattice N (0) that is preserved by h−1f̃ for any section f̃ of Q whose image

in Q/hQ ∼= SM lies in J . Let Db
L(D -mod) be the full subcategory of Db(D -mod) consisting

of objects with cohomology in CL.

Proposition 2.13 If L is the scheme-theoretic preimage of L0, then Loc takes CL0 to CL and

ΓS takes CL to CL0.
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Proof: Let N be an object of CL0 . Choose a filtration of N as in Definition 2.10, and let

N (0) := D(0)⊗R(A) R(N) be the induced lattice in N := Loc(N). Let f̃ be a global section

of Q whose image f ∈ Q/hQ ∼= SM lies in J . After decomposing f̃ into eigenvectors for the

S action, we may assume that there exists an integer k such that h−k/nf̃ is S-invariant. Thus

h−k/nf̃ ∈ ΓS(D) = A(k) is homogeneous of degree k̄ for the Z/nZ grading, so h−k/nf̃ ·N(m) ⊂
N(k +m− n).

On any sufficiently small open subset U , we have N (0)(U) ∼= D(0)(U) ⊗R(A) R(N);

moreover,

N (0)(U) =
∑
m

D(0)(U)⊗ hm/nN(m),

where we write D(0)(U)⊗ hm/nN(m) to denote the image of the tensor product over C inside

of N (0)(U). Thus

f̃ · N (0)(U) ⊂
∑
m

(
h
m/n[f̃ ,D(0)(U)]⊗N(m) +D(0)(U)⊗ hm+k/n ·N(m+ k − n)

)
⊂ h · N (0)(U).

Since the ideal sheaf J is generated by global sections, this suffices to show that Loc(N ) ∈ CL.

For the opposite direction, let N be an object of CL, and let N (0) be a lattice pre-

served by h−1f̃ for every section f̃ of Q whose image f ∈ Q/hQ ∼= SM lies in J . Let

N := ΓS(N ), and let N(m) := ΓS
(
N (m)

)
be the induced filtration. Let a ∈ A(k) be homoge-

neous of degree k̄ with symbol in J . Then hk/na is a section of Q whose image lies in J , so

hk/n−1a · N (m) ⊂ N (m), and therefore a · N (m) ⊂ h1−k/nN (m) = N (k +m− n). Applying

ΓS, we see that a ·N(m) ⊂ N(k +m− n), so N is an object of CL0 . 2

Proposition 2.14 If L is the scheme-theoretic preimage of L0 and derived localization holds at

λ, then LLoc takes Db
L0

(A -mod) to Db
L(D -mod) and RΓS takes Db

L(D -mod) to Db
L0

(A -mod).

Proof: Let N be an object in CL, and let N (0) ⊂ N be a lattice satisfying the required

condition. There is a spectral sequence (see [BPW, §6.1], particularly the proof of Theorem

6.5)

Hp(M;N (0)/N (−n))⇒ R (Hp(RΓS(N ))) /hR (Hp(RΓS(N ))) .

Since the left-hand side is killed by the ideal J , the same is true of the right hand side, which

implies that Hp(RΓS(N )) is in CL0 , and is only non-zero in finitely many degrees since the

map π is projective.

Now let N be an object of CL0 and put N := LLoc(N). This only has cohomology in

finitely many degrees since Aλ has finite global dimension, by a result of McGerty and Nevins

[MN14, §7.5]. A filtration of N induces a lattice in H
p(N ). For any a ∈ J + h · R(A), we
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have that a · R(N) ⊂ h · R(N); thus, on any projective resolution, the map induced by a is

null-homotopic mod h; this implies that our lattice in Hp(N ) has the required property. 2

Remark 2.15 If derived localization does not hold, then the functor LLoc is not bounded. If

we were to replace Db by the bounded-above category D−, then Proposition 2.14 would hold

for arbitrary quantizations. This is discussed in greater detail in [BPW, §4.3].

2.8 Harish-Chandra bimodules and characteristic cycles

We continue with the notation M, Q, and D from Section 2.3. The product M×M→M0×M0

is a conical symplectic resolution with quantization D �Dop (the tensor product is taken over

C((h))) and section ring A⊗Aop. Thus we can apply the previous definitions and results to

A-bimodules and D-bimodules.

Consider the diagonal Z0 ⊂M0×M0 (with its reduced scheme structure), and its preimage

Z := M×M0 M, the Steinberg scheme (which may not be reduced).

Definition 2.16 A finitely generated A-bimodule (resp. D-bimodule) is called Harish-

Chandra if it lies in CZ0 (resp. CZ). We will use the notation

HCa := CZ0 and HCg := CZ

for the abelian categories of algebraic and geometric Harish-Chandra bimodules, along with

Db
HCa(A -mod-A) and Db

HCg(D -mod-D) for the subcategories of the bounded derived cate-

gories of all bimodules consisting of objects with Harish-Chandra cohomology.

The following results appear in [BPW, §6.1].

Proposition 2.17 The category HCa is a monoidal category under the operation of tensor

product, and the category CL0 is a module category over HCa; similarly, when A has finite

global dimension, Db
HCa(A -mod-A) has a monoidal structure induced by derived tensor product,

and an action on Db
L0

(A -mod).

There is a geometric version of this derived tensor product, induced by convolution

on Db
HCg(D -mod-D), and the category Db

L(D -mod) is naturally a module category over

Db
HCg(D -mod-D). These structures are compatible with the derived S-invariant section func-

tors.

Let H be an object of HCg and let N be an object of CL. Let d = 1
2 dimM. In [BPW,
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§6.2] we constructed maps13

CC : K(HCg)→ H4d
Z (M×M;Z) and CC : K(CL)→ H2d

L (M;Z),

and we proved the following result [BPW, 6.15 & 6.16].

Proposition 2.18 The map CC intertwines the monoidal structure on Db
HCg(D -mod-D)

with the convolution product on H4d
Z (M × M;Z), and it also intertwines the action of

Db
HCg(D -mod-D) on Db

L(D -mod) with the convolution action of H4d
Z (M×M;Z) on H2d

L (M;Z).

Remark 2.19 The statements in [BPW, §6.2] are somewhat more technical than what we

have stated above, because there we consider all quantizations at once. That is, for any pair

λ, λ′ ∈ H2(M;C), we define what it means for an (Aλ, Aλ′)-bimodule or a (Dλ,Dλ′)-bimodule

to be Harish-Chandra, and so on. We will in fact need this stronger version when we discuss

twisting functors in Section 8.1, but for the purposes of this summary we have elected to keep

things clearer by fixing a particular quantization.

3 The categories Oa and Og

To define the categories Oa and Og we need one more piece of geometric structure, namely a

Hamiltonian action of the multiplicative group T ∼= C×, commuting with the action of S, such

that MT is finite. First, let us make some observations about the integral cohomology of such

a symplectic resolution.

Proposition 3.1 If M is a conical symplectic resolution that admits a T-action as above,

then H∗(M;Z) is torsion-free and concentrated in even degrees.

Proof: By Poincaré duality, we can instead consider the Borel-Moore homology of the same

variety. By [Nak01, 7.1.5], it suffices to show that the same is true of the smooth projective

variety MS. The action of T preserves MS; thus, this projective variety has a torus action

with isolated fixed points. The Bia lynicki-Birula decomposition of MS shows that it has even

torsion-free cohomology. 2

Remark 3.2 The analogous result is shown for quiver varieties even when they don’t have a

T-action with finite fixed-point set in [Nak01, 7.3.5].

The action of T lifts canonically to an action on Q, where T fixes h. By [BPW, 3.11],

there exists an element ξ of A(n) ⊂ A, unique up to translation by A(0) ∼= C, such that

the endomorphism of D induced by the generator of the Lie algebra t := Lie(T) is given by

conjugation with ξ.

13We will review the definition of these maps in Section 6.1.
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Remark 3.3 For any choice of ξ, the image ξ̄ of ξ in A(n)/A(n − 1) ⊂ grA ∼= C[M] is the

unique S-equivariant moment map for the action of T on M. Another way to say this is

to note that ξ induces a homomorphism from U(t) to A, and the associated graded of this

homomorphism is the co-moment map.

3.1 The relative core

Choose an indexing set I for the T-fixed points of M, so that MT = {pα | α ∈ I}. For each

α ∈ I, let Xα ⊂M be the closure of the set

X◦α :=
{
p ∈M | lim

T3t→0
t · p = pα

}
,

and let M+ :=
⋃
Xα. The set M+ is called the relative core of M.

The fact that the action of T preserves the symplectic form implies that each Xα is

Lagrangian (though possibly singular), and the open subvariety X◦α is isomorphic to d-

dimensional affine space.

In the affine variety M0, let

M+
0 :=

{
p ∈M0 | lim

T3t→0
t · p = o

}
be the locus of points that limit to the unique T-fixed point o ∈M0. Since M is projective over

M0, a point in M has a limit if and only if its image in M0 does; it follows that M+ =
⋃
X◦α

is the preimage of M+
0 .

Let Xα,0 be the image of Xα in M0.

Example 3.4 If M is a crepant resolution of C2/Γ with Γ ∼= Z/kZ, the relative core com-

ponents {Xα | α ∈ I} will consist of a chain of k − 1 projective lines, along with a copy

of C at one end of the chain. If M is T ∗(G/P ), they will be the conormal varieties to the

Schubert strata of G/P . If M is a hypertoric variety, they will all be toric varieties. The

cotangent bundle of P1 is a special case of all three of these examples; in this case we have two

subvarieties: the zero section and one of the fibers.

Remark 3.5 The preimage of o ∈ M0 in M is called the core, and is a subset of M+

consisting of the union of all of the projective components. Our requirement that {o} is a

symplectic leaf of M0 guarantees that the core is a Lagrangian subvariety of M. Note that the

core is independent of the choice of T-action, while the relative core depends on this choice.

Let J ⊂ C[M] be the ideal in the coordinate ring of M generated by functions of non-

negative T-weight and S-weight greater than or equal to n.

Lemma 3.6 The relative core M+ ⊂M is the vanishing locus of J .
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Proof: Let f ∈ C[M] be a function of non-negative T-weight and S-weight greater than or

equal to n. Then f vanishes on S-fixed points, and the core (being projective) contains at

least one such point. Thus f vanishes on the entire core. For any p ∈M+,

f(p) = lim
t→0

(t · f)(t · p) = 0,

since t · f is approaching either f or 0, and t · p is approaching an element of the core. Thus f

vanishes on all of M+, so M+ is contained in the vanishing locus of J .

Now suppose that p ∈MrM+; we must produce an element of J that does not vanish at

p. Let p0 ∈M0 rM+
0 be the image of p. Since the limit as t goes to zero of t · p0 does not

exist, there must exist a function f ∈ C[M0] ∼= C[M] such that

lim
T3t→0

f(t · p0) = lim
T3t→0

(t−1 · f)(p0)

does not exist; if we require f to be a S × T-weight function, this means that f has posi-

tive T-weight and does not vanish at p0. Since it has positive T-weight, it is non-constant,

and therefore has positive S-weight; taking a power, we may assume its S-weight is at least n. 2

Remark 3.7 Until now we have only defined M+ ⊂ M and M+
0 ⊂ M0 as subsets; we will

now endow them with subscheme structures given by the ideal J , as suggested by Lemma 3.6.

Recall that

ξ̄ ∈ A(n)/A(n− 1) ⊂ grA ∼= C[M]

is defined as the symbol of ξ ∈ A(n). We define a ξ̄-equivariant coherent sheaf on M to be

a coherent sheaf F along with an endomorphism d : F → F such that, for all locally defined

sections v and functions f , we have d(fv) = {ξ̄, f}v + fd(v), where {,} is the Poisson bracket

on C[M]. This definition is motivated by the following lemma.

Lemma 3.8 Let N be a good D-module with a coherent lattice N (0) ⊂ N that is preserved

by ξ.14 Let N̄ := N (0)/N (−1) be the small classical limit. Then the action of ξ defines

a ξ̄-equivariant structure on N̄ . Furthermore, the C[M]-module Γ(N̄ ) is isomorphic to the

associated graded of the filtered A-module ΓS(N ) as a module-with-endomorphism.

Proof: The action of ξ clearly descends to an endomorphism d : N̄ → N̄ . Let f be a function

on M, and lift it to a section f̃ of D(0). Let v be a section of N̄ , and lift it to a section ṽ of

N (0). Then d(fv) is the image in N̄ of the section ξf̃ ṽ = [ξ, f̃ ]ṽ + f̃ ξṽ of N (0). A priori,

[ξ, f̃ ] is a section of D(n) = h−1D(0), but since it is a commutator, it in fact lies in D(0), and

it descends to the function {ξ̄, f}; this proves that N̄ is ξ̄-equivariant. The statement about

14Note that ξ ∈ A(n), so a priori we only know that ξ·N (0) ⊂ N (n); here we are assuming that ξ·N (0) ⊂ N (0).
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the associated graded follows formally. 2

Lemma 3.9 For any ξ̄-equivariant coherent sheaf F on M which is set-theoretically supported

on M+, the generalized ξ̄-eigenspaces of Γ(M;F ) are finite dimensional and the real parts of

the eigenvalues are bounded above.

Proof: The condition holds for a sheaf if it holds for the successive quotients of a filtration of

the sheaf, thus we may assume that F is scheme-theoretically supported on a single relative

core component Xα. Since Xα,0 is affine, the pushforward of F to Xα,0 is a quotient of the

tensor product of the structure sheaf of Xα,0 with some finite-dimensional ξ̄-module W . Thus

we only need to prove that ξ̄ acts on the coordinate ring of Xα,0 with finite dimensional

generalized eigenspaces, and that the eigenvalues that appear (all of which are integers, since

the ξ̄-action comes from the T-action) are bounded above. This follows from the fact that

every element of Xα,0 limits to o under the T-action. 2

3.2 The category Oa

The action of T on Q induces an integer grading of A, where the kth graded piece is Ak :=

{a ∈ A | [ξ, a] = ka}. Let

A+ :=
⊕
k≥0

Ak.

Definition 3.10 We define algebraic category O to be the full subcategory Oa of finitely

generated A-modules for which the subalgebra A+ acts locally finitely. We define Db
Oa

(A -mod)

to be the full subcategory of objects of Db(A -mod) with cohomology in Oa.

Remark 3.11 Let g be a simple Lie algebra with Borel subalgebra b and Cartan subalgebra

h. An infinitesimal block of the classical BGG category O is by definition the full subcategory

of finitely generated U(g) modules for which U(b) acts locally finitely, U(h) acts semisimply,

and the center of U(g) acts with a fixed generalized character. It is a theorem of Soergel

[Soe86, Theorem 1] that, in the case of a regular character, this is equivalent to the category

obtained by dropping the condition that U(h) acts semisimply but adding the condition that

the center of U(g) acts with a fixed honest character.

In our setup, A is the analogue of a central quotient of U(g), A+ is the analogue of U(b),

and we have no analogue of U(h). When M = T ∗(G/B) and the period of the quantization is

regular (that is, it has trivial stabilizer in the Namikawa Weyl group, which in this case is the

same as the usual Weyl group), our category Oa is equivalent to the corresponding infinitesimal
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block of BGG category O by Soergel’s theorem. If the period is not regular, then our category

will be genuinely different from the corresponding infinitesimal block of BGG category O.

Lemma 3.12 For all integers k, Ak is finitely generated over A0.

Proof: This follows from the corresponding statement for grA ∼= C[M], which is a consequence

of the fact that C[M] is finitely generated as a commutative algebra, and C[M]T is finitely

generated since T is reductive. 2

We call an A-module N a weight module if it decomposes into generalized weight spaces

for the action of ξ ∈ A. More precisely, for any ` ∈ C, let

N ` := {x ∈ N | there exists q ∈ Z such that (ξ − `)q · x = 0}.

Then N is a weight module if and only if N =
⊕
`∈C

N `. Note that for all k ∈ Z and ` ∈ C,

Ak ·N ` ⊂ Nk+`.

Lemma 3.13 A finitely generated A-module N lies in Oa if and only if N is a weight module,

N ` is finite dimensional for all `, and N ` = 0 for all ` with sufficiently large real part.

Proof: First suppose that the three conditions are satisfied. For any x ∈ N `,

A+ · x ⊂
⊕
k≥0

Nk+`,

which is finite dimensional. Thus A+ acts locally finitely, and N ∈ Oa.

Conversely, suppose that N ∈ Oa. The fact that N is a weight module follows from the

fact that ξ ∈ A+ acts locally finitely. The fact that N ` = 0 for all ` with sufficiently large

real part follows from the fact that N is finitely generated, thus the vector space obtained by

applying A+ to a generating set is finite dimensional. Finally, the fact that each generalized

weight space of N is finite dimensional follows from Lemma 3.12 and the fact that N is locally

finite for the action of A0 ⊂ A+. 2

Proposition 3.14 The category Oa is equal to the category CM+
0 of Definition 2.10, where

we use the scheme structure on M+ coming from Lemma 3.6.

Proof: First suppose that N ∈ Oa. To show that N ∈ CM+
0 , we must find a good filtration

of N such for k ≥ n, we have A+(k) · N(m) ⊂ N(k + m − n). Choose a finite dimensional
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subspace S ⊂ N which is closed under A+ and generates N , and define a filtration on N by

putting N(m) := A(m) · S. If k ≥ n, then we have

A+(k)·N(m) ⊂ A(m)A+(k)·S+[A(m), A+(k)]·S ⊂ A(m)·S+A(k+m−n)·S = N(k+m−n).

Next, suppose that N ∈ CM+
0 . By Definition 2.10, this means that we may choose a

filtration of N such such that, for all k ≥ n, A+
k̄

(k) ·N(m) ⊂ N(k + m − n). In particular,

ξ ·N(m) ⊂ N(m), and grN is set-theoretically supported on M+
0 . Let F be the pullback of

grN from M0 to M. By Lemma 3.9 applied to F , grN has finite-dimensional ξ̄ weight spaces,

and the real parts of the eigenvalues are bounded above. Thus, the same holds for N , and

Lemma 3.13 tells us that N is in Oa. 2

3.3 The category Og

Definition 3.15 We define geometric category O to be the full subcategory Og of D -mod

consisting of modules N such that

• the sheaf N is set-theoretically supported on the relative core M+

• there exists a D(0)-lattice N (0) ⊂ N such that ξ · N (0) ⊂ N (0).

We define Db
Og

(D -mod) to be the full subcategory of objects of Db(D -mod) with cohomology

in Og.

Remark 3.16 Suppose that M = T ∗(G/P ). By [BPW, 4.5], D -mod is equivalent to the

category of finitely generated twisted D-modules on G/P , where the twist is determined by

the period of the quantization. Then Og consists of regular twisted D-modules with microlocal

supports in M+.

Our first result is that, unlike Oa, the category Og depends only on the image of the period

in the quotient H2(M;C)/H2(M;Z).

Lemma 3.17 Let λ, λ′ ∈ H2(M;C) be two classes that differ by an element of H2(M;Z).

Let D and D′ be the quantizations with periods λ and λ′, and let Og and O′g be the associated

categories. Then Og and O′g are canonically equivalent.

Proof: Let L be a line bundle with first Chern class λ− λ′ ∈ H2(M;Z). In [BPW, §5.1] we

construct a Q−Q′ bimodule λ′Tλ which as, a left Q-module, is a quantization of L. Consider

the functor λ′Tλ[h−1/n]⊗D − from D -mod to D′ -mod. Since λ′Tλ[h−1/n] is a quantization of a

line bundle, this functor does not affect the support of an object. Furthermore, if N (0) ⊂ N
is a lattice satisfying the second condition of the definition of Og, then λ′Tλ(0)⊗D(0) N (0) will
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be such a lattice, as well. Thus our functor takes Og to O′g. To show that it is a canonical

equivalence, it is sufficient to show that λTλ′ [h−1/n]⊗D′ λ′Tλ[h−1/n] ∼= D, where λ′Tλ is a quan-

tization of L−1. This follows from uniqueness of quantizations of line bundles [BPW, 5.2]. 2

Proposition 3.18 The category Og is equal to the category CM+
of Definition 2.12.

Proof: By Lemma 3.6, a D-module N is in CM+
if and only if it admits a lattice N (0) that

is preserved by h−1f̃ for any section f̃ of Q whose image f ∈ Q/hQ ∼= SM has non-negative

T-weight and S-weight at least n. In particular, ξ ∈ Γ(h−1Q) is of this form, and thus

preserves this lattice. In addition, the big classical limit N (0)/N (−n) is killed by an ideal

whose vanishing set is M+, and thus is set-theoretically supported on this locus. The same

follows for N , so we can conclude that N ∈ Og. Thus CM+ ⊂ Og, and it remains to show the

reverse inclusion.

Using Lemma 3.17 and the analogous statement for CM+
(which can be proved in the same

way), we may add a large multiple of an ample class to the period of our quantization. Then

by Theorem 2.8, we may assume that localization holds. Let N be an object of Og, and let

N := ΓS(N ). By Lemmas 3.8, 3.9, and 3.13, N is an object of Oa, which is equal to CM+
0 by

Proposition 3.14. Then by Proposition 2.13, N = Loc(N) is in CM+
, and we are done. 2

The following corollary follows directly from Propositions 2.13, 2.14, 3.14, and 3.18.

Corollary 3.19 Loc takes Oa to Og and ΓS takes Og to Oa. In particular, if localization holds

for D, then the geometric category Og is equivalent to the algebraic category Oa. Similarly,

if derived localization holds, then LLoc and RΓS induce an equivalence between Db
Oa

(A -mod)

and Db
Og

(D -mod).

Remark 3.20 As discussed in Remark 2.15, a version of Corollary 3.19 holds in bounded

above derived categories even if derived location fails.

Example 3.21 Combining Remarks 3.11 and 3.16 with Corollary 3.19, we obtain Beilinson

and Bernstein’s equivalence between an infinitesimal block of BGG category O and the

category of finitely generated twisted D-modules on G/B, smooth with respect to the Schubert

stratification.

Remark 3.22 It seems slightly dissatisfying to use the unreduced scheme structure of Remark

3.7 on M+. One could also consider the category CM
+
red attached to the reduced scheme structure

on the subset M+; that is to say, the category of regular D-modules that are set-theoretically

supported on M+. It is clear that CM
+
red ⊂ CM+

= Og, but it is not clear whether or not this
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containment is an equality. Since M+
red is not the scheme-theoretic preimage of any subvariety

of M0, there is no obvious choice of a corresponding subcategory of Oa.

The following lemma provides an alternative formulation of the second condition of

Definition 3.15; it will be used to prove Proposition 3.24.

Lemma 3.23 A good D-module N possesses a ξ-stable coherent lattice if and only if, for

every finitely generated D(0)-submodule P, the sum

Pj := P + ξ · P + · · ·+ ξj · P

stabilizes for j � 0.

Proof: First suppose that the sum stabilizes for every finitely generated P. If we take P to

be a coherent lattice and take j in the stable range, then Pj is a ξ-stable lattice.

Now assume that N admits a ξ-stable coherent lattice N (0), and let P ⊂ N be any finitely

generated D(0)-submodule. Then for some m, P ⊂ N (m) and therefore Pj ⊂ N (m) for all

j ≥ 0. The stabilization of Pj then follows from the fact that N (m) is a finitely generated

module over a Noetherian ring. 2

Proposition 3.24 The category Og is an Abelian Serre subcategory of D -mod.

Proof: In order to check that a full subcategory of an Abelian category is Serre and Abelian,

we need only check that it is closed under quotients, submodules, and extensions. Obviously,

all these are compatible with the support condition, so we need only consider the existence of

a ξ-invariant lattice.

Let N ⊂M be objects of D -mod. The image of a ξ-invariant lattice inM is such a lattice

in M/N , so M ∈ Og ⇒M/N ∈ Og. Since any finitely generated D(0)-module N is also a

finitely generated submodule of M, Lemma 3.23 shows that M∈ Og ⇒ N ∈ Og.

Finally, assume that N ∈ Og and M/N ∈ Og. Let P be any finitely generated D(0)-

submodule of M; by Lemma 3.23, it is sufficient to show that the sequence {Pj} of D(0)-

submodules stabilizes. Replacing P by some Pj , we may assume that the image of P inM/N
is ξ-stable. Choose a finite generating set {mi ∈ Γ(Ui;P)} for P , along with {aji ∈ Γ(Ui;D(0))}
such that for all i, χi := ξmi −

∑
j a

j
imj lies in Γ(Ui;N ). Let R ⊂ N be the D(0)-submodule

generated by {χi}.
For any section m of P on an open subset U , we may choose sections bi of D(0) such that

m =
∑
bimi (perhaps after shrinking U), and therefore

ξm =
∑

ξbimi =
∑
i

[ξ, bi]mi +
∑
i

biξmi =
∑
i

[ξ, bi]mi +
∑
i

biχi +
∑
i,j

bia
j
imj .
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Thus, ξ · P ⊂ P +R; by induction, this implies that Pj ⊂ P +Rj−1 for all j. Since R is a

submodule of N , the submodules {Rj} stabilize, and thus so do the submodules {Pj}. 2

4 Categorical preliminaries

In this section we will collect various definitions and basic results about Koszul, highest weight,

and standard Koszul categories, which we will apply to Oa and Og in the next section.

4.1 Koszul categories

Much of the material in this section comes from the seminal work [BGS96], though our

presentation follows more closely that of [MOS09], to which we refer the reader for further

details.

Let C̃ be a C-linear Abelian category, which we will assume throughout is Noetherian and

Artinian with enough projectives and finite projective dimension. Consider a choice of weight

wt(L) ∈ Z for each simple in C̃, and assume further that there are finitely many simples of

any given weight. The category C̃ is said to be mixed if, whenever Ext1(L,L′) 6= 0, we have

wt(L′) < wt(L). A Tate twist on a mixed category is an autoequivalence M 7→M(1) such

that wt(L(1)) = wt(L)− 1.

Let C̃ be a mixed category, and let C̃/Z be the category whose objects are the same as

those of C̃, but whose morphism spaces are the graded vector spaces

HomC̃/Z(M,M ′) :=
⊕
d∈Z

HomC̃(M,M ′(−d)).

Note that every object in C̃/Z is isomorphic to all of its Tate twists.

If P is an indecomposable projective in C̃, or more generally a projective whose head is

concentrated in a single weight, then EndC̃/Z(P ) is a mixed algebra in the sense of [BGS96,

4.1.5], and thus positively graded. In fact, any mixed category with Tate twist is equivalent to

the category of finite dimensional graded modules over a projective limit of finite dimensional

positively graded algebras with semi-simple degree zero part [BGS96, 4.1.6]; if we assume in

addition that the are finitely many simples of weight 0, then the condition of having enough

projectives guarantees that this algebra can be taken to be finite dimensional.

Let VectC be the category of finite-dimensional complex vector spaces. Define the degrad-

ing C of C̃ to be the category of additive functors (C̃/Z)op → VectC for which the composition

with the natural functor C̃op → (C̃/Z)op is left-exact15. This is the same as the category of

15This is a degrading in the sense of [BGS96, §4.3], but it is somewhat stronger, since the condition (∗)iM,N is
automatic from the Yoneda lemma.
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additive functors from the opposite category of projectives in C̃ to VectC, since every object in

C̃ can be presented as the cokernel of a map between projectives. In more concrete language,

C is the category of finite dimensional right modules over the endomorphism ring in C̃/Z of

the sum of the projective covers of all simples of weight 0.

We say that C̃ is a graded lift of C. Similarly, we can define the degrading of a functor

between mixed categories, and speak of graded lifts of functors. We call an object of C
gradeable if it is representable, that is, if it is of the form Hom(M,−) for M in C̃/Z. If C̃ is

the category of finite dimensional graded modules over a positively graded finite dimensional

algebra, then C is the category of finite dimensional ungraded modules.

We now define the category of linear complexes of projectives, which plays a central

role in our discussion of Koszul duality below.

Definition 4.1 Let LCP(C̃) denote the category whose objects are complexes X• of projective

objects in C̃ such that all summands of the head of Xj have weight j. This is “linear” in the

sense that if we shifted every term to have head which is weight 0, then every differential

would have “degree 1.” The morphisms in LCP(C̃) are chain maps.

Remarkably, LCP(C̃) is an Abelian subcategory of the category of complexes in C̃. The

simple modules of LCP(C̃) are the complexes given by a single indecomposable projective in

a single degree j; we can weight the category LCP(C̃) by endowing a complex concentrated

in degree j with weight j. The Tate twist on this category is given by [−1](−1). An

indecomposable injective in this category arises as a quotient of a minimal projective resolution

of a simple by the subcomplex consisting of objects with head in weight less than j in the jth

term.

Remark 4.2 The category LCP(C̃) is canonically equivalent to the quadratic dual of the

category C̃ [MOS09, Theorem 12], even if C̃ is not itself quadratic.

Definition 4.3 The category C is said to be Koszul if it admits a graded lift C̃ with the

property that the minimal projective resolution of every simple object in C̃ is linear. If C
is Koszul, then any two Koszul graded lifts are canonically equivalent as mixed categories

[BGS96, 2.5.2].

Mazorchuk, Ovsienko, and Stroppel [MOS09, §5.1] define a pair of adjoint functors16

KC̃ : Db(C̃) −→ Db(LCP(C̃)) and K ′C̃ : Db(LCP(C̃)) −→ Db(C̃).

We refer there for the complete definition; the facts we will need about these functors are

summarized in the following result [MOS09, Theorem 30].

16In [MOS09], a different finiteness condition is used on the derived category, but the Artinian and finite
global dimension hypotheses guarantee that the functors are bounded.
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Theorem 4.4 The following are equivalent for a non-negatively graded category C̃:

1. The degrading C is Koszul.

2. The functors KC̃ and K ′C̃ above are mutually inverse equivalences of categories.

3. The functor KC̃ takes each indecomposable projective to the corresponding simple.

4. The functor K ′C̃ takes each indecomposable injective to the corresponding simple.

Proposition 4.5 If C is Koszul, then so is LCP(C̃), and there is a canonical equivalence of

categories between C̃ and the double dual LCP
(

LCP(C̃)
)
.

Proof: By [MOS09, Theorem 12], Koszulity of LCP(C̃) is equivalent to the quadratic dual of

C being Koszul, which follows from [BGS96, 2.9.1].

Consider the composite equivalence

KLCP(C̃) ◦KC̃ : Db(C̃)→ Db(LCP
(

LCP(C̃)
)
);

this is an equivalence of derived categories sending projectives to injectives. Composing with

the inverse of the derived Nakayama functor, we obtain an equivalence of derived categories

sending projectives to projectives, and thus inducing an equivalence of Abelian categories

C̃ ∼= LCP
(

LCP(C̃)
)
. 2

Remark 4.6 Though we have emphasized categories rather than algebras in the above

definition of Koszul duality, it is sometimes convenient to reconsider the Koszul duality

statements above from the point of view of algebras. Let P be the sum of the indecomposable

projectives in C; then C is equivalent to the category of finite-dimensional EndC(P )op-modules.

Let L be the sum of the simples in C, and choose a projective resolution Π• of L. The algebra

E :=
⊕
m∈Z

Hom(Π•,Π•[m])

is naturally a dg-algebra, which we call the dg-Yoneda algebra of C; this algebra depends

on the choice of Π• only up to quasi-isomorphism. The cohomology ring

E := H•(E) ∼= ExtC(L,L)

is the ordinary Yoneda algebra of C. The algebra E carries a natural (cohomological)

grading, and thus has a category of graded modules E -gmod.

Now assume that C is Koszul, and let Π̃• be a linear projective resolution of the weight

0 graded lift L̃ of L. Then Π̃• is an injective generator in LCP(C̃), and the algebra of
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endomorphisms (of arbitrary degree) of Π̃• in LCP(C̃)/Z is a quotient dg-algebra of E with

trivial differential, killing all elements of Hom(Π̃•, Π̃•[m](m)) of positive degree. The quotient

map is a quasi-isomorphism, so

E ∼= EndLCP(C̃)/Z(Π̃•, Π̃•) ∼=
⊕
m

EndLCP(C̃)

(
Π̃•, Π̃•[m](m)

)
.

Thus E -gmod ∼= LCP(C̃), and the algebra EndC(P ) = EndC̃/Z(P̃ ) is isomorphic as a graded

algebra to the Yoneda algebra of E -gmod. This demonstrates explicitly that, if C is Koszul, it

has a unique graded lift C̃ (see Definition 4.3).

Remark 4.7 The Yoneda algebra of the category Og will be studied in Section 5.4.

For the purposes of Section 10, it will be convenient to introduce the following definition.

Definition 4.8 Let C and C! be two Koszul categories, and let C̃ and C̃! be their graded lifts.

A Koszul duality from C to C! is an equivalence of mixed categories

ψ : LCP(C̃)→ C̃!.

Taking derived functors and precomposing with KC̃ , we also obtain an equivalence of triangu-

lated categories

Ψ : Db(C̃)→ Db(C̃!)

sending projective objects of C̃ to simple objects of C̃! and sending the Tate twist (1) to the

functor (−1)[−1]. Conversely, any such equivalence of triangulated categories must induce an

equivalence LCP(C̃) ∼= C̃!, as these are the hearts of t-structures for which the functor is exact.

Thus, we will also refer to Ψ as a Koszul duality from C to C!. We say that C! is Koszul dual

to C if there is a Koszul duality between them.

While we have not defined Koszul duality in a way which is obviously symmetric, the

following observation demonstrates that it is a true duality.

Proposition 4.9 If ψ : LCP(C̃)→ C̃! is a Koszul duality from C to C!, then the inverse of

LCP(ψ) : C̃ ∼= LCP
(

LCP(C̃)
)
→ LCP(C̃!)

is a Koszul duality from C! to C.

Remark 4.10 We could also phrase Proposition 4.9 in terms of the derived equivalence

Ψ : Db(C̃)→ Db(C̃!). The induced Koszul duality in the reverse direction is the precomposition

of Ψ−1 with the right derived Nakayama functor.

29



4.2 Highest weight and standard Koszul categories

Let C be a C-linear Abelian, Noetherian category with simple objects {Lα | α ∈ I}, projective

covers {Pα | α ∈ I}, and injective hulls {Iα | α ∈ I}. Let ≤ be a partial order on I.

Definition 4.11 We call C highest weight with respect to this partial order if there is a

collection of objects {∆α | α ∈ I} and epimorphisms Pα
Πα→ ∆α

πα→ Lα such that for each α ∈ I,

the following conditions hold:

1. The object kerπα has a filtration such that each sub-quotient is isomorphic to Lβ for

some β < α.

2. The object ker Πα has a filtration such that each sub-quotient is isomorphic to ∆γ for

some γ > α.

The objects ∆α are called standard objects. Classic examples of highest weight categories

in representation theory include integral blocks of parabolic BGG category O [FM99, 5.1].

In any highest weight category, we also have a notion of costandard objects.

Definition 4.12 Let ∇α be the largest subobject of Iα whose composition factors are all

isomorphic to Lβ with β ≤ α. By [DR92, Theorem 1], the category C is highest weight if and

only if Iα has a filtration by costandards ∇γ analogous to the standard filtration on projectives.

If C admits a graded lift C̃, then every standard object of C is gradeable. More precisely,

if P̃α is a graded lift of Pα, then we may define ∆̃α to be the largest quotient of P̃α with no

composition factors of the form L̃β for β > α, and ∆̃α will be a graded lift of ∆α. We refer to

the graded lifts of standard objects of C as standard objects of C̃.

Definition 4.13 A highest-weight category C is standard Koszul if it admits a graded lift

C̃ with the property that the minimal projective resolution of every standard object in C̃ is

linear. (Compare this definition to Definition 4.3, in which ordinary Koszulity is defined.)

The following result is the main theorem of [ÁDL03].

Theorem 4.14 A highest-weight category C is standard Koszul with respect to a given partial

order if and only if it is Koszul and its Koszul dual C! is highest weight with respect to the

opposite partial order.

5 The structure of Oa and Og

In this section we fix a conical symplectic resolution and a Hamiltonian T-action with isolated

fixed points and we investigate the structure of the categories Oa and Og for various different
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quantizations. We prove that Oa is highest weight for most quantizations (Proposition 5.3

and Theorem 5.12), and that Og is highest weight for all quantizations (Proposition 5.17).

Furthermore, we conjecture that both categories are standard Koszul (Conjectures 5.14 and

5.18), based on the evidence from the theory of hypertoric varieties (Example 5.15) and from

classical Lie theory (Example 5.16).

We also include a brief discussion of the Yoneda algebra of Og (Section 5.4). In particular,

we define a natural map from H∗(M;C) to the center of the Yoneda algebra, and conjecture

that this map is often an isomorphism (Conjecture 5.23).

5.1 The B algebra

For any Z-graded ring A, let

B(A) := A0
/∑
k>0

A−kAk.

Proposition 5.1 If A is the S-invariant section ring of a quantized conical symplectic resolu-

tion M, with grading induced by the action of T, then B := B(A) is finite dimensional as a

vector space.

Proof: Consider the associated graded ring grB; this ring admits a surjection from B(C[M]),

where C[M] is also graded by the action of T. It therefore suffices to show that B(C[M]) is

finite dimensional.

Let p0 be an element of M0. In the proof of Lemma 3.6, we showed that if p0 /∈M+
0 , then

there exists a function of positive T-weight that does not vanish at p0. Let M− be the relative

core for the opposite T-action, and let M−0 be its image in M0. By the same reasoning, if

p0 /∈ M−0 , then there exists a function of negative T-weight that does not vanish at p0. It

follows that the set-theoretic vanishing locus in M0 of the ideal I generated by all homogeneous

elements of nonzero T-weight is equal to M+
0 ∩M−0 = {o}, and therefore that this ideal has

finite codimension in C[M0] = C[M]. Thus B(C[M]) = (C[M]/I)0 is finite dimensional. 2

For each α ∈ I, let Uα be a formal neighborhood of pα. Although the groups S and

T do not act on Uα or on D|Uα , their Lie algebras do, so we can make sense of the ring

Ãα := ΓS(D|Uα). Let Aα be the subring of Ãα that is additively spanned by T-weight vectors

(this means passing from power series to polynomials), and let Bα := B(Aα). Then Aα and

Bα admit natural maps from A and B, respectively.

Lemma 5.2 Let d = 1
2 dimM. The algebra Aα is isomorphic to the ring of global differential

operators on Cd, and Bα is isomorphic to C.
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Proof: There is only one quantization of the formal polydisk [BK04, 1.5], thus the ring of

sections Γ(D|Uα) must be isomorphic to the Weyl algebra

C[[x1, y1, . . . , xd, yd, h
1/n]](h

−1/n)
/〈

[h, xi], [h, yi], [xi, xj ], [yi, yj ], [xi, yj ]− hδij
〉
.

We may choose x1, y1, . . . , xd, yd, h to be simultaneous weight vectors for S and T, with each

xiyi and h having S weight n and T weight 0. If χi is the S weight of xi, let

zi := h
−χi/nxi and wi := h

χi/n−1yi.

Then Aα is generated by

{z1, w1, . . . , zd, wd},

subject to the relations

[zi, zj ] = 0, [wi, wj ] = 0, and [zi, wj ] = δij .

The C-vector space spanned by the zi and wi is isomorphic as a T-space to the tangent space

TpαM. Since pα is an isolated fixed point, none of the zi or wi can have zero weight. Without

loss of generality suppose that the T-weight of zi is negative. The ring Aα has a PBW basis

given by monomials of the form zawb for a, b ∈ Nd. All such monomials with a 6= 0 are clearly

in A−kα Akα for some k > 0, so Bα is at most one-dimensional. On the other hand, the action of

A0
α on the T-invariant part of Aα/Aα〈w1, . . . , wd〉 descends to a nontrivial action of Bα, so Bα

cannot be zero. 2

In what follows, fix an S-equivariant line bundle L, very ample over M0, and let η ∈
H2(M;C) be its Euler class. Fix another class λ ∈ H2(M;C), and for all k ∈ C, let Qk be the

quantization of M with period λ+ kη. Let

Ak := ΓS(Dk) and Bk := B(Ak).

For each α ∈ I, define Ak,α and Bk,α as above.

Proposition 5.3 The natural map ϕk : Bk →
⊕
α∈I

Bk,α is an isomorphism for all but finitely

many values of k ∈ C.

Proof: Our plan is to construct a family of maps, parametrized by the affine line, such that

the fiber over k is the map ϕk, and to show that the generic map ϕ∞ is an isomorphism.

To accomplish this, we work with the twistor deformation Mη of M over A1, introduced

in 2.2. Let ∆ := SpecC[[h]] be the formal disk, and let σk : ∆→ ∆× A1 be the map that is
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the identity on the first coordinate and pulls back the coordinate on A1 to kh. Following the

argument in [BPW, 4.17], there exists a quantization D of Mη such that Dk is isomorphic to

the pull-back of D along the map σk via the pull-back construction described in [BPW, §3.1].

The action of T extends to this situation by [Kal06b, 1.5].

Let Uα ⊂Mη be a formal neighborhood of the component of M T
η corresponding to α, so

that Uα is a deformation of Uα over A1. Let π be the projection from Mη to A1. Let

B := B(π∗D) and Bα := B(π∗D |Uα);

both are sheaves of algebras over A1, and we have a natural map ϕ : B → Bα whose fiber

over k is ϕk.

By a result of Kaledin [Kal08, 2.5], the generic fiber Mη(∞) is affine. This tells us that

the attracting sets to the fixed points are all closed affine spaces, so the associated graded

algebras of B(∞) and ⊕Bα(∞) are both isomorphic to the coordinate ring of Mη(∞)T. It

follows that the map grϕ(∞) is an isomorphism, and thus so is ϕ(∞). 2

Remark 5.4 If we use an action of T which does not have isolated fixed points, then these

results proceed through in almost the same way, but with one important change: the algebras

Bα should now be indexed by components of MT, and each one will be given by global sections

of an induced quantization on the corresponding component.

5.2 The category Oa is highest weight (for most quantizations)

Throughout this section we will assume that the map ϕ : B → ⊕Bα ∼= CI is an isomorphism.

By Proposition 5.3, this is the case for “most” quantizations.

For each α ∈ I, let

∆α := A⊗A+ Bα and ∇α :=
(
B∗α ⊗A+ A

)?
,

where Bα is regarded as a quotient of B (and therefore also of A+). Here ∗ denotes ordinary

vector space duality and ? denotes restricted duality: if N is a finitely generated right weight

module (as defined in Section 3.2), then N? := ⊕`∈C(N `)∗. We will refer to ∆α and ∇α as the

standard and costandard modules indexed by α.

Lemma 5.5 The modules ∆α and ∇α lie in Oa.

Proof: The fact that ∆α lies in Oa follows from Lemmas 3.12 and 3.13, and the proof that

∇α lies in Oa is identical. 2

Lemma 5.6 Each standard object ∆α has a unique simple quotient Lα. Furthermore, every

simple object of Oa is isomorphic to a unique element of the set {Lα | α ∈ I}.
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Proof: Let `α be the highest weight (measured by its real part) that appears in ∆α. Then ∆`α
α

is annihilated by Ak for all positive k, and is therefore naturally a B-module; it is isomorphic as

a B-module to Bα. Let Nα be the sum of all submodules of ∆α that do not contain ∆`α
α . Then

Lα := ∆α/Nα is evidently nonzero and simple. Furthermore, it is the only simple quotient of

∆α, since ∆α is generated by its highest weight space.

If α 6= α′, then the highest weight spaces of Lα and Lα′ are not isomorphic as B-modules,

therefore Lα and Lα′ cannot be isomorphic as A-modules. Now suppose that L is an arbitrary

simple object of Oa. The highest weight space of L must be isomorphic as a B-module to

Bα for some α ∈ I. We get a natural A+-module homomorphism Bα → L, which induces

an A-module homomorphism ∆α → L, which is a surjection since L is simple. Thus L is a

quotient of ∆α, so it is isomorphic to Lα. 2

Lemma 5.7 All objects of Oa have finite length.

Proof: Lemma 5.6 tells us that there are finitely many simple objects, so it is enough to prove

that each simple object appears finitely many times in the composition series of any object of

Oa. This follows from Lemma 3.13, which says that each generalized weight space of an object

of Oa is finite dimensional. 2

Lemma 5.8 For all α ∈ I, EndOa(Lα) = C.

Proof: The natural maps C = EndB(Bα)→ EndOa(∆α)→ EndOa(Lα) are isomorphisms. 2

For any subset K ⊂ I, let Oa(K) be the full subcategory of Oa consisting of objects whose

simple subquotients all lie in the set {Lα | α ∈ K}. Consider the partial order on I generated

by putting α ≤ α′ if Lα is isomorphic to a subquotient of ∆α′ or of ∇α′ .

Remark 5.9 We will show in Corollary 6.4 below that ∆α and ∇α have the same composition

series multiplicities for most quantizations, so in fact this partial order can also be defined

using only one of these classes of objects.

Lemma 5.10 Let K ⊂ I be closed in the order topology (that is, α ≤ α′ ∈ K ⇒ α ∈ K) and

let α ∈ K be a maximal element. Then the natural surjection ∆α → Lα is a projective cover in

Oa(K) and the natural injection Lα → ∇α is an injective hull in Oa(K).

Proof: Consider the functor from Oa(K) to the category of vector spaces taking N to

Hom(∆α, N) ∼= HomA+(Bα, N). We wish to show that this functor is exact; it is obviously

left-exact, so we need only show that it induces a surjection when applied to a surjection.

Assume not, and let φ : ∆α → N/N ′ be a homomorphism in Oa(K) which cannot be lifted

to a map ∆α → N . Without loss of generality we can assume that φ is surjective, and that N
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is generated as an A-module by a vector v ∈ N `α which lifts a nonzero vector in φ(Bα). We

can further assume that N/N ′ is isomorphic to Lα.

Let `β be the highest weight appearing in N . By adjunction we get a homomorphism

ψ : N → ∇β which is an isomorphism on the `β-weight space. Since N is generated by v, it

follows that ψ(v) 6= 0, and so Lα appears in a composition series of ∇β . Thus α < β, and Lβ

appears in a composition series of N , contradicting the fact that N lies in Oa(K).

Thus ∆α is projective. That it is the projective cover of Lα follows from the fact that ∆`α
α

is 1-dimensional. The second statement follows similarly from the fact that ∇α corepresents

the vector space dual of the same functor. 2

For all α ∈ I, let Kα := {α′ ∈ I | α′ < α} = {α}r {α}.

Lemma 5.11 For any α ∈ I, the kernel of ∆α → Lα and the cokernel of Lα → ∇α both lie

in the subcategory Oa(Kα).

Proof: It suffices to show that Lα appears in the composition series of both ∆α and ∇α with

multiplicity exactly 1. This follows from the fact that dim ∆`α
α = dim∇`αα = 1. 2

Consider the set U ⊂ H2(M;C) consisting of periods of quantizations such that for all

α, α′ ∈ I, ExtkA
(
∆α,∇α′

)
= 0 for k > 0. Note that by [BGS96, 3.2.3], this further implies

that for all α, α′ ∈ I, Ext2
Oa

(
∆α,∇α′

)
= 0. By Losev’s Theorem A.1, U contains a non-empty

Zariski open subset. and for every η ∈ H2(M;C) with Mη affine, we have κη + λ ∈ U for

all but finitely many κ ∈ C. The following theorem can be deduced from Theorem A.1 and

Lemmas 5.5-5.11 via [BGS96, 3.2.1].

Theorem 5.12 Assuming that the quantization D is chosen such that ϕ is an isomorphism

and the period of D lies in U (both generic conditions), the category Oa has enough projectives

and is highest weight with respect to our partial order.

The following corollary follows by an argument identical to that in [BGS96, 3.3.2].

Corollary 5.13 For any λ ∈ U, the inclusion Db(Oa) → Db
Oa

(A -mod) is an equivalence of

categories.

Proof: These categories have a common generator as triangulated categories, given by a

projective generator P or injective generator I. Thus, it suffices to check that the map

ExtiOa
(P, I)→ ExtiAλ(P, I) is an isomorphism for all i, and all projectives P and injectives I

in Oa. For i = 0, this is just the fact that Oa is a full subcategory. For i > 0, both sides are 0,

since P is standard filtered and I costandard filtered. 2
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Conjecture 5.14 Whenever Oa is highest weight, it is also standard Koszul.

Example 5.15 If M is a hypertoric variety and D is chosen correctly, then Oa is standard

Koszul by [BLPW12, 4.10]. The rings R and E are isomorphic to the rings A and B introduced

in [BLPW10].

Example 5.16 If Oa is a regular infinitesimal block of BGG category O (see Remark 3.11),

then it is known to be standard Koszul by [BGS96, RC80, ÁDL03]. (See [BLP+11, 9.2] for

more details.)

5.3 The category Og is highest weight

We begin by using Theorem 5.12 to prove that Og is always highest weight.

Proposition 5.17 For any choice of quantization, the category Og is highest weight and the

inclusion Db(Og)→ Db
Og

(D -mod) is an equivalence of categories.

Proof: Let λ ∈ H2(M;C) be the period of the quantization, and let η ∈ H2(M;Z) be an

ample class. By Lemma 3.17, we may replace λ by λ + kη for any k ∈ Z. By Proposition

2.8, we may choose k large enough so that localization holds. By Theorem 5.12, we may also

choose k large enough so that Oa is highest weight. By Corollary 3.19, this implies that Og is

highest weight, and by Corollary 5.13, the full faithfulness follows as well. 2

By the same argument, the following conjecture would be implied by Conjecture 5.14.

Conjecture 5.18 For any choice of quantization, the category Og is standard Koszul.

Remark 5.19 Conjectures 5.14 and 5.18 will not come up again until Section 10, where they

will play a central role in the definition of symplectic duality of conical symplectic resolutions.

In the remainder of this section we give an explicit construction for the standard modules

in Og, which will be useful for our study of the Grothendieck group of this category in Section

6.2. Let Θα := Aα ⊗A+
α
Bα, regarded as a module over A. Note that the map of algebras

A→ Aα descends to a map of A-modules ∆α → Θα.

Proposition 5.20 Let d = 1
2 dimM. The T-character of Θα is ewα

∏d
i=1(1− e−χi)−1, where

χ1, . . . , χd are the positive weights (with multiplicity) for the action of T on TpαM and wα is

the T-weight of Bα.

Proof: Lemma 5.2 tells us that Aα is isomorphic to the Weyl algebra for Cd with generators

z1, w1, . . . , zd, wd, where the zi have positive T-weight. Then, as a T-vector space, Θα is

isomorphic to C[w1, . . . , wd]⊗Bα. The result follows. 2
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The modules Θα and ∆α have analogues which are families over the twistor deformation

Mη. Let ∆̃η,α := Aη ⊗A +
η

Bη,α be the deformed standard module attached to η and α, and let

Θ̃α be the restriction of Aη,α ⊗A +
η,α

Bη,α to A . While ∆̃η,α is a more natural algebraic object,

the family Θ̃η,α has a more regular structure, and in particular is flat over A1 by Proposition

5.20.

As usual, we use the subscript k below to denote the period λ+ kη. The following lemma

says that the two modules are isomorphic if the period is sufficiently large.

Lemma 5.21 The natural homomorphism ∆̃η,α → Θ̃η,α induces an isomorphism of Ak-

modules ∆k,α
∼= Θk,α for k sufficiently large.

Proof: The non-zero fibers of the twistor deformation are affine, so the intersection of M +
η

with such a fiber is a union of affine spaces, one for each fixed point.

The result [BPW, 4.15] applied to the kernel and cokernel of the map shows that there is

a polynomial q such that q(h−1t) acts trivially on the kernel and cokernel. Thus, as in the

proofs of [BPW, 4.17 & 5.16] for k � 0, we avoid the all roots of this polynomial, and after

specialization, we have an isomorphism. 2

In order to describe the sheaves in Og which give standard objects we recall a construction

from [BPW]. Proposition 5.2 from that paper shows that for every pair of integers k and m

there is a good, S-equivariant (Qk,Qm)-bimodule kTm (unique up to canonical equivalence)

with kTm/h kTm ∼= Lk−m. Let

kZm := ΓS(kTm[h
1/n]) and Z :=

⊕
k≥m≥0

kZm.

This is a Z-algebra in the sense of Gordon and Stafford [GS05, §5], with multiplication given

by tensor products of sections. We have a localization functor LocZ : Z-mod→ D -mod given

by LocZ(N) :=
(⊕

k≥0 0Tk[h−1/n]
)
⊗Z N ; it becomes an isomorphism after modding out by

Z-modules which are bounded above.

Let k(Zα)m be the space of S-invariant and T-finite vectors in the completion of kTm[h−1/n]

at the point pα, and let

k(Θ
Z
α)m := k(Zα)m ⊗A+

m,α
Bm,α and ΘZ

α :=
⊕
k≥0

k(Θ
Z
α)0;

then ΘZ
α is a module over Z. Let 0α := LocZ(ΘZ

α).

Proposition 5.22 The sheaf 0α is the standard object of Og corresponding to α. In particular,

if localization holds at λ, then 0α = Loc(∆α).
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Note that this result, together with Corollary 3.19 shows that 0α has a unique simple quotient,

which we denote by Λα.

Proof: By Lemma 5.21, we have 0α = Loc(∆α) for the quantization with period λ+ kη when

k is sufficiently large. If localization holds at λ, then consider the following commuting square

of equivalences.

Oλg Oλ+kη
g

Oλa Oλ+kη
a

The vertical arrows are given by localization, the top horizontal arrow is given by Lemma 3.17,

and the bottom horizontal arrow is given by tensor product with λ+kηTλ. We know that the

vertical arrow on the right takes ∆α to 0α, and it is easy to check that the two horizontal

arrows take 0α to 0α and ∆α to ∆α. The proposition follows. 2

We can also construct deformed versions Z̃η,α and Θ̃Z
η,α. This allows us to construct a

deformed standard object 0̃η,α := LocZ(Θ̃Z
η,α) on Mη, with the property that 0̃η,α is flat over

A1 (by Proposition 5.20) and 0̃η,α|M ∼= 0α. This construction will be used in the proof of

Theorem 6.5 below.

5.4 The center of the Yoneda algebra of Og

Consider the Hochschild cohomology ring

HH∗(D) := Ext•D⊗Dop(D,D).

Here the Ext algebra is computed in the bounded below derived category of sheaves of modules

over the sheaf D ⊗Dop; that is, by taking an injective resolution of the left-hand term. (The

existence of such an injective resolution follows by mimicking the argument of [Har77, 2.2]

with D(0)x in place of SM,x.) By the usual formalism, there is a spectral sequence

H i(M; Ext jD⊗Dop(D,D))⇒ HH i+j(D).

By [WX98, 3.1], the Hochschild cohomology of the Weyl algebra vanishes in all higher degrees,

so the spectral sequence collapses at the E2 page and we have

HH∗(D) ∼= H∗(M;Z(D)) ∼= H∗(M;C((h))).
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Thus, for any object in D+(D -mod), we obtain a map from H∗(M;C) = H∗(M;C((h)))S to

the center of its Ext-algebra. In particular, H∗(M;C) maps to the Yoneda algebra E of Og, as

defined in Section 4.1.

This map need not be an isomorphism; for example, if the period of D is as generic as

possible, then Og will be semisimple, and its Yoneda algebra will be concentrated in degree

zero. However, we make the following conjecture, which essentially says that this is the only

thing that can go wrong.

Conjecture 5.23 If the category Og is indecomposable (that is, if it has no proper block

decomposition), then the map H∗(M;C)→ Z(E) is an isomorphism.

Remark 5.24 Conjecture 5.23 holds for cotangent bundles of partial flag varieties (Proposition

9.1), quiver varieties in finite type ADE and affine type A [Webb, 3.5], and for hypertoric

varieties (part (vi) of Section 9.3).

Remark 5.25 In Section 10.6 we formulate a stronger version of Conjecture 5.23 which relates

the equivariant cohomology of M to the center of the universal deformation of E.

6 The Grothendieck group of Og

We continue to let d = 1
2 dimM. In this section, we show that the Grothendieck group K(Og)

is canonically isomorphic by the characteristic cycle map to the cohomology H2d
M+

(
M;Z

)
with support in M+ as lattices with inner products (Theorem 6.5). This is accomplished by

studying the characteristic cycles of standard objects, but we also give some partial results

about the images of simple objects under this isomorphism (Section 6.3).

6.1 Characteristic cycles revisited

In Section 2.8 we alluded to a characteristic cycle map CC : K(CL) → H2d
L (M;Z) that was

studied in [BPW, §6.2], following ideas of Kashiwara and Schapira [KS12]. In this section we

review this construction and study it in greater detail.

Let N be an object of Db(D -mod). We have isomorphisms

Hom•D(N ,N ) ∼= Hom•D(N ,D)
L
⊗D N ∼= D∆

L
⊗D�Dop

(
N �Hom•D(N ,D)

)
,

and evaluation defines a canonical map to the Hochschild homology

HH(D) := D∆

L
⊗D�Dop D∆.

All this is completely general, and holds in both the Zariski and the classical topology. In the

classical topology, we also have an isomorphism HH(Dan) ∼= CM∆
((h))[2d] by [KS12, 6.3.1].
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We define the characteristic cycle

CC(N ) ∈ H0(HH(Dan)) ∼= H2d
(
M;C((h))

)
to be the image of id ∈ H0(Hom•D(N an,N an)) along this map. More generally, if N is

supported on a subvariety j : L ↪→M, then we may consider the identity map of N an to be a

section of j!Hom•D(N an,N an). Applying our map then gives us a class

CC(N ) ∈ H0(j!HH(Dan)) ∼= H2d
L

(
M;C((h))

)
.

(Our abuse of the notation CC(N ) is justified by the fact that this class is functorial for

inclusions of subvarieties.) By Poincaré-Verdier duality, this can also be considered as a

Borel-Moore homology class on L.

If L is Lagrangian, then Kashiwara and Schapira [KS12, 7.3.5] show that CC(N ) actually

lies in H2d
L (M;Z); more precisely, if N (0) is a good lattice, then

CC(N ) =

r∑
i=1

rkLi

(
N (0)/N (−1)

)
· [Li] ∈ H2d

L (M;Z) ⊂ H2d
L

(
M;C((h))

)
,

where {L1, . . . ,Lr} are the components of L and rkLi is the rank at the generic point of Li.

We can also take characteristic cycles in families for modules on twistor deformations

Mη → A1. Let N be such a module, and consider the image of the identity via the natural

morphisms

Hom•D(N ,N ) ∼= Hom•D(N ,D)
L
⊗D N ∼= D∆

L
⊗D�A1Dop

(
N �A1 Hom•D(N ,D)

)
→ Dan

∆ ⊗Dan�A1Dan,op Dan
∆
∼= π−1SA1 [2d]((h)). (1)

This defines a class in relative cohomology CC(N ) ∈ H2d
L (Mη/A1;C((h))) for any Lagrangian

L ⊃ Supp(N ). If we let L := M ∩L , then we have a natural restriction map

H2d
L (Mη/A1;C((h)))→ H2d

L

(
M;C((h))

)
given by dividing by the coordinate t on A1. We also have a natural functor of restriction

from D -mod→ D -mod given by N |M := N
L
⊗C[t] C. The following lemma says that these

operations are compatible.

Lemma 6.1 If N is a good D-module, then CC(N |M) = CC(N )|M.

Proof: Consider the complex (1) of π−1SA1 modules, and take the derived tensor product

with C over C[t]. We claim that we obtain a corresponding complex for N |M. That is, we
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obtain

Hom•D(N |M,N |M) ∼= Hom•D(N |M,D)
L
⊗DN |M ∼= D∆

L
⊗D�Dop

(
N |M�Hom•D(N |M,D)

)
→ Dan

∆ ⊗Dan�Dan,op Dan
∆
∼= CM[2d]((h)). (2)

It suffices to prove this for N locally free. In this case, Hom•(N ,D) is concentrated in degree

0 and is itself locally free, so the statement is clear.

Thus CC(N )|M can be obtained as the image of the identity under the map (2). By

definition CC(N |M) is the image of the identity under (2), so we are done. 2

6.2 Intersection forms for category O

We now turn our attention to the subcategory Og = CM+ ⊂ D -mod, so that the charac-

teristic cycle map goes from K(Og) to H2d
M+

(
M;Z

)
. We first need to reinterpret the group

H2d
M+

(
M;Z

)
= H2d(M,M \M+;Z) equivariantly, so that we can apply localization.

Lemma 6.2 The forgetful homomorphism

H2d
T (M,M \M+;Z)→ H2d(M,M \M+;Z)

is an isomorphism. The localization map

H2d
T (M,M \M+;Z)→ H2d

T (MT;Z)

is an injection; a class lies in the image if and only if its restriction to pα is a Z-multiple

of the equivariant Euler class eT(TpαM), which is the product of the negative weights of the

action of T on TpαM.

Proof: Choose an ordering α1, . . . , αr of the index set I refining the closure order ↼, so that

M+
k :=

⋃k
i=1X

◦
i is closed for all k. Let Uk = M \M+

k and U0 = M. Then for 1 ≤ k ≤ r,

the cohomology H∗(Uk−1, Uk;Z) is isomorphic to the Borel-Moore homology HBM
4d−∗(X

◦
k), so

it is isomorphic to Z in degree 2d and 0 in all other degrees. It follows that H∗T(Uk−1, Uk;Z)

is a free H∗T(pt)-module generated by H2d
T (Uk−1, Uk;Z) ∼= H2d(Uk−1, Uk;Z). In addition, the

restriction of a generator of H2d
T (Uk−1, Uk;Z) to pk = pαk is the equivariant Euler class of

TpkX
◦
pk

.

The result now follows by an easy induction using the exact sequence

H∗T(U0, Uk−1;Z)→ H∗T(U0, Uk;Z)→ H∗T(Uk−1, Uk;Z)

which is short exact since the left and right terms vanish in odd degrees. 2
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From the first part of the lemma, we have a canonical map

H2d
M+

(
M;Z

)
= H2d(M+; j!ZM)→ H2d

T (MT;Z).

For all γ ∈ H2d
M+

(
M;Z

)
and α ∈ I, we will write γ|α to denote the image of γ in H2d

T (pα;Z).

The second part of the lemma implies that The lattice H2d
M+

(
M;Z

)
is freely generated by the

classes {vα | α ∈ I}, where vα|α is the product of the negative weights of the action of T on

TpαM and vα|β = 0 for β 6= α.

The classes vα form an orthonormal basis for the equivariant intersection form

〈β, γ〉 := (−1)d
∑
α∈I

β|α · γ|α
e(α)

,

where e(α) ∈ H4d
T (pα;Z) is the product of all of the weights of the action of T on TpαM.

On K(Og) we have the Euler form given by the formula

〈
[M], [N ]

〉
:=

∞∑
i=0

(−1)i dim ExtD -mod(M,N ).

Proposition 6.3 The classes {[0α] | α ∈ I} form an orthonormal basis for K(Og). In

particular, the Euler form on K(Og) is symmetric.

Proof: This follows from the universal coefficient theorem applied to Ext∗(0̃α,η, 0̃β,η). Generi-

cally on A1, the supports of 0̃α,η and 0̃β,η are distinct if α 6= β, so Ext∗(0̃α,η, 0̃β,η) is supported

on {0} ⊂ A1. The universal coefficient theorem shows that

Exti(0α,0β) ∼= (Exti+1(0̃α,η, 0̃β,η)⊕ Exti(0̃α,η, 0̃β,η))⊗C[t] C.

Thus, obviously, the Euler characteristic of this complex is 0, and the classes [0α] and [0β]

are orthogonal.

On the other hand, we know from the standard property that

Exti(0α,0α) =

C i = 0

0 i 6= 0

so this establishes orthonormality. 2

Corollary 6.4 If the period of a quantization is chosen so that localization holds and the

hypotheses of Theorem 5.12 are satisfied, then for each α we have [∇α] = [∆α] in K(Oa); in
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particular, the multiplicities of any simple in ∇α and ∆α are the same.

Proof: Since ∆α is sent to 0α under localization, the proposition implies that the standards

∆α give an orthonormal basis of K(Oα) under the Euler form. But in any highest weight

category the classes of standards are (left) orthogonal to the classes of costandards, so we

must have [∆α] = [∇α]. 2

Theorem 6.5 The map CC : K(Og)→ H2d
M+

(
M;Z

)
is an isomorphism that intertwines the

Euler form with the equivariant intersection form.

Proof: Since the standard modules {0α | α ∈ I} form an orthonormal basis for K(Og),

it suffices to show that CC(0α) = vα for all α ∈ I. Consider the sheaf 0̃η,α = LocZ(Θ̃Z
α)

on Mη, which we introduced at the end of the previous section, along with its Euler class

CC(0̃η,α) ∈ H2d
M +
η

(Mη/A1;C((h))). Since M T
η is isomorphic to a disjoint union of |I| copies of

A1 and the space M +
η is an Ad-bundle over this space, the group H2d

M +
η

(Mη/A1;C((h))) is a

C((h))-vector space of dimension |I|. Let

{ṽα | α ∈ I} ⊂ H2d
M +
η

(Mη/A1;C((h)))

be the C((h))-basis indexed by the components of the fixed point set, so that ṽα|M = vα.

Over a generic element of A1, the restriction of 0̃η,α is simply the structure sheaf of the

locus of points whose T-limit is equal to the fixed point labeled by α. This implies that

CC(0̃η,α) = ṽα, and therefore that

CC(0α) = CC(0̃η,α|M) = CC(0̃η,α)|M = ṽα|M = vα.

This completes the proof. 2

Remark 6.6 While the hypothesis that T has isolated fixed points was used in an essential

way here, it should be possible to generalize this result to more general T-actions, at the cost

of downgrading from an isomorphism to an injection. A forthcoming result of Baranovsky and

Ginzburg [BG] shows that the map CC is injective in the case where T is trivial. In this case,

CC takes values in the top degree homology group of the core (the preimage of o ∈M0), and

it intertwines the Euler form with the ordinary intersection form on M by [KS12, 6.5.4]. This

map can be extremely far from surjective, though; for generic periods, category Og for a trivial

action has no non-zero objects. A recent preprint of Bezrukavnikov and Losev shows how

complicated this dependence can be in the case of certain quiver varieties [BL]. We expect
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that this result should extend to arbitrary T as a mix of these two situations. See Remark 5.4

for a related discussion.

We conclude this section by noting that we can specify a geometrically-defined partial

order with respect to which the category Og is highest weight. (We already know that it is

highest weight by Proposition 5.17, but the relation between the partial order ≤ we used there

and the geometry of M is not clear.) Define a partial order ↼ on I by putting α ↼ β if

pα ∈ Xβ (or equivalently X◦α ∩X◦β 6= ∅) and then taking the transitive closure.

Proposition 6.7 The support of 0α is contained in
⊔
β↼αXβ. In particular, Og is highest-

weight with respect to the partial order ↼.

Proof: This follows immediately from the structure on the fixed point classes, since the change

of basis matrix between the bases {vα | α ∈ I} and {[Xα] | α ∈ I} is triangular with ones on

the diagonal with respect to this partial order. Since the simple Λα defined after Proposition

5.22 has non-trivial support on Xα, if it occurs in 0β, the standard 0β must have Xα in its

support, so α ↼ β. 2

It is worth noting that ↼ is not necessarily the weakest partial order with respect to which Og

is highest weight. For example, Og may be semi-simple, and thus highest weight for the trivial

partial order.

6.3 Supports of simples

The key to the previous section was the computation of the characteristic cycles of standard

objects. It is also interesting to consider the characteristic cycles of simple objects, though

they are much more difficult to understand. In this section we will obtain some partial results

about their set-theoretic supports that will be useful in later sections.

We call an A-module N holonomic if its derived localization LLoc(N) on any resolution

has Lagrangian support. Note that this is independent of the choice of resolution, since the

functors LLoc for different resolutions are related by convolution with a Harish-Chandra

bimodule, which preserves holonomicity.

For any simple A-module L, let ML ⊂ M0 be the subscheme defined by the ideal

gr Ann(L) ⊂ grA ∼= C[M0]. This subscheme is always the closure of a symplectic leaf

[Gin03]; in particular, it is a subvariety. A leaf that arises in this way will be called special,

in analogy with the existing terminology for nilpotent orbits. We let S denote the set of all

symplectic leaves of M0, and S sp denote the subset of leaves which are special for a fixed

quantization D.

Theorem 6.8 If L is holonomic, the support of the sheaf grL on M0 is contained in ML, and

it intersects the dense leaf of ML nontrivially; equivalently, a symplectic leaf closure contains

Supp(grL) if and only it contains ML.
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Before proving Theorem 6.8 we establish a pair of lemmas. Consider the Rees algebra

R(A) ∼= Γ(D(0)). Following Losev, we wish to consider the completion of this algebra at a

maximal ideal in C[M0] ∼= R(A)/h · R(A). For s ∈ M0, we let R(A)∧s be the completion of

R(A) in the topology induced by the maximal ideal ms + h ·R(A). Let S be the symplectic

leaf containing s and, following Kaledin [Kal06a, 2.3], let Ys denote the formal slice to S inside

of M0.

Lemma 6.9 The completion R(A)∧s is isomorphic to the tensor product W∧0 ⊗̂C[[h]]C where

W is the Weyl algebra on the symplectic vector space T ∗s S and C is a quantization of Ys.

Proof: The algebra R(A)∧s is a quantization of a formal neighborhood of the fiber over s

in M; this formal scheme is isomorphic as a Poisson scheme to the product of the comple-

tion of S at s with a symplectic resolution of Ys. By the classification of quantizations in

[BK04], any quantization of the latter will have sections of the form W∧0 ⊗̂C, so we are done. 2

Consider a holonomic A-module N with a fixed good filtration, and choose a point u which

is a smooth point of Supp(grL) and which is in a symplectic leaf S of maximal dimension

amongst those intersecting Supp(grL). Now, we may form the completion R(N)∧s , which is a

module over R(A)∧s .

Lemma 6.10 The tangent space Ts Supp(grN) is Lagrangian in the symplectic space TsS.

Proof: The component Y of Supp(grN) which contains s must be the image of a component

Y ′ of SuppLLoc(N), which is Lagrangian by the assumption of holonomicity. Let S′ be the

preimage of S in M; this is a coisotropic subvariety of M whose closure contains Y ′. Since

Y ′ ∩S′ is Lagrangian, it must be a union of the leaves of the null-foliation of S′, which is given

by the fibers of the projection to S. Thus, Y ∩ S, which is the image of Y ′ ∩ S′, is Lagrangian

in S. The result follows. 2

The elements of T ∗s S that are conormal to Supp(grN) topologically generate a left ideal in

W∧0 ; we call the quotient by this ideal a vacuum representation V of W∧0 . The following

lemma is based on the argument in [Los10, 3.3.4].

Lemma 6.11 The module R(N)∧s decomposes as the tensor product of V with a C-module

which is free of finite rank over C[[h]].

Proof: Note that completing the coherent sheaf R(N)/h ·R(N) at s produces a finite rank

locally free sheaf on the completion of Supp(grN), since s is a generic point of this support.

This implies that R(N)∧s is finitely generated over W∧0 . Thus, it is the completion of a finitely

generated module over W which is free over C[[h]], and has associated graded supported on
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Ts grN ⊂ TsS. We can think of the same object as a D-module on Ts grN which is coherent

as a STs grN -module, so it is just a sum of copies of the structure sheaf. Taking completion,

this means that as a W∧0 -module, R(N)∧s
∼= HomW∧0

(V, R(N)∧s )⊗C[[h]] V. If we let C act on

HomW∧0
(V, R(N)∧s ) in the obvious manner and trivially on V , this becomes an isomorphism of

W∧0 ⊗̂C modules. This completes the proof. 2

Proof of Theorem 6.8: The theorem can be reformulated as saying that ML is the union of

the closures of those symplectic leaves that intersect the support of gr(AnnL). Since gr(AnnL)

kills grL, we have S̄ ⊂ ML for any leaf S intersecting the support of L; this makes one of

the two containments clear. For the reverse inclusion, it suffices to show that, for s and S as

above, we have ML = S̄.

Let I := Ann(R(L)) ⊂ R(A); then ML is defined by the ideal I/hI = gr Ann(L). We have

an injective map R(L)→ R(L)∧s (by the simplicity of L), and thus an injective map

R(A)/I →W∧0 ⊗̂ End
(

HomW∧0
(V, R(N)∧s )

)
.

The latter algebra has the property that its quotient modulo hn for any n is of GK dimension

dimS. Thus, the GK dimension of the former modulo hn is at most dimS. The same is thus

true of the coordinate ring of the associated variety V (I/hI). Thus, the variety must have

dimension at most that of S, but it also contains S. By results of Ginzburg [Gin03], V (I/hI)

must be the closure of a single leaf of this dimension, and thus, we must have V (I/hI) = S̄.

This completes the proof. 2

We now consider some consequences of Theorem 6.8. Recall that Λα is the simple object of

Og indexed by α. Let Mα,0 be the union of the closures of the symplectic leaves that intersect

the image in M0 of Supp Λα. By Theorem 6.8, Mα,0 is equal to the closure of a single leaf,

which we denote M̊α,0. Furthermore, if λ ∈ H2(M;C) is the period of D, this leaf depends

only on the coset of λ in H2(M;C)/H2(M;Z).

Corollary 6.12 Choose any λ′ ∈ H2(M;C) such that λ − λ′ ∈ H2(M;Z) and localization

holds at λ′. Let D′ be the quantization with period λ′, and let A′ := ΓS(D′). Then the A′-module

L := ΓS(λ′Tλ ⊗ Λα) is simple, and Mα,0 = ML.

Proof: Simplicity of L follows from the fact that λ′Tλ ⊗ Λα is a simple D′-module and local-

ization holds at λ′. The support of Λα is equal to that of λ′Tλ ⊗Λα, so the image in M0 of the

support of Λα is equal to the support of the associated graded of L. Applying Theorem 6.8,

we are done. 2

Corollary 6.13 If localization holds for D, then for all α ∈ I, M̊α,0 is a special leaf.
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The support of Λα always contains the relative core component Xα, but it may contain

other components of M+, as well. For example, if M is a hypertoric variety and the period

of D is integral in the sense of Section 2.4, then the support of Λα is equal to Xα [BLPW12,

§6.3]. On the other hand, if M = T ∗(G/B), then there exists α for which the support of Λα

has multiple components unless G = SLr for r ≤ 7. Thus Mα,0 always contains Xα,0, but it is

possible that Xα,0 is contained in a smaller leaf closure.

Definition 6.14 We call the pair (M,D) interleaved if localization holds for D and, for all

α ∈ I, Mα,0 is the smallest special leaf closure that contains Xα,0. If we have a notion of

integrality (Section 2.4) and the pair (M,D) is interleaved for some (equivalently any) integral

quantization D for which localization holds, then we will simply say that M is interleaved.

Example 6.15 As mentioned above, if M is a hypertoric variety and the period of D is

integral, then the support of Λα is equal to Xα, thus M is interleaved by Theorem 6.8.

Example 6.16 Finite and affine type A quiver varieties (which include finite type A Slodowy

slices) are interleaved; this follows from Theorem 7.14 and [Webd, §5].

Example 6.17 If G is the adjoint group of type F4, then T ∗(G/B) is not interleaved. We

will deduce this from Theorem 7.14; see Remark 7.17 for details.

The property of being interleaved will be used in the form of the following lemma, which

will be one of the main ingredients in the proof of Theorem 7.14.

Lemma 6.18 For all α ∈ I, there exist unique integers {ηαβ | β ∈ I} such that

CC Λα = [Xα] +
∑

ηαβ[Xβ],

where ηαβ can only be nonzero if β ↼ α. In addition, if (M,D) is interleaved, then ηαβ 6= 0

also implies Mβ,0 ⊂Mα,0.

Proof: The existence and uniqueness of {ηαβ | β ∈ I} follows from the fact that the classes

{[Xβ] | β ∈ I} form a basis for H2d
M+

(
M;Z

)
. Suppose that ηαβ 6= 0. Since [Xβ] appears in

CC(Λα) and Λα is a quotient of 0α, [Xβ] must also appear in CC(0α). By Proposition 6.7,

this implies that β ↼ α. Furthermore, Xβ is contained in the support of Λα, and therefore

Xβ,0 is contained in Mα,0. If (M,D) is interleaved, this implies that Mβ,0 ⊂Mα,0. 2

7 Categorical filtrations

In this section we define categorical filtrations of HCa, HCg, Oa, Og, and their derived

categories. These induce decompositions on their Grothendieck groups, and in Theorem 7.14
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and Corollary 7.15 we relate the decomposition of K(Og) to the Beilinson-Bernstein-Deligne

(BBD) decomposition of H2d
M+

(
M;C

)
, using the characteristic cycle map. We also relate this

decomposition to a generalization of Lusztig’s theory of two-sided cells (Remark 7.33).

7.1 Filtration on Harish-Chandra bimodules

Let S ∈ S be a symplectic leaf of M0, and let S̄∆ :=
(
S̄ × S̄

)
∩ Z0 ⊂M0 ×M0. Recall that

Z0
∼= M0 is the diagonal, so that S̄∆

∼= S̄.

Definition 7.1 Let HCa
S ⊂ HCa be the full subcategory of algebraic Harish-Chandra bi-

modules H such that for some (equivalently any) filtration of H, the coherent sheaf grH

on

Z0 ⊂M0 ×M0

is set-theoretically supported on S̄∆. Let HCa
∂S ⊂ HCa

S be the full subcategory supported

on leaves strictly smaller than S. Let Db
HCa

S
(A -mod-A) (respectively Db

HCa
∂S

(A -mod-A))

be the full subcategory of Db
HCa(A -mod-A) consisting of objects with cohomology in HCa

S

(respectively HCa
∂S).

Proposition 7.2 Any simple module H in HCa
S \HCa

∂S has support equal to S̄∆.

Proof: By Proposition 6.8, there is a unique minimal symplectic leaf of M0×M0 whose closure

contains SuppH, given by the vanishing locus of the annihilator of H as an A⊗Aop-module.

This must be of the form S′ × S′ for some S′ ∈ S , since

(
S̄′ × S̄′′

)
∩ Z0 =

(
(S̄′ ∩ S̄′′)× (S̄′ ∩ S̄′′)

)
∩ Z0.

Furthermore, we must have S̄′ ⊃ S, since part of the support of H must intersect S × S (or

we would have H ∈ HCa
∂S). On the other hand, the dimension of the support of H must be

at least half of the dimension of S̄′ × S̄′, which implies dimS′ = dimS, so S′ = S. Thus, the

support of H is contained in the irreducible variety S̄∆. Since they have the same dimension,

we are done. 2

Proposition 7.3 The left annihilator of a Harish-Chandra bimodule is a primitive ideal.

Proof: Note that the left annihilator I of any simple bimodule H over any ring is prime, since

if J1, J2 6⊂ I, we have that J1 · J2 ·H = J1 ·H = H, so J1 · J2 6⊂ I.

Now let H be a filtered Harish-Chandra A-bimodule. For any element h ∈ H, let h̄ ∈ grH

be its symbol, which we regard as a section of a sheaf on Z0
∼= M0. Choose an h such that

the section h̄ is non-zero on a leaf S ⊂ SuppH of maximal dimension (here we take the

support of H as a left module). Consider the filtered left submodule A · h ⊂ A. Using the
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Noetherian property, we can find a simple quotient L of A · h which is supported on S. Thus,

there is a simple subquotient L of H whose support has non-trivial intersection with S. Let

I := Ann(H) and J := Ann(L). Then I ⊂ J , so S̄ = V (gr J) ⊂ V (gr I). However, I is prime

and dimV (gr I) = dimS = dimV (gr J), thus I = J [BK76, Korollar 3.6]. 2

Remark 7.4 By Proposition 7.3, we have that HCa
S = HCa

∂S unless S is special. If S is

special, then let I be a primitive ideal whose associated variety is S̄. In this case, A/I is an

object in HCa
S , but not HCa

∂S .

Definition 7.5 Let HCg
S ⊂ HCg be the full subcategory of geometric Harish-Chandra

bimodules H that are set-theoretically supported on the preimage in Z ⊂ M ×M of S̄∆.

Let HCg
∂S ⊂ HCg

S be the full subcategory supported on preimages of leaves strictly smaller

than S. Let Db
HCg

S
(D -mod-D) (respectively Db

HCg
∂S

(D -mod-D)) be the full subcategory of

Db
HCg(D -mod-D) consisting of objects with cohomology in HCg

S (respectively HCg
∂S).

Let JS be the localization of HCg
S at HCg

∂S . The Grothendieck group K(HCg) is filtered

by the poset S , with K(HCg
S)/K(HCg

∂S) ∼= K(JS). Using the Euler form on K(HCg), we

may split this filtration to obtain a direct sum decomposition

K(HCg) ∼=
⊕
S∈S

K(JS). (3)

See Remark 7.11 for a more categorical interpretation of this decomposition.

If derived localization holds at λ, then the functors LLoc and RΓS induce an equivalence of

categories between Db
HCg

S
(D -mod-D) and Db

HCa
S
(A -mod-A) for all S. In particular, as long

as derived localization holds at λ, the category JS will be non-trivial if and only if the leaf S

special, just as in HCa; this is false if derived localization doesn’t hold at λ.

Remark 7.6 Losev and Ostrik prove that, if M → M0 is the Springer resolution of the

nilpotent cone of a simple Lie algebra, then JS is an indecomposable multi-fusion category

[LO14, 5.4 & 5.5]. It would be interesting to know if this result holds for more general conical

symplectic resolutions.

Remark 7.7 Let ν be the map from M to M0. For any symplectic leaf S, let φS be the local

system obtained by restricting RcodimSν!CM to S. In other words, the stalks of φS are the top

cohomology groups of the fibers of ν. By [CG97, 8.9.8], there is an isomorphism

H4d
Z (M×M;C) ∼=

⊕
S∈S

EndφS . (4)
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The ring homomorphism CC : K(HCg)C → H4d
Z (M ×M;C) of Proposition 2.18 induces a

map from K(JS)C to EndφS . If M0 is an S3-variety of type A, then both K(JS)C and EndφS

are matrix algebras of the same rank, thus the map is an isomorphism. In other types, this

will not be the case; in particular, JS will be trivial unless S is special.

7.2 Filtration on category O

Definition 7.1 (respectively 7.5) gives us a filtration of the monoidal category HCa (respectively

HCg) by sub-monoidal categories indexed by the poset of symplectic leaves. By Propositions

2.17, 3.14, and 3.18, Oa (respectively Og) is a module category over HCa (respectively HCg).

In this section we will define the analogous filtrations of the module categories.

Definition 7.8 Let OSa ⊂ Oa be the full subcategory consisting of modules N such that for

some (equivalently any) filtration of N , the coherent sheaf grN on M0 is set-theoretically

supported on the closure of S. Let O∂Sa ⊂ OSa be the full subcategory supported on leaves

strictly smaller than S. Let Db
OSa

(A -mod) (respectively Db
O∂Sa

(A -mod)) be the full subcategory

of Db(A -mod) consisting of objects whose cohomology lies in OSa (respectively O∂Sa ).

Definition 7.9 Let OSg ⊂ Og be the full subcategory of objects N that are set-theoretically

supported on the preimage in M of the closure of S. Let O∂Sg ⊂ OSg be the full subcategory

supported on preimages of leaves strictly smaller than S. Let Db
OSg

(D -mod) (respectively

Db
O∂Sg

(D -mod)) be the full subcategory of Db(D -mod) consisting of objects whose cohomology

lies in OSg (respectively O∂Sg ).

The following straightforward proposition asserts that the above filtrations interact well

with the structures that we have already defined.

Proposition 7.10 Consider the tensor product and convolution actions of Proposition 2.17.

1. The functor ΓS takes HCg
S to HCa

S and OSg to OSa .

2. If H ∈ HCa
S and N ∈ Oa, then H ⊗N ∈ OSa .

3. If H ∈ HCg
S and N ∈ Og, then H ?N ∈ OSg .

4. Each of the above statements holds when S is replaced with ∂S.

5. Each of the above statements holds in the derived setting.

Let PS denote the quotient of OSg by O∂Sg . Using the Euler form on K(Og), we obtain an

orthogonal decomposition

H2d
M+

(
M;Z

) ∼= K(Og) ∼=
⊕
S∈S

K(PS), (5)
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completely analogous to that of Equation (3).

Remark 7.11 This decomposition can be given a categorical interpretation as follows. For

simplicity, we will consider a single step in the filtration. Let (O∂Sg )⊥ denote the full subcategory

of OSg consisting of objects X such that, for every object Y ∈ O∂Sg , Extk(X,Y ) = 0 for all k;

the fact that Og is Artinian with a projective generator guarantees that the same is true of

OSg ,O∂Sg and (O∂Sg )⊥.

Proposition 7.12 (O∂Sg )⊥ -proj ∼= PS -proj .

Proof: A projective module P lives in (O∂Sg )⊥ if and only if it has Hom(P, Y ) = 0 for every

Y ∈ O∂Sg . On the other hand, quotient to PS followed by its left adjoint sends each module

N to its minimal submodule NS such that N/NS ∈ O∂Sg . By assumption, the natural map

P → P/PS is 0, so P ∼= PS . This shows that the object P̄ in the quotient category satisfies

Hom(P̄ , N̄) ∼= Hom(P,N) for all modules N . In particular, the quotient induces a fully faithful

functor (O∂Sg )⊥ -proj→ PS -proj .

The exactness of the quotient functor means that its left adjoint sends projectives to

projectives; since this left adjoint lands in (O∂Sg )⊥, this provides a splitting to the fully faithful

functor of reduction, and thus induces an equivalence of categories. 2

By Proposition 7.12, the decomposition

K(OSg ) ∼= K(O∂Sg )⊕K(PS)

may be identified with the decomposition

K(OSg ) = K(O∂Sg )⊕K
(
(O∂Sg )⊥

)
,

which is categorified by the semiorthogonal decomposition of OSg into O∂Sg and (O∂Sg )⊥.

7.3 Relation with the BBD filtration

Let F be the derived pushforward of the constant sheaf from M to M0, and let FS :=

IC•(φS)[− codimS]. By the BBD decomposition theorem, we have a canonical direct sum

decomposition [CG97, 8.9.3]

F ∼=
⊕
S∈S

FS . (6)

Define a functor Σ: Db
S (M0)→ C -mod by

Σ(−) = H2d
M+

0
(M0;−);
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applying it to both sides of (6) we obtain isomorphisms

H2d
M+

(
M;C

) ∼= Σ(F) ∼=
⊕
S∈S

Σ(FS). (7)

The isomorphism (4) is a consequence of an isomorphism of the convolution algebra

H4d
Z (M×M;C) with End(F), so (7) is compatible with the action of H4d

Z (M×M;C).

Lemma 7.13 The direct sum decomposition of Equation (7) is orthogonal with respect to the

equivariant intersection form introduced in Section 6.2.

Proof: We will use the fact that the equivariant intersection form is compatible with the

action of the convolution algebra in the sense that, for all a ∈ H4d
Z (M×M;C) and b, c ∈ Σ(F),

we have (a ? b, c) = (b, a∗ ? c), where a 7→ a∗ is the anti-automorphism of H4d
Z (M ×M;C)

given by flipping the two factors of M ×M. To see this, note that H4d
Z (M ×M;C) and

Σ(F) = H2d
M+

(
M;C

)
are isomorphic to the T -equivariant versions of these groups, since the

cohomology in lower degrees vanishes. We can localize the equivariant groups to the T -fixed

points, and using the projection formula for a proper pushforward, we get

(a ? b)|α =
∑
β∈I

a|(α,β) · bβ
e(β)

for all α ∈ I. Since a∗|(α,β) = a|(β,α), the result follows.

Now let eS be the central idempotent in H4d
Z (M×M;C) which projects Σ(F) onto Σ(FS).

Then e∗S is again a central idempotent; we will prove by induction on S that e∗S = eS . Assume

that e∗S′ = eS′ for all S′ < S. It is clear that eS is represented entirely by cycles on Z that live

over S̄ ⊂ Z0
∼= M0, therefore the image of e∗S is contained in

⊕
S′≤S Σ(FS′). For all S′ < S,

our inductive hypothesis tells us that Σ(FS′) is equal to the image of e∗S′ , and is therefore

disjoint from the image of e∗S . Since the image of e∗S is invariant under the convolution algebra

and complementary to the sum of the images of e∗S′ for S′ < S, it must be equal to Σ(FS′).
Thus e∗S = eS .

Suppose that b ∈ Σ(FS) and c ∈ Σ(FS′) for some S 6= S′. Then

(b, c) = (eSb, c) = (b, eSc) = (b, 0) = 0.

This establishes the result. 2

It is tempting to guess that two decompositions of H2d
M+

(
M;C

)
given in Equations (5) and

(7) coincide. This cannot be correct in general, however, because PS is trivial unless S is

special at a parameter where derived localization holds, while Σ(FS) is always nontrivial. The

next natural guess is that the appropriately coarsened statement holds for special leaves; that
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is, if S is special, then the subspace

K(OSg )C ⊂ K(Og)C ∼= H2d
M+

(
M;C

)
should coincide with the sum of the subspaces

Σ(FS′) ⊂ Σ(F) ∼= H2d
M+

(
M;C

)
corresponding to leaves S′ that are contained in the closure of S. Even this statement fails in

general (see Remark 7.17), but it holds if (M,D) is interleaved (Definition 6.14). We state

this result below, and prove it at the end of this section.

Theorem 7.14 Suppose that localization holds for D. Then (M,D) is interleaved if and only

if for every special symplectic leaf S ∈ S sp, the image of K(OSg )C ⊂ K(Og)C under CC is

equal to ⊕
S′≤S

Σ(FS′).

Corollary 7.15 Suppose that (M,D) is interleaved and all symplectic leaves are special.

Then the characteristic cycle isomorphism takes the categorical decomposition of K(Og) from

Equation (5) to the BBD decomposition of H2d
M+

(
M;C

)
= Σ(F) from Equation (7).

Proof: By definition, the categorical decomposition is orthogonal with respect to the Euler

pairing. By Lemma 7.13, the BBD decomposition is orthogonal with respect to the intersection

pairing. The result then follows from Theorems 6.5 and 7.14. 2

Example 7.16 If M is a hypertoric variety or a finite type A quiver variety and D is an

integral quantization for which localization holds, then (M,D) is interleaved and all symplectic

leaves are special, so the corollary applies.

Remark 7.17 One can use Theorem 7.14 to show that (M,D) is not interleaved by finding

a special leaf for which the two vector spaces in question have different dimensions. In

the case where M = T ∗(G/B) and the quantization is integral, the subspaces K(OSg )C

and
⊕

S′≤S Σ(FS′) are sums of isotypic components for the action of the Weyl group on

K(Og)C ∼= Σ(F); thus, we need only consider which simple representations appear in this

subspace. Using the notation of Carter’s book [Car93], when S is the nilpotent orbit A2, the

subspace K(OSg )C is the sum of the isotypic components for the families

{φ1,24} {φ′′2,16, φ4,13, φ
′
2,16} {φ9,10} {φ′′8,9};

these families are listed on [Car93, pg. 414]. The first index is the dimension of the represen-

tation, so dimK(OSg )C = 170.
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However, the corresponding piece of the BBD filtration
⊕

S′≤S Σ(FS′) is larger; by the

chart on [Car93, pg. 428], it also includes the isotypic component for φ′′1,12, which corresponds

under the Springer correspondence to the unique non-trivial local system on A2; thus its

dimension is 171. This shows that T ∗(G/B) is not interleaved for G of type F4 (we thank

Victor Ostrik for pointing out this example to us). Inspection of the charts in Carter’s book

also shows that the same is true for types E7 and E8.

In types B, C, and D, it is also easy to find examples where these two filtrations do not

match. For example, in C4, the representations associated to the pairs of partitions ((2, 1), (1))

and ((2, 2), ∅) are both associated to the nilpotent orbit with Jordan type (4, 2, 2). However,

only the former is in the 2-sided cell of this special orbit; the latter is in the 2-sided cell for

(4, 4). Outside of a few cases of small rank, the variety T ∗(G/B) will be interleaved only in

type A.

To prove Theorem 7.14, we need a generalization of the functor Σ. For all S ∈ S , define a

functor ΣS : Db
S (M0)→ C -mod by

ΣS := H2d
M+

0 ∩S̄
(M0;−

)
.

For every S, the inclusion of M+
0 ∩ S̄ into M+

0 induces a natural transformation ΣS → Σ.

Lemma 7.18 For any S ∈ S , the map ΣS(F)→ Σ(F) is injective, and the image has basis

{[Xα] | Xα,0 ⊂ S̄}.

Proof: Let M+
S̄

:= M+ ∩ ν−1(S̄). Then Poincaré duality gives an isomorphism

ΣS(F) ∼= H2d(M,M \M+
S̄

;C) ∼= HBM
2d (M+

S̄
;C).

Since M+
S̄

is purely d-dimensional, this last group is the subgroup of HBM
2d (M+;C) spanned

by the classes [Xα] for all Xα ⊂M+
S̄

. 2

Let F≤S :=
⊕

S′≤S FS′ .

Lemma 7.19 The image of the natural injection Σ(F≤S)→ Σ(F) is the same as the image

of ΣS(F)→ Σ(F).

Proof: It is clear that ΣS(F≤S)→ Σ(F≤S) is an isomorphism, so it is enough to show that

ΣS(F≤S) → ΣS(F) is an isomorphism, or equivalently that ΣS(FS′) = 0 if S′ 6≤ S. Let

j : S̄ ↪→M0 be the inclusion; then

ΣS(FS′) = H2d
M+

0 ∩S̄
(S̄; j!FS).
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Since FS′ is an intersection cohomology complex and S′ ∩ S̄ = ∅, we have

j!FS′ ∈ pD≥2d+1
c (S̄);

see, for example, [HTT08, 8.2.5]. This implies that Hk
M+

0 ∩S̄
(S̄; j!FS) vanishes for k ≤ dimM

[HTT08, 8.1.24], so ΣS(FS′) = 0, as desired. 2

Proof of Theorem 7.14: First suppose that (M,D) is interleaved. The image of K(OSg )C is

spanned by {CC Λα |Mα,0 ⊂ S̄}. By Lemma 6.18, it is spanned by {[Xα] |Mα,0 ⊂ S̄}. On the

other hand, Lemmas 7.18 and 7.19 imply that
⊕

S′≤S Σ(FS′) is spanned by {[Xα] | Xα,0 ⊂ S̄}.
Since S is special, Mα,0 ⊂ S̄ if and only if Xα,0 ⊂ S̄, so the two vector spaces agree.

Now suppose that (M,D) is not interleaved. This means that there exists an element α ∈ I
and a special leaf S such that Xα,0 ⊂ S̄ ( Mα,0. Lemma 6.18 says that the basis {CC Λβ}β∈I
is triangular with respect to the order ↼, so if we write [Xα] in this basis, CC Λα must occur

with non-zero coefficient. It follows that [Xα] lies in
⊕

S′≤S Σ(FS′) but not in K(OSg )C. 2

7.4 The extreme pieces

All of the structures discussed in this section are of particular interest when S is equal to

either the point stratum {o} or the dense stratum M̊0. We begin with the point stratum.

The category O{o}a is equal to the category of finite-dimensional A-modules. Therefore, if

localization holds, we have

K(P{o}) = K(O{o}g ) ∼= K(O{o}a ) = Z{[Lα] | dimLα <∞}.

By Lemmas 7.18 and 7.19, the map CC takes K(P{o})C to Σ(F{o}) ∼= H2d(M;C). This map

may or may not be an isomorphism. The following theorem is an alternate version of Theorem

7.14 that we may apply if we only care about the point stratum; the proof is clear.

Theorem 7.20 Suppose that localization holds for D. Then the natural map from K(P{o})C

to H2d(M;C) is always injective, and it is an isomorphism if and only if dimLα <∞ for all

α ∈ I such that Xα,0 = {o}.

Definition 7.21 If (M,D) satisfies hypotheses of Theorem 7.20, we will refer to the pair as

fat-tailed.

Next, we turn our attention to the dense stratum. A simple object of Oa lies in O∂M̊0
a if

and only if its annihilator is nonzero, so if localization holds, we have

K(PM̊0
) ∼= Z{[Lα] | Ann(Lα) = 0}.
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By Lemmas 7.18 and 7.19, the map CC takes K(O∂M̊0
a )C to

⊕
S̄ 6=M0

Σ(FS), so there is a

naturally induced map of quotient spaces from K(PM̊0
) to Σ(FM̊0

). Furthermore, we have a

nice interpretation of the vector space Σ(FM̊0
), as described in the following lemma.

Lemma 7.22 There is a canonical isomorphism Σ(FM̊0
) ∼= IH2d

T (M0;C).

Proof: We have IH∗(M0,M0 \M+
0 ;C) ⊂ H∗(M,M \M+;C). Since the second group is zero

except in degree 2d, so is the first. It follows that the forgetful map induces an isomorphism

IH2d
T (M0,M0 \M+

0 ;C) ∼= IH2d(M0,M0 \M+
0 ;C) = Σ(FM̊0

).

Since dimT = 1 and M\M+
0 contains no T-fixed points, the total dimension of IH∗T(M0\M+

0 ;C)

is finite. The result now follows by applying the long exact sequence in IHT for the pair

(M0,M0 \M+
0 ) together with the fact that IH∗T(M0;C) is generated as an H∗T(pt)-module by

the part in degrees < 2d. 2

The following theorem is the alternate version of Theorem 7.14 that we may apply if we

only care about the dense stratum; again, the proof is clear.

Theorem 7.23 Suppose that localization holds for D. Then the natural map from K(PM̊0
)C

to IH2d
T (M0;C) is always surjective, and it is an isomorphism if and only if Mα,0 6= M0 for

all α ∈ I such that Xα,0 is contained in the closure of a non-dense leaf.

Definition 7.24 If (M,D) satisfies hypotheses of Theorem 7.23, we will refer to the pair as

light-headed.

Example 7.25 If M is a hypertoric variety or a finite type A quiver variety and D is an

integral quantization for which localization holds, then (M,D) is interleaved (Example 7.16),

and therefore both fat-tailed and light-headed.

Example 7.26 If M is a quiver variety of finite simply-laced type and D is an integral

quantization for which localization holds, then (M,D) is fat-tailed [BL, 1.2].

Conjecture 7.27 If M is a resolution of a transverse slice in the affine Grassmannian of

finite simply-laced type and D is an integral quantization for which localization holds, then

(M,D) is light-headed.

Remark 7.28 In type A, transverse slices in the affine Grassmannian coincide with quiver

varieties [MV], so Conjecture 7.27 follows from Example 7.25; the open cases are in types D

and E. We will revisit this conjecture in Example 10.27.
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7.5 Cells

Throughout this section we will assume that localization holds. Consider a pair of indices

α, β ∈ I.

Definition 7.29 We say that α
L
≤ β if AnnLβ ⊂ AnnLα. We say that α

R
≤ β if there exists

a Harish-Chandra bimodule H such that Lα is a subquotient of H ⊗ Lβ. We define a third

pre-order on I by putting α
2
≤ β if α

L
≤ β or α

R
≤ β, and then taking the transitive closure.

If α
2
≤ β and β

2
≤ α, we say that α and β lie in the same two-sided cell of I.

Proposition 7.30 If α
2
≤ β, then Mα,0 ⊂Mβ,0.

Proof: It is enough to show that either α
L
≤ β or α

R
≤ β implies that Mα,0 ⊂ Mβ,0. By

Corollary 6.12 and the fact that localization holds, Mα,0 = MLα and Mβ,0 = MLβ . If α
L
≤ β,

then AnnLβ ⊂ AnnLα, so by definition of ML, we have Mα,0 ⊂Mβ,0.

If α
R
≤ β, then there exists an algebraic Harish-Chandra bimodule H such that Lα is a

subquotient of H ⊗ Lβ. Localizing, we obtain a geometric Harish-Chandra bimodule H such

that Λα is a subquotient of H⊗ Λβ. This implies that the support of Λα is contained in the

support of Λβ. By definition of Mα,0, this implies that Mα,0 ⊂Mβ,0. 2

Remark 7.31 By Proposition 7.30, we have a surjective map from the set of two-sided cells

to the set of special leaves that takes the cell containing α to the special leaf whose closure is

Mα,0. If M is a hypertoric variety, this map is a bijection [BLPW12, 7.14]; the same is true

if M = T ∗(G/B) and the period of D is integral. However, it need not be a bijection when

M = T ∗(G/B) and the period is non-integral.

For example, let G = G2, let α1, α2 ∈ h∗ ∼= H2(M;C) be the short and long simple

roots, and consider the quantization with period α1 + α2/2. In this case, the simple modules

with highest weights α1 − α2/2 and −11α1 − 5α2/2 are both associated with the sub-regular

nilpotent orbit.

Conjecture 7.32 Suppose that D is an integral quantization in the sense of Section 2.4. Then

the map from the set of two-sided cells to S sp taking the equivalence class of α to Mα,0 is an

isomorphism of posets.

Remark 7.33 If Conjecture 7.32 holds, then the summands of H2d
M+

(
M;Z

)
in Equation (5)

are simply the spans of the classes of the simple elements in each two-sided cell.

Remark 7.34 One may refine the set of two-sided cells in two different ways: by left cells

(using the preorder
L
≤) or by right cells (using the preorder

R
≤). By considering the left preorder,
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we can construct a surjective map from the set of left cells to the set of irreducible components

of preimages in M of special leaves in M0. If M is a hypertoric variety, then this map is a

bijection by [BLPW12, 7.2]. If M = T ∗(G/B) and the period of D is integral, the same is true

by the circle on the first page of the book of Borho, Brylinski and MacPherson [BBM89] (also

based on work of Joseph, Kashiwara and Duflo, among others). As in the case of two-sided

cells, the non-integral case is more subtle.

By considering the right preorder, we can construct a surjective map from the set of right

cells to the set of irreducible components of varieties of the form M+
α,0 := Mα,0 ∩M+; such

components are called orbital varieties. In the hypertoric case, this map is a bijection by

[BLPW12, 7.11].

8 Twisting and shuffling functors

The purpose of this section is to introduce two commuting collections of endofunctors of Oa,

called twisting and shuffling functors. The twisting functors, which operate by varying the

period of the quantization, act on the entire category A -mod, taking the subcategory Oa to

itself. These functors were introduced in [BPW, §6.4], and they generalize Arkhipov’s twisting

functors on BGG category O (see Remark 8.4). The shuffling functors operate by varying the

choice of T, and therefore can only be defined on the category Oa. These functors generalize

Irving’s shuffling functors on BGG category O (see Proposition 8.14).

8.1 Twisting functors

Let λ, λ′ ∈ H2(M;C) be a pair of classes such that λ−λ′ ∈ H2(M;Z). Let Aλ and Aλ′ denote

the algebras of S-invariant global sections of quantizations with periods λ and λ′, and let

Oa ⊂ A -mod and O′a ⊂ Aλ′ -mod be the associated categories.

In [BPW, 6.21], we define an (Aλ′ , Aλ)-bimodule λ′Tλ. In the most general situation, λ′Tλ

is defined as a specialization of the space of sections of a quantized line bundle on the universal

deformation M of M. If localization holds at λ′, then λ′Tλ can be described more simply as

the bimodule of S-invariant global sections of λ′Tλ[h−1/n] [BPW, 6.26]. If M is constructed as

the symplectic quotient of a symplectic vector space, then λ′Tλ can also be realized as a weight

space in a quotient of the Weyl algebra of the vector space [BPW, 6.28].

Let

Φλ′,λ : D(Aλ -mod)→ D(Aλ′ -mod)

be the functor obtained by derived tensor product with λ′Tλ.

Let Π ⊂ H2(M;R) be the set of λ such that

• λ does not lie on the complexification of any of the hyperplanes of Htw (Section 2.2), and
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• there exists some conical symplectic resolution M′ of M0 and some element w of the

Namikawa Weyl group such that localization holds at wλ on M′.

We prove in [BPW, 6.32] that, if λ, λ′ ∈ Π, then the functor Φλ′,λ is an equivalence, and it

preserves bounded derived categories; we will use the symbol Φλ′,λ for the induced functor

in this case. By [BPW, 6.37], in this case, Φλ′,λ also takes the subcategory Db
Oa

(A -mod) to

Db
O′a(A -mod).

Remark 8.1 By Remark 2.4, the chambers of Htw are equal to W -translates of ample cones

of conical symplectic resolutions of M0. Thus Π is the set of W -translates of classes that are

not only ample on some resolution, but deep enough in the ample cone so that localization

holds on that resolution. By Theorem 2.8, the intersection of Π with any chamber of Htw

is nonempty (that is, it is always possible to go deep enough into the ample cone so that

localization holds).

We define a pure twisting functor to be an auto-equivalence of D(Aλ -mod) obtained by

composing functors of the form Φλ′′,λ′ with λ′, λ′′ ∈ Π. Such compositions go through module

categories for many different quantizations; we require that they pass only through elements

of Π, and that they begin and end at a single parameter λ. To define twisting functors in

general, we incorporate the action of the Namikawa Weyl group.

For any w ∈W , the rings Aλ and Awλ are canonically isomorphic [BPW, 3.10]. Let

Φλ
w : Awλ -mod→ Aλ -mod

be the equivalence induced by this isomorphism; we will use the same symbol to denote the

induced functor on the derived category.

Proposition 8.2 The functor Φλ
w takes Oa to itself.

Proof: Recall that the isomorphism in [BPW, 3.10] that we use to define Φλ
w arises from a

W -action on the universal deformation M . This action commutes with that of T since the

isomorphism Aλ ∼= Awλ induces the identity map on Aλ(n)/Aλ(n− 1) ∼= Awλ(n)/Awλ(n− 1)

and preserves the grading by Z/nZ. Thus it sends a non-commutative moment map for T in

Aλ to one in Awλ. Thus, the functor Φλ
w preserves category Oa. 2

We define a twisting functor to be a composition of functors of the form Φλ′′,λ′ and

their inverses (passing only through elements of Π), beginning at D(Aλ -mod) and ending

at D(Awλ -mod), followed by the functor Φλ
w. Note that by [BPW, 6.25] there is a natural

isomorphism Φλ′,λ ◦ Φλ
w
∼= Φλ′

w ◦ Φwλ′,wλ, so the set of twisting functors is closed under

composition.
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Let Etw := H2(M;C)r
⋃

H∈Htw

HC. The following theorem is proven in [BPW, 6.35 & 6.37].

Theorem 8.3 There is a natural homomorphism from π1(Etw/W, [λ]) to the group of twist-

ing functors on Db(Aλ -mod), preserving the full subcategory Db
Oa

(A -mod). The subgroup

π1(Etw, λ) maps to the group of pure twisting functors.

Remark 8.4 In the case of hypertoric varieties, twisting functors are studied in detail in

[BLPW10, §6] and [BLPW12, §8.2]. In the case of the Springer resolution, we show in [BPW,

6.38] that they coincide with the twisting functors defined by Arkhipov [AS03] (thus justifying

the name).

Remark 8.5 On the level of the Grothendieck group, pure twisting functors act trivially

[BPW, 6.39], therefore we obtain an action of W on K(Oa) ∼= K(Og) ∼= H2d
M+

(
M;Z

)
. This

action coincides with the one arising from the natural map from C[W ] to the convolution

algebra H4d
Z (M×M;C) [BPW, 6.40].

8.2 Shuffling functors

In this section we discuss shuffling functors, which are in a certain sense “dual” to twisting

functors (this will be explained in Section 10). Unlike twisting functors, these are unavoidably

tied to the subcategory Oa ⊂ A -mod, since they are constructed by varying the action of

T ∼= C×. We will fix a single quantization throughout this section, and we will assume that its

period lies in Π ∩ U.17

Lemma 8.6 Let G be the full group of Hamiltonian symplectomorphisms of M that commute

with S. A maximal torus T ⊂ G containing the image of T is unique up to conjugation by the

largest unipotent subgroup commuting with T.

Proof: Let C = CG(T) be the centralizer of this cocharacter. We wish to show that this

group is an extension of a torus by a unipotent subgroup. That is, we wish to show that

any reductive subgroup of C is a torus. Any such subgroup must be contained in a maximal

reductive subgroup Gr. Let T be a maximal torus in Gr containing T. For all α ∈ I, consider

the map gr → TpαM, and let k ⊂ gr denote the intersection over all α of the kernels of these

maps. Since the fixed points are isolated, we have t ⊂ c ∩ gr ⊂ k. We will show that k = t.

This will imply that t = c ∩ gr, and therefore that T is the identity component of C ∩Gr and

a maximal reductive subgroup of C. Since every torus containing T is conjugate to T under C

by the uniqueness of maximal tori in C, the proof will be complete.

Since k is invariant under the adjoint action of t, it must be a sum of t and some root

spaces of gr. Assume for the same of contradiction that there exists a root γ such that gγ ⊂ k,

17In fact, it is easy to show, using twisting functors, that U ⊂ Π.
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and let G′ ⊂ Gr be a semisimple subgroup whose Lie algebra g′ contains gγ . Consider a

projective orbit X ⊂M of G′. By assumption, for all α ∈ I, the map g′ → TpαX kills gγ . By

the classification of projective homogeneous spaces, this is only possible if X is a point, thus

all projective G′-orbits in M are trivial.

Consider the action of G′ on the core X ⊂M (Remark 3.5). If G′ acted nontrivially on

X, then it would contain a nontrivial closed orbit [BB80, Corollary 2], which we have seen

is not possible. Thus G′ fixes all of X. Any Hamiltonian action of a reductive group on a

connected symplectic variety that fixes a Lagrangian subvariety must be trivial, thus we obtain

a contradiction. 2

Let ζ : T → T be the cocharacter of T by which T acts. In this section we will vary ζ,

and thereby vary the action of T. We call a cocharacter generic if MT is finite. For any

generic ζ, we will write Oζa for the corresponding algebraic category O. The set of non-generic

cocharacters is equal to the intersection of the cocharacter lattice of T with the union of a

finite set Hsh of hyperplanes in tR.

Let Db
h(D -mod) be the full subcategory of Db(D -mod) consisting of complexes with

holonomic cohomology, and let Db
h(A -mod) be the full subcategory of Db(A -mod) that is

taken to Db
h(D -mod) by LLoc. Also let ιζ : Db

Oζa
(A -mod) → Db

h(A -mod) be the inclusion

functor; it is full and faithful by definition of U (Section 5.2).

Proposition 8.7 The functor ιζ has left and right adjoints

Lπζ : Db
h(A -mod)→ Db

Oζa
(A -mod) and Rπζ : Db

h(A -modh)→ Db
Oζa

(A -mod).

Proof: If P is projective generator and I an injective generator of Oζa , then the func-

tor Hom(P,−) induces an equivalence Db
Oζa

(A -mod) ∼= Db(End(P )op -mod), and similarly

Hom(−, I) induces an equivalence with Db(End(I) -mod)op. In fact, there is a richer structure

here: replacing P with a projective resolution of P as an A-module, for any object N of

Db
Oζa

(A -mod), we can think of Ext(P,N) as an object in Db(End(P ) -mod)op. Similarly, we can

think of Ext(N, I) as an object in Db(End(I) -mod). (These are the Hom-spaces in the usual

dg-enhancement of A -mod.) Note that the hypothesis that LLoc(N) is holonomic guarantees

that these complexes are finite dimensional. We can define

Lπζ(N) := ExtEnd(I)(ExtOζa
(N, I), I) and Rπζ(N) := P ⊗End(P )op ExtOζa

(P,N).

This completes the proof. 2

Remark 8.8 One can think of these two adjoints as “projections” onto Db
Oζa

(A -mod). The

functor Lπζ is the derived functor of taking the largest quotient of a module that lies in Oζa ,
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and Rπζ is the derived functor of taking the largest such submodule. It’s clear that these

functors are left/right exact, respectively.

Given two different generic cocharacters ζ and ζ ′ of T , let

Ψζ′,ζ := Lπζ
′ ◦ ιζ : Db

Oζa
(A -mod)→ Db

Oζ
′

a
(A -mod),

and let Ξζ,ζ
′

= Rπζ ◦ ιζ′ be its right adjoint. The following result, which should be regarded

as an analogue of [BPW, 6.32], was conjectured in a previous draft of this paper, and has

recently been proved by Losev [Los, 7.3].

Proposition 8.9 The functor Ψζ′,ζ is an equivalence.

We define a pure shuffling functor to be an endofunctor of Db
Oζa

(A -mod) obtained by

composing functors of the form Ψζ′′,ζ′ for various generic cocharacters, beginning and ending

at a single generic cocharacter ζ. To define shuffling functors in general, we incorporate the

action of the Weyl group.

Let W := NG(T )/T be the Weyl group of G. We use the blackboard-bold font to distinguish

W from the Namikawa Weyl group W , which is typically different. For example, if M is a

crepant resolution of C2/Γ, then W is isomorphic to the Weyl group corresponding to Γ under

the McKay correspondence, but W is trivial unless Γ = Z/2Z.

The action of G on C[M] lifts canonically to an action on A. The Weyl group W acts on

the cocharacter lattice of T , and on the subset of generic cocharacters. For all w ∈ W and

all generic ζ, let ζw := wζw−1. Define a functor Ψw̄ : Db(A -mod) → Db(A -mod) taking an

A-module N to the A-module with the same underlying vector space, but with action

a · x = (w̄a)x for all x ∈ N and a ∈ A,

for any w̄ ∈ NG(T ) where the action on the left side is the action on Ψw̄(N), and the

action on the right is the original action on N . If w is in the image of w̄ in W, we let

Ψζ
w : Db

Oζwa
(A -mod) → Db

Oζa
(A -mod) denote the functor obtained by restricting Ψw̄. Our

notation for this functor is justified by the following lemma.

Lemma 8.10 Up to natural isomorphism, the functor Ψζ
w is independent of the choice of w̄.

Proof: It suffices to prove that, for any t ∈ T , the functor from Oζa to itself given by twisting

the module structure by the action of t is isomorphic to the identity functor.

By [BPW, 3.11], the action of T on M admits a quantized moment map η : U(t) → A.

The element ξ ∈ A is the image of a generator of t under a quantized moment map for the

T-action, so we can assume that η extends this map. In particular, η induces an action of t on

62



any A-module N in Oζa which commutes with the action of ξ; since the ξ-weight spaces are

finite-dimensional the t-action is semi-simple.

We can assume that N is indecomposable, and so all the t weights lie in the same coset of

the weight lattice of T inside of t∗. Thus, there is a character λ ∈ t∗ such that the action of t

on N via η′(x) := η(x)− λ(x) integrates to an action ρ : T → End(N).

Since λ(x) is a scalar, we have

[η′(X), a]y = [η(X), a]y =
d

ds
(esX · a)y

∣∣∣∣
s=0

for any y ∈ N . Integrating, we get an equality ρ(t)aρ(t−1) = t · a of operators in End(N) for

any t ∈ T . Thus for all a ∈ A and y ∈ N , we have (t · a)ρ(t)y = ρ(t)ay. In other words, the

map ρ(t) : N → N intertwines the t-twisted action with the original action. 2

We define a shuffling functor to be a composition of of functors of the form Ψζ′′,ζ′ and

their inverses, beginning at Oζa and ending at Oζwa , followed by the functor Ψζ
w.

With twisting functors, we have a result [BPW, 6.33] that says that twisting between

parameters that all lie within a fixed chamber of Htw is trivial. We now establish the analogous

result for shuffling functors, which we will need in Section 10. For convenience, we will assume

that derived localization holds.

Lemma 8.11 Assume that derived localization holds. Suppose that ζ and ζ ′ lie in the same

chamber of Hsh. Then the subcategories Db
Oζa

(A -mod), Db

Oζ
′

a

(A -mod) ⊂ Db(A -mod) are equal,

and Ψζ′,ζ is the identity functor.

Proof: Since derived localization holds, it is sufficient to prove that Oζg = Oζ
′

g . By the

definition of geometric category O, it is sufficient to prove that ζ and ζ ′ induce the same

relative core M+ ⊂M.

Suppose not; this means that there exists α ∈ I such that the relative core components

Xα and X ′α defined by ζ and ζ ′ (Section 3.1) are different. This in turn means that there

is a character χ of T such that the χ-weight space of TpαM is nonzero and χ has opposite

signs on ζ and ζ ′. The vanishing set of χ is a hyperplane of Hsh that separates ζ from ζ ′; this

contradicts the fact that ζ and ζ ′ lie in the same chamber. 2

Lemma 8.12 There is a natural isomorphism Ψζ′
w ◦Ψζ′w,ζw ∼= Ψζ′,ζ ◦Ψζ

w.

Proof: By definition, we have Ψw̄ ◦ ιζw ∼= ιζ ◦Ψζ
w for any w̄ ∈ NG(T ). Then by adjointness,

we have Lπζ
′ ◦Ψw̄

∼= Ψζ′
w ◦ Lπζ

′
w , and the result follows. 2
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We are now ready to state the analogue of Theorem 8.3. Let Esh := tr
⋃

H∈Htw

HC.

Theorem 8.13 There is a natural homomorphism from π1(Esh/W, [ζ]) to the group of shuf-

fling functors on Db
Oζa

(A -mod). The subgroup π1(Esh, ζ) maps to the group of pure shuffling

functors.

In fact, there are two natural such actions, intertwined by the automorphism on π1(Esh/W, [ζ])

induced by complex conjugation. One sends a minimal length oriented path in the Deligne

quiver to the functor Ψζ,ζ′ , and the second sends such a path to Ξζ,ζ
′
. The second is the one

that will appear in the definition of symplectic duality (Definition 10.1).

Proof: Here we follow the structure of the proof of Theorem 8.3 in [BPW, 6.35]. We model

the fundamental group of Esh using the Deligne groupoid, which is equivalent to π1(Esh). The

fundamental group of Esh/W is thus equivalent to the semi-direct product of W with the

Deligne groupoid.

The result [Los, 7.3] establishes that we have an action of the Deligne groupoid, and Lemma

8.12 shows that this action is compatible with the action of W on the Deligne groupoid. Thus

we have an action of the semi-direct product, and therefore of π1(Esh/W, [ζ]). 2

We have chosen to call the functors defined in this section “shuffling functors” because they

coincide with Irving’s shuffling functors [Irv93] in the case of the Springer resolution. More

precisely, let M = T ∗(G/B). The group of Hamiltonian symplectomorphisms that commute

with S is isomorphic to G itself, and its Weyl group W is the usual Weyl group of G. (This

example is unusual in that the Weyl group and the Namikawa Weyl group are isomorphic.)

Let T ⊂ B ⊂ G be the unique maximal torus of B, and let ζ : T→ T be a generic cocharacter

with non-negative weights on b. Consider the shuffling functor

Ψw := Ψζ
w ◦Ψζw,ζ : Db

Oζa
(A -mod)→ Db

Oζa
(A -mod).

As noted in [BPW, §6.4], the category Oζa for the period λ+ ρ (λ a dominant integral weight)

is equivalent to a regular infinitesimal block of BGG category O via an equivalence defined by

Soergel [Soe86].

Proposition 8.14 For each w ∈W, the derived version of Soergel’s equivalence takes Ψw to

Irving’s shuffling functor C−1
w0ww0

[`(w)].

Remark 8.15 To prove Proposition 8.14, we will make use of the fact that our twisting and

shuffling functors commute, which we will prove in the next section (Theorem 8.19).
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We first show that Proposition 8.14 is correct when applied to any Verma module. For any

v ∈ W , we denote by M(v) the Verma module with highest weight v(w0λ− ρ)− ρ. It is an

object in Oζa .

Lemma 8.16 For any Verma module M(v), there is an isomorphism between the image

Ψw(M(v)) and the image under the shuffling functor C−1
w0ww0

(M(v))[`(w)].

Proof: We know from [BPW, 6.38] that Soergel’s equivalence takes the twisting functors

defined in the previous section to Arkhipov’s twisting functors. Since all Verma modules are

related by twisting functors, this and Theorem 8.19 imply that if Ψw and the shuffling functor

C−1
w0ww0

[`(w)] act the same way on one Verma module, then they have the same action on all

of them.

The category Db
Oζa

(A -mod) can be identified, via localization and [BPW, 4.5], with the

derived category of λ-twisted D-modules on G/B which are smooth along the Schubert

cells Xw := BwB/B. By tensoring with a line bundle, we can further identify it with the

derived category of untwisted D-modules which are smooth along the Schubert cells. Via this

identification, the standard objects of Oζa correspond to the D-modules 0v := (jv−1)!SXv−1 ,

and the functor Ψζ
w corresponds to the pullback along the map (w̄·) : G/B → G/B.

Soergel’s equivalence takes the Verma module M(w0vw0) to 0v. For any w, v ∈ W, we

have

Ext•(Ψw0e,0
?
v)
∼= Ext•(w̄∗Ψζw,ζ0e,0

?
v)
∼= Ext•(Ψζw,ζ0e, w̄∗0

?
v)

∼= Ext•(ιζ0e, ι
ζww̄∗0

?
v)
∼= Ext•(0e, w̄∗0

?
v).

The D-module 0e is supported at the point B/B and w̄∗0
?
v = j∗SwBv−1B . Thus, we get trivial

Exts unless e ∈ wBv−1B, which only happens when v = w. When v = w, then wBv−1B/B

is an affine space of dimension `(w). Thus we are reduced to a computation over the Weyl

algebra, and we obtain

Ext•(Ψw0e,0
?
v)
∼=

0 v 6= w

C[−`(w)] v = w.

This implies that Ψw0e ∼= 0w[`(w)].

Now that we know how Ψw acts on 0e, it remains to compute the action of C−1
w0ww0

[`(w)]

on the corresponding Verma module M(e). We wish to show that C−1
w0ww0

[`(w)] takes M(e) to

M(w0ww0)[`(w)], or equivalently that Cw takes M(w) to M(e). If s is a simple reflection and

ws < w, then by [Irv93, 3.1] (using the notation of that paper), we have

CsM(w) ∼= CsM(w0, w0w) ∼= M(w0, w0ws) ∼= M(ws).
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We can now prove the desired isomorphism by induction on length. 2

Proof of Proposition 8.14: The usual t-structure on the derived BGG category O is induced

by the exceptional collection of Verma modules as in [Bez03, Prop. 1]. Since the composition

F := Ψw ◦ Cw0ww0 [−`(w)]

sends Vermas to Vermas, it induces an auto-equivalence of the abelian category O which sends

every simple to itself.

Consider the trivial module C over g. The functor Ψw sends C to itself, inducing the

identity on ExtO(C,C) ∼= H∗(G/B), since C lies in category O for every Borel. The same

is true of C−1
w0ww0

[`(w)] since C is killed by translation to any wall. Thus, we have an

isomorphism C ∼= F (C) which induces the same isomorphism ExtO(C,C) ∼= ExtO(F (C), F (C))

as the functor F . It follows that for any simple L in Oζa , we have a canonical isomorphism

f : Ext•(C, L) ∼= Ext•(C, F (L)) of H∗(G/B)-modules induced by the functor F .

The Koszul dual form of Soergel’s Endomorphismensatz [Soe90] states that for any two

simple modules, we have an isomorphism

Ext•(L,L′) ∼= HomH∗(G/B)(Ext•(C, L),Ext•(C, L′)).

This shows, in particular, that

Ext•(L,F (L)) ∼= HomH∗(G/B)(Ext•(C, L),Ext•(C, F (L))),

so the isomorphism f induces an isomorphism L ∼= F (L). The Endomorphismensatz

similarly shows that this isomorphism induces the same isomorphism of Yoneda algebras

Ext•(⊕L,⊕L) ∼= Ext•(⊕F (L),⊕F (L)) as the functor F . Thus, it induces an isomorphism

between F and the identity functor. 2

We conclude this section by discussing the action of shuffling functors on the Grothendieck

group. Just as we saw for twisting functors in Remark 8.5, we will find that the pure shuffling

functors act trivially, and we are left with an action of the Weyl group W.

Recall from Theorem 6.5 that we have

CC : K(Oζa ) ∼= K(Oζg )
∼=−→ H2d

M+
ζ

(M;Z),
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and that this isomorphism intertwines the Euler form with the equivariant intersection form.

Furthermore, we have

H2d
M+
ζ

(M;Z) ∼= H2d
M+
ζ ,T

(M;Z)↪→H2d
T (MT ;Z),

with image independent of ζ. In particular, this gives us a canonical way to identify the lattices

K(Oζa ) ∼= H2d
M+
ζ

(M;Z) and K(Oζ
′

a ) ∼= H2d
M+
ζ′

(M;Z) for any two generic cocharacters ζ and ζ ′.

One can check that this identification sends vα to ±v′α; the sign is given by the parity of the

codimension of the space of points that flow in to pα for both ζ and ζ ′ inside the space of

points that flow in for ζ (note that this is symmetric under switching ζ and ζ ′).

This identification agrees with the map K(Oζa ) → K(Oζ
′

a ) induced by Ψζ′,ζ . We omit a

full proof of this fact, since it will not be used later in the paper. The proof is similar to

Theorem 6.5; the key is to show that the Euler pairing between K(Oζa ) and K(Oζ
′

a ) inside of

K(A -modh) agrees with the equivariant intersection pairing on H2d
T (MT ;Z). Deformation

arguments show that it suffices to do this on a generic fiber of a twistor deformation. Thus, we

are reduced to calculating the Exts between modules ML,M
′
L over the Weyl algebra deforming

the structure sheaves of Lagrangian subspaces L,L′:

Exti(ML,ML′) =

C i = dim(L/(L ∩ L′))

0 i 6= dim(L/(L ∩ L′)).

This implies the following proposition, which is an analogue of [BPW, 6.39] (see Remark 8.5).

Proposition 8.17 Pure shuffling functors act trivially on the Grothendieck group of Oζa .

Impure shuffling functors, however, act in an interesting way. Consider the impure shuffling

functor Ψw = Ψζ
w ◦ Ψζw,ζ . We know from the above discussion that Ψζw,ζ induces the

aforementioned canonical isomorphism from H2d
M+
ζ

(M;Z) to H2d
M+
ζw

(M;Z). The map induced

by Ψζ
w is given by choosing a lift w̄ ∈ N(T ) ⊂ G and considering the automorphism of M

induced by w̄−1. This automorphism intertwines the action of T by ζw with the action of T by

ζ, and therefore induces an isomorphism from H2d
M+
ζw

(M;Z) to H2d
M+
ζ

(M;Z). This isomorphism

is different from the canonical one; in other words, the automorphism of K(Oζa ) ∼= H2d
M+
ζ

(M;Z)

induced by Ψw is non-trivial. These automorphisms are compatible with multiplication in the

Weyl group, so we obtain a shuffling action of W on K(Oζa ).

Remark 8.18 In the case of the Springer resolution, both W and W are isomorphic to

the ordinary Weyl group. Since pure twisting and shuffling functors act trivially on the

Grothendieck group (Remark 8.5 and Proposition 8.17) we obtain both a twisting and a

shuffling action of W on K(Oζa ). Furthermore, the two actions commute with each other by
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Theorem 8.23, which we will prove in the next section. Indeed, what we obtain is isomorphic

to the canonical action of W ×W on C[W ], with one factor acting by left multiplication and

the other by inverse right multiplication.

8.3 Twisting and shuffling commute

The purpose of this section is to show that twisting and shuffling functors commute. We begin

with the pure ones.

Lemma 8.19 Let λ, λ′ ∈ Π be parameters with λ − λ′ ∈ H2(M;Z), and ζ, ζ ′ two generic

cocharacters of T . Then we have a natural isomorphism of functors18

Ψζ′,ζ ◦ Φλ′,λ ∼= Φλ′,λ ◦Ψζ′,ζ .

Proof: First, we observe that the four functors above are not affected if we replace M with

some other conical symplectic resolution M′ of M0 [BPW, 3.9 & 6.24]. By definition, localiza-

tion holds for some resolution at every element of Π, thus we may assume that localization holds

at λ′. By [BPW, 6.31], the functor Φλ′,λ can be written as the composition of the localization

functor LLoc at λ, the “geometric twist” λ′T [h−1/n]λ ⊗Dλ −, and the derived sections functor

RΓS at λ′. Similarly, the functor Ψζ′,ζ (at either λ or λ′) can be written as the composition of

LLoc, the “geometric shuffle” (defined in a way completely analogous to that of Ψζ′,ζ), and

RΓS. Thus it suffices to show that geometric twists commute with geometric shuffles. This

follows immediately from the fact that λ′T [h−1/n]λ ⊗Dλ − and its adjoint commute with the

inclusion of Og into D -modh. 2

We next move on to the various impure cases.

Lemma 8.20 Let λ ∈ Π and w ∈ W be such that w · λ − λ ∈ H2(M;Z), and let ζ, ζ ′ be

generic cocharacters of T . Then we have a natural isomorphism of functors

Ψζ′,ζ ◦ Φλ
w
∼= Φλ

w ◦Ψζ′,ζ .

Proof: It is clear from the definition of Φλ
w that it commutes with inclusion functors and their

adjoints, and therefore with Ψζ′,ζ . 2

18Here we interpret the first Ψζ′,ζ for the quantization with period λ′, and the second Ψζ′,ζ for the quantization
with period λ. We do not need to say anything about Φλ

′,λ, since this functor is defined without reference to
the choice of cocharacter. Similar comments apply to the statements of Lemmas 8.22, 8.20, and 8.21.
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Lemma 8.21 Let λ ∈ Π and w ∈ W be such that w · λ − λ ∈ H2(M;Z). Let ζ be generic,

and let v ∈W be arbitrary. Then we have a natural isomorphism of functors

Ψζ
v ◦ Φλ

w
∼= Φλ

w ◦Ψζ
v.

Proof: This follows immediately from the fact that the canonical isomorphism Aλ ∼= Aw·λ

that was used to define the functor Φλ
w is G-equivariant. 2

Lemma 8.22 Let λ, λ′ ∈ Π be parameters with λ−λ′ ∈ H2(M;Z), and ζ a generic cocharacter

of T , and w ∈W. Then we have a natural isomorphism of functors

Ψζ
w ◦ Φλ′,λ ∼= Φλ′,λ ◦Ψζ

w.

Proof: For any object N of Oζwa (with period λ), we have

Ψζ
w ◦ Φλ′,λ(N) = Ψζ

w

(
λ′Tλ

L
⊗N

)
∼= Ψζ

w(λ′Tλ)
L
⊗Ψζ

w(N).

Here, by Ψζ
w(λ′Tλ), we mean that we twist both the left and the right module structures on λ′Tλ

by any lift w̄ of w to N(T ) ⊂ G. To prove the lemma, it suffices to show that Ψζ
w(λ′Tλ) ∼= λ′Tλ.

By the same argument that we used at the beginning of the proof of Lemma 8.19, we may

assume that localization holds at λ′. This implies that λ′Tλ ∼= ΓS(λ′Tλ′). Thus Ψζ
w(λ′Tλ) is the

S-invariant sections of the pullback sheaf w̄∗λ′Tλ′; however, the pullback of λ′Tλ′ by any group

element is again a quantization of the same line bundle, and thus isomorphic to λ′Tλ′. This

completes the proof. 2

The four preceding lemmas combine to give us the following theorem.

Theorem 8.23 Twisting functors commute with shuffling functors.

We end the section with a pair of conjectures, motivated by our study of twisting and

shuffling functors on hypertoric varieties. Suppose that we have a notion of integral periods

(Section 2.4). Fixing an integral parameter λ ∈ Π and a generic cocharacter ζ, we consider

the long twist Φλ,−λ ◦Φ−λ,λ and the long shuffle Ψζ,−ζ ◦Ψ−ζ,ζ . The first is a pure twisting

functor, the second a pure shuffling functor; in particular, they are both endofunctors of a

single category Db
Oa

(A -mod).

Conjecture 8.24 Up to a shift, the long twist is isomorphic to to the right Serre functor on

Db
Oa

(A -mod) and the long shuffle is isomorphic to the left Serre functor.
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Remark 8.25 This conjecture is known to hold for BGG category O by [MS08, 4.1] and for

hypertoric category O by [BLPW10, 6.11].

Remark 8.26 Conjecture 8.24 has recently been proven by Losev [Los, 7.4 & 7.7].

9 Examples

The purpose of this section is to summarize the structures that we have defined so far for all

known classes of examples of conical symplectic resolutions. Specifically, for each class, we will

address the following (the parenthetical section number indicates the point in this paper at

which each of these topics was first discussed):

(i) the group G of Hamiltonian symplectomorphisms that commute with S, along with its

Weyl group W (Section 8.2)

(ii) the vector space H2(M;C) (or the full cohomology ring) along with the action of the

Namikawa Weyl group W (Section 2.2)

(iii) the algebra A of S-invariant global sections of a quantization (Section 2.3)

(iv) the periods at which localization is known to hold (Section 2.6)

(v) Koszulity of Oa and Og (Section 4.1)

(vi) the map H∗(M;C)→ Z(E) to the center of the Yoneda algebra of Og (Section 5.4)

(vii) the poset S of symplectic leaves and the subposet S sp of special leaves (Section 6.3)

(viii) the twisting and shuffling functors (Section 8).

9.1 Cotangent bundles of partial flag varieties

Let G be a semi-simple complex Lie group and P ⊂ G a parabolic subgroup. Let M :=

T ∗(G/P ), equipped with the inverse scaling action on the fibers. Up to modification of the

S-action, these are the only known examples of conical symplectic resolutions that are cotangent

bundles.

The G-moment map M → g∗ ∼= g has as its image the closure of a nilpotent orbit OP ;

the orbits that arise in this way are called Richardson. The induced map from M0 to the

closure of the Richardson orbit is generically finite. If it is generically one to one, then M0 is

isomorphic to the normalization of the orbit closure. If G = SLr, then every nilpotent orbit is

Richardson, every nilpotent orbit closure is normal, and the map from M0 to the orbit closure

is always an isomorphism.
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(i) If P 6= G, the group of Hamiltonian symplectomorphisms of M commuting with S is the

adjoint group G/Z(G), and W is its Weyl group.

(ii) The cohomology ring is

H∗(M;C) ∼= C[t∗]WP
/

C[t∗]WP · C[t∗]W+ ,

where WP is the Weyl group of P/[P, P ] and t is a Cartan subalgebra of g. In particular,

H2(M;C) ∼= (t∗)WP .

We describe the Namikawa Weyl group only in the special case where G = SLr. Let µ

be a composition of r. This means that µ is a function i 7→ µi from Z to N such that∑
i µi = r. Consider the parabolic subgroup P = Pµ ⊂ SLr of block-upper-triangular

matrices with blocks of size (. . . , µ−2, µ−1, µ0, µ1, µ2, . . .), in that order. Let µ̄ denote

the partition with the same parts as the composition µ, sorted into nonincreasing order,

and let µ̄t be its transpose; in other words, µ̄tj is the number of parts of µ̄ or µ that

are greater than or equal to j. Then M0 is isomorphic to the closure of the nilpotent

orbit in g with Jordan type µ. The Namikawa Weyl group W permutes parts of the

composition of the same size; more precisely, we have

W ∼= Sµ̄t1−µ̄t2 × · · · × Sµ̄tr−1−µ̄tr × Sµ̄tr .

In particular, if µ̄t = (r) (in which case P is a Borel subgroup), then W = Sr. At the

other extreme, if µ̄t = (1, . . . , 1) (in which case P = G), then W is trivial.

(iii) Let λ ∈ H2(M;C) ⊂ t∗, and let Aλ be the invariant section ring of the quantization

with period λ. Then Aλ is isomorphic to a quotient of U(g) by a primitive ideal; if

P = B, then this ideal is generated by elements of the center. By [BPW, 4.4], Aλ is also

isomorphic to the ring of global D-modules on G/P , twisted by λ+ ρ.

(iv) By the work of Beilinson and Bernstein [BB81], localization holds if and only if the inner

product 〈λ, α〉 is not a non-positive integer for any positive root α ∈ t∗.

(v) If the period λ is regular, then the category Og is equivalent by Soergel’s functor to a

regular infinitesimal block of parabolic BGG category O [BGS96, 3.5.1] (see also [Web11,

Proposition 2]). In particular, Og is standard Koszul.

(vi) If the period λ is regular and integral, then the center of E is isomorphic to the center

of the Koszul dual category O!
g, which is a singular integral block of ordinary (not

parabolic) BGG category O [Bac99, 1.1]. The fact that the center of such a block is

isomorphic to the cohomology ring of M is a consequence of Soergel’s Stuktursatz and
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Endomorphismensatz from [Soe90]. A slightly stronger statement is that Conjecture

5.23 holds in this case.

Proposition 9.1 The natural map from H∗(M) to the center Z(E) is an isomorphism.

Proof: By [BPW, 4.5], D -mod is equivalent to the category of D-modules twisted by

a line bundle L. In particular, L itself may be regarded as an object of D -mod. The

Ext-algebra Ext•(L,L) is isomorphic to the de Rham cohomology of H∗(M), and the

map H∗(M)→ Ext•(L,L) from Section 5.4 realizes this isomorphism.

This implies that the map H∗(M)→ Z(E) is injective. By [Bru08a, 5.11], the dimen-

sion of Z(E) is the same as the number of simple objects in Og, which is equal to

|MT| = dimH∗(MT;C) = dimH∗(M;C). Thus, this map must be an isomorphism. 2

(vii) Let OP ⊂ g be the Richardson nilpotent orbit with the property that M0 is finite over

OP . The symplectic leaves of M0 are the preimages of the G-orbits in OP . For an

integral parameter, the special leaves (equivalently, the special orbits) correspond to

those double cells which contain a shortest right coset representative for the Weyl group

of the parabolic. These are described in Carter’s book [Car93, §13]. If g = slr, then all

leaves are special. For non-integral parameters, the question of which orbits are special

is more complicated; we do not address it here.

(viii) In the case where P is a Borel subgroup, our twisting functors agree with those defined

by Arkhipov (Remark 8.4) under the equivalence between Oa and BGG category O.

Similarly, our shuffling functors agree with those defined by Irving (see Proposition 8.14).

Thus, when P is the Borel we obtain two commuting actions of the generalized braid

group BW on Oa; at the level of the Grothendieck group, these descend to the left and

right actions of W on C[W ] (Remark 8.18).

When P is an arbitrary parabolic, Soergel’s functor can be used to identify Og (and

therefore Oa if localization holds) with an infinitesimal block of parabolic BGG category

O. Irving’s shuffling functors all still make sense in the setting of parabolic BGG category

O, and they coincide with our shuffling functors. On the other hand, not all of Arkhipov’s

twisting functors preserve parabolic BGG category O; our twisting functors are just

those Arkhipov functors that preserve parabolic O. Conjecture 8.24 holds in this case.

9.2 S3-varieties

Let G be a simple complex algebraic group and let e ∈ g be a nilpotent element; let h, f

be elements which satisfy the Chevalley relations of sl2 together with e and let g = ⊕gk be
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the decomposition of g into eigenspaces for h. Choose a Cartan t ⊂ g0 and let T be the

corresponding connected subgroup. The space g−1 has a symplectic form defined by 〈[−,−], e〉,
where 〈−,−〉 denotes the Killing form. We let l ⊂ g−1 be a Lagrangian subspace with respect

to this form. Let

m := l⊕
⊕
k≤−2

gk

and let M ⊂ G be the associated connected algebraic subgroup. We have a natural character

χ := 〈e,−〉 : m→ C.

Let P be a parabolic subgroup of G. Consider the moment map µ : T ∗(G/P ) → g∗,

and let µm : T ∗(G/P ) → m∗ be the moment map obtained by projecting onto m∗. As

explained by Ginzburg and Gan [GG02, §3.2], the group M acts freely on µ−1
m (χ), so the

quotient XeP := µ−1
m (χ)/M is smooth; it is a symplectic resolution of the affine quotient

XeP,0 := SpecC[T ∗(G/P )]M .

If the Richardson orbit OP ⊂ g is simply connected or if G = SLr, then XeP,0 is isomorphic

to a transverse slice to the orbit G · e inside of OP = G · p⊥ ⊂ g∗. More generally, it admits a

finite map to such a slice. If e = 0, then M is trivial, and XeP = T ∗(G/P ), thus these spaces

generalize those considered in the previous section. There seems to be no fixed name for XeP
and XeP,0 in the literature; we have adopted the term S3-varieties, as they have been studied

(independently) by Slodowy, Spaltenstein, and Springer.

Remark 9.2 A subtlety in the above construction is that M is not reductive, and one usually

only considers quotients by reductive groups. In this particular case, the fact that everything

works as expected must be checked carefully; this is shown in [GG02] using the freeness of the

action of M on the preimage of χ.

The usual inverse scaling action of S on the fibers of T ∗(G/P ) does not descend to XeP ,

since µm is S-equivariant and χ ∈ m∗ is not S-invariant. However, we can choose a new S-action

(ρ# in the notation of [GG02, §4]) on T ∗(G/P ) (no longer conical and not commuting with G)

that does descend to a conical action on XeP . The grading induced on C[XeP,0] by the action of

S is called the Kazhdan grading; see [GG02, §4] for more details.

(i) To avoid confusion with the group G, let GHam denote the group of Hamiltonian

symplectomorphisms of XeP that commute with S. Then GHam is a quotient of the

simultaneous centralizer group CG(e, h, f) of the sl2 ⊂ g spanned by e, h and f . If P = B

then GHam is just CG(e, h, f)/Z(G), and W is its Weyl group. However, it can be smaller

in general; for instance if e ∈ OP , then XeP = XeP,0 is a point, and GHam is trivial.

Let us describe the group GHam explicitly when G = GLr. (We use GLr instead of SLr

for convenience here, but nothing substantial changes.) The centralizer CG(e, h, f) is

the product GLγ1 × · · · × GLγr ⊂ GLr, where γi is the number of Jordan blocks of e
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of size i and the factor GLγi is the endomorphism group of the sum of these blocks as

sl2-representations. Suppose that the parabolic P is described by a composition µ, and

the Jordan blocks of e are given by a partition ν = (ν1, ν2, . . . ) of r. Note that XeP is

empty unless ν ≤ µ̄t in the dominance order on partitions, so we will assume from now

on that this is the case.

If the partitions ν and µ̄t have a different number of parts, pad the shorter one with

zeros so they both have the same length `. Then let J be the set of integers 1 ≤ j ≤ `
for which

j∑
i=1

νi =

j∑
i=1

(µ̄t)i.

(Note that we always have ` ∈ J .) Each γk indexes a maximal block νjk = νjk+1 = · · · =
νjk+1−1 of equal parts of ν. Using the condition ν ≤ µ̄t it is not hard to see that there

are three possibilities for J ∩ [jk, jk+1 − 1]: either (1) it is empty, or (2) it consists of

jk+1 − 1 only, or (3) it contains all integers jk ≤ j < jk+1. Then GHam is the quotient of

CG(e, h, f) = GLγ1 × · · · ×GLγr ⊂ GLr by the group generated by all factors GLγk
for

which (3) holds for k, together with all diagonal matrices of the form

diag(λIγ1 , λIγ2 , . . . , λIγk , Iγk+1
, . . . )

where Iγi is the identity matrix, λ ∈ C \ {0}, and k labels a block of type (2) or (3).

Thus, the Weyl group W in the SLr /GLr case is the product of Sγk for all k not of type

(3).

For example, if ν = (4, 4, 2, 2) then CG(e, h, f) ∼= GL2×GL2. If µ̄t = (5, 4, 3) then we

have GHam
∼= (GL2×GL2)/C∗. If µ̄t = (5, 3, 3, 1) then GHam

∼= PGL2×PGL2, and if

µ̄t = (5, 3, 2, 2) then GHam
∼= PGL2.

A maximal torus in GHam is somewhat easier to describe. For all roots α ∈ g∗ ∼= g, let

eα be the orthogonal projection of e onto the weight space gα. Then the Lie algebra of a

maximal torus of CG(e, h, f) is

te := t ∩ cg(e, h, f) = {t ∈ t |α(t) = 0 for all α such that eα 6= 0}.

If G = GLn, then the Lie algebra of a maximal torus in GHam is the quotient of te by

the span of all diag(Im, 0) where m =
∑j

i=1 νi for some j ∈ J .

(ii) Since m is nilpotent, M is contractible, thus the M -equivariant cohomology of T ∗(G/P )

coincides with the ordinary cohomology. This allows us to consider the Kirwan map

(t∗)WP ∼= H2(T ∗(G/P );C) ∼= H2
M (T ∗(G/P );C)→ H2(XeP ;C), (8)
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which is always injective if XeP is non-empty and positive dimensional. In type A, the

Kirwan map is also surjective by [BO11, 1.1] (Brundan and Ostrik also give a presentation

of the full cohomology ring of XeP in type A). The kernel of the map (8) is invariant under

the action of the Namikawa Weyl group of T ∗(G/P ) (see part (ii) of Section 9.1), so it

induces an action on H2(XeP ;C), and the Namikawa Weyl group of XeP is the quotient by

the elements which act trivially there.

(iii) Let Aλ be the S-invariant section algebra for the quantization of XeP whose period is

equal to the image of λ ∈ H2(G/P ;C). This algebra has been studied in [Web11], and it

is isomorphic to a quotient of the usual W -algebra for the element e by an explicit ideal.

When λ is in the image of the map H2(G/P ;C)→ H2(XeP ;C), the quantization of XeP
can be obtained from the quantization of T ∗(G/P ) by quantum Hamiltonian reduction.

However, except in type A, this map may not be not surjective, and the quantizations

which don’t arise this way are more difficult to understand.

(iv) The question of when localization holds has a simple answer for quantizations obtained by

Hamiltonian reduction from T ∗(G/P ). Choose a Borel subgroup B such that T ⊂ B ⊂
P ⊂ G. Consider an element λ ∈ (t∗)WP , which includes into H2(XeP ;C) via Equation 8.

Let ∆+(p) ⊂ t∗ be the set of positive roots α such that g−α 6⊂ p. The argument of [Gin09,

5.1.2] is easily generalized to show that localization holds at λ whenever 〈λ, α〉 /∈ Z≤0 for

all α ∈ ∆+(p).

(v) Let L ⊂ G be a Levi subgroup such that e is regular in l = Lie(L), and let ζ be a

cocharacter of T commuting with L. If we choose ζ generically, the sum of its nonnegative

weight spaces will be the Lie algebra of a parabolic R with Levi L. For example, if

G = SLr, then the parabolic R is the subgroup of block diagonal matrices for some

composition ν of r with the same Jordan type as e. Since the action of T by ζ fixes e, it

descends to XeP .

If λ ∈ (t∗)WP is dominant and integral, then it is shown in [Web11] that Og ' Oa is

equivalent to the infinitesimal block of parabolic BGG category O with parabolic p and

central character ξ, where ξ is a central character of U(g) corresponding to an integral

highest weight whose stabilizer for the ρ-shifted action of W on t∗ is WL. It follows that

Og is standard Koszul.

(vi) The center of the Yoneda algebra of Og is isomorphic to the center of the Koszul dual

of Og. Let ρL ∈ t∗ be the half the sum of the positive roots not in l ⊂ g ∼= g∗. If

λ + ρL is integral, then the parabolic-singular duality of Beilinson-Ginzburg-Soergel

[BGS96, Bac99] tells us that the Koszul dual of Og is also a singular block of parabolic

BGG category O. (In this duality, the roles of the parabolic and the central character
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are exchanged. The larger the parabolic on one side, the more singular the character on

the other side.)

In type A, the centers of these blocks were first computed by Brundan [Bru08b]; they

were shown to be isomorphic to the cohomology of XeP independently in [BLP+11, 9.9]

and [BO11, 1.1]. In [Webb, 3.5], it is shown that the specific map γ : H∗(XeP ;C)→ Z(E)

of Conjecture 5.23 is an isomorphism.

(vii) The variety XeP,0 admits a finite map to the Slodowy slice S to e in g. The symplectic

leaves of XeP,0 are the preimages of the symplectic leaves of S ∩ nil(g), which are in turn

the intersections of S with the symplectic leaves of nil(g). We conjecture that the same

statement is true of special symplectic leaves. The fact that the special symplectic leaves

of S ∩ nil(g) are the intersections of S with the special symplectic leaves of nil(g) is

proven by Losev [Los10, 1.2.2].

If g = slr and the period is integral, then the above conjecture says that all leaves of

XeP,0 are special. This is true; it is known for OP (see part (vii) of the previous section),

and we may obtain the result for XeP,0 by applying Losev’s operation (·)† to the relevant

primitive ideals in U(g).

(viii) As in [KR08, 2.8], one can construct a Hamiltonian reduction functor sending modules

over a quantization of T ∗(G/P ) to modules over the corresponding quantization of

XeP , and we show that all twisting functors between quantizations of T ∗(G/P ) descend

to twisting functors between the reduced quantizations of XeP . However, if the map

H2(G/P ;C)→ H2(XeP ;C) is not surjective, not every quantization of XeP is a Hamiltonian

reduction, so we cannot understand all twisting functors for XeP in terms of those on

T ∗(G/P ). If this map is surjective, then we have

Etw
∼= (t∗)WP \ {λ | 〈α∨, λ〉 = 0 for some coroot α not orthogonal to (t∗)WP }

and every twisting functor is obtained by reduction from T ∗(G/P ). In particular, this

holds if G = SLr.

The parameter space Esh for shuffling functors is the complement of a hyperplane

arrangement in the Lie algebra tHam of a maximal torus in GHam. As explained in item

(i) above, this is a quotient of te. If G = SLr, the dimension of this quotient is m− |J |,
where m is the number of Jordan blocks of e. The root hyperplanes 〈α, t〉 = 0 restrict to

te, and the hyperplanes in tHam are exactly the projections of the ones which contain the

kernel of the projection te → tHam. These are given by the usual equations {ai = aj},
and such a hyperplane will appear if and only if i and j belong to the same “J-block”.

The arrangement is thus a product of type A hyperplane arrangements. However, as

we have seen, the Weyl group W which acts on it may not the full permutation group

76



associated to this arrangement, but instead is the subgroup of elements that permute

Jordan blocks of the same size, except that a group of blocks of type (3) is not permuted.

If P = B, there are no type (3) blocks, and so we have

W ∼= Sµ̄t1−µ̄t2 × Sµ̄t2−µ̄t3 × · · · × Sµ̄t`−1−µ̄
t
`
× Sµ̄t` .

Note that this coincides with the Namikawa Weyl group for T ∗(SLr /Pµ).

Note that S3-spaces for SLr are isomorphic to type A quiver varieties. We give a

description of shuffling functors for all type A quiver varieties in Section 9.5 below.

9.3 Hypertoric varieties

Let V be a symplectic vector space equipped with a linear symplectic action of a torus K.

The Hamiltonian reduction M of V by K is called a hypertoric variety. If we choose a

generic character for K as our GIT parameter, the reduction is an orbifold; it will be smooth

if and only if the matrix determined by the inclusion of K into a maximal torus of Sp(V ) is

unimodular [BD00, 3.2 & 3.3]. When smooth, it is a conical symplectic resolution of the affine

quotient M0, where the action of S is induced by the inverse scalar action on V .

Let

V =
⊕
χ∈k∗Z

Vχ

be the decomposition of V into weight spaces for K. For simplicity, we assume that V0 = 0.

(This assumption is harmless; the variety M is isomorphic to V0 ×M′, where M′ is built using

the K action on V/V0.) Choose an element ξ ∈ k that is nonzero on every χ such that Vχ 6= 0,

and let

∆+ := {χ | Vχ 6= 0 and (χ, ξ) > 0}.

We make the additional assumption that, if dimVχ = 1, then χ is in the span of ∆+ r {χ}.
This has the effect of ruling out certain redundancies; for example, it rules out the case where

dimV = 2 and K = Sp(V ), in which case M would be a point. In particular, every hypertoric

variety can be constructed using a V and a K that satisfy this condition. It will be a convenient

assumption to have for part (ii) below, as well as for our discussion of symplectic duality in

the next section.

(i) The group G of Hamiltonian symplectomorphisms of M commuting with S is isomorphic

to  ∏
χ∈∆+

GL(Vχ)

/K.
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Its Weyl group is a product of symmetric groups:

W ∼=
∏
χ∈∆+

SdimVχ .

If we refine the decomposition ⊕χ∈∆+Vχ to a decomposition into lines, then the group

T̃ ∼= (C×)
1
2

dimV of automorphisms of this decomposition descends to a maximal torus

T := T̃ /K of G. The natural basis for the cocharacter lattice of T̃ descends to a

finite multiset of cocharacters of T , which in turn define a weighted rational central

multiarrangement A of hyperplanes in t∗. This hyperplane arrangement together with a

character of K gives the more usual combinatorial input data for constructing M.

(ii) The cohomology ring of M was computed independently in [Kon00] and [HS02]. In

degree 2, the Kirwan map

k∗ ∼= H2
K(V ;C)→ H2(M;C)

is an isomorphism. (Surjectivity was proven by Konno, and injectivity is equivalent to

our second assumption above.)

The Namikawa Weyl group is also isomorphic to a product of symmetric groups:

W ∼=
∏
F

S|F |,

where the product ranges over all rank 1 flats of A. (One may regard the set of rank

1 flats as the set underlying the multiset A; for an element F of this set, |F | is its

multiplicity in A. Thus, if A contains r copies of the same hyperplane, we get a factor

of Sr in W .) This group acts naturally on t̃∗ ∼=
∏
F CF by permuting each summand. It

fixes t∗, and thus descends to an action on k∗ via the exact sequence

0→ t∗ → t̃∗ → k∗ → 0.

(iii) Let D be the Weyl algebra of the symplectic vector space V . The invariant algebra DK

is called the hypertoric enveloping algebra in [BLPW12]; it was originally studied

by Musson and Van den Bergh [MV98]. Its center is isomorphic to Sym k ∼= C[k∗], and

the S-invariant section ring of the quantization of M with period λ ∈ H2(M;C) ∼= k∗ is

isomorphic to the corresponding central quotient of DK [BLPW12, 5.9].

(iv) A sufficient condition for localization to hold is given by Bellamy and Kuwabara [BK12,

5.8]. Using their results, we give a different combinatorial condition in [BLPW12, 6.1]

that amounts to checking that certain rational polyhedra contain lattice points.
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(v) It is shown in [BLPW12] that the arrangement Htw is the discriminantal arrangement

of A. For any period that is sufficiently far away from the walls of Htw (the word for

this in [BLPW12] is regular), the category Oa is equivalent to the module categories

over a finite dimensional algebra introduced in [BLPW10]. In particular, it is standard

Koszul [BLPW10, 5.24].

There is a unique notion of integrality for periods which satisfies the conditions of Section

2.4; it is the same as the definition of integrality in [BLPW10]. The precise recipe given

there to associate an algebra to a particular quantization is straightforward if the period

λ is integral, but in general it is somewhat tricky. Details are given in [BLPW12, 4.9].

The category Og is always standard Koszul, because we can always twist by a line bundle

to get to a regular period where localization holds.

(vi) When λ is regular and integral, the fact that H∗(M;C) is isomorphic to Z(E) is proven

in [BLPW12, 5.3], but we still need to show that the homomorphism of Conjecture 5.23

is an isomorphism.

For every α ∈ I, the simple module Λα in Og is a quantization of the structure sheaf

of the relative core component Xα ⊂ M+. Computing the Ext-algebra of Λα using a

Čech spectral sequence, we see that there is an isomorphism H∗(Xα;C) ∼= Ext•(Λα,Λα)

making the diagram

H∗(M) H∗(Xα;C)

HH∗(D) Ext•(Λα,Λα)

commute. Thus, the kernel of the map H∗(M;C)→ Z(E) is contained in the intersection

of the kernels of the maps H∗(M;C)→ H∗(Xα;C) for all α. It is shown in [HS02, (34)]

that this intersection is trivial, so the kernel of the H∗(M;C)→ Z(E) is trivial. Since

the target and source have the same dimension, it must be an isomorphism.

(vii) The poset S of symplectic leaves of M0 is isomorphic to the poset of coloop-free flats of

A [PW07, 2.3]. If the period of the quantization is integral, then all leaves are special.

This follows from the reformulation [BLPW12, 7.4] of work of Musson and Van den

Bergh [MV98]. For non-integral weights, only some leaves remain special; which ones

remain can be deduced the description of primitive ideals in A given in [MV98].

(viii) Twisting and shuffling functors for hypertoric varieties were studied in detail in [BLPW12,

§8]. In particular, Conjecture 8.24 is true [BLPW12, 8.19].
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9.4 Hilbert schemes on ALE spaces

For any finite subgroup Γ ⊂ SL2, consider the associated DuVal singularity C2/Γ, along with

its unique crepant resolution C̃2/Γ. This is a conical symplectic resolution with respect to the

S-action induced by inverse scalar multiplication on C2. More generally, for any r ∈ N, the

Hilbert scheme Hilbr(C̃2/Γ) is a conical symplectic resolution of Symr(C2/Γ) ∼= C2r/(Γ o Sr)
[Wan00, Cor. 4].

(i) The group G of Hamiltonian symplectomorphisms of Hilbr(C̃2/Γ) commuting with S
is simply the group of linear symplectomorphisms of C2r commuting with the action

of Γ o Sr. If Γ = Z/`Z, then G ∼= C∗, and if Γ is of type D or E, then G is trivial. In

particular, we can find a Hamiltonian T-action with isolated fixed points if and only if

Γ = Z/`Z. The Weyl group W is always trivial.

(ii) The Namikawa Weyl group W is WG×Z/2Z, where WG is the Weyl group of G if r > 1.

The codimension two stratum corresponding to the factor WG is the set of points where

0 lies in the support of the ideal, and the stratum corresponding to the factor Z/2Z is

given by points where the ideal has a point of multiplicity two. It follows from work of

Nakajima [Nak99] that for r > 1, we have H2(Hilbr(C̃2/Γ);Z) ∼= H2(C̃2/Γ;Z)⊕Zδ. The

action of the Namikawa Weyl group on this space is via the action of WG on H2(C̃2/Γ;Z)

and Z/2Z on Zδ by negation. Thus, H2(C̃2/Γ;Z) is isomorphic as a ZW -module to the

root lattice of the finite dimensional simple Lie algebra G associated to Γ via the McKay

correspondence, and H2(Hilbr(C̃2/Γ);Z) to the root lattice of its affinization.

(iii) The algebra A is isomorphic to a spherical symplectic reflection algebra for the represen-

tation of Γ o Sr on C2r [EGGO07, Gor06].

(iv) Which periods localization holds for is still not completely understood. For the case

Γ = {1}, the answer is quite simple: localization holds at all parameters not of the form

−1/2 − m/k for m ≤ 0, 1 < k ≤ r and (m, k) = 1. For general Γ, this is a much more

complex question, though some progress has been made in work of McGerty-Nevins

[MN] and Jenkins [Jen13, §6-7].

We only have a category O when Γ = Z/`Z, since in the other cases, there is only the trivial

T-action. From now on, we will only consider this case.

(v) The category Oa is closely related to the category O defined by [GGOR03] for the

Cherednik algebra of the complex reflection group Z/`Z o Sr. The category Oa is the

image of the GGOR category O under the functor M 7→ eM , where e is the spherical

idempotent in the full symplectic reflection algebra. If the period lies in the set U (these

periods are called spherical), then this functor is an equivalence.
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The Koszulity of Oa at spherical integral parameters and thus of Og for arbitrary integral

parameters is proven by Chuang and Miyachi [CM]. This was extended to all other choices

of spherical parameters by Rouquier, Shan, Vasserot, and Varagnolo [RSVV, SVV14].

(vi) It is shown in [Webb, 3.5] that the map H∗(M;C)→ Z(E) is an isomorphism.

(vii) The special leaves for Γ = {1} are described by Losev [Los12a, 5.8.1]. For ` > 1, the

affinization of Hilbr(C̃2/Γ) is Symr(C2/Γ). The leaves of this variety are in bijection

with partitions ν of integers r′ ≤ r, where the parts of the partition are the multiplicities

of the points in (C2 \ {0})/Γ that occur (and thus {0} necessarily has multiplicity r− r′).
It follows from work of Shan and Vasserot that the special leaves in the integral case are

those where the partition is ν = (1r
′
); more generally, when k = m/e with (m, e) = 1, it

follows that the special leaves are those where all parts of ν are e or 1 and e | (r − r′).
Note that this is neither a subset nor a superset of the special leaves in the integral case.

(viii) Since G = C×, we have Esh
∼= C×. Thus shuffling functors are expected to give an action

of Z ∼= π1(Esh), which we expect agrees with the powers of the Serre functor. Twisting

functors are more interesting; even though the space H2(Hilbr(C̃2/Γ);R) is independent

of r, the hyperplane arrangement Htw is not. The hyperplanes are described by Gordon

[Gor08, §4.3]; the extra hyperplanes for r > 1 reflect the fact that Hilbr(C̃2/Γ) is not the

only conical symplectic resolution of Symr(C2/Γ). If ` = 1, then the twisting functors

simply consist of the action of Z by powers of the Serre functor. If ` > 1, we defer to the

next section on quiver varieties.

9.5 Quiver varieties

Let Q be a finite quiver without oriented cycles. Let V be the set of vertices of Q, and let

w,v ∈ NV be dimension vectors. Whenever we have two weights µ ≤ ν for the Kac-Moody

algebra gQ associated to Q with ν dominant and µ ≤ ν in the usual root order, there are

associated dimension vectors w and v given by wi := α∨i (ν) and
∑

viαi := ν − µ. Our

assumptions assure that these numbers are in N.

The quiver variety Q̃ν
µ is a smooth open subvariety of the cotangent bundle to the moduli

stack of framed representations of Q, where w is the dimension of the framing and v is the

dimension of the representation [Nak94, Nak98]; its affinization is denoted Qν
µ. Like hypertoric

varieties, a quiver variety may be described as a Hamiltonian reduction of a symplectic vector

space by the group

GLv :=
∏
i∈V

GLvi .

The smooth variety Q̃ν
µ is obtained by using a nontrivial GIT parameter specified by Nakajima,

while the affine variety Qν
µ is obtained as the affine quotient.
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There are various actions of S that we could choose with respect to which Q̃ν
µ is a conical

projective resolution of Qν
µ. For example, we could mimic the choice that we made for

hypertoric varieties and take the S-action induced by the inverse scaling action on the vector

space; this has n = 2. Alternatively, the orientation of Q determines a Lagrangian subspace of

our symplectic vector space, and the S-action such that this subspace has weight −1 and its

complement has weight 0 induces an S-action on Q̃ν
µ with n = 1. The fact that Q̃ν

µ is conical

with respect to this action follows from the assumption that Q has no oriented cycles. This is

the S-action that we use below.

Remark 9.3 The class of type A S3-varieties coincides with the class of quiver varieties for

which Q is a type A Dynkin diagram with some choice of orientation [Maf05]. However, the

S-action that we used in Section 9.2 had n = 2, whereas here we are using an action with

n = 1.

Remark 9.4 If Q is an affine Dynkin graph with some choice of orientation and ν is the

highest weight of the basic representation of gQ, then affine quiver variety Qν
µ is isomorphic

to Symr(C2/Γ), where Γ ⊂ SL2 is the finite subgroup corresponding to Q under the McKay

correspondence. Thus, the class of varieties discussed in Section 9.4 is a subset of the class

of affine type quiver varieties. Once again, we used an S-action with n = 2 in that section,

whereas here we are using one with n = 1.

(i) Consider the group

Gw :=
∏
i ∈ V

GLwi ×
∏

(i, j) ∈ V × V

GLnij ,

where nij is the number of edges from i to j. In the Hamiltonian reduction construction

described above, this is precisely the group of those automorphisms of the orientation-

determined Lagrangian subspace that commute with the action of GLv. The group G of

Hamiltonian symplectomorphisms of Q̃ν
µ commuting with S is isomorphic to the quotient

of Gw by its center:

G ∼= Gw/Z(Gw) ∼= Gw/(C×)V .

The group (C×)V embeds into Gw using the coboundary formula, with (zi)i∈V landing

on zi times the identity matrix in the factor GLwi and ziz
−1
j times the identity matrix

in the factor GLnij .

Note that in the special case where Q is a tree with some choice of orientation, we have

G ∼= PGLw :=
(∏

GLwi

)/
C×.

Another special case that will be of interest to us is where Q is an r-cycle with some
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choice of orientation, in which case

G ∼=
(

PGLw× C×
) /

(Z/rZ).

In both of these two special cases, the Weyl group is isomorphic to the same product of

symmetric groups:

W ∼=
∏
i∈V

Swi .

(ii) The cohomology ring of a quiver variety is poorly understood; in particular, surjectivity

of the Kirwan map

H∗GLv
(pt;C)→ H∗(Q̃ν

µ;C)

is an important and long-standing conjecture. The rank of the kernel of the Kirwan map

in degree 2 is equal to the codimension in RV of the affine span of the face of the weight

polytope of the representation Vν which contains µ. In particular, for µ in the interior of

the weight polytope, the Kirwan map is injective in degree 2.

For a fixed ν, µ, consider the set S of simple roots αi with µ+ αi ≤ ν and α∨i (µ) = 0. In

finite type, the Namikawa Weyl group W for Qν
µ is the subgroup of the Weyl group of

the Kac-Moody algebra gQ generated by αi in S. We can show this by noting that in

finite type, [Nak98, 3.27] shows that codimension 2 strata of Qν
µ are in bijection with the

connected components of the Dynkin subdiagram with vertices given by S: the strata

correspond to the weights µ + αD for αD the highest root of a connected component.

Each such stratum contributes a copy of the Weyl group of the subdiagram.

In infinite type, this group sits inside the Namikawa Weyl group, but it may be a proper

subgroup, as the case of Symr(C2/Γ) shows.

(iii) Except in special cases in which quiver varieties coincide with other known classes of

varieties, such as S3-varieties, hypertoric varieties, or Hilbert schemes on ALE spaces,

the S-invariant section algebra A has not been studied.

(iv) While the question of when localization holds is interesting, we know of no progress

outside the cases of finite and affine type A quivers (discussed elsewhere in this paper),

other than the general results of [BPW, MN14, MN].

(v) The categories Oa and Og are studied by the fourth author in [Webd], with relatively

explicit descriptions in the finite and affine cases using steadied quotients of weighted

KLR algebras. In finite or affine type A, the resulting category Og is Koszul at integral

parameters. In the finite case, this follows from coincidence with blocks of parabolic

category O for slm; in the affine case, this is shown in [Webd] based on the Koszul

duality results in [SVV14].
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(vi) It is not clear whether the map H∗(Q̃ν
µ;C) → Z(E) is injective or surjective even

for integral periods; resolving this question is closely tied to the question of Kirwan

surjectivity for quiver varieties.

(vii) If Q is a finite type ADE Dynkin diagram with some choice of orientation, then the

symplectic leaves of Qν
µ are in bijection with dominant weights ν ′ such that ν ′ ≤ ν and

ν ′ ≥ w · µ for all w in the Weyl group of gQ. In the integral case, all leaves are special

[Webd, 5.4]. In affine type, the poset of leaves becomes more complicated and there are

non-special leaves; the poset of special leaves for an integral period in affine type A is

described in [Webd, 5.10].

(viii) Assume that Kirwan surjectivity holds in degree 2. The twisting functors for a quiver

variety give an action of a subgroup of the Artin braid group of the corresponding root

system; we can obtain an action of the whole braid group if we allow functors between

different quantizations. These functors can also be constructed from the categorified

quantum group which acts on these categories by the main theorem of [Weba]: the twisting

action is given by the Chuang-Rouquier braid complexes, as shown by Bezrukavnikov

and Losev [BL].

In the finite and affine cases, shuffling functors also have an algebraic description, given

in [Webd]. In cases other than affine type A, they correspond to braiding functors from

[Webc], while in affine type A they correspond to change-of-charge functors from [Webe].

9.6 Affine Grassmannian slices

Let G be a semi-simple algebraic group G over C, and let G((t)) be the group of C((t))-points

of G. This has a “complementary” pair of subgroups, G[[t]] and G1[t−1], where G1[t−1] is

equal to the kernel of the evaluation map G[t−1]→ G. There is a natural Poisson structure on

the affine Grassmannian Gr := G((t))/G[[t]] whose Poisson leaves are the intersections of the

orbits of these two subgroups.

For any cocharacter λ : Gm → G, we obtain a point tλ ∈ G((t)), which descends to

an element [tλ] ∈ Gr. For any pair of dominant coweights λ and µ, we can consider the

intersection19

Grλ̄µ := G[[t]] · [tλ] ∩G1[t−1] · [tµ].

This is a transverse slice to the orbit G[[t]] · [tµ] in the closure G[[t]] · [tλ]. It is a conical

symplectic singularity with respect to the S-action by loop rotation [KWWY14, 2.7]. It may

or may not admit a conical symplectic resolution; a necessary and sufficient criterion is given

in [KWWY14, 2.9]. In type A, such a resolution always exists.

19Following the notational convention in [KWWY14], the λ̄ on the left-hand side reflects the fact that we
have taken the closure of G[[t]] · [tλ] on the right-hand side.
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(i) The group of Hamiltonian symplectomorphisms commuting with S is the simultaneous

centralizer of tλ and tµ in G, which is typically a torus.

(iii) The question of how to quantize this variety has been considered by the fourth author

jointly with Kamnitzer, Weekes and Yacobi; there is a conjectural identification of the

quantizations of this symplectic variety with a quotient of a shifted Yangian [KWWY14,

4.8].

(iv-viii) At the moment, these questions have not been addressed. No serious study of the

categories Oa and Og has been done, aside from Brundan and Kleshchev’s work in type

A [BK06]. In the type A case, the varieties and their resolutions coincide with type A

quiver varieties or type A S3-varieties, by work of Maffei [Maf05] and Mirković-Vybornov

[MV], so the results of previous sections can be applied.

10 Symplectic duality

In this section we describe a close relationship between the categories associated to certain pairs

of symplectic varieties. In a number of special cases, we expect this relationship to provide

connections between previously studied geometric and categorical constructions, including two

superficially different sets of link invariants [MS08, SS06a] (see Section 10.7).

Our relationship is defined at the categorical level, but it has two very concrete cohomo-

logical consequences. The first (Section 10.5) arises by passing to Grothendieck groups; we

obtain a duality of vector spaces that explains previously known numerical identities in the

combinatorics of matroids and illuminates the phenomena of Schur-Weyl duality and level-rank

duality in representation theory. The second (Section 10.6) arises by considering the centers of

the universal deformations of the Yoneda algebras of our categories. The relationship that

we see was originally observed in certain special cases by Goresky and MacPherson [GM10];

by regarding this relationship as a shadow of symplectic duality, we generate new classes of

examples and provide an explanation for the examples observed in [GM10].

Throughout this section, we will assume that every conical symplectic resolution comes

equipped with a set of “integral periods” in H2(M;C), consistent with the three conditions in

Section 2.4. We will always work with a quantization for which localization holds, so that we

need not distinguish between Oa and Og. We will assume that Conjecture 5.18 holds, so that

our category O is standard Koszul (and therefore Koszul by Theorem 4.14). In particular,

this means that O comes equipped with a graded lift Õ, that is, a mixed category whose

degrading is O (see Section 4.1). Finally, we will assume that the twisting and shuffling actions

lift naturally to Db(Õ); this is the case in all of the examples from Section 9 where a Koszul

grading is known to exist.
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10.1 The definition

Consider a conical symplectic resolution M, equipped with a Hamiltonian action of T, com-

muting with S, such that MT is finite. We denote by O the category Oa ' Og for an integral

period at which localization holds. The fact that we do not need to specify the period of

the quantization follows from Lemma 3.17, which says that the categories Og associated to

any two integral parameters are canonically equivalent. We will write π1(Etw/W ) to denote

π1(Etw/W, [λ]) for any integral λ sufficiently deep in the ample cone of M.

Let G be the group of Hamiltonian symplectomorphisms of M that commute with S, and

let T ⊂ G be a maximal torus containing the image of T. By Lemma 8.6, this is unique if G is

reductive, and more generally unique up to conjugation by the unipotent radical of CG(T). Let

ζ ∈ tR be the cocharacter of T by which T acts, and let C be the chamber of Htw containing

ζ. By Lemma 8.11, we could replace ζ (and with it the action of T) by any other element of C

without changing O. We will write π1(Esh/W) to denote π1(Esh/W, [ζ]) for any ζ ∈ C.

Let M! be another conical symplectic resolution on which T acts with isolated fixed points,

commuting with S. We denote all of the corresponding structures related to M! with an upper

shriek; for example, the fixed points of M! will be indexed by the set I !, the group π1(E!
sh/W!)

will act on Db(Õ!), and so on.

Definition 10.1 A symplectic duality from M to M! consists of

• a bijection α 7→ α! from I to I ! which is order-reversing for the geometric order ↼

defined in Section 6.2,

• a bijection S 7→ S! from S sp
M to S sp

M! which is order-reversing for the closure order,

• group isomorphisms W ∼= W! and W ∼= W !,

• a pair of linear isomorphisms tR ∼= H2(M!;R) and H2(M;R) ∼= t!R, which identify the

lattice of cocharacters with the lattice of integer homology classes, and

• a Koszul duality from Õ to Õ! (Definition 4.8).

These structures are required to satisfy the following conditions:

• The bijection of fixed points is compatible with the bijection of special leaves via the

operation that associates a special leaf M̊α,0 ∈ S sp to an element α ∈ I (see Corollary

6.12 and the preceding discussion). That is, for any α ∈ I, we require that

(M̊α,0)! = M̊!
α!,0 .

• The isomorphism tR ∼= H2(M!;R), intertwines the action of W with that of W !, takes the

arrangement Hsh to H!
tw, and takes the chamber C ⊂ tR to the ample cone in H2(M!;R).
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Furthermore, all of the analogous statements hold for the isomorphism H2(M;R) ∼= t!R.

In particular, this means that we have canonical isomorphisms

π1(Esh/W) ∼= π1(E!
tw/W

!) and π1(Etw/W ) ∼= π1(E!
sh/W!).

• The Koszul duality from Õ to Õ! exchanges twisting functor Φ∗,∗ (as defined in Section

8.1) and shuffling functor Ξ∗,∗ (as defined in Section 8.2) and similarly with Õ and

Õ! reversed. That is, the equivalence Db(Õ) → Db(Õ!) takes the shuffling action of

π1(Esh/W) on Db(Õ) to the twisting action of π1(E!
tw/W

!) on Db(Õ!), and vice versa.

Remark 10.2 Symplectic duality is symmetric; that is, if there is a symplectic duality from

M to M!, then there is a symplectic duality from M! to M. To see this, we invoke Proposition

4.9 and Remark 4.10, which say that if Ψ : Db(Õ)→ Db(Õ!) is a Koszul duality from Õ to Õ!,

then the composition of Ψ−1 with the derived Nakayama functor RN on Db(Õ) is a Koszul

duality from O! to O.

We still need to check that Ψ−1 ◦RN exchanges twisting and shuffling functors. Since Õ has

finite global dimension, RN is a right Serre functor [MS08]; by the uniqueness of Serre functors,

it commutes with any equivalence of derived categories, in particular with any twisting or

shuffling functor. Thus, since Ψ exchanges twisting and shuffling functors, so does Ψ−1 ◦ RN.

10.2 Examples of symplectic dualities

In this section we describe all of the examples of pairs of conical symplectic resolutions that

we know to be dual, along with some conjectural generalizations of these examples.

10.2.1 Cotangent bundles of flag varieties

Theorem 10.3 Let G be a reductive algebraic group with Langlands dual LG, and let B ⊂ G
and LB ⊂ LG be Borel subgroups. Then T ∗(G/B) is symplectic dual to T ∗(LG/LB).

Proof: For a generic cocharacter ζ of G, the fixed points of T ∗(G/B) are indexed by the

Weyl group W ∼= W !, and the order-reversing bijection of W is given by sending w to w−1w0.

The fact that this bijection induces an order-reversing bijection of special nilpotent orbits

is proven in [KL79, 3.3]. The W -equivariant linear isomorphisms are part of the package of

Langlands duality. The Koszul duality is proven in [BGS96, 1.1.3]20, and the fact that twisting

and shuffling are exchanged is proven in [MOS09, Theorem 39]. 2

20This paper actually proves that a regular integral block of BGG category O is self-dual, but those categories
are isomorphic for Langlands dual groups, since they can be computed in terms of the Weyl group [Soe90].
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10.2.2 S3-varieties

Next, we consider S3-varieties associated to SLr, as described in Section 9.2. For a composition

µ of r, we define a new composition µo by µoi := µ−i. Also, recall that µ̄ denotes the partition

of r obtained by sorting the positive entries of µ, and µ̄t denotes the transposed partition.

Note that µ̄ = µo.

Fix a pair of compositions µ and ν of r. Let e : Cr → Cr be a nilpotent element in Jordan

normal form with block sizes given by ν in order. Let Xνµ be the S3-variety XePµ that was

introduced in Section 9.2; it is nonempty if and only if ν̄ ≤ µ̄t in the dominance order.

Let Tµν be a maximal torus of the group GHam for the variety Xνµ, as described in item (i)

of Section 9.2. The description of the cohomology of these varieties in [BO11] gives a natural

isomorphism LieTµν ∼= H2(Xνµo ;C). Let Cµν be the unique chamber of the arrangement Hsh

for Xµν which lies on the positive side of every root hyperplane which appears. The following

theorem appears in [Webd, 5.32].

Theorem 10.4 The variety Xµν is symplectic dual to Xνµ, where the action of T on Xµν is given

by a cocharacter in Cµν and the action of T on Xνµ is given by a cocharacter in −Cνµ.

Remark 10.5 Theorem 10.4 does not appear to be fully symmetric; of course, by negating

the isomorphisms tR ∼= H2(M!;R) and vice versa, we can switch the sign of the chambers

appearing, and thus the role of µ and ν.

Alternatively, we could take Xνµo with the chamber Cνµo . In this case, the symmetry depends

on the G-equivariant isomorphism Xµ
o

νo
∼= Xµν , using the automorphism of slr given by the

adjoint action of any representative of w0. See [BLP+11, 9.3] for the analogous statement

about algebras.

Remark 10.6 If we take ν to be a composition with r parts each of size 1, Theorem 10.4

specializes to the statement that T ∗(G/Pµ) is symplectic dual to the Slodowy slice to the

nilpotent orbit of Jordan type µ̄t inside of the full nilpotent cone. If we further specialize to

the case where µ = ν, we obtain Theorem 10.3 for slr.

Remark 10.7 More generally, we expect that a quiver variety whose quiver is a finite ADE

Dynkin diagram with some choice of orientation (Section 9.5) will be dual to a slice in the

affine Grassmannian for the Langlands dual group (Section 9.6). Since quiver varieties exist for

every integral highest weight, we should consider them as associated to the simply connected

group for that Dynkin diagram, and thus consider the affine Grassmannian of the adjoint form.

In type A, both of these varieties are type A S3-varieties, and the precise statement that we

want is given in Theorem 10.4.

We note that this conjectural duality provides a connection between two well-known

constructions of weight spaces of irreducible representations of simply laced simple Lie algebras.
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One, due to Nakajima, realizes these weight spaces as top homology groups of quiver varieties

[Nak98, 10.2]. The other, using the geometric Satake correspondence of Ginzburg [Gin, 3.11

& 5.2] and Mirković-Vilonen [MV07], realizes them as top-degree T-equivariant intersection

cohomology groups of slices in the affine Grassmannian. See Example 10.27 for an explanation

of how symplectic duality (conjecturally) allows us to identify these two vector spaces.

10.2.3 Hypertoric varieties

Next, we consider symplectic duality for hypertoric varieties. Let X and X ! be a pair of

unimodular, Gale dual polarized arrangements [BLPW12, 2.17]. These data can be used to

construct hypertoric varieties M and M! with specified actions of T [BLPW12, §5.1].

Theorem 10.8 The hypertoric varieties M and M! are symplectic dual.

Proof: The order-reversing bijection on fixed points is given in [BLPW10, 2.10]. Symplectic

leaves of M0 and M!
0 (all of which are special) are indexed by coloop-free flats of the hyperplane

arrangements A and A! associated to X and X ! [PW07, 2.3], and it is well-known that such

flats are in order-reversing bijection for Gale dual arrangements. The compatibility of the

bijections follows from [BLPW12, 7.16].

The group isomorphisms W ∼= W! and W ∼= W ! are described in [BLPW12, §8.1], and the

equivariant isomorphisms of vector spaces with hyperplane arrangements are straightforward

from the combinatorics of Gale duality. The Koszul duality between O and O! is proven in

[BLPW12, 4.7 & 4.10], and the fact that twisting and shuffling are exchanged is [BLPW12,

8.24 & 8.26]. 2

10.2.4 Affine type A quiver varieties

A fourth example of symplectic duality is given by quiver varieties for affine type A quivers.

We leave most of the combinatorics to the papers [Webd, Webe] which treat this case in more

detail, and only give a rough outline below.

Fix a positive integer e, and consider quiver varieties for ŝle. That is, we take a quiver

whose underlying graph is an e-cycle, which we will identify with the Cayley graph of Z/eZ for

the generators {±1}. Fix a highest weight ν =
∑
νiωi for ŝle as in Section 9.5; let ` :=

∑
νi

be the level of this highest weight. Pick a basis of the framing vector spaces, which have total

dimension `. The Lie algebra of the torus t is spanned by the cocharacters

• εj which acts with weight 1 on the jth basis vector in the framing space, and

• γ which acts with weight 1 on every clockwise oriented edge of the cycle (and thus weight

-1 on counterclockwise oriented edges).
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There are certain distinguished choices of ζ which contain a representative of each chamber of

Hsh. We call these Uglov actions, since they naturally correspond to the choice of charges for

a higher level Fock space à la Uglov [Ugl00]. Let s = (s1, . . . , s`) be a collection of integers

such that there are precisely νj of the entries of this sequence such that si ≡ j (mod e). We

let ζ+
s be the cocharacter whose derivative is `γ + (si` + ie)εj , and let C±s be the chamber

of Hsh containing it. The action of ζ+
s always has isolated fixed points, and every chamber

contains one of these cocharacters, as shown in [Webd, 5.16]. The fixed points of an Uglov

action are in canonical bijection with `-multipartitions. We wish to visualize these partitions

as abaci as in, for example, [Tin08, §2.1].

We have ` runners on our abacus, numbered from bottom to top, each of which we

visualize as a copy of the real line with slots at each integer which can hold a bead. To each

multipartition

ξ = (ξ
(1)
1 ≥ ξ(1)

2 ≥ · · · ; ξ
(2)
1 ≥ ξ(2)

2 ≥ · · · ; . . . ; ξ
(`)
1 ≥ ξ

(`)
2 ≥ · · · ),

we associate the abacus where on the kth runner, we fill the beads at

ξ
(k)
1 + sk, ξ

(k)
2 + sk − 1, . . . , ξ

(k)
j + sk − j + 1, . . . ,

and no others. Note this means that every position is filled at sufficiently negative integers,

and open at sufficiently positive.

The combinatorics of the duality is encapsulated in the map between fixed points. This

is given by cutting the abacus into e × ` rectangles; that is rectangles consisting of the

me,me + 1, . . . ,me + e − 1 positions of each runner as m ranges over Z. Then we flip the

rectangle, so that the first runner becomes the beads at the points m` for m ∈ Z, the second

runner becomes the beads the points m`+ 1, etc. as in the picture below.

· · · · · · · · · · · ·

The lefthand picture above corresponds to

e = 3, ` = 2, s = (0, 1), ξ(1) = (2, 1), ξ(2) = (2, 1, 1, 1),

while the dual righthand picture corresponds to

e = 2, ` = 3, t = (0, 0, 1), ξ(1) = (2), ξ(2) = (1, 1), ξ(3) = (1).

If we fix the triple (ν, µ, s), and perform the duality above on the abacus for a multipartitions
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with this weight and charge, the resulting weights and charge (µ!, ν!, t) are combinatorially

determined, as discussed in [Webd, §5.3]. We can also associate to this the triple (Q̃ν
µ, T, C

+
s ).

When the combinatorial data is switched by rank-level duality, we obtain a symplectic duality

[Webd, 5.25].

Theorem 10.9 The variety Q̃ν
µ is symplectic dual to Q̃µ!

ν! , where the action of T on Q̃ν
µ is

given by a cocharacter in C+
s and the action of T on Q̃µ!

ν! is given by a cocharacter in −C+
t .

Remark 10.10 The proof of Theorem 10.9 ultimately relies on Koszul duality results for

certain categories of affine representations and category O for Cherednik algebras based on

work of Rouquier, Shan, Varagnolo, and Vasserot [RSVV, SVV14].

Theorem 10.9 has the following special case. Let H(k, r) be the Hilbert scheme of r points

on a crepant resolution of C2/Γ, where Γ := Z/kZ acts effectively and symplectically on C2.

Let M(k, r) be the moduli space of torsion-free sheaves E on P2 with rkE = k and c2(E) = r,

along with a framing Φ : E|P1
∼→ O⊕kP1 . On H(k, r), the torus T is 1-dimensional, induced

by the symplectic action on C2 commuting with Γ. On M(k, r), the torus T ! is naturally

identified with C× times the projective diagonal matrices in PGLk; let ϑi denote the weights

of ζ in PGLk (thus only well-defined up to simultaneous translation) and h the weight in C×.

The hyperplanes in H!
sh are the points of t! for which ϑi − ϑj = mh for m ∈ [−k + 1, k − 1],

along with the single additional hyperplane h = 0. Note that these are precisely the GIT walls

for H(k, r) as described by Gordon [Gor08, §4.3] (Gordon’s Hi is our ϑi − ϑi+1). Let C+ be

the positive chamber in tR ∼= R and let C− be the chamber in t!R where ϑi � ϑi+1 and h < 0.

Corollary 10.11 The variety H(k, r) is symplectic dual to M(k, r).

Further specializing to the case where k = 1, we have H(1, r) ∼= Hilbr C2 ∼=M(1, r). The

Hilbert scheme Hilbr C2 does not satisfy our assumption that the minimal leaf is a point, but

we may replace it with the reduced Hilbert scheme Hilbr0 C2 (in which the center of mass is

required to lie at the origin) without affecting category O or any of its structure.

Corollary 10.12 The reduced Hilbert scheme Hilbr0 C2 is self-dual.

Remark 10.13 More generally, we expect the moduli space of G-instantons on a crepant

resolution of C2/Γ to be dual to the moduli space of G′-instantons on a crepant resolution

of C2/Γ′, where G is matched to Γ′ and G′ is matched to Γ via the McKay correspondence.

Corollary 10.11 constitutes the special case where both G and G′ are of type A.

Braverman and Finkelberg have suggested that resolutions of slices in the “double affine

Grassmannian” should be isomorphic to certain spaces of instantons. Via this philosophy, our

conjecture may be regarded as an affine version of the conjecture in Remark 10.7.
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10.3 Duality of cones

The notion of symplectic duality is in fact more naturally defined at the level of cones, as we

explain below.

Proposition 10.14 Let M and M′ be resolutions of the same cone M0.

(i) G ∼= G′, and therefore W ∼= W′. Given a maximal torus T ⊂ G, the hyperplane

arrangements Hsh and H′sh in tR coincide.

(ii) W ∼= W ′, and we have a W -equivariant isomorphism H2(M;R) ∼= H2(M′;R) taking

Htw to H′tw.

(iii) For any λ ∈ H2(M;C) ∼= H2(M′;C), we have S sp
M = S sp

M′.

(iv) Given a period λ ∈ H2(M;C) and a generic cocharacter ζ of T , the categories Oa and

O′a associated to M and M′ are canonically equivalent.

Proof:

(i) The Lie algebra g of G is isomorphic to the Lie algebra of Hamiltonian vector fields on

M0 with S-weight 1; this tells us that g ∼= g′. Let G̃ be a simultaneous cover of both G

and G′; then G̃ acts on both M and M′. Since an automorphism of M or M′ is trivial if

and only if it induces the trivial automorphism of M0, the maps G̃→ G and G̃→ G′

have the same kernel.

Let T ⊂ G be a maximal torus. Any cocharacter ζ of T induces an action of T on M with

isolated fixed points if and only if the induced action on M0 has isolated fixed points,

thus the hyperplane arrangement Hsh in t is independent of the choice of resolution.

(ii) The fact that the Namikawa Weyl group is determined completely by M0 is immediate

from Namikawa’s definition. The fact that the groups H2(M;R) and H2(M′;R) are

canonically isomorphic for two different resolutions M and M′ is explained in [BPW,

2.18]. This isomorphism is clearly W -equivariant, and takes the arrangement Htw to

H′tw.

(iii) The fact that the poset S sp of special leaves does not depend on the choice of resolution

follows from the fact that the algebra A does not depend on the choice of resolution;

that is, the algebra of S-invariant global sections of the quantization of M with period λ

is canonically isomorphic to the algebra of S-invariant global sections of the quantization

of M′ with period λ [BPW, 3.9].

(iv) The category Oa is defined in terms of the algebra A and the subalgebra A+ ⊂ A, and

we have established that these structures do not depend on the choice of resolution. 2
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We are now prepared to define symplectic duality of cones. Let M0 be a Poisson cone that

admits a conical symplectic resolution, which we do not fix. Let G be the group of Hamiltonian

symplectomorphisms that commute with S. Fix a Borel subgroup B ⊂ G, and assume that

one (and thus any) maximal torus T ⊂ B fixes only the cone point of M0.

For any movable chamber Ctw of Htw and B-dominant chamber Csh of Hsh, we obtain a

category O(Ctw, Csh) by choosing the unique conical symplectic resolution M with ample cone

Ctw, taking a quantization with period sufficiently deep in the ample cone, and allowing T to

act by a cocharacter in Csh.

Definition 10.15 A symplectic duality between (M0, B) and (M!
0, B

!) consists of

• an order-reversing bijection S 7→ S! from S sp
M to S sp

M! (for any choice of M and M!);

• group isomorphisms W ∼= W! and W ∼= W !;

• a pair of linear isomorphisms tR ∼= H2(M!;R) and H2(M;R) ∼= t!R, which are equivariant

with respect to the isomorphisms of the previous item, compatible with the lattices, take

Htw to H!
sh and Hsh to H!

tw, and take movable twisting chambers to dominant shuffling

chambers;

• for any Ctw, Csh and C !
tw, C

!
sh related by the linear isomorphisms above, a Koszul duality

from O(Ctw, Csh) to Õ!(C !
tw, C

!
sh).

These structures are required to satisfy the following conditions:

• Let L be a simple object of O(Ctw, Csh), and suppose that L̃ is sent by the Koszul duality

functor to a graded lift of the projective cover of the simple object L! of O!(C !
tw, C

!
sh).

Then we require that our bijection of special leaves takes the dense leaf in M0,L to the

dense leaf in M!
0,L! .

• The equivalences Db(Õ(Ctw, Csh)) ' Db(Õ!(C !
tw, C

!
sh)) interchange twisting and shuffling

functors.

Remark 10.16 Essentially, Definition 10.15 says that for any choice of M resolving M0 and

M! resolving M!
0, there are corresponding actions of T on both sides such that M is dual to

M!. (It also says that the linear isomorphisms involved in all of these dualities can be chosen

consistently.) It is straightforward to promote Theorems 10.3, 10.4, 10.8, and 10.9 to dualities

between cones.

10.4 Duality of leaf closures and slices

Let M→M0 be a conical symplectic resolution, and S ⊂M0 a symplectic leaf. The closure

S̄ ⊂M0 is again a Poisson cone, which may or may not admit a symplectic resolution. For

93



example, if M0 is the nilpotent cone in slr and S is a nilpotent orbit, then S̄ admits a symplectic

resolution of the form T ∗(SLr /P ) for some P . For other simple Lie algebras, however, S̄ may

admit no symplectic resolution. If M0 admits a Hamiltonian action of T, commuting with S
and fixing only the cone point, then this restricts to an action on S̄ with the same properties.

Let p ∈ S be any point. We say that another Poisson cone N0 is a slice to S at p if a

formal neighborhood of p in M0 is isomorphic to a formal neighborhood of p in S times a

formal neighborhood of the cone point in N0. Assuming that such an N0 exists21, it will

always admit a conical symplectic resolution; in an infinitesimal neighborhood of the cone

point, this resolution is obtained by base change along the inclusion of N0 into M0. However,

even if M0 admits a Hamiltonian T-action that commutes with S and fixes only the cone point,

N0 might not admit such an action.

Let M0 and M!
0 be dual in the sense of Definition 10.15. Let S be a special leaf of M0,

and let S! be the corresponding special leaf of M!
0. Let N0 be a slice to S at a point p ∈ S.

Conjecture 10.17 Suppose that S̄! admits a conical symplectic resolution and N0 admits a

Hamiltonian T action commuting with S and fixing only a point. Then S̄! is dual to N0.

Example 10.18 Conjecture 10.17 is true for S3-varieties in type A. We showed in Theorem

10.4 that Xµν is dual to Xνµo . The leaf closures in the affinization of Xµν have resolutions of the

form Xµρ and the slices in the affinization of Xνµo have resolutions of the form Xρµo , where ρ̄ lies

between ν̄ and µ̄t in the dominance order.

More generally, Conjecture 10.17 should hold for finite-type quiver varieties and slices in

the affine Grassmannian (Remark 10.7), as both of these families of varieties are closed under

the operations of leaf-closure and slice.

Example 10.19 Conjecture 10.17 is true for hypertoric varieties. Special leaves correspond

to coloop-free flats [PW07, 2.1], leaf closures correspond to restrictions at flats [PW07, 2.1],

and slices correspond to localization at flats [PW07, 2.4]. Thus Conjecture 10.17 for hypertoric

varieties follows from Theorem 10.8 and the interchange of localization and restriction under

Gale duality [BLPW10, 2.6].

Example 10.20 Conjecture 10.17 is true for affine type A quiver varieties. A special leaf of

Qν
µ is indexed by a highest weight ξ, a weight $ and an integer r. From the description of leaves

and slices in [Nak94, §6], the closure of this leaf is isomorphic to Qν
$ × Symr

(
C2/(Z/eZ)

)
,

and its slice is isomorphic to Q$−rδ
µ × Symr

(
C2/(Z/eZ)

)
. These switch roles under rank-level

duality by [Webd, 5.18], and the result follows.

21Kaledin [Kal09, 1.6] shows that we can always find a symplectic singularity N0 with this property, but he
does not prove that the Poisson structure on N0 is always homogeneous with respect to a conical S action. He
does, however, conjecture that this is the case [Kal09, 1.8].
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Remark 10.21 In all of the examples that we know, S̄! admits a conical symplectic resolution

if and only if N0 admits a Hamiltonian T-action commuting with S and fixing only a point.

This suggests that there might be a more general notion of duality than Definition 10.15 in

which both of these conditions are relaxed, and one holds on one side if and only if the other

holds on the other side.

10.5 Duality of leaf filtrations

Suppose that M is symplectic dual to M!. For every special leaf S ⊂M, let

DS := K(OSg )C = C
{

[Λα] |Mα,0 ⊂ S̄
}

and

ES := K(O∂Sg )C = C
{

[Λα] |Mα,0 ( S̄
}
.

This is precisely the filtration of K(Og)C whose associated graded gives us the direct sum

decomposition of Equation (5); that is, DS/ES ∼= K(PS)C. If M and M! are both interleaved

(Definition 6.14), then this filtration agrees, via the characteristic cycle isomorphism, with the

BBD filtration of H2d
M+(M;C) (Theorem 7.14).

Consider the perfect pairing between K(O)C and K(O!)C for which the simples form dual

bases, under the bijection between simples provided by Koszul duality.

Proposition 10.22 For each special leaf S, the above pairing induces a perfect pairing between

DS/ES and D!
S!/E

!
S!.

Proof: For every special leaf S, we have

D⊥S ∩D!
S! = C

{
[Λα] |Mα,0 ⊂ S̄

}⊥ ∩ C
{

[Λ!
α! ] |M!

α!,0 ⊂ S̄
!
}

= C
{

[Λ!
α! ] |Mα,0 6⊂ S̄

}
∩ C

{
[Λ!
α! ] |M!

α!,0 ⊂ S̄
!
}

= C
{

[Λ!
α! ] |M!

α!,0 6⊃ S̄
!
}
∩ C

{
[Λ!
α! ] |M!

α!,0 ⊂ S̄
!
}

= C
{

[Λ!
α! ] |M!

α!,0 ( S̄!
}

= E!
S! .

By symmetry, we also have (D!
S!)
⊥ ∩DS = ES . This completes the proof. 2

Example 10.23 If M = M! = T ∗(SLr /B) and the period is integral, then the space K(O)C

can be identified with C[Sn], and the space DS/ES is the unique subquotient which is

isomorphic to the isotypic component of the Springer representation for S.
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Example 10.24 If M and M! are hypertoric and the period is regular and integral, the

dimension of the space DS/ES is TAF (1, 0)TAF (0, 1) where TAF and TAF are the Tutte

polynomials of the restriction and localization of the hyperplane arrangement at the coloop-

free flat F corresponding to the leaf S. The dual variety M! is the variety associated to the

Gale dual hyperplane arrangement, and Gale duality takes restrictions to localizations and

vice versa, along with reversing the variables in the Tutte polynomial.

Corollary 10.25 If (M,D) is fat-tailed and (M!,D!) is light-headed, then the vector space

HdimM(M;C) is dual to IHdimM!

T (M!
0;C).

Proof: Taking S to be the minimal leaf {o}, Proposition 10.22 says that D{o} is dual to

D!
M̊!

0

/E!
M̊!

0

. By fat-tailedness (Theorem 7.20), we have

D{o} ∼= K(P{o})C ∼= Σ(F{o}) ∼= H2d(M;C).

By light-headedness (Theorems 7.23), we have

D!
M̊!

0
/E!

M̊!
0

∼= K(P!
M̊!

0
)C ∼= Σ(F !

M̊!
0
) ∼= IHdimM!

T (M!
0;C).

This completes the proof. 2

Remark 10.26 The vector space IHdimM
T (M;C) is naturally filtered, with kth filtered piece

HdimM−2k
T (pt;C) · IH2k

T (M;C), and the associated graded is isomorphic to IH∗(M;C). Thus

Corollary 10.25 says that the dimension of the total intersection cohomology of M0 is equal to

the dimension of the top homology of M!. If you have a pair of conical symplectic resolutions

that you think might be dual, this is the first calculation that you should do.

Example 10.27 Let G be a simple algebraic group, simply laced and simply connected. Fix

a pair of λ, µ of dominant weights for G, and consider the Nakajima quiver variety Q̃λ
µ that

we discussed in Section 9.5. The top homology group of Q̃λ
µ is isomorphic to the V (λ)µ, the

µ-weight space of the irreducible representation V (λ) [Nak98, 10.2].

Let GL be the Langlands dual group, and consider the slice Grλ̄µ in the affine Grassmannian

for GL that we discussed in Section 9.6. This variety always admits a Hamiltonian T-action

fixing only the cone point, and the intersection cohomology group IH
dim Grλ̄µ
T (Grλ̄µ;C) is also

isomorphic to the V (λ)µ, the µ-weight space of the irreducible representation V (λ) [Gin, 3.11

& 5.2].

If λ is a sum of minuscule weights, then there exists a symplectic resolution G̃r
λ̄
µ of Grλ̄µ

and a Hamiltonian T-action on Q̃λ
µ with isolated fixed points, and we conjecture that G̃r

λ̄
µ is

symplectic dual to Q̃λ
µ (Remark 10.7). We know that Q̃λ

µ is fat-tailed (Example 7.26) and
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we conjecture that G̃r
λ̄
µ is light-headed (Conjecture 7.27). Assuming these two conjectures,

Corollary 10.25 would provide an isomorphism

Hdim Q̃λµ
(Q̃λ

µ;C) ∼= Hdim Q̃λµ(Q̃λ
µ;C)∗ ∼= IH

dim Grλ̄µ
T (Grλ̄µ;C) (9)

between the two geometric realizations of V (λ)µ.

Note that if G is of type A, then both Q̃λ
µ and G̃r

λ̄
µ are S3-varieties [Maf05, MV]. In this

case, Conjecture 7.27 is covered by Example 7.25, and the symplectic duality statement is

Theorem 10.4.

Remark 10.28 We defined a pairing between K(O) and K(O!) by making the simple bases

on each side be orthonormal. However, in the proof of Proposition 10.22, we only used that

they are orthogonal. There is some evidence to suggest that there is a more natural pairing

that is orthogonal but not orthonormal.

To define such a pairing, we suppose that there is a function ε : I → {±1} such that for

all α, α′ ∈ I,

ε(α) = ε(α′) =⇒ Ext1(Λα,Λα′) = 0.

Such a function always exists for regular blocks of BGG category O (it is given by the sign

function on the Weyl group), as well as blocks of hypertoric category O (it is the same function

that controls the orientations in [BLPW10, 4.3]). We know of no examples for which such a

function does not exist. As long as O is indecomposable, any such function would be unique

up to a global sign.

Given such a function, define a new pairing by putting〈
[Λα], [Λ!

β! ]
〉
ε

:= ε(α)δαβ.

In other words, we take the simples to form twisted orthonormal bases, where the twist is

determined by ε. The reason that this pairing might be more natural is that the standards

and the projectives would also form twisted orthonormal bases.22 In contrast, the untwisted

pairing that we originally defined is not well behaved with respect to projectives or standards.

We conjecture that the isomorphism in Equation (9) between the two geometric realizations

of V (λ)µ will only be compatible with the action of G if we use this twisted pairing.

Example 10.29 In type A, the relationship between quiver variety geometry and affine

Grassmannian geometry is somewhat special. In particular, as observed by Mirković-Vybornov,

Nakajima quiver varieties of type A also arise as transverse slices in the affine Grassmannian

of type A [MV]. This geometric phenomenon is reflected algebraically in skew-Howe duality

22We leave this statement as an exercise for the reader. The proof uses the fact that the isomorphism
K(Õ) ∼= K(Õ!) induced by Koszul duality takes q to −q−1.
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for representations of type A simple Lie algebras. More precisely, this duality asserts that

there is a canonical vector space isomorphism between weight spaces in representations of

glm and multiplicity spaces in representations of gln in the glm × gln-module
∧
N (Cn ⊗ Cm).

These weight spaces and multiplicity spaces can be interpreted geometrically using either the

Ginzburg-Nakajima construction or the geometric Satake construction. The various geometric

realisations of weight and multiplicity spaces are then summarized in the following diagram:

Geometric Satake Ginzburg-Nakajima

Multiplicity space for glm HdimM(M;C) IHdimM!

T! (M!
0;C)

Weight space for gln IHdimM!

T! (M!
0;C) HdimM(M;C)

The observation of Mirković-Vybornov is essentially that the varieties in the diagonal of the

above matrix are identical. Our additional observation, which is special to type A, is that

the varieties in a given row (or column) will be symplectic duals. Moreover, the isomorphism

between the vector spaces in a given row (or column) is a cohomological consequence of

symplectic duality; see Remark 10.26. Thus, in type A, symplectic duality exchanges the

geometric Satake realization of skew-Howe duality with the Ginzburg-Nakajima realization of

skew-Howe duality.

Example 10.30 For affine type Â quiver varieties, symplectic duality recovers a duality in

representation theory due to I.B. Frenkel known as level-rank duality. The situation is quite

reminiscent of that of skew-Howe duality in finite type A, and is discussed in more detail in

[Webd, §5.2]. In this case, the commuting actions of the affine Lie algebras ŝln and ŝlm on the

semi-infinite wedge space give rise to canonical identifications between weight spaces in a level

m representation of ŝln and multiplicity spaces in a level n representation of ŝlm. (See, for

example, equation A.5 in [Nak09].) The geometric Satake construction of representations in

affine type is not completely understood. However, in affine type Â, Braverman-Finkelberg

[BF10] have an explicit proposal for a geometric Satake construction of representations. We

then have the following diagram of geometric realisations of representations:

Geometric Satake Nakajima

Multiplicity space in a level n rep. of ŝlm HdimM(M;C) IHdimM!

T! (M!
0;C)

Weight space in a level m rep. of ŝln IHdimM!

T! (M!
0;C) HdimM(M;C)

Here M and M! are affine type Â quiver varieties. The Nakajima column realizes the weight

and multiplicity spaces as homology groups of Nakajima quiver varieties. That the diagonal

(resp. off-diagonal) entries in Geometric Satake column involve the same variety is part of

the content of the Braverman-Finkelberg proposal for geometric Satake in affine type Â. Our

additional observation is that the varieties in a given row (or column) will be symplectic duals.
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Remark 10.31 Etingof and Schedler [ES14, 1.3.1(b)] conjecture that HdimM!(M!;C) has the

same dimension as the zeroth Poisson homology group HP0(M!
0), which is defined as the ring

of functions modulo the linear span of all Poisson brackets. By Corollary 10.25 and Remark

10.26, this is equivalent to the conjecture that IH∗(M;C) has the same dimension as HP0(M!
0).

In [Pro14, 3.4], we strengthen this conjecture by proposing that they should be isomorphic as

graded vector spaces (the grading on Poisson homology is induced by the S-action).

Furthermore, IH∗(M;C) admits the natural deformation IH∗T (M;C) over t, and HP0(M!
0)

admits the natural deformation HP0(N !) over H2(M!) (recall that N ! := SpecC[M !] is a

Poisson deformation of M!
0 over H2(M!;C)). Finally, recall that we have t ∼= H2(M!;C) as

part of the package of symplectic duality, therefore the two deformations share the same base.

The conjecture in [Pro14, 3.4] asserts that these two deformations should be isomorphic, as

well; it is proven for hypertoric varieties [Pro14, 3.1].

10.6 Duality of localization algebras

In this section we extend Conjecture 5.23 in order to relate symplectic duality to a cohomological

duality first studied by Goresky and MacPherson [GM10], and later by the authors [BLP+11].

Let M and M! be a symplectic dual pair.

Recall that we define E to be the Yoneda algebra of O, and we conjecture that its center

is isomorphic to H∗(M;C) (Conjecture 5.23). Let Ẽ be the universal deformation of E, as

defined in [BLP+11, 4.2]; this is a flat deformation over the base Z(E!)∗2, the dual of the degree

2 part of the center of E!. Conjecture 5.23 for M! says that the center of E! is isomorphic to

H∗(M!;C), which means that the base of the universal deformation is isomorphic to H2(M!;C).

As part of the package of symplectic duality, this is isomorphic to t.

Conjecture 10.32 The graded ring Z(Ẽ) is isomorphic to H∗T (M;C).

Remark 10.33 Conjecture 10.32 is a natural extension of Conjecture 5.23; if you believe that

Z(E) is isomorphic to H∗(M;C), and they both admit canonical flat deformations over the

base t, it is natural to guess that these deformations are the same. Unfortunately, unlike in

Conjecture 5.23, we do not have a geometric definition of a map from H∗T (M;C) to Z(Ẽ).

Remark 10.34 Conjecture 10.32 holds for hypertoric varieties [BLP+11, 8.5] and for S3-

varieties in type A [BLP+11, 9.9].

In their paper [GM10], Goresky and MacPherson observe a somewhat mysterious coho-

mological relationship between certain pairs of varieties with torus actions. Below we will

describe this relationship, and demonstrate that it is a consequence of symplectic duality and

Conjecture 10.32.
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Consider the ring homomorphisms

Sym t∗ ↪→ SymH2
T (M;C) → H∗T (M;C) ↪→ H∗T (MT ;C) ∼=

⊕
α∈I

H∗T (pα;C).

Dualizing, we obtain maps

t � HT
2 (M;C) ← SpecH∗T (M;C) �

⊔
α∈I

t.

Let Hα ⊂ HT
2 (M;C) be the image of the copy of t indexed by α ∈ I. This is a linear subspace

that projects isomorphically to t via the left-most map, and the union of these linear subspaces

is equal to the image of SpecH∗T (M;C) in HT
2 (M;C).

Theorem 10.35 There is a canonical perfect pairing between HT
2 (M;C) and HT !

2 (M!;C).

Assuming that Conjecture 10.32 holds, then:

• the kernel of the projection from HT
2 (M;C) to t is the perp space to the kernel of the

projection from HT !

2 (M!;C) to t!

• for all α ∈ I, Hα ⊂ HT
2 (M;C) is the perp space to H !

α! ⊂ HT !

2 (M!;C).

Proof: This result follows immediately from the Koszul duality of O and O! using [BLP+11,

1.2]. 2

Remark 10.36 The phenomenon in Theorem 10.35 was observed by Goresky and MacPherson

[GM10, §8] for the varieties described in Remark 10.6 (a special case of type A S3-varieties).

The connection to symplectic duality allowed us to find many new examples, such as hypertoric

varieties and more general type A S3-varieties.

10.7 Knot homologies and symplectic duality

There are close relationships between the representation theory of quantum groups and

low-dimensional topology. Perhaps the best known example of such a relationship is the

construction of Reshetikhin-Turaev [RT90] invariants of links in S3; these invariants are

defined using the braiding on the category of Uq(g) modules. Much of the subsequent work

categorifying the representation theory of quantum groups has been motivated by the desire to

lift the polynomial invariants of Reshetikhin-Turaev to richer homological invariants. The best

known such lift - at least to representation theorists - is Khovanov’s Uq(sl2) link homology

[Kho00], which categorifies the Jones polynomial.

On the other hand, representations of quantum groups (and their categorifications) can be

constructed using the geometry of conical symplectic resolutions. As a result, one expects to
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obtain constructions of knot homologies using the geometry of conical symplectic resolutions

or the representation theory of Koszul algebras. Indeed, such constructions have been studied

by many authors in the last ten years. The examples most closely related to the geometry of

conical symplectic resolutions include:

• Sussan’s algebraic construction of Uq(sln) link homologies (for fundamental weights)

using a graded version of parabolic BGG category O for glm [Sus07];

• Mazorchuk-Stroppel’s algebraic construction of Uq(sln) link homologies (for fundamental

weights) using a graded version of singular BGG category O for glm [MS09];

• Cautis-Kamnitzer’s geometric constructions of Uq(sln) link homologies (for fundamental

weights) using the affine Grassmannian [CK08b, CK08a, Kam11];

• Seidel-Smith and Manolescu’s constructions of Khovanov homology using Fukaya cate-

gories of type A quiver varieties [SS06b, Man07];

• Cautis’s geometric construction of of Uq(sln) link homologies (for all weights) using

derived categories of coherent sheaves and subvarieties of the affine Grassmannian

[Cau15];

• Smith-Thomas and Cautis-Licata’s constructions of Khovanov homology using derived

categories of coherent sheaves on Hilbert schemes of points on ALE spaces [Tho10, CL12];

• the fourth author’s construction of Uq(g) link homologies, categorifying the entire family

of RT polynomial link invariants [Webd] using category O for quiver varieties.

The geometry underlying these categories is not the same in each case. Rather, it seems

to come in two different flavors, which are related to two different ways of geometrizing a

representation of g: via quiver varieties, or via the affine Grassmannian for the Langlands

dual group LG. The work of Seidel-Smith, Manolescu, and Cautis-Kamnitzer is on the

affine Grassmannian side, while the work of the fourth author is on the quiver variety side.

Philosophically, all of these approaches involve defining a braid group action on certain

geometrically defined categories, and adding some special functors which can be used to define

cups and caps. In all cases, we can interpret these data as coming from ideas that we have

discussed.

On the affine Grassmannian side, the relevant braid group action comes from twisting

functors, while cups and caps arise from Lagrangian correspondences; in very loose terms, one

should think of them as versions of pushforward and pullback from leaves.

• Seidel-Smith and Manolescu work in the Fukaya category. Their braid group action

comes from parallel transport in a space of complex structures, which we interpret as

101



a Fukaya version of twisting. Their cup and cap functors are the functors on quilted

Fukaya categories induced by natural Lagrangian correspondences.

• Cautis-Kamnitzer work with coherent sheaves on convolution varieties for affine Grass-

mannians, but nothing is lost by replacing these varieties with certain open subsets

which are conical symplectic resolutions (they are also sl∞ quiver varieties). After this

modification, their braid group action is obtained via tensor produces with associated

gradeds of twisting bimodules, and their cups and caps via tensor products with the

associated gradeds of certain Harish-Chandra bimodules. Cautis has explained how their

construction is a special case of a general construction from a categorical sl∞ action,

and the quantum version of Cautis-Kamnitzer arises from applying this to sl∞ quiver

varieties as in the paper [Weba].

On the other hand, from the quiver variety perspective, the braid group action one uses

comes from shuffling functors, as suggested by Nakajima’s work on tensor product quiver

varieties. The cup and cap functors are harder to describe in this case, but should be thought

of as some sort of restriction to slices. The two different approaches to categorified knot

invariants can be summarized by the following table.

Affine Grassmannian Quiver varieties

braid actions twisting shuffling

cups and caps push to/pull from leaves push to/pull from slices

examples [CK08b, CK08a, Cau15, Kam11, SS06b, Man07] [Webc, Webd]

Strikingly, while these two contexts look very different, the basic geometric concepts

involved (twisting/shuffling, leaves/slices) are interchanged by our conjectural duality. Thus,

the fact that these two constructions exist and give the same knot invariants in type A serves

as a powerful piece of evidence for our conjecture. In other types, there is no construction

which yet exists on the affine Grassmannian side.

In type A, these knot homologies also have Koszul dual realizations, due to Sussan and

Mazorchuk-Stroppel; these fit with the left and right hand columns of the table above, since the

former uses twisting functors for the braid group action and the latter uses shuffling functors.

A An Ext-vanishing result (appendix by Ivan Losev)

Let P be a vector space over C equipped with a linear map P → H2(M;C) whose image does

not lie in any of the discriminant hyperplanes. Recall that M is the universal deformation of

M, and N the affinization of this variety. Let NP be the fiber product N ×H2(M;C) P . The

fiber product MP = M ×H2(M;C) P is a fiberwise symplectic resolution of singularities for NP ;

let ωP be the fiberwise symplectic form on MP .
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Let DP,h be a T × S-equivariant formal quantization of MP . This means that DP,h is a

T× S-equivariant sheaf of C[P ][[h]]-algebras (that are flat over C[[h]] and are complete and

separated in the h-adic topology) with a fixed isomorphism θ : DP,h/(h)
∼−→ SMP

. As before,

we choose hξ ∈ Γ(MP ,DP,h) such that ξ := h−1(hξ) is a non-commutative moment map for

the action of T on DP := DP,h[h−1].

Let AP,h denote the subalgebra of all S-finite elements in Γ(MP ,DP,h). This is an algebra

over C[P ][h] equipped with an action of T× S by automorphisms such that AP,0 := AP,h/(h)

is identified with C[MP ] = C[NP ]. For p ∈ P we set Ap,0 := AP,0/(ker p), where we view p as

a homomorphism C[P ]→ C; this is the space of functions on the fiber of MP over the point p.

Set AP := AP,h/(h− 1) ∼= AP,h[h−1]S, Ap := AP /(ker p). We have gradings on the algebras

AP,h, AP,0, AP , Ap,0, Ap coming from the T-action. The ith graded components will be denoted

by AP (i), AP,0(i), etc. We remark that on AP , Ap this grading is inner – it comes from the

inner derivation [ξ, ·].
As in Section 3.2 (and in previous works such as [Los12c, BLPW12, GL14]), we can consider

the full subcategory Op in the category Ap -mod of finitely generated modules consisting of all

modules where A+
p acts locally finitely.

Let ∆P denote the left AP -module AP /APA
>0
P . We use the notation ∆? for various

specializations of ∆P . We remark that ∆p is an object in Op. Now consider the right AP -

module ∇∨P := AP /A
<0
P AP . The T-grading on AP induces a T-grading on ∇∨P . We can

consider the specializations ∇∨? of ∇∨P . We will see below that, for any (p, h) ∈ P ⊕ C, all

graded components ∇∨p,h(i) are finite dimensional. Let ∇p,h denote the restricted dual of ∇∨p,h,

i.e., ∇p,h =
⊕

i

(
∇∨p,h(i)

)∗
. We have ∇p,h(i) = 0 for i > 0. So ∇p lies in the ind completion of

Op. In fact, one can show that ∇p is finitely generated and so lies in Op.
The purpose of this appendix is to prove that:

Theorem A.1 There is a non-empty Zariski open subset P 0 in the hyperplane h = 1 such

that ExtiAp(∆p,∇p) = 0 for p ∈ P 0 and i > 0.

There is a Zariski open subset of P where derived localization holds. Since the algebra Ap has

finite global dimension on this open subset, the vanishing of the coherent sheaves Exti(∆P ,∇P )

at p for all i is an open condition. The content of this theorem is that this set is non-empty. In

fact, it contains all but finitely many points of any affine line not parallel to the discriminant

locus.

One corollary of our choice of p is that the category Op becomes highest weight. Its

standard objects are indecomposable direct summands of ∆p and the costandard objects are

indecomposable direct summands of ∇p. In particular, Ext1
Ap(∆p,∇p) = Ext1

Op(∆p,∇p) = 0.

Another corollary is that the algebra Ap has finite homological dimension not exceeding dimM.

We also would like to mention that our proof of Theorem A.1 is inspired by the proof of

an analogous statement for Rational Cherednik algebras, see [Eti12].
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A.1 The proof

We start with an easy lemma that is analogous to [GL14, 3.1.4]. The proof is precisely like

that of Lemma 3.13:

Lemma A.2 The graded components of ∆P ,∇∨P are finitely generated C[P ]-modules. 2

Next, we will need a structural result related to symplectic C×-actions. Let T act on a

smooth affine symplectic variety X with finitely many fixed points. Let x be one of the fixed

points. Then the linear action of T on TxX is symplectic.

Lemma A.3 There are homogeneous elements x1, . . . , xm ∈ C[X]>0,m = 1
2 dimX such that

the differentials dx1, . . . , dxm are linearly independent at the point x. Moreover, the ideal

C[X]C[X]>0 is a locally complete intersection generated in a neighborhood of x by the elements

x1, . . . , xm.

Proof: This is a standard fact that can be deduced, for example, from the Luna slice theorem.

2

Now we are going to reinterpret the Ext’s between ∆p and ∇p in terms of Tor’s between

∆p and ∇∨p .

Lemma A.4 We have Exti(∆p,h,∇p,h) = (Tori(∇∨p,h,∆p,h))∗. Here both the Ext’s and the

Tor’s are taken over Ap,h.

The spaces Tori(∇∨p,h,∆p,h) are graded (via the T-action) and the graded components are finite

dimensional. This is because both modules are finitely generated and their graded components

are finite dimensional. The superscript ∗ means the restricted dual.

Proof: Let (P•, d) be a free T-equivariant resolution of ∆p,h. Then the Ext’s in interest

are the cohomology of the complex Hom(P•,∇p,h) = P ∗• ⊗Ap,h ∇p,h and the differential is d∗.

But P ∗• ⊗Ap,h ∇p,h = (P• ⊗Ap,h ∇∨p,h)∗ and the differential d∗ is the dual of the differential on

the complex P• ⊗Ap,h ∇∨p,h. The cohomology of the latter complex are the Tor’s. Since the

restricted duality ∗ is an exact functor, we are done. 2

So we only need to prove the analog of Theorem A.1 for Tor
Ap
i (∇∨p ,∆p). First we are going

to understand the behavior of the Tor’s for h = 0.

Let ` be a line in P not lying in the discriminant hyperplanes. Let M =
⊕

i∈ZM(i), N =⊕
i∈ZN(i) be T-equivariant A`,0-modules with the following properties.

(i) M and N are finitely generated.
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(ii) M(i) = N(−i) = 0 for i� 0 and M(i), N(i) are finitely generated C[`]-modules for all i.

(iii) The specializations of M,N at p ∈ ` \ {0} are ∆p,0,∇∨p,0, respectively.

Proposition A.5 dim Tor
A`,0
i (M,N) <∞ for all i > 0.

Proof: The proof is in several steps.

Step 1. Let us show that Tor
A`,0
i (M,N) is a finitely generated C[`]-module for any i.

First of all, we claim that the A`,0-module Tor
A`,0
i (M,N) is supported on the T-fixed point

set M T
` . Indeed, the condition M(i) = 0 for i� 0 implies that M is supported on the repelling

locus for the T-action. Similarly, the condition N(i) = 0 for i� 0 implies that N is supported

on the contracting locus. The intersection of the two loci is precisely the set of T-fixed points.

Let x ∈ N` be a point that is not T-fixed. Form the completion A∧x`,0 of A`,0 at x, this algebra

is flat over A`,0. From the above remarks, A∧x`,0 ⊗A`,0 M = 0 or A∧x`,0 ⊗A`,0 N = 0. Then we

have A∧x`,0 ⊗A`,0 Tor
A`,0
i (M,N) = Tor

A∧x`,0
i (A∧x`,0 ⊗A`,0 M,A∧x`,0 ⊗A`,0 N) = 0. Our claim in the

beginning of this paragraph follows.

Now the original claim of this step will follow if we check that the morphism N T
` → ` is finite.

The latter is a consequence of the following two observations. First, the morphism M T
` → N T

`

is proper, surjective and locally finite. The last property follows from the assumption that

T has finitely many fixed points on each Mp. Second, the morphism M T
` → N T

` is also

surjective, proper and locally finite.

Step 2. Let us show that Tor
Ap,0
i (∆p,0,∇∨p,0) = 0 for i > 0. Similarly to Step 1, the

Ap,0-module Tor
Ap,0
i (∆p,0,∇∨p,0) is supported at the T-fixed points. Pick such a point x. It

is enough to show that the localization Tor
Ap,0
i (∆p,0,∇∨p,0)x is zero. Let x1, . . . , xm be as in

Lemma A.3 and let y1, . . . , ym be similar elements but with negative eigen-characters. Then

dxx1, . . . , dxxm, dxy1, . . . , dxym form a basis in TxX. Locally, ∆p,0 is Ap,0/(x1, . . . , xm), while

∇∨p,0 is Ap,0/(y1, . . . , ym). Then the Tor vanishing is a standard fact.

Step 3. Let mp denote the maximal ideal of p ∈ ` in C[`]. The previous step implies

Tor
Ap,0
i (M/mpM,N/mpN) = 0 for i > 0. But M,N are flat over C[`\{0}] by our assumptions.

It follows that the completion of Tor
A`,0
i (M,N) at p is zero. Together with Step 1, this implies

that Tor
A`,0
i (M,N) is finite dimensional for i > 0. 2

Proposition A.6 Let q ∈ P . Then dim Tor
Aq+`
i (∇∨q+`,∆q+`) <∞ for all i > 0.

Proof: The proof is again in several steps.

Step 1. Our goal is to deduce Proposition A.6 from Proposition A.5.

Let us notice that grAq+` = A`,0. The space Tor
Aq+`
i (∆q+`,∇∨q+`) inherits a filtration from

Aq+`. We can lift a T×S-graded free resolution for gr ∆q+` to a free T-graded resolution of ∆q+`.

This easily implies that gr Tor
Aq+`
i (∆q+`,∇∨q+`) is a subquotient of Tor

A`,0
i (gr ∆q+`, gr∇∨q+`),
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where the filtrations on ∆q+`,∇∨q+` are induced from Aq+`. So it is enough to show that

Tor
A`,0
i (gr ∆q+`, gr∇∨q+`) is finite dimensional for all i > 0.

We are going to check the last claim using Proposition A.5. For this we only need to check

that M := gr ∆q+`, N := gr∇q+` satisfy the conditions (i)-(iii) above. (i) and (ii) are clear

(both ∆q+`,∇q+` are cyclic modules and so are gr ∆q+`, gr∇∨q+`). We only need to check (iii),

i.e., that the fibers of gr ∆q+`, gr∇∨q+` at p 6= 0 are ∆p,0,∇∨p,0, respectively. We will give a

proof for ∆, for ∇ it is analogous.

Step 2. In this step we will reduce the proof of the equality between the fiber of gr ∆q+` at

p and ∆p,0 to the claim that a certain completion vanishes.

Consider the quotient A`+hq,h of AP,h by the ideal of the plane (` + hq, h) in C[P, h].

Consider the left ideal I`+hq,h := A`+hq,hA
>0
`+hq,h. Of course, ∆`+hq,h = A`+hq,h/I`+hq,h. Let

Ĩ`+hq,h denote the h-saturation of Ih,`, i.e., Ĩ`+hq,h consists of all elements a ∈ A`+hq,h such

that hka ∈ I`+hq,h for some k > 0. Let Ĩ`,0 be the specialization of Ĩ`+hq,h at h = 0. Then,

more or less by definition, gr ∆q+` = A`,0/Ĩ`,0. So we only need to show that the A`,0-module

M` := Ĩ`,0/I`,0 (that is the kernel of a natural epimorphism ∆`,0 → gr ∆q+`) is supported on

Spec(A0,0).

Since M` ⊂ ∆`,0, it follows that M`(i) = 0 for i > 0. So M` is supported on the repelling

locus of the T-action. Therefore it is enough to show that any T-fixed point x ∈ Np with

p ∈ ` \ {0} does not lie in the support of Mp, the specialization of M` at p. Let y ∈ N`//T be

the image of x. It will suffice to check that M
∧y
p := C[Np//T]∧y ⊗C[Np//T] Mp is zero.

Step 3. Here we will reduce the proof of M
∧y
p = 0 to the claim that a certain ideal in a

non-commutative completion of Ap+hq,h is h-saturated.

By definition, Mp is the specialization of Ĩ`+hq,h/I`+hq,h at (p, 0). Let Ĩp+hq,h be the

h-saturation of Ip+hq,h. Clearly, the specialization of Ĩ`+hq,h|p of Ĩ`+hq,h at p is contained in

Ĩp+hq,h. The module M
∧y
p is the specialization of the quotient(

(AT
h,p)
∧y ⊗AT

h,p
Ĩ`+hq,h|p

)
/
(

(AT
h,p)
∧y ⊗AT

h,p
Ip+hq,h

)
at h = 0. Here (AT

h,p)
∧y is the completion of AT

h,p at the maximal ideal that is the preimage

under the epimorphism AT
h,p � C[Np//T] of the maximal ideal of y. Similarly, to [BPW], Step

3 of the proof of Proposition 5.4.4, we see that (AT
h,p)
∧y is a flat right module over AT

h,p. So

(AT
h,p)
∧y ⊗AT

h,p
Ĩ`+hq,h|p ↪→ (AT

h,p)
∧y ⊗AT

h,p
Ĩp+hq,h.

So to check that M
∧y
p is zero it is enough to show that the quotient(

(AT
h,p)
∧y ⊗AT

h,p
Ĩp+hq,h

)
/
(

(AT
h,p)
∧y ⊗AT

h,p
Ip+hq,h

)
has no h-torsion.
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In fact, we will need a few more reductions. First, let ⊗̂ denote the tensor product followed

by the h-adic completion. The claim on the absence of the h-torsion is the same as

(AT
h,p)
∧y⊗̂AT

h,p
Ĩp+hq,h = (AT

h,p)
∧y⊗̂AT

h,p
Ip+hq,h.

Also let us notice that the left hand side lies in the h-saturation of the right hand side. So it

is enough to show that the left ideal

(AT
h,p)
∧y⊗̂AT

h,p
Ip+hq,h ⊂ A

∧y,h
h,p := (AT

h,p)
∧y⊗̂AT

h,p
Ap+hq,h

is h-saturated.

Step 4. Here we will investigate some properties of (AT
h,p)
∧y⊗̂AT

h,p
Ip+hq,h.

Let us show that the left ideal of interest is closed in the h-adic topology. The algebra

A
∧y
p,0 is the algebra of T-finite vectors in the completion A∧xp,0. The latter is Noetherian. From

here it is easy to deduce that A
∧y
p,0 is Noetherian, compare with [Gin09], the proof of Lemma

2.4.2. The usual Hilbert argument (for power series) can be used now to show that any left

ideal in A
∧y,h
p+hq,h is closed in the h-adic topology.

Modulo h, the left ideal (AT
p+hq,h)∧y⊗̂AT

p+hq,h
Ip+hq,h is a complete intersection generated

by some T-equivariant elements x1, . . . , xm ∈ A>0
p,0, see Lemma A.3. Let us lift x1, . . . , xm to

T-semiinvariant elements x̃1, . . . , x̃m ∈ A>0
p+hq,h. We claim that x̃1, . . . , x̃m generate the ideal

(AT
p+hq,h)∧y⊗̂AT

p+hq,h
Ip+hq,h. To establish this it is enough to check that any element of A

∧y,h,>0
p+hq,h

lies in the left ideal generated by x̃1, . . . , x̃m. This easily follow from the observations that

• A∧y,hp+hq,h(i) is a closed and h-saturated subspace of A
∧y,h
p+hq,h for every i

• and that A
∧y,h,>0
p+hq,h modulo h lies in the ideal generated by x1, . . . , xm.

Step 5. This step will complete the proof of the claim that the left ideal

(AT
p+hq,h)∧y⊗̂AT

p+hq,h
Ip+hq,h ⊂ A

∧y,h
p+hq,h

is h-saturated and hence the proof of the proposition, as well.

Thanks to the previous step, it is enough to show that the left ideal generated by x̃1, . . . , x̃m

is h-saturated. This a corollary of a more general statement: that the coisotropic complete

intersection always admits a quantization, but we are going to provide a proof here since we

do not know a reference for that fact.

Assume the converse, let a ∈ A
∧y,h
p+hq,h be such that ha ∈ A

∧y,h
p+hq,h(x̃1, . . . , x̃m) but a 6∈

A
∧y,h
p+hq,h(x̃1, . . . , x̃m). Let ha =

∑m
i=1 b̃ix̃i for some elements b̃1, . . . , b̃m ∈ A

∧y,h
p+hq,h. Let

b1, . . . , bm be the classes of b̃1, . . . , b̃m modulo h. Then not all of b1, . . . , bm are 0 and we

have
∑m

i=1 bixi = 0. From the exactness of the Koszul complex, we deduce that there are

elements bij ∈ A
∧y
p,0 with bij = −bji and bi =

∑
j bijxj . Let us choose liftings b̃ij of bij to
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A
∧h,y
p+hq,h so that b̃ij = −b̃ji. Set ci = h−1(b̃i −

∑m
j=1 b̃ij x̃j). We get

ha =
m∑
i=1

b̃ix̃i =
m∑

i,j=1

b̃ij x̃j x̃i + hcij x̃i = h(
∑
i<j

b̃ij
1

h
[x̃j , x̃i] +

∑
i,j

cij x̃i).

To complete the proof it remains to check that 1
h [x̃i, x̃j ] lies in the left ideal generated by x̃i.

This follows from the observation that 1
h [x̃i, x̃j ] ∈ A>0

p+hq,h. 2

Corollary A.7 Let q ∈ P 0. For each n > 0 there is an open subset `0 ⊂ ` such that

Tor
Aq+p
i (∇∨q+p,∆q+p) = 0 for 0 < i < n and all p ∈ `0.

Proof: The C[`]-module Tor
Aq+`
i (∇∨q+`,∆q+`) is finite dimensional by Proposition A.6 and

so is supported in finitely many points of `. Let `0 be the complement of the supports of

Tor
Aq+`
i (∇∨q+`,∆q+`) for 0 < i < n in the intersection `∩P 0. We claim that Tor

Aq+p
i (∇∨q+p,∆q+p) =

0 for every p ∈ `0. Indeed, let z be a coordinate on ` near p so that C[`] = C[z] and the

maximal ideal of p is generated by z. Then Tor
Aq+p
i (∇∨q+p,∆q+p) = Tor

Aq+`
i (∇∨q+`,∆q+p). Also

we have the short exact sequence

0→ ∆q+`
z−→ ∆q+` → ∆q+p → 0

which yields the long exact sequence

Tor
Aq+`
i (∇∨q+`,∆q+`)

z−→ Tor
Aq+`
i (∇q+`,∆q+`)→ Tor

Aq+`
i (∇∨q+`,∆q+p)→

→ Tor
Aq+`
i−1 (∇∨q+`,∆q+`)

z−→ Tor
Aq+`
i−1 (∇∨q+`,∆q+`).

The first arrow is bijective, thanks to our choice of p, for any i with 0 < i < n, while the last

arrow is bijective for any i with 1 < i 6 n. So we see that Tor
Aq+p
i (∇∨q+p,∆q+p) = 0 for all

i with 1 < i < n. But Tor
Aq+p
1 (∇∨q+p,∆q+p) = Ext1

Aq+p(∆q+p,∇q+p)∗. The former is zero by

our initial assumptions on p. 2

Proof of Theorem A.1: Let ` that passes through p which is not parallel to any dis-

criminant hyperplane. Apply Corollary A.7 to n = dimX + 1 and the line `. We will get

ExtiAp′ (∆p′ ,∇p′) = (Tor
Ap′
i (∇∨p′ ,∆p′))

∗ for any i ∈ {1, . . . ,dimM} provided p′ avoids the

finitely number of bad points. Hence we can choose p′ in the form p + nη for n � 0; for n

sufficiently large, the algebra Ap′ has finite global dimension equal to the dimension of M

since localization holds by Corollary 5.17. The desired conclusion follows. 2
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191, Birkhäuser, 2000, pp. 249–299.

[Wan00] Weiqiang Wang, Equivariant K-theory, wreath products, and Heisenberg algebra,

Duke Math. J. 103 (2000), no. 1, 1–23. MR 1758236 (2001b:19005)

[Weba] Ben Webster, A categorical action on quantized quiver varieties, arXiv:1208.

5957.

[Webb] , Centers of KLR algebras and cohomology rings of quiver varieties,

arXiv:1504.04401.

[Webc] , Knot invariants and higher representation theory, arXiv:1309.3796; to

appear in Mem. Amer. Math. Soc.

[Webd] , On generalized category O for a quiver variety, arXiv:1409.4461.

[Webe] , Rouquier’s conjecture and diagrammatic algebra, arXiv:1306.0074.

[Web11] , Singular blocks of parabolic category O and finite W-algebras, J. Pure

Appl. Algebra 215 (2011), no. 12, 2797–2804. MR 2811563

[WX98] Alan Weinstein and Ping Xu, Hochschild cohomology and characteristic classes

for star-products, Geometry of differential equations, Amer. Math. Soc. Transl.

Ser. 2, vol. 186, Amer. Math. Soc., Providence, RI, 1998, pp. 177–194.

117

http://arxiv.org/abs/1208.5957
http://arxiv.org/abs/1208.5957
http://arxiv.org/abs/1504.04401
http://arxiv.org/abs/1309.3796
http://arxiv.org/abs/1409.4461
http://arxiv.org/abs/1306.0074

	Introduction
	Quantizations of conical symplectic resolutions
	Conical symplectic resolutions
	Deformation theory and birational geometry
	Quantizations
	Integrality
	Sheaves of modules
	Localization
	Modules with supports
	Harish-Chandra bimodules and characteristic cycles

	The categories Oa and Og
	The relative core
	The category Oa
	The category Og

	Categorical preliminaries
	Koszul categories
	Highest weight and standard Koszul categories

	The structure of Oa and Og
	The B algebra
	The category Oa is highest weight (for most quantizations)
	The category Og is highest weight
	The center of the Yoneda algebra of Og

	The Grothendieck group of Og
	Characteristic cycles revisited
	Intersection forms for category O
	Supports of simples

	Categorical filtrations
	Filtration on Harish-Chandra bimodules
	Filtration on category O
	Relation with the BBD filtration
	The extreme pieces
	Cells

	Twisting and shuffling functors
	Twisting functors
	Shuffling functors
	Twisting and shuffling commute

	Examples
	Cotangent bundles of partial flag varieties
	S3-varieties
	Hypertoric varieties
	Hilbert schemes on ALE spaces
	Quiver varieties
	Affine Grassmannian slices

	Symplectic duality
	The definition
	Examples of symplectic dualities
	Cotangent bundles of flag varieties
	S3-varieties
	Hypertoric varieties
	Affine type A quiver varieties

	Duality of cones
	Duality of leaf closures and slices
	Duality of leaf filtrations
	Duality of localization algebras
	Knot homologies and symplectic duality

	An Ext-vanishing result (appendix by Ivan Losev)
	The proof


