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Quantized angular momentum in topological
optical systems
Mário G. Silveirinha 1

The Chern index characterizes the topological phases of nonreciprocal photonic systems.

Unlike in electronics, the photonic Chern number has no clear physical meaning, except that

it determines the number of unidirectional edge states supported by an interface with a trivial

mirror. Here, we fill in this gap by demonstrating that the photonic Chern number can be

understood as the quantum of the light-angular momentum in a photonic insulator cavity. It is

proven that for a large cavity, the thermal fluctuation-induced angular momentum is precisely

quantized in the band-gaps of the bulk states. The nontrivial expectation of the light angular

momentum is due to a circulation of thermal energy in closed orbits. Remarkably, this result

can be extended to systems without a topological classification, and in such a case the

“quantum” of the angular momentum density is determined by the net number of uni-

directional edge states supported by the cavity walls.
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Topological matter and topological effects have elicited a
great deal of interest in recent years, first in electronics1–5

and then in photonics and acoustics6–13. Notably, topolo-
gical materials may enable the propagation of waves totally
immune to the back-scattering due to either deformations of the
propagation path, sharp corners, or due to defects. Hence,
topological systems may enable a more efficient transport of
light and avoid unwanted feedback and loss due to back-
reflections6–13. There are several sub-classes of photonic materials
with topological properties9–11, but only optical systems with a
broken time-reversal symmetry provide a strong topological
protection14,15. In such systems, the different topological phases
are characterized by a topological index known as the Chern
number.

In the fermionic case the Chern number has an immediate
physical meaning: it determines the value of the quantized Hall
conductivity of a 2D electron gas4,16, and thus the electronic
transport properties in the zero temperature limit. In contrast, in
photonics the Chern number has not been linked with any spe-
cific physical quantity, except that similar to electronics it
determines the number of gapless unidirectional edge states at an
interface with a trivial insulator6,8,14,15. In this article, we fill in
this gap of understanding by proving that the (thermal or
quantum) fluctuation-induced light angular momentum in a
generic photonic-insulator cavity in thermodynamic equilibrium
with a large reservoir has a spectral density per unit of area that is

quantized in units of 1
πc2 ET;ω, with ET;ω ¼ �hω

2 coth �hω
2kBT

� �
the mean

energy of a harmonic oscillator at temperature T17. The nontrivial
light angular momentum is due to a circulation of “heat” in
closed orbits18. This result is rather general and remarkably
applies even to systems without any topological classification. In
the case of topological systems, the quantized angular momentum
spectral density is precisely determined by the photonic Chern
number.

Results
The topological cavity. We consider a generic closed cavity filled
with either a photonic crystal or, alternatively, an electromagnetic
continuum with no intrinsic periodicity (Fig. 1). The cavity cross-
section shape in the xoy-plane can be rather arbitrary, but for
simplicity, we focus on a rectangular cross-section with

dimensions L1 × L2. The cavity’s height along the z-direction is d.
The cavity walls are assumed “opaque”, i.e., impenetrable by light.
For example, perfectly electric conducting (PEC) walls are opa-
que. The cavity may be regarded as a parallel-plate waveguide
(with propagation plane parallel to xoy) terminated with the
lateral walls. The equivalent unbounded waveguide does not
support electromagnetic states in the spectral range of interest
(photonic insulator). Note that the band structure is determined
not only by the materials inside the cavity but also by the top and
bottom walls. For simplicity, the effects of material loss in the
wave propagation are assumed negligible. Recently, it was shown
that topological concepts may be extended to some non-
Hermitian systems, e.g., systems with loss and or gain19–23.

Importantly, even when there are no bulk states, the opaque
boundaries may enable the propagation of edge states localized at
the cavity lateral walls18,24. Such edge states famously occur in
topological platforms6,7,9,14,15, but they may as well emerge in
systems with no topological classification25. Furthermore, the
edge-states may be supported even when the system is time-
reversal invariant (reciprocal)9,24,25.

Angular momentum of an edge state. Consider a generic edge-
state circulating around the cavity lateral walls (Fig. 1). The cir-
culating motion is evidently associated with a non-trivial light
angular momentum given by L ¼ 1

c2
R
dV r ´ S, where S is the

Poynting vector, r= (x, y, z) is a generic point in space, and the
integration is over the cavity volume. The angular momentum of
photonic systems is extensively discussed in refs. 26–29. With
reference to the nomenclature of ref. 29, we adopt a “kinetic
picture” and the Abraham formalism so that the electromagnetic
momentum density is S/c2 30–32. In general, the angular
momentum may be decomposed into orbital and spin compo-
nents29. The spin component is origin independent, but for an
open system the orbital component (and thereby also the total
angular momentum) generally depends on the origin of the
coordinate axes29. In contrast, for a closed cavity it can be shown
that the total Abraham light momentum (

R
dV S=c2) of a mode

always vanishes, and thereby the angular momentum L is origin
independent.

In the Supplementary Note 1, it is shown that for a sufficiently
large cavity (d≪ Li, i= 1, 2) the z-component of the angular
momentum is

Lz

Atot
� s

2
c2lP

Z

cav: perimeter

dxjj

Z
dx?

Z
dz Sjj

�������

�������
; ð1Þ

where Atot= L1 × L2 is the cross-sectional area, lp= 2(L1+ L2) is
the cavity perimeter, and s=+1 (s=−1) for a mode that
circulates in the anti-clockwise (clockwise) direction, respectively.
The coordinate xjj is measured along the cavity perimeter and the
coordinate x? along the perpendicular direction (xjj and x? are in
the xoy plane). Furthermore, Sjj is the Poynting vector component
parallel to the cavity walls. Similar to the theory of photonic
crystals33, the spatially averaged Poynting vector along the
propagation path can be related to the (net) group velocity vg
of the edge-wave and with the energy stored in the cavity E as
follows:

R
cav: perimeter

dxjj
R
dx?

R
dz Sjj ¼ vgE (see the Supplementary

Note 2 and the Supplementary Figure 1). Hence, the angular
momentum can be written as

Lz

Atot
� s

2
c2lP

vg

���
���E: ð2Þ

d

Opaque walls

z = 0

z = d

z
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y
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Fig. 1 Geometry of a generic “photonic insulator” cavity. The closed
electromagnetic cavity does not support bulk states in some spectral range
(“photonic insulator”). The lateral walls (not shown) may eventually enable
the propagation of edge-type waves confined to the boundary. The thermal
fluctuation-induced light is generally characterized by a non-trivial angular
momentum L, which for a sufficiently large cavity has a quantized spectral
density in a band-gap
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The correction term that makes the two sides of the equation
identical vanishes in the limit Atot →∞. In practice, the equation
holds true when the cavity diameter is a few times larger than the
characteristic modal size of the edge wave.

Angular momentum of thermal light. Suppose now that the
system is in thermodynamic equilibrium with a reservoir at
temperature T, and that all the light inside the cavity is generated
by thermal (or quantum) fluctuations. Crucially, a few recent
works18,32,34,35 have shown that a thermodynamic equilibrium
(without any heat sources) is compatible with a circulation of
thermal energy in closed orbits. Specifically, for nonreciprocal
systems the expectation of the heat current18,35 and of the angular
momentum18 can be nontrivial. In the limit of vanishingly small
material loss, the angular momentum expectation can be written
as Lzh i ¼ P

ωn>0
ET;ωn

LðnÞ where the summation is over all the

positive frequency modes of the cavity. Here, LðnÞ is the angular
momentum of a generic mode normalized to its energy and ωn is
the oscillation frequency. The formula of Lzh i is consistent with
the fluctuation-dissipation theorem (see ref. 18). The (unilateral)
angular momentum spectral density Lω is defined such that

Lzh i ¼ R1
0
dωLω. It has the explicit expression

Lω ¼ ET;ω

P
ωn>0

LðnÞδðω� ωnÞ. The angular momentum expecta-

tion may be nontrivial only when the time-reversal symmetry is
broken, because otherwise the heat current vanishes ( S=c2h i ¼ 0)
in all points of the cavity18,35.

In a band-gap all the cavity modes must be edge-waves. Using
Eq. (2) to evaluate the angular momentum (LðnÞ) of a generic
edge-state it is found that:

Lω

Atot
� ET;ω

2
c2lP

X
n

sn vg;n

���
���δðω� ωnÞ; ðin a band�gapÞ:

ð3Þ

The summation is over all the (positive-frequency) edge modes
in the spectral range of interest. Here, vg.n is the group velocity of
the nth mode and sn= ±1 depending if the energy flows in the
anti-clockwise or clockwise direction. As discussed in the
Supplementary Note 2, the edge modes can be organized in
branches (m= 1, 2,…), and the dispersion of each branch is of

the form ωm kjj
� �

. The parameter kjj determines the total phase

delay (kjjlP) acquired by the wave as it travels one complete loop
around the cavity. Even though kjj may be regarded as a
continuous variable, only solutions with kjjlP ¼ 2πn with n
integer are physical. Thus, for a large cavity perimeter and for
a given branch the sum over the edge-waves can be
approximated by an integral: 1

lP

P
n
! 1

2π

R
dkjj. This shows that

Lω

Atot
� ET;ω

1
c2π

P
m

R
dkjj sm vg;m

���
���δðω� ωmÞ. But since vg;m ¼ ∂ωm

∂kjj

(see the Supplementary Note 2), we finally conclude that:

Lω

Atot
� �ET;ω

1
c2π

Cω; with Cω ¼ �
X
ωm¼ω

sm: ð4Þ

The sum is over all the edge-modes for which ωm= ω (each
branch may contribute with one or more points). Since sm= ± 1
the parameter Cω simply counts the difference between the
number of edge modes associated with an anti-clockwise power
flow (sm=+1) and the number of edge modes associated with a

clockwise power flow (sm=−1) at frequency ω. In particular, we
see that the absolute value of the sum gives the net number of
unidirectional modes. This is the first key result of the article. It
establishes that in the band-gaps of a photonic insulator cavity,
the expectation of the (Abraham) angular momentum spectral
density per unit of area is quantized in units of 1

πc2 ET;ω. The
quantization is strictly valid in the continuum limit, Atot →∞
(likewise, in electronic systems the Hall conductivity is quantized
only when the sample area approaches infinity). The quantized
angular momentum density is determined by the net number of
unidirectional edge modes (Cω ¼ 0; ± 1; ± 2; ¼ ) at frequency ω.
This property is rather general and does not depend on the
topological nature of the system. Defects may lead to additional
contributions to the angular momentum, but their presence can
be safely neglected in state-of-the-art photonic designs. Further-
more, it is shown in the Supplementary Note 3 that the
topological cavity may be regarded as a circular transmission
line and that the power spectral density associated with the
energy flow around the cavity walls is also quantized.

The angular momentum quantum. Let us now focus on topo-
logical Chern-type materials14,15,36,37. The bulk-edge correspon-
dence principle establishes that the net number of unidirectional
edge modes at the interface of two topological materials is coin-
cident with the gap Chern number difference6,37. Thus, supposing
that the cavity walls are topologically trivial, (e.g., PEC walls) it
follows that Cωj j ¼ jCgapj, where Cgap is the gap Chern number of
the photonic insulator. This is the second key result of the article.
It implies that the photonic Chern number has a precise physical
meaning: it determines the quantized angular momentum spec-
tral density of a cavity in a thermodynamic equilibrium. In par-
ticular, we see that the fluctuation-induced angular momentum
spectral density is totally insensitive to any variation of the system
parameters (e.g., a change of the biasing magnetic field) that does
not close the gap. Note that the Chern number can be unam-
biguously defined for fully 3D waveguide platforms38,39. Fur-
thermore, a more sophisticated analysis reported elsewhere
demonstrates that one has precisely Cω ¼ Cgap40 (the numerical
examples presented in the following confirm this result; here,
Cgap is the sum of the Chern numbers of the bands below the gap,
including negative frequency bands. The Chern number of a
given band is defined consistently with refs. 36,38: Cn ¼ ẑ �
∇k ´Ank with the Berry potential given by Ank ¼ ihQnkj∂kQnki).
Thus, a positive (negative) gap Chern number implies that the
unidirectional edge waves propagate clockwise (anti-clockwise)
with respect to the z-axis.

Magnetized electric plasma cavity. To illustrate the application
of the developed ideas, we take the photonic insulator as a
magnetized electric plasma with a gyrotropic permittivity
response, �ε ¼ εt1t þ εaẑ� ẑþ iεgẑ ´ 1, with 1t ¼ x̂ � x̂ þ ŷ � ŷ
and

εt ¼ 1� ω2
pð1þ iγ=ωÞ

ðωþ iγÞ2 � ω2
c

; εa ¼ 1� ω2
p

ωðωþ iγÞ ; and

εg ¼
1
ω

ωcω
2
p

ω2
c � ðωþ iγÞ2

ð5Þ

where ωp is the plasma frequency, γ is the collision frequency,
ωc ¼ �qB0=m is the cyclotron frequency (ωc > 0 when the mag-
netic field is directed along +z), q=−e is the electron charge and
m is the electron effective mass41. The bias magnetic field is
B ¼ B0ẑ. InSb with a magnetic bias and other narrow-gap
semiconductors have a similar gyrotropic response at terahertz
frequencies42,43.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08215-5 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:349 | https://doi.org/10.1038/s41467-018-08215-5 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Figure 2 shows the band structure of a magnetized plasma with
ωc= 0.8ωp (blue lines) for propagation in the xoy plane and
transverse-magnetic (TM) polarization (the nontrivial field
components are Ex, Ey, Hz). The medium has two photonic
band-gaps. It is known that lossless electromagnetic continua may
be topologically classified36, and in particular a lossless
magnetized plasma (γ= 0+) has topologically nontrivial
phases18,44,45. The gap Chern numbers Cgap;i indicated in the
insets of Fig. 2 are calculated as detailed in refs. 36,38. They
include the contributions of all bands below the band-gap,
including the negative frequency bands38 (not shown in Fig. 2).
The dispersion of the edge-states supported by a planar interface
of the magnetized plasma (region y > 0) and a PEC material
(region y < 0) is represented by the green lines in Fig. 2.
Consistent with the bulk-edge correspondence principle, each
band-gap supports a unidirectional edge-wave.

Consider now a cylindrical cavity filled with the magnetized
plasma. The cavity lateral walls are PEC. Furthermore, to ease the
analytical treatment the cavity cross-section is circular with radius
R. In the Supplementary Note 4, it is shown that the cavity modes
have a magnetic field of the form Hz ¼ H0I lj jðαefρÞeilφ, with I lj j
the modified Bessel function of the 1st kind, l ¼ 0; ± 1; ¼ is the
azimuthal quantum number, αef ¼ ffiffiffiffiffiffiffiffiffi�εef

p
ω=c and εef ¼

ðε2t � ε2gÞ=εt is the effective permittivity of the gyrotropic material.
The cavity modes satisfy the dispersion equation:

αefR
I′lj j αefRð Þ
I lj j αefRð Þ � l

εg
εt
¼ 0. The resonant frequencies for a cavity with

radius R ¼ 10c=ωp are represented in Fig. 2 as discrete black dots,
in the spectral range determined by the band-gaps. As seen, the

discrete dots follow closely the dispersion of the edge states
associated with a planar interface (green lines), indicating that in
the band-gaps the cavity modes are indeed localized near the
lateral walls. This property is confirmed by Fig. 3a and 3b, which
represent the profiles of two generic cavity modes in the 1st (low-
frequency) and 2nd (high-frequency) band-gaps, respectively.
The modes of the 1st (2nd) gap have a positive (negative)
azimuthal quantum number and circulate in the anti-clockwise
(clockwise) direction.

The angular momentum spectral density was numerically
calculated using the formula Lω ¼ ET;ω

P
ωn>0

L nð Þδðω� ωnÞ. An
explicit expression for the normalized angular momentum of a
generic mode (L nð Þ) is given in the Supplementary Note 4. The δ-
function is spread in the interval ðωn þ ωn�1Þ=2<ω<ðωnþ1 þ
ωnÞ=2 as a rectangular pulse with height 2=ðωnþ1 � ωn�1Þ.
Figure 4a and b depict the normalized spectral density ~Lω �
Lωc

2π
ET;ωAtot

in the 1st and 2nd band-gaps, respectively, for cavities with

radius R ¼ 10c=ωp (dot-dashed green lines) and R ¼ 20c=ωp

(black lines). As seen, even though the cavity radius is only a few
free-space wavelengths, the numerical results are consistent with
the approximate identity (4): ~Lω � �Cω ¼ þ1 in the 1st gap and
~Lω � �Cω ¼ �1 in the 2nd gap. In R →∞ limit the approximate
identities become exact, and the angular momentum spectral
density is exactly quantized and is determined by the gap Chern
numbers: ~Lω ¼ �Cgap;1 in the 1st gap and ~Lω ¼ �Cgap;2 in the
2nd gap (dashed blue lines in Fig. 4).

Figure 5 represents the total angular momentum contribution
of each band gap, defined as hLz;ii ¼

R
gap i

dωLω, as a function of

the temperature for ωp=2π ¼ 1 THz and ωp=2π ¼ 10THz. As
could be anticipated, the system angular momentum due to the
edge modes increases approximately linearly with the tempera-
ture because ET;ω� kBT for large T. The contributions of the
band-gaps to the angular momentum have opposite signs. For
very low-temperatures the contribution of the 2nd (high-
frequency) gap dominates, and the total angular momentum
due to edge waves is negative (hLz;1i þ hLz;2i<0). In the T→0+

limit, the angular momentum is exclusively due to the quantum
vacuum fluctuations. In this case, the zero-point energy (due to
the gap edge-modes) flows in the clockwise direction around the
lateral walls, i.e., in the direction determined by the electron
“skipping orbits” (opposite to the bulk cyclotron orbits)18,46,47. In
contrast, for moderately large temperatures the thermal-effects
make hLz;1i þ hLz;2i positive and the contribution of the 1st
(low-frequency) gap dominates. It should be noted that bulk
modes may also contribute to the fluctuation-induced angular
momentum48,49, and hence hLz;1i þ hLz;2i only gives a partial
(band-gap) component of Lzh i.

Outline of a microwave experiment. Next, we outline a possible
microwave experiment to verify that the fluctuation-induced
angular momentum density is nontrivial. Figure 6 depicts the
metallic cavity filled with a topological material. A waveguide
directional coupler is connected to the cavity through a multihole
aperture (similar to a Bethe hole coupler)50. In a microwave
experiment (e.g., ω=2π � 10GHz), the topological material can
be implemented with a square array of ferrite rods biased with a
static magnetic field, similar to ref. 8. A small fraction of the
thermal energy flowing near the cavity walls may be transferred to
either port A or port B of the directional coupler. The directional
coupler can be designed in such a manner that when the flow of
thermal energy follows an anti-clockwise (clockwise) motion
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Fig. 2 Dispersion of the bulk modes and of the edge waves. Blue lines: band
diagram of the bulk gyrotropic material with ωc ¼ 0:8ωp. The two photonic
band-gaps are delimited by the dashed horizontal grid lines. The gap Chern
numbers (Cgap;1 and Cgap;2) are given in the insets. Green lines: dispersion of
the (gap) edge modes supported by a planar interface (y= 0) between the
gyrotropic material (region y > 0) and PEC material (region y < 0). The edge
modes propagate along the x-axis (see the insets). The edge mode
dispersion is shown only in the band-gaps. Discrete black symbols:
resonant frequencies of a cylindrical cavity (R ¼ 10c=ωp) with PEC walls
filled by the gyrotropic material. The modes are labeled by the azimuthal
quantum number l
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(with respect to the z-axis) most of the energy is coupled to the
port B (port A), and the other port is isolated50.

A measurement must perturb slightly the thermal equilibrium
because otherwise the Poynting vector orbits are closed and the
thermal flow is impossible to detect (in particular, the zero-point
energy part of ET;ω cannot be directly measured)18. Hence, in an
experiment the ports A and B must be held at a temperature T0

different from the cavity temperature T. A detailed analysis
reported in the Supplementary Note 5 shows that the difference
between the power flows at ports A and B when the thermal
equilibrium is perturbed (T0 < T) is given by

δp � pB � pA � kBðT � T0ÞΔCD
Δω

2π
; ð6Þ

where Δω is the bandwidth of the detecting circuit. The analysis

assumes that both ports A and B are terminated by matched loads
and that the material dissipation in the directional coupler is
negligible due to the weak loss of metals at microwaves. The
coefficient ΔCD is determined by the difference of the coupling
strengths between ports A and B and all the cavity modes; it may
be found with an independent calibration process, specifically
from the S-parameters of the two-port network. Equation (6) is
rather general and applies even when the frequency of interest is
outside a band-gap and for any cavity size.

In the following, we concentrate on the case in which the
detecting circuit bandwidth lies in a band-gap, so that ΔCD is
entirely determined by the edge modes. Interestingly, because the
power density transported by the edge modes is quantized and is
independent of the system area (Supplementary Note 5), it
follows that ΔCD will depend very little on the cavity cross-
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(a) the mode l= 8 in the 1st (low-frequency) gap (propagating in the anti-clockwise direction) and (b) the mode l=−5 in the 2nd (high-frequency) gap
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sectional area provided its diameter is a few times larger than the
characteristic modal size so that the edge waves attached to
opposite walls are well spatially separated. The typical modal size
of the edge modes for a topological photonic crystal is on the
order of the lattice constant8. Furthermore, it will also depend
little on the specific location of the directional coupler in the
cavity. Thus, a fingerprint of the topological gap is that δp must
be nearly independent of the cavity cross-section and of the
location of the directional coupler. Note that outside a band-gap
these properties do not hold.

For a reciprocal cavity its coupling with the two ports is
symmetric and hence ΔCD vanishes and δp ¼ 0. Similarly, for a
topologically trivial (but not necessarily reciprocal) gap (C= 0)
the number of edge states (if nonzero) circulating in counter-
clockwise direction is identical to the number of states circulating
in the clockwise direction. This indicates that ΔCD is negligible
when C= 0. Clearly, a significant imbalance between the net
energy fluxes at ports A and B is only possible when C ≠ 0, and it

will provide a clear signature of a nontrivial topology and confirm
the circulation of thermal energy in closed orbits.

Ideally the directional coupler should ensure that the power
transported by the modes circulating along a given direction is
delivered to a single port. For example, if the coupler is designed
in such a way that when the edge-modes propagate in an anti-
clockwise (clockwise) direction most of the thermal energy is
coupled to port B (A) then ΔCD ¼ �sgnðCÞ ΔCDj j. Thus, the sign
of δp is linked to the sign of the Chern number. Furthermore, for
an ideal coupler ΔCDj j represents the fraction of thermal energy
rerouted from the cavity to the coupled port. Standard couplers
can be very directive such that the ports coupling strength differs
by four orders of magnitude50.

At ports A and B the thermal power may be collected by a
microwave bolometer (radiometer)51,52. It is shown in the
Supplementary Note 5, that the power rerouted from the
topological cavity to the coupled port increases the noise
temperature of the corresponding bolometer by δTn � T ΔCDj j,
where T is the temperature of the cavity. For ΔCDj j � 0:1 and
T ¼ 300K the excess of noise temperature on the detector is
δTn � 30K. Thus, the bolometer needs to sufficiently sensitive to
detect variations of the noise temperature on the order of some
tens of Kelvin. Detectors cooled to a temperature on the order
of T0= 4 K can detect an excess of noise temperature as small as
~1 K and are of widespread use in radio-astronomy53,54. There-
fore, the proposed experiment seems to be within reach using
cooled state-of-art bolometers with T0 � δTn.

Discussion
In summary, it was demonstrated that the fluctuation-induced
angular momentum in a generic photonic insulator cavity with
opaque-type boundaries has a quantized angular momentum in
the photonic band-gaps. The quantized spectral-density depends
on the net number of unidirectional edge-states at the cavity
walls. For topological systems, the angular momentum is deter-
mined by the photonic Chern number, which thereby has a
precise physical meaning as a “quantum” of the light-angular
momentum spectral density. For Z2 topological photonic insu-
lators with the time-reversal symmetry9 the spin-filtered Lω=Atot
is also quantized, but the contributions of the different “spins”
cancel out. The nontrivial fluctuation-induced angular momen-
tum may be experimentally verified by coupling the light that
circulates around the cavity walls to a directional coupler and by
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L1

Fig. 6 Setup of a possible experiment at microwave frequencies. A metallic
cavity is filled with a topological photonic crystal (not represented in the
figure; e.g., a photonic crystal formed by ferrite rods8) and is connected to a
waveguide coupler through multiple apertures on the top metallic plate.
The directional coupler can be designed in such a manner that for an anti-
clockwise (clockwise) flow of thermal energy the coupled signal is
transmitted mainly to port B (port A). The front wall of the cavity and the
front wall of the directional coupler are not shown in order to visualize the
interior of the structure
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Fig. 5 Fluctuation induced angular momentum hLz;ii as a function of the temperature. The cylindrical cavity has radius R>>c=ωp and the plasma frequency
is (a) ωp=2π ¼ 1THz and (b) ωp=2π ¼ 10THz. The cyclotron frequency is ωc ¼ 0:8ωp. Solid blue line: contribution from the 1st (low-frequency) band gap.
Dot-dashed green line: contribution from the 2nd (high-frequency) band gap. Dashed black line: combined contribution of the two band gaps. Note that the
contribution of the modes outside the spectral region of the band-gaps is not included in the calculation
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detecting the imbalance between the energy sensed by the dif-
ferent arms of the coupler. We believe that the interpretation of
the Chern number as a quantum of the angular momentum
spectral density provides a deeper understanding about the
intriguing role of topology in photonic systems40.

Data availability
The numerical data supporting the results of this article are
available from the author upon request.
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