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Quantized classical response from spectral
winding topology
Linhu Li 1✉, Sen Mu2, Ching Hua Lee 2✉ & Jiangbin Gong 2✉

Topologically quantized response is one of the focal points of contemporary condensed

matter physics. While it directly results in quantized response coefficients in quantum sys-

tems, there has been no notion of quantized response in classical systems thus far. This is

because quantized response has always been connected to topology via linear response

theory that assumes a quantum mechanical ground state. Yet, classical systems can carry

arbitrarily amounts of energy in each mode, even while possessing the same number of

measurable edge states as their topological winding. In this work, we discover the totally new

paradigm of quantized classical response, which is based on the spectral winding number in

the complex spectral plane, rather than the winding of eigenstates in momentum space. Such

quantized response is classical insofar as it applies to phenomenological non-Hermitian

setting, arises from fundamental mathematical properties of the Green’s function, and shows

up in steady-state response, without invoking a conventional linear response theory. Speci-

fically, the ratio of the change in one quantity depicting signal amplification to the variation in

one imaginary flux-like parameter is found to display fascinating plateaus, with their quan-

tized values given by the spectral winding numbers as the topological invariants.
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Topological quantization has captivated a generation of
physicists since the discovery of the quantum-Hall effect1.
In the more recent years, its standing as a novel quantum

phenomenon was further strengthened by the observation of
discretely varying Hall conductances in the quantum anomalous
Hall2,3 and quantum spin Hall effects4. Rigorously established
through linear response theory, the link between topological
winding numbers and quantized conductivity has indeed earned a
place as a classic result of quantum condensed matter physics.
Indeed quantized Hall response and nontrivial Chern topology
are now widely regarded to be almost synonymous.

Yet, the concept of quantized response has so far eluded
classical systems. Without a quantum mechanical ground state,
classical systems are not amendable to conventional linear
response theory, which expresses quantized responses as pertur-
bations upon a ground state. While classical metamaterials like
photonic crystals, acoustic structures, and electrical circuits can
possess an integer number of topologically protected boundary
states5–8, their response behaviors are not based on the number of
accessible channels, but on analog solutions of differential equa-
tions that are by no means quantized.

In this work, we introduce the paradigm of quantized response
based on the winding of the spectrum in the complex energy plane,
rather than the winding of eigenstates in momentum space. For a
long time, the complex spectral winding number has been exploited
in predicting the non-Hermitian pumping under the open
boundary conditions (OBCs) [known as the non-Hermitian skin
effect (NHSE)]9–12, leading to the breaking of bulk-boundary cor-
respondence and various anomalous topological phenomena9–37. In
a recent experiment, arbitrary spectral winding is observed by
visualizing the frequency band structure of optical frequency
modes38. However, no directly measurable quantity has been
associated with the spectral winding. Notably, spectral winding as a
topological feature is not directly related to quantum physics and is
hence a classical concept. Furthermore, the notion of classical
response can be also a property of the Green’s function alone, which
has been recently shown to exhibit exponential growth in the
presence of nontrivial spectral winding numbers39–41. While non-
trivial complex energy winding is in principle well defined for
quantum systems, it is most physically relevant in classical settings
like mechanical, photonic, plasmonic, and electrical systems where
non-Hermiticity does not present significant measurement
difficulties30,31,42. Indeed, electrical circuits are governed by circuit
Laplacians whose complex eigenvalues merely indicate phase shifts
or steady-state impedances, rather than ephemeral excitations.

Specifically, what we find quantized is the response of the
logarithm of the Green’s function components with respect to an
imaginary flux-like local parameter that continuously adjust the
system boundary conditions, forming some quantum-Hall-like
plateaus quantized according to the spectral winding number.
This discovery was inspired by the observation that deforming a
non-Hermitian system from periodic to open boundaries (PBCs
to OBCs)12,13,24,28,32, which is closely related to complex flux
insertion, always reduces the spectral winding number one by one
till it reaches zero. In a classical setup subject to a steady-state
drive e.g., a circuit lattice with an input current, the quantized
quantity can be the logarithmic impedance experienced by the
response field, e.g., the voltage. This intriguing result is rooted in
the way non-Bloch eigenstates explore the interior of spectral
loops, and has been investigated in the new context of scale-free
non-Hermitian pumping43.

Results
Motivation for quantized Green’s function response. In con-
ventional literature, quantized response usually refers to quantized

linear response in a quantum setting, where an occupied quantum
state is driven by a time-dependent perturbation (see Supplemental
Note 1 for a brief introduction). However, in the classical settings
that we shall focus on i.e., photonic waveguides, acoustic lattices,
and electronic circuit, the system does not settle into a ground state,
and the Kubo formula describing the linear response, which con-
cerns the response due to occupied quantum states, is inapplicable.
While an integer number of topological modes have been observed
in various photonic7,44–46 and acoustic47–51 settings, each classical
topological mode can be excited, however, weakly or strongly
depending on the energy put into it, and is thus not quantized in
this sense. The classical response corresponds to the flow of arbi-
trary amounts of optical, phononic or electric current, and not the
modified (quantized) occupancy of quantum mechanical eigen-
states. Consider an external coherent drive ϵ= (ϵ1, ϵ2, . . . ϵL) with
different amplitudes applied to each of the L sites of a lattice40. For a
steady-state drive with a fixed frequency ω, ϵðtÞ ¼ ϵðωÞ expð�iωtÞ,
and the resultant classical response field at the same frequency can
be written as ϕðtÞ ¼ ϕðωÞ expð�iωtÞ with the response field
amplitude given by

ϕðωÞ ¼ Gðω; γÞϵðωÞ; Gðω; γÞ ¼ 1
ωþ iγ� H

; ð1Þ

analogous to the Kubo formula, which is exclusively for quantum
settings. Here G is the Green’s function matrix and γ represents an
overall gain/loss in the system. For a signal entering the system
from a single site x, ϵ only possesses one nonzero component ϵx,
and the induced field at another site y is ϕy=Gyxϵx. In particular,
the directional signal amplification of a signal entering one end of a
1D chain and measured at the other end is described by the two
matrix elements G1N and GN1

39,40.
In the spectral representation, the Green’s function Eq. (1)

takes the form

G ¼ ∑
n

1
ωþ iγ� En

ΨR
n

�� �
ΨL

n

� ��; ð2Þ

where ΨL=R
n

�� �
are the left/right eigenstates corresponding to the

nth eigenenergy En. Its matrix elements Gxy can be computed by
evaluating ΨL=R

n

�� �
at x and y. Equation (2) is valid in both classical

and quantum settings, since the Hamiltonian is just the operator
that describes time evolution, and is well defined regardless of
whether position and momentum commute.

Ordinarily, we do not expect the matrix elements of G (or
functions of them) to respond to an external influence β in a
quantized manner, since there is no reason why the derivatives of
ðω� EnÞ�1 and the eigenstates should conspire to add up to an
integer. However, when translation symmetry is broken, the
eigenstates can potentially become exponentially localized like
~eκx, such that the matrix elements of G are dominated by the
largest spatial decay rate κ ¼ κmax, with Gxy � eκmaxðy�xÞ. In such
special scenarios, the response of lnGxy for a fixed interval x− y
is wholly dependent on how κmax varies with the external
influence. In particular, if κmax were to vary with an external
parameter in a quantized manner, so will the response quantity
lnGxy .

In this work, we discover that lnGxy indeed possess such a
quantized response if the external influence β were to be an
impurity parameter tuning the boundary conditions, which
coincides with tuning an imaginary flux when the latter is
sufficiently weak12. This quantized quantity is furthermore equal
to the winding number of the energy spectrum in the complex
energy plane. In the following sections, we shall elaborate on
these rather surprising findings, and show the classical quantized
response can be measured. While this quantization applies to
both classical and quantum systems, we shall call it the quantized
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classical response to distinguish it from the topological Hall
response that exclusively exists in quantum systems.

Point-gap topology and PBC-OBC spectral evolution. To elu-
cidate the role of spectral winding and motivate a suitable notion
of classical response, we consider a generic one-band non-Her-
mitian system with N lattice sites, described by the following
tight-binding Hamiltonian

H ¼ ∑
N

x¼1
∑
l

j¼�r
tjĉ
y
xĉxþj; ð3Þ

with tj the hopping amplitude across ∣j∣ lattice sites, ĉx the
annihilation operator of a (quasi-)particle at the xth lattice site,
ĉxþN ¼ ĉx representing the PBC, and r (l) the maximal range of
the hopping toward right (left) direction. The associated
momentum-space Hamiltonian is given by

HðzÞ ¼ ∑
l

j¼�r
tjz

j ¼ PrþlðzÞ=zr; ð4Þ

with k the quasi-momentum, z≔ eik, and Pr+l(z) a (r+ l)th-order
polynomial of z. For any tj ≠ t��j (assuming tj= 0 if j > l or
j <− r), the Hamiltonian becomes non-Hermitian and possesses a
point-gap topology, characterized by a nonzero spectral winding
number w.r.t. a reference energy Er enclosed by the PBC
spectrum10,11,52,

νðErÞ ¼
I
C

dz
2π

d
dz

arg det½HðzÞ � Er�; ð5Þ

with C being the Brillouin zone (BZ), i.e., k varying from 0 to 2π.
Simply put, ν(Er) gives the number of times the PBC spectrum
winds around Er, as illustrated by a representative example in
Fig. 1a, corresponding to the Hamiltonian of Eq. (3) with r=
l= 2. As a side note, ν(Er) also reflects the degeneracy of eigen-
states at Er when the system is placed under semi-infinite
boundary conditions (SIBC)10.

Unlike the loop-like PBC spectrum depicting a nontrivial
point-gap topology, the OBC spectrum must not cover any finite
area in the complex plane, and so generically must take the form
of curves within the PBC spectral loops12,13, e.g., the Y-shape
lines formed by the gray dots in Fig. 1a. That is, any reference
energy Er inside a PBC spectral loop is enclosed ν(Er) times by the
PBC spectrum as k varies from 0 to 2π, but the same Er cannot be
enclosed by the OBC spectrum. The important qualitative insight

is hence the following: if we continuously deform the system from
PBC to OBC, the evolving spectrum gradually collapses from the
PBC loop spectrum to the OBC line spectrum, and is therefore
expected to pass Er for ν(Er) times.

To further appreciate this understanding, we consider the real-
space Hamiltonian of Eq. (3) with the following substitution only
at the system’s boundary, i.e., tj→ e−βtj, if x+ j >N or x+ j < 1.
This introduces an additional scaling factor, or an impurity, to the
boundary couplings of a 1D chain with N unit cells. If one now
continuously varies β from 0 to infinity, a PBC-OBC spectral
evolution can be examined in detail.

As shown in Fig. 1a, by considering only t±1 and t±2, we already
have a representative and intriguing model whose spectral
winding number can be either 1 or 2 in the topologically
nontrivial regime. Next we consider the tuning of the boundary
coupling via t±1→ e−βt±1 for x=N and t±2→ e−βt±2 for
x=N,N− 1. Let the nth right eigenvalue of this model system
with such PBC-OBC interpolations be En(β). Then the spectral
evolution is all captured by En(β) vs β. To motivate the
connection with the Green’s function, and to capture incidences
when En(β) comes close to Er, we also define a quantity

IβðErÞ ¼ ∑
n
j1=ðEnðβÞ � ErÞj; ð6Þ

i.e., the absolute sum of the inverse energy spacings between the
evolving spectrum En(β) and a reference energy Er. For an actual
system always of finite size, En(β) is discretized, but it can still be
made to be very close to the PBC reference eigenvalue Er for a
sufficiently large system. As such, the quantity Iβ(Er) can be a
diagnosis tool to examine how many times En(β) visits (the
proximity of) Er as β is tuned. Moreover, the OBC limit can be
essentially reached once β is beyond a critical value β= βOBC ~
Nη with η the effective localizing length of the eigenstates43,53.
With these understandings, one infers that as β varies from 0 to
βOBC, Iβ(Er) is expected to display high peaks whenever the
complex spectral evolution passes through Er. As explained above,
the total number of such local peaks then reflects the spectral
winding number ν(Er). In Fig. 1b we illustrate Iβ(Er) as a function
of β for several Er denoted by the stars of different colors in
Fig. 1a, corresponding to different spectral winding numbers
ν(Er). It is indeed observed that the number of peaks of Iβ(Er)
directly reflects the spectral winding number ν(Er). In the
Methods section, we offer more insights based on the so-called
generalized Brillouin zone (GBZ), to better understand why ν(Er)

9060300

0

0.4

-2 0 2
-2

0

2

4
(b)(a)

Fig. 1 The generic Hatano-Nelson model with different spectral winding numbers. a Spectra under periodic (cyan loops) and open (gray dots) boundary
conditions, of the model [Eq. (3)] with hopping ranges up to 2. The spectral winding number for each different regime is indicated on the panel. b The
quantity Iβ(Er)=∑n∣1/(En(β)− Er)∣, where Er is the reference energy marked in (a) with the same color (yellow, red, and blue), and En(β) is the nth
eigenenergy of the system with the hoppings across the boundary multiplied by e−β. Iβ(Er) diverges exactly ν times when Er sits in a region of spectral
winding ν. Parameters are set at t1= 1, t−1= 0.5, t2= 2, and t−2= 0, with N= 100.
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can be captured by the number of singularities encountered
throughout the complex spectral evolution.

Quantized response in signal amplification. While the previously
defined quantity Iβ(Er) is useful in diagnosing the spectral winding,
it is not directly measurable. Below, we show how it inspires
another analogous quantity that is directly associated with signal
amplification. In particular, the quantity introduced below displays
quantized plateaus that precisely match spectral winding numbers,
making it possible to distinguish between one nontrivial point-gap
topology from another. This is a true advance as compared with
earlier interesting attempts where signal amplification was only used
to probe NHSE under OBC39,40.

For our system with the PBC-OBC interpolation parameter β
(0 < β < βOBC), what enters into the expression of the Green’s
function G in Eq. (2) is 1/[Er− En(β)] again (as in Iβ(Er)) and
hence the Green’s function should be able to capture the complex
spectral evolution. More importantly, it is found that the
associated eigenstates under PBC-OBC interpolation pile up at
its boundary in a manner qualitatively different from that of
NHSE43. With further derivation in the Method section, we find
the amplification ratio from site N to site 1

jG1N j / eβ;
d ln jG1N j

dβ
¼ 1 ð7Þ

for a one-dimensional system with only the nearest-neighbor
couplings, provided t1 > t−1 and Er falls within the loop spectrum
of the system at a given β (see Method). For t−1 > t1, one can
analogously obtain d ln jGN1j

dβ ¼ 1, corresponding to a winding
number ν(Er)=− 1. We emphasize that the variation in Eq. (7)
can be directly measured in a steady-state response experiment.
In an electrical circuit setting, this task can be done via impedance
measurements, as will be elaborated later.

For systems with solely mth-nearest-neighbor coupling, our
analysis detailed in Methods section shows that the system can be
viewed as m independent subchains and the overall amplification
can be captured by the m ×m diagonal block at the top-right
(bottom-left) corners of the overall Green’s function G, denoted as
G←,m×m (G→,m×m), corresponding to measuring the output at the
first (last) m sites of a signal entering from the last (first) m sites.
Since each subchain yields an amplification factor proportional to
eβ, one directly obtains that jG ;m ´mj � det½G ;m ´m� / emβ or
jG!;m ´mj � det½G!;m ´m� / emβ, depending on the amplification
direction. Specifically,

ν ;m � d ln jG ;m´mj=dβ ð8Þ
or analogously ν!;m � d ln jG!;m ´mj=dβ is quantized at m.
Clearly then, ν←,m (ν→,m) counts the number of independent
amplified modes whose amplification factor has the eβ depen-
dence. On the other hand, the PBC spectrum of the system winds
m times around the origin of the complex plane, a fact obviously
true since the associated momentum-space Hamiltonian is
dominated by the terms e±imk. For more general cases with
coexisting couplings across r (l) lattice sites to the right (left), the
system can still be effectively understood as m ¼ Max½r; l�
different subchains, with t±m viewed as the nearest-neighbor
coupling on each subchain, and the rest understood as inter-
subchain or intrachain longer-range couplings. For example,
lattice sites j, j+m, j+ 2m,⋯ , with each pair of neighbors
coupled by t±m, form the jth subchain, for j= 0, 1, 2,⋯ ,m− 1.
Although the subchains are now coupled, the above-defined
det½G ;m´m� (det½G!;m ´m�) remains physically relevant: given by
the product of all its eigenvalues, it represents the product of the

amplification factors of all the independent eigenmodes. There-
fore, ν←,m (ν←,m) still counts the number of effectively independent
amplified modes with the amplification factor eβ. As such, there is
a fascinating correspondence between quantized response as
captured by ν←,m or ν→,m and the spectral winding number.

Figure 2 presents computational results for ln G ;2 ´ 2

�� �� and its
derivative with respect to β as functions of β, denoted ν←,2, again
for the same system as that in Fig. 1. (A more complicated
example with hopping range up to 3 is demonstrated in
Supplemental Note 2.) We also compare these results with I(Er)
defined previously for a chosen reference energy point Er= ω+
iγ, with ν(Er)= 2. It is observed that ν←,2 as a measurable physical
response shows three clear plateaus quantized at ν←,2= 2, 1, 0.
Echoing with the jumps between these plateaus during the
spectral evolution, Iβ(Er) shows local peaks whenever the spectral
evolution passes through Er. As shown in Fig. 2c, these transitions
during the spectral evolution as a result of increasing β match
precisely with the β values for which the complex spectrum
touches the reference energy point and hence the spectral
winding number is about to jump. That is, the transitions
between these quantized plateaus have a clear topological origin
and are hence identified as topological transitions. As a side
remark, observing all the plateaus in our example here happens to
require a broad regime of β and hence cases with very weak
boundary coupling. This is, however, not a concern because the
first plateau at small β is the one to reflect the topology under
PBC. Being a topologically quantized response, these plateaus are
also robust against disorder, as shown in Supplemental Note 3.

The results presented in Fig. 2 are particularly stimulating.
Indeed, therein neither the next-nearest-neighbor coupling nor
the nearest-neighbor coupling is dominating. Yet quantized
plateaus at m= 1 and m= 2 are still obtained. Returning to our
decoupled subchain picture above, this indicates that for different
reference energy points, the behavior of this system is
topologically equivalent to that of one single chain or that of
two weakly coupled subchains. With this perspective, we propose
to examine ν←,m vs. different choices of m in order to fully map
out the phase boundaries, without any prior knowledge of
spectral winding. We thus proceed to find the maximal ν←,m by
scanning m, for sufficiently small β. The obtained value is then
expected to yield ν(Er) of the studied system under PBC. To this
end we define ν ¼ Max½ν ;1; ν ;2�, given that our model
system at most has effectively two subchains (one can similarly
define ν→). We present in Fig. 3a our results of ν← at β= 0 for
different ω and γ, with the reference energy Er= ω+ iγ. The
phase boundaries identified there are in excellent agreement with
the actual PBC spectrum shown in Fig. 1a. The only subtlety is
that we also obtain a negative value ν←=−1 in the topological
trivial regime. In fact, the quantity ν← does not contain the
topological information in this regime, as ν←,0 is not defined in
our formalism. In retrospect, the central quantity ν←,m with
arbitrarily chosen m as a positive integer is expected to yield a
nonpositive value in this regime, because of the absence of a
directional amplification for Er with zero spectral winding (more
details in the Method section). That is, in these topologically
trivial regimes both ν← and ν→ are found to be negative, the
amplification factor is far less than unity, and hence there is
actually no signal amplification after all. One may just exploit this
additional feature to locate regimes with zero spectral winding. By
contrast, a topologically nontrivial regime with negative winding
ν(Er) < 0 corresponds to the directional amplification toward the
opposite direction, and can be measured by ν→,m.

Our qualitative analysis and quantitative results are so far
based on single-band systems. To establish a more general and
intriguing connection between spectral winding topology and
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signal amplification, one must verify whether quantized response
still emerges in multiband systems. The answer is affirmative.
This is a remarkable finding because in multiband systems, the
spectral winding topology can be jointly induced by different
bands on the complex plane connected all together, leaving each
individual band contribute some fractional winding only. To treat
multiband systems, we consider the analogous m ×m Green’s
function block by identifying one fixed sublattice of each unit cell,
a natural route because the steady-state profile on the chosen
sublattice (sublattice chosen to have nonzero support of the
steady state) from one unit cell to another does contain

information of amplification. As an example for demonstration,
we have investigated an extended Su-Schrieffer-Heeger54 model
with a high-spectral winding number in a variety of parameter
regimes, with plateaus corresponding to different spectral wind-
ing numbers. [See Supplemental Note 4].

Measurement of quantized response in electrical circuits. We
next elaborate on how the quantized response can be directly
extracted by measuring the impedance in an electrical circuit
setting. Instead of external perturbations, a circuit is most
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Fig. 3 The topological phase diagram and simulation of impedance measurement in a circuit realization. a The topological phase diagram, in excellent
agreement with that shown in Fig. 1, is mapped out from examining physical response functions ν ¼ Max½ν ;1; ν ;2� for the model depicted in the main
text, with parameters set at t1= 1, t−1= 0.5, t2= 2, t−2= 0, and N= 100. The reference energy for defining ν← is given by Er=ω+ iγ. At the phase
boundary, Er is an eigenvalue of the system under the periodic boundary condition, leading to the divergence of the Green’s function matrix. b Quantization
of d ln jZmj

dβ , which is directly obtainable from simulated circuit measurement data of the impedance between the first m and last m nodes of the circuit lattice,
here computed with 50 nodes. Zm (Eq. (10)) is the m ×m matrix of impedances between the measured nodes, and β is the parameter controlling the
strengths of the couplings connecting the two ends. The complex admittance parameter Ω indicated on panel b is connected with parameters ω and γ
plotted in panel a with ω ¼ ReðΩÞ and γ ¼ ImðΩÞ. The first plateau encountered when β is increased from zero gives the nonzero topological winding ν
(green, yellow for ν= 1, 2). When ν= 0, the logarithmic gradients of both Z1,2 are close to or smaller than 0 (blue), corresponding to the absence of signal
amplification toward either direction.
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Fig. 2 Quantized plateaus in the interpolation of the system between periodic and open boundary conditions. a Amplification ratio ∣G←,2×2∣ given by the
of the two-by-two off-diagonal block of the Green’s function, and b ν ;2 ¼ ∂ln jG ;2 ´ 2j=∂β, as a function of β, with β controlling the boundary condition,
along with the previously defined Iβ(Er), whose peaks match well with the jumps between different plateaus. c Spectrum at different values of β,
corresponding to the five dashed lines in (b), respectively. Red stars indicate the reference energy Er=ω+ iγ, with ω=− 0.96 and γ= 1. Insets zoom in on
the regime around Er to give a clearer view of the relation between the shown spectrum and Er. Parameters are set at t1= 1, t−1= 0.5, t2= 2, t−2= 0, and
N= 100.
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naturally driven by a steady-state AC or DC current, with voltage
response given by Kirchhoff’s law I= LV, where L is the circuit
Laplacian matrix and the components of I and V are, respectively,
the input currents and voltages at each node. Suppose that the
circuit is then grounded by identical circuit components with
complex admittances −Ω. In this case, the full (grounded)
Laplacian becomes J ¼ L� Ω I, and the voltage distribution due
to the input current are given by55,56

Vi ¼ ½J�1�ijIj ¼ �GijIj ¼ ∑
n

ΨR
n

�� �
ΨL

n

� ��
En �Ω

� �
ij

Ij ð9Þ

where the eigenvalues En and L/R eigenstates ΨL=R
n

�� �
are that of

the Laplacian L. Notably, the quantity in the square parentheses
agree exactly with our definition of the Green’s function (Eq. (2)),
with Ω taking the role of ω+ iγ, analogous to a classical version
of a tunable "Fermi energy” for probing the physics around a
reference energy. We extract the physical response through the
impedance Zij between the ith and jth nodes, which is related to
the Green’s function via Zij=Gij+Gji−Gii−Gjj. By varying the
identical grounding admittances Ω via a combination of RLC
components with ±π/2 relative phase shifts, we will be able to
effectively access the response from different regions of the
complex spectral plane.

Quantized classical response can be obtained from a circuit
whose Laplacian exhibits nontrivial spectral winding. This
requires effectively asymmetric couplings between nodes, which
has already been demonstrated in existing topolectrical experi-
ments through combinations of capacitors, inductors and INICs
(negative impedance converter with current inversion) compris-
ing operation amplifiers30,57,58, as further elaborated in the
Supplemental Note 5. The boundary couplings can also be
adjusted to effect the variation with β through tunable inductors
connected in series with the asymmetric couplings43. Arbitrarily
large spectral winding numbers can always be achieved by
coupling sufficiently distant nodes, which can be much more
feasibly done in electrical circuits compared to other platforms.

In analogy to ν←,m from Eq. (8), we can define Zm= det
Zij∣i≤m,N−j<m, the determinant of the m ×m matrix of impedances
between the first m nodes at one end with the last m at the other
end of the circuit chain. Although it is not exactly equivalent to
ν←,m, it is expected to vary with β in a similar manner, since the
impedance Zij is dominated by the component of the Green’s
function that produces the directional amplification. Therefore,
by keeping track of the effective β(ω) and Ω(ω), the logarithmic
gradient of the impedance determinant d ln jZmj

dβ will be expected to
exhibit quantized jumps as Ω(ω) crosses the boundary between
regions of different topological winding ν. For m⩽ 2, which
includes the model we had considered (Figs. 1, 2, and 3), we
explicitly have

Zm¼2 ¼ Z1;N�1Z2;N � Z1;NZ2;N�1; ð10Þ
whose gradients are dominated by those of terms like G1,N−1G2,N

and G1,NG2,N−1 in the presence of directional amplification
(toward the first lattice site). As demonstrated via the simulated

measurements in Fig. 3b, the gradient
d ln jZm¼1;2j

dβ indeed exhibits
plateaus quantized at the winding number ν (blue, green, yellow
for ν= 0, 1, 2, respectively) where Ω is tuned to. For higher
topological winding, we take the plateau that first occurs when β
is increased from 0, i.e., the plateau closest to periodic boundary
conditions.

Discussion
In this work, we have introduced the new paradigm of quantized
classical response, where a quantized response coefficient is

established from a subblock of the Green’s function matrix that
varies with an imaginary flux-like parameter. Being based on the
topological winding properties of the Green’s function in the com-
plex energy plane, this quantization does not assume the existence of
any quantum mechanical ground state, and applies to all systems,
classical, and quantum. Specifically, in a variety of situations
including multiband cases where the spectral winding topology is
rich, we show that the spectral winding number is directly detectable
as a steady-state response coefficient to changes in the boundary
condition. Indeed, through the signal amplification setting, the
number of independent amplifiable modes that share a common
exponential dependence on the imaginary flux-like parameter can be
experimentally determined, which reveals the spectral winding
number. Such correspondence between spectral winding numbers
and quantized response is arguably broader in scope than in the case
of momentum-space topology, because spectral winding does not
even require translational invariance. Our results are relevant to a
number of current experimental platforms of non-Hermitian
systems30,31,33,39,59–61. In the context of classical electrical circuits,
we have shown that a quantized response can be easily extracted
from extremely experimentally accessible impedance measurements.

Methods
Insights based on generalized Brillouin zone. Here we use the so-called gen-
eralized Brillouin zone (GBZ) method to elaborate why ν(Er) can be captured by
the complex spectral evolution. According to the non-Bloch band theory, the OBC
spectrum can be described by the PBC one in a GBZ, using a complex deformation
of the quasi-momentum k→ k+ iκOBC(k)9,12,32,62,63. The PBC-OBC spectral
evolution can then be effectively described by k→ k+ iκ(k) with κ(k) varying from
0 to κOBC(k), with κOBC(k) having the minimal magnitude to yield the OBC
spectrum12,63. The PBC-OBC spectral evolution can hence be understood as
arising from tuning κ(k) and hence deforming the BZ to the GBZ, as shown in
Fig. 4. Moreover, an winding number can be defined as,

νðErÞ ¼
I
GBZ

dz
2π

d
dz

arg det½HðzÞ � Er �; ð11Þ

analogous to that of Eq. (5), with integration in the GBZ instead of the BZ. This
winding number must be zero when the OBC spectrum is reached because, again,
the OBC spectrum cannot enclose any finite area10,11. Following the Cauchy
principle, the spectral winding number is found to be ν(Er)=Nzero−Npole, where
Nzero and Npole are the counting of zeros and poles enclosed by the integration path
(BZ or GBZ) weighted by their respective orders. The conclusion is hence as simple
as follows. If we continuously tune κ(k), the PBC-OBC spectral evolution must pass

through different zeros of Prþl ðzÞ
zr � Er

h i
[colored dots in Fig. 4] for a total of ν(Er)

times, such that the spectral winding number reduces from ν(Er) to 0 eventually
when the integration path approaches the GBZ. Thus, during the complex spectral
evolution, the spectrum under k→ k+ iκ(k) must pass the reference energy Er for a

-1 0 1

-1

0

1

Fig. 4 A typical example of the Brillouin zone (BZ) and the generalized
Brillouin zone (GBZ). The BZ and GBZ are given by cyan and gray dots,
respectively, in the complex plane of z≔ eike−κ(k). Here κ(k) represents a
complex deformation of the momentum k. The black dash loop indicates an
evolving GBZ with κ(k) between 0 and κOBC(k), the value that gives the
spectrum under the open boundary condition. Blue, red, and yellow dots are
the zeros of H(z)− Er, where H(z) is the PBC Hamiltonian of the system and
Er is the chosen reference energy for calculating the winding number. The
system is chosen as the same as that in Fig. 1 in the main text, i.e.,
H(z)= 2z2+ z+ 1/2z.
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total of ν(Er) times, constituting a rather formal argument to justify our treatment
in the main text.

Directional signal amplification versus the PBC-OBC spectral evolution
Cases with only nearest-neighbor coupling. As mentioned in the main text, under an
external drive ϵðtÞ ¼ ϵðωÞ expð�iωtÞ and an overall on-site gain/loss parameter γ,
the resultant response field ϕ(t) can be written as ϕðtÞ ¼ ϕðωÞ expð�iωtÞ, with

ϕðωÞ ¼ Gðω; γÞϵðωÞ; Gðω; γÞ ¼ 1
Er �H

; ð12Þ

where Er= ω+ iγ, G is the Green’s function matrix. The amplification factors for a
signal toward the left and the right are described by the matrix elements G1N and
GN1, respectively. For a non-Hermitian H, the Green’s function matrix can be
expressed in the spectral representation40,41

Gðω; γÞ ¼ 1
Er �H

¼ ∑
n

1

Er � ER
n

ΨR
n

�� �
ΨL

n

� ��; ð13Þ

with ΨR
n

�� �
the nth right eigenstate of H with eigenenergy ER

n , and ΨL
n

� �� the cor-
responding left eigenstate.

To be more explicit, consider the Hatano-Nelson model under the PBC-OBC
interpolation, described by the following Hamiltonian

Hβ ¼ ∑
N�1

x¼1
ðt1 ĉyx ĉxþ1 þ t�1 ĉ

y
xþ1 ĉxÞ þ e�βðt1 ĉyN ĉ1 þ t�1 ĉ

y
1 ĉN Þ; ð14Þ

also with the assumption t1 > t−1 without loss of generality. We shall also assume
N≫ 1 as topological properties are usually more significant in large systems. Let
the nth right eigenstate be ΨR

n

�� � ¼ ∑1x¼1 ψ
R
x;nĉ
y
x 0j i, with 0j i the vacuum state. Using

the eigenvalue-eigenstate equation Hβ ΨR
n

�� � ¼ ER
n ΨR

n

�� �
, one obtains

t1ψ
R
xþ1;n þ t�1ψ

R
x�1;n ¼ ER

nψ
R
x;n ð15Þ

for x∈ [2,N− 1], and

e�βt1ψ
R
1;n þ t�1ψ

R
N�1;n ¼ ER

nψ
R
N;n; ð16Þ

t1ψ
R
2;n þ e�βt�1ψ

R
N;n ¼ ER

nψ
R
1;n: ð17Þ

Taking the following ansatz eigensolutions:

ψR
x;n ¼ Cne

�MR
n ðx�1Þ ð18Þ

with Cn the normalization constant, we obtain

e�β
t1
t�1
þ e�M

R
n ðN�2Þ ¼ e�βe�M

R
n ð2N�2Þ þ t1

t�1
e�M

R
nN : ð19Þ

Now let us discuss the possible range of MR
n depending on β, t1, and t−1. We first

note that if Re½MR
n � < 0, then the two sides of Eq. (19) exponentially explode to

infinity with different rates when N≫ 1 (hence this equality cannot hold). This tells
us that Re½MR

n �≥ 0.
Next in the case that Re½MR

n � ¼ 0, i.e., je�MR
n j ¼ 1, the eigensolution in Eq. (18)

is extended, which may be satisfied only when either β= 0 (PBC) or t1= ±t−1

(Hermitian or anti-Hermitian). To check this, we denote e�M
R
n ðN�2Þ ¼ eiA and

e�M
R
nN ¼ eiB, with real numbers A and B. Thus Eq. (19) can be expressed as

e�β t1
t�1
þ eiA

e�βeiA þ t1
t�1

¼ eiB: ð20Þ

Taking modulus square on both sides of Eq. (20), we find that

e�β
t1
t�1
þ eiA

����
����2 ¼ e�βeiA þ t1

t�1

����
����2: ð21Þ

Thus, we arrive at

e�2β � 1
� � t1

t�1

	 
2

� 1

" #
¼ 0; ð22Þ

leading to the above mentioned conclusion.
At last it is only possible with Re½MR

n � > 0, i.e. je�MR
n j< 1, such that the

eigensolutions decay from x= 1 to x=N. Hence, e�M
R
nN is vanishing and we may

drop the higher-order infinitesimal in Eq. (19) to arrive at

e�M
R
nN � t1

t1 � t�1
e�β � eln

t1
δt

� �
�β; ð23Þ

where δt= t1− t−1 > 0 and N− 2 ≈N is taken as N≫ 1. Then the decaying
exponent MR

n is given by

MR
n ¼

β� ln t1
δt

 �
N

� i2nπ
N

: ð24Þ

Note that the 1/N factor is crucial for the quantized response to be discussed later.

The corresponding eigenenergy is given by

ER
n ¼ t1e

�MR
n þ e�βt�1e

�MR
n ðN�1Þ

¼ t1e
�MR

n þ e�βt�1e
�βþln t1

δt

� �
eM

R
n :

ð25Þ

Note again that Eq. (24) does not hold if ln t1
δt

 �
>β because we require Re½MR

n �≥ 0.
Therefore, the condition

δt ¼ t1 � t�1 > t1=e
β: ð26Þ

must be satisfied in our consideration and this can be achieved without much
difficulty. Indeed, δt ≈ 0 and β ≈ 0 are close to the Hermitian and PBC limit,
respectively, and the above exponentially decaying eigensolutions no longer hold.
Nevertheless, our numerical results show a clear quantized response in a wide
range of parameters, indicating an intrinsic topological property of the system.

To further illustrate how the eigensolutions lead to the quantized response as
discussed in the main text, we assume t1≫ t−1, i.e. δt ≈ t1, so that ln ðt1=δtÞ � 0 and we
have

t1e
�MR

n ¼ ER
n ;M

R
n ¼

β� i2nπ
N

: ð27Þ

This assumption is mainly for conceptual simplicity. The second term in the eigenenergy
expression of Eq. (25) can be neglected as we are working in a parameter regime away
from the PBC limit, i.e., β≫ 0, so that we can use the above exponentially decaying
eigensolutions. The following discussion is equally valid for β! �β � β� ln ðt1=δtÞ, as
long as the relation in Eq. (26) is satisfied. Note that here jER

n=t1j is determined by the
ratio β/N. That is, the eigenvalues ER

n will be distributed on a circle on the complex
plane, whose radius depends only on t1 as well as the ratio β/N.

Likewise, the left eigenstates under the same assumptions satisfy Hyβ ΨL
n

�� � ¼
EL
n ΨL

n

�� �
and EL

n ¼ ER
n

� ��
, and they are found to be

ψL
x;n ¼ C�ne

�ML
nðN�xÞ; t1e

�ML
n ¼ EL

n;

ML
n ¼

βþ i2nπ
N

:
ð28Þ

From the biothorgonal condition hΨL
njΨR

ni ¼ 1, we then obtain the normalization
constant

Cn ¼
e�i

N�1
N πnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ne�βðN�1Þ=N
p : ð29Þ

With preparations above one important matrix element of the Green’s function
G can then be found as follows:

G1N ¼ ∑
n

1

Er � ER
n

ψR
1;n ψL

N;n

 ��
¼ ∑

n

1

Er � t1e
�β�i2nπ

N

1

N e�
β�i2nπ

N

 �N�1
ð30Þ

¼ ∑
n

eβe�
β�i2nπ

N

Er � t1e
�β�i2nπ

N

1
N
: ð31Þ

We may now attempt to rewrite the discrete sum in Eq. (31) in terms of a loop
integral of a complex variable z, by defining kn≔ 2nπ/N and z :¼ e�β=Neikn . To that
end one must implicitly assume that N under consideration is sufficiently large so
as to use an integral to replace the discrete sum. With this in mind, for a given β,
β/N is assumed to be vanishingly small, and hence essentially we are working in the
regime of ∣z∣→ 1. Under these conditions, the sum in Eq. (31) can then be
evaluated by the following integral

G1N ¼
I
jzj¼e�β=N

1
2πi

eβ

Er � t1z
dz; ð32Þ

which is found to be

G1N ¼ �
eβ

t1
; ð33Þ

if z0≡ Er/t1 satisfies ∣z0∣ < e−β/N, i.e., the pole of the integrand falls within the the
integral loop. This condition leads to

jEr j < t1e
�β=N ¼ jER

n j; ð34Þ
meaning that the reference energy Er falls within the loop spectrum of Hβ. The
above detailed theoretical considerations indicate that, so long as Er is enclosed by
the loop spectrum of Hβ, we have

d ln jG1N j
dβ

¼ 1; ð35Þ

which is just the claim in the main text regarding how to use a quantized physical
response to detect the spectral winding number ν(Er), as computationally verified
in Fig. 5b. The above integral also leads to G1N= 0 for Er outside the loop spectrum
of Hβ, namely a signal enters from site N shall vanish at site 1 when the system is
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far away from the PBC limit (β→ 0). Approaching the PBC limit, the system
becomes translational invariant and sites 1 and N are actually two neighboring
sites, G1N then must be nonzero. Overall, ∣G1N∣ decreases when gradually turning
off the boundary hopping by increasing β, leading to a negative value of
d ln jG1N j=dβ [as shown in Fig. 3 in the main text].

Next we investigate what happens if we let β exceed βc, the critical β value for
which a reference energy point Er falls exactly on the loop spectrum of Hβ (as shown
in Fig. 5a). Let us first recall the result from Eq. (27), which indicates that the radius of
the loop spectrum of Hβ scales with β/N. Specifically, for a given lattice size N and a
given reference point Er under investigation, one immediately obtains that

βc ¼ �N ln jEr=t1j; ð36Þ
which is clearly proportional to N. As such, to probe the regime of β ≥ βc, β should at
least linearly increase with N as well. This being the case, we can no longer
approximate the discrete sum in Eq. (31) as a loop integral with N→∞ in mind,
simply because it has the factor eβ in its numerator, which diverges with N because in
the regime of interest β diverges with an increasing N.

Based on the discussions above, in the regime of β ≥ βc, what is under investigation
becomes the evaluation of the same discrete sum, but with β scaling proportionally
with N, and hence both becoming sufficiently large in the event of using a loop
integral to replace this discrete sum. Although we still use the same complex variable
z ¼ e�β=Neikn to invoke a possible loop integral, we see that ∣z∣ is now far from unity.
To reflect this, we now use the alternative expression of the discrete sum in Eq. (63)
and then rewriting it as the following integral, with the integrand having one pole of
order N at z= 0, and another 1st-order pole at z= Er/t1,

G1N ¼
I
jzj¼e�β=N

1
2πi

1
zN ðEr � t1zÞ

dz: ð37Þ

Assuming that ∣z0∣= ∣Er/t1∣ > e−β/N, namely, the reference energy Er is outside the loop,
so z= 0 is the only pole of the integrand enclosed by the integration path, we have

G1N ¼
tN�11

EN
r

; ð38Þ

a value independent of β, which is again consistent with the computational results in
Fig. 5b2. Further, using the previous expression of βc from Eq. (36), we find that in this

case G1N ¼ tN�11

EN
r
¼ eβc=t1. Interestingly, although this magnitude eβc=t1 exponentially

larger than eβ/t1 obtained earlier for β < βc, this amplification factor is saturated and no
longer depends on β in the regime of β > βc.

As a side note, one might wonder why we cannot also use the loop integral in
Eq. (37) to treat the first case, namely, a fixed β in the regime of β < βc but with N
approaching sufficiently large values. As said earlier, in this case we essentially
perform the summation under the condition of ∣z∣= 1. Under this condition we
always have zN= 1 and hence the expression in Eq. (37) is no longer useful.

In the same fashion, we can now proceed to examine GN1, which depicts
how the signal is amplified or suppressed in the other direction. The matrix
element GN1 is found to be the following,

GN1 ¼ ∑
n

1

Er � ER
n

ψR
N;n ψL

1;n

 ��

¼ ∑
n

1

Er � t1e
�β�i2nπ

N

e�
β�i2nπ

N

 �N�1

N

ð39Þ

¼ ∑
n

e�βe
β�i2nπ

N

Er � t1e
�β�i2nπ

N

1
N
: ð40Þ

Rewriting Eq. (40) in terms of a loop integral, we have

GN1 ¼
I
jzj¼e�β=N

1
2πi

e�β

z2ðEr � t1zÞ
dz: ð41Þ

The integrand has a 1st-order pole at z0 = Er/t1, and a second-order pole at
z1= 0. Therefore we have

GN1 ¼
e�βt1
E2
r

ð42Þ

if ∣Er∣ > t1e−β/N (reference energy falls outside the loop of integral), and

GN1 ¼ 0 ð43Þ
if ∣Er∣ < t1e−β/N (reference energy Er falls inside the loop of integral). Here
because of the factor e−β in Eqs. (40) and Eq. (41), the replacement of the
discrete sum by the loop integral is always valid by assuming a sufficiently large
N, i.e., regardless of whether β is assumed to be fixed or assumed to scale
linearly with N. Thus, results obtained above for both β > βc and β < βc are
valid, which are indeed consistent with our numerical results. Note also that
for fixed β, our numerical results for finite systems give a small but nonzero
GN1 when β < βc (e.g. ∣GN1∣ ≈ e−5 in Fig. 5c2), which vanishes when further
increasing N (not shown).

Overall, we obtain that the gradient of ln jGN1j with respect to β is again
quantized, with

d ln jGN1j
dβ

¼ �1; ð44Þ

if Er is NOT enclosed by the loop spectrum of Hβ, corresponding to β > βc [Fig. 5c].
If we further increase β the system shall approach the OBC limit when
β= βOBC ≈ αN with α ¼ ln ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t1=t�1

p
Þ, where the spectrum falls on the same lines

as the OBC spectrum16,53. Nevertheless, this limit is still not exactly like the OBCs,
as the two boundaries are still weakly connected. For example, due to the (weak)
boundary couplings, a flux threading cannot be gauged away and can lead to
fluctuation of eigenergies, unlike in real OBC cases. Indeed, from our numerical
results, we indeed see that GN1 keeps decreasing after β exceeds βOBC, and becomes
a constant when β ≳ 2βOBC− βc [Fig. 5c3].

Cases with only mth-nearest-neighbor coupling. Consider now a 1D non-Hermitian
chain with only the mth-nearest-neighbor couplings:

Hβ ¼ ∑
N�m

x¼1
ðtmĉyx ĉxþm þ t�mĉ

y
xþmĉxÞ

þ e�β ∑
N

x¼N�mþ1
ðtmĉyx ĉxþm�N þ t�mĉ

y
xþm�N ĉxÞ:

ð45Þ

Here we first assume N/m is an integer, thus the system is decoupled into m
identical 1D subchains, and the eigenstates satisfy

tmψ
R
xþm;n þ t�mψ

R
x�m;n ¼ ER

nψ
R
x;n ð46Þ

for x∈ [2,N−m], and

e�βtmψ
R
s;n þ t�mψ

R
N�2mþs;n ¼ ER

nψ
R
N�mþs;n; ð47Þ

tmψ
R
mþs;n þ e�βt�mψ

R
N�mþs;n ¼ ER

nψ
R
s;n; ð48Þ

with s= 1, 2, . . . ,m labelling different subchains. As in the previous discussion for
the case of m= 1, we assume tm≫ t−m to obtain some simple analytical results.
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Fig. 5 The Hatano-Nelson model with only the nearest-neighbor hoppings. a Spectra under periodic (cyan loop) and open (gray dots) conditions (PBC
and OBC), and that within the PBC-OBC interpolation through a modification factor e−β of the couplings across the boundary (black circles). The red star
indicates the reference energy Er=ω+ iγ for further results in (b) and (c). Here Er falls right on the spectrum of the Hamiltonian Hβ, and the value of
β= βc≈ 6.2 is read out from (b) and (c). b and c show the amplification ratios given by the off-diagonal elements of the Green’s function ∣G1N∣ and ∣GN1∣
[(b2) and (c2)] and the derivatives of their logarithms over β [(b3) and (c3)] as functions of β, where the quantity Iβ(Er) indicates with its peaks when Er is
passed through by the Hβ spectrum. The parameters are t1= 1 and t−1= 0.5.
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Here we replace the labels x and n with xs and ns for each subchain. We take the
ansatz

ψR
xs ;ns
¼ Cns

e�M
R
ns
ðxs�1Þ; ð49Þ

with ns only takeing values from 1 to Nm=N/m, given that each subchain contains
only Nm lattice sites, and xs= (x− s+m)/m ranging from 1 to Nm, with x being
s,m+ s, 2m+ s, . . . ,N−m+ s, and more importantly,

tme
�MR

ns ¼ ER
ns
;MR

ns
¼ β� i2nsπ

Nm
: ð50Þ

Similarly, the left eigenstates are given by

ψL
xs ;ns
¼ C�ns e

�ML
ns
ðNm�xsÞ; tme

�ML
ns ¼ EL

ns
;

ML
ns
¼ βþ i2nsπ

Nm
:

ð51Þ

Again, from the biothorgonal condition hΨL
njΨR

n i ¼ 1, we have the normalization
constants

Cns
¼ e�i

Nm�1
Nm

πnsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nme�βðNm�1Þ=Nm

p : ð52Þ

Note that in the Green’s function matrix, the element G1N shall always be zero as
each subchain is decoupled from the others. In this case, the directional amplifi-
cation of each subchain corresponds to the element Gs(N−m+s), with

GsðN�mþsÞ ¼ ∑
ns

1

Er � ER
ns

ψR
xs¼1;ns ψL

xs¼Nm ;ns

 ��
¼ ∑

ns

1

Er � tme
�β�i2nsπ

Nm

1

Nm e�
β�i2nsπ
Nm

 �Nm�1
ð53Þ

¼ ∑
ns

eβe�
β�i2nsπ
Nm

Er � tme
�β�i2nsπ

Nm

1
Nm

: ð54Þ

As ns takes value from 1 to Nm=N/m, here we need to define ks= i2mnsπ/N, so
that the summation can be replaced by an integral with ks varying from 0 to 2π.
Similar to the case with only nearest-neighbor coupling, we then have

d ln jGsðN�mþsÞj
dβ

¼ 1 ð55Þ

for each subchain, when Er is enclosed by the loop-like spectrum of each subchain.
This result indicates that each subchain has its own spectral winding number
νs(Er)= 1, but for the original 1D chain with mth-nearest-neighbor couplings, the
element G1N and GN1 are zero as sites 1 and N belong to different decoupled
subchains.

On the other hand, the m-subchain picture here also indicates an effective unit-cell
structure with m sublattices, even though the sublattices are physically equivalent on
the lattice. Thus the directional amplification of the overall system comprised by these
subchains/sublattices shall be described by the combination of that of each subchain,
corresponding to the corner blocks of the overall Green function matrix,

G ;m´m ¼

G1ðN�mþ1Þ G1ðN�mþ2Þ � � � G1N

G2ðN�mþ1Þ G2ðN�mþ2Þ � � � G2N

..

. ..
. ..

. ..
.

GmðN�mþ1Þ GmðN�mþ2Þ � � � GmN

0
BBBBB@

1
CCCCCA; ð56Þ

G!;m ´m ¼

GðN�mþ1Þ1 GðN�mþ1Þ2 � � � GðN�mþ1Þm
GðN�mþ2Þ1 GðN�mþ2Þ2 � � � GðN�mþ2Þm

..

. ..
. ..

. ..
.

GN1 GN2 � � � GNm

0
BBBBB@

1
CCCCCA; ð57Þ

for signals moving toward the left and the right side, respectively. In the above
schematic scenario where the subchains are fully decoupled from each other, only the
diagonal elements of the above two matrices are nonzero, i.e., ðG ;m´mÞab �
�δabeβ=t1 (see Eq. (33)) when Er is enclosed by the spectrum on the complex plane,
and ðG!;m ´mÞab � δabe

�βt1=E
2
r (see Eq. (42)) when Er is NOT enclosed by the

spectrum on the complex plane. This being the case, we arrive at

det½G ;m ´m� / emβ; det½G!;m´m� / e�mβ; ð58Þ
in the above two cases, repectively. Thus we have

ν ;m :¼ d ln jG ;m´mj
dβ

¼ m; ð59Þ

corresponding to the spectral winding number ν(Er)=m for the case with only the
mth-nearest-neighbor couplings. Furthermore, this conclusion shall also be valid when

N/m is not an integer. In such cases, the system still possesses the m-subchain picture,
only that the two ends of one subchain are connected to those of other subchains now.
This conclusion is also verified by our numerical calculations. The independent
subchain picture developed here offers an important method to understand more
realistic situations where couplings with different hopping ranges coexist.

Cases with couplings across multiple ranges. In the main text, using the concept of
counting the number of effectively independent modes whose amplification factor
has the eβ dependence, we have physically explained why the determinant of a
subblock of the Green’s function can still be used to capture the spectral winding
number. Here we use another method to illuminate on the origin of classical
quantized response. Let us assume that the largest hopping distance is m lattice
sites. We first assume that the system’s hopping is still dominated by mth-nearest-
neighbor hopping so that the previous m-subchain picture applies. We write the
equation of the Green’s function in the following form

G ¼
Gm´ ðN�mÞ G ;m ´m

..

. ..
.

0
@

1
A; ð60Þ

Er �H ¼ Hr
ðN�mÞ ´m � � �
Hr

m ´m � � �

	 

; ð61Þ

Gm ´ ðN�mÞH
r
ðN�mÞ ´m þ G ;m´mH

r
m´m ¼ Im ´m; ð62Þ

with Gm×(N−m), Hr
ðN�mÞ ´m , and Hr

m´m being different blocks of the G and Er−H
matrices, whose sizes are indicated by their subscripts. Note that for the two blocks
of Hr= Er−H, the coefficient e−β is only contained in the block Hr

m ´m . On the
other hand, Hr

ðN�mÞ ´m has nonzero and β-independent elements only in the first
2m rows. Consider then the first 2m columns of Gm×(N−m) in Eq. (62). Using the
m-subchain picture as the starting point of consideration, the explicit expressions
of Gm×(N−m) are obtained as the following,

Gxy ¼ ∑
n

1

Er � ER
n

ψR
x;n ψL

y;n

 ��

¼ ∑
n

1

Er � t1e
�β�i2nπ

N

e�
β�i2nπ

N ðN�yþx�1Þ

N e�
β�i2nπ

N

 �N�1
ð63Þ

¼ ∑
n

e�
β�i2nπ

N ðx�yÞ

Er � t1e
�β�i2nπ

N

1
N
; ð64Þ

which yields an integral expression

Gxy ¼
I
jzj¼e�β=N

1
2πi

zx�y�1

Er � t1z
dz: ð65Þ

This integral expression does not depend on β. With these preparation and now
inspecting Eq. (62) again, it is seen that G←,m×m should have a eβ coefficient, so as to
cancel the e−β coefficient in the matrix Hr

m´m . Therefore the determinant of
G←,m×m yields a coefficient of emβ, and can hence reflect the spectral winding
number ν(Er)=m.

Let us now gradually strengthen all other hoppings with different length scales.
Before the spectral loop hits the reference energy Er, G is well defined, the above
arguments are expected to hold and hence the response plateau is quantized at m,
thus indicating the topological robustness of the quantized response. In other
words, this current picture breaks down when the spectral loop passes the reference
energy (where (Er−H) has zero eigenvalues), during which the qualitative nature
of the Green’s function changes drastically. In particular, after the phase transition
the system has a smaller spectral winding number, say ν(Er)=m− 1 for example,
and hence the system is now topologically equivalent to a simpler case with
m− 1 subchains. One should then use (m− 1)-subchain scenario to reapply the
above insight self-consistently, by considering the block G←,(m−1)×(m−1) instead to
measure the topological winding number m− 1. This is indeed confirmed in our
extensive numerical results for several systems with different spectral winding
numbers.

Data availability
Raw numerical data from the plots presented are available from the authors upon
request.

Code availability
Although not essential to the central conclusions of this work, computer codes for
generating our figures are available from L.L. and C.H.L. upon reasonable request.
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