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Quantized coexisting electrons and holes in graphene measured using temperature-dependent
magnetotransport
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We present temperature-dependent magnetotransport experiments around the charge neutrality point in
graphene and determine the amplitude of potential fluctuations s responsible for the formation of electron-hole
puddles. The experimental value s ≈ 20 meV is considerably larger than in conventional semiconductors, which
implies a strong localization of charge carriers observable up to room temperature. Surprisingly, in the quantized
regime, the Hall resistivity overshoots the highest plateau values at high temperatures. We demonstrate by model
calculations that such a peculiar behavior is expected in any system with coexisting electrons and holes when the
energy spectrum is quantized and the carriers are partially localized.
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I. INTRODUCTION

Pristine graphene is a zero-gap semiconductor where the
conduction and valence band touch at zero energy. This
point is generally referred to as the charge neutrality point
(CNP) with a zero charge carrier density. However, it has
been shown experimentally that for graphene on Si/SiO2

substrates, electrons and holes coexist around the CNP, which
is attributed to the presence of spatially inhomogeneous
conducting electron-hole puddles.1–4

In this paper we investigate the coexistence of electrons and
holes by means of temperature-dependent magnetotransport
around the CNP. We present results in the classical and
quantum Hall regimes. In the classical regime, the individual
charge carrier concentration and conductivity at the CNP
increases with increasing temperature due to thermal activation
but as a consequence of potential fluctuations, do not vanish
even at the lowest temperature. From this temperature depen-
dence, we determine the strength of the potential fluctuations
responsible for the formation of electron-hole puddles, s ≈
20 meV for our samples. In the quantum Hall regime, the
Hall resistance shows higher values than expected, suggesting
a deactivation of charge carriers with increasing temperature.
Using model calculations, however, we demonstrate that this
counterintuitive temperature dependence is straightforwardly
explained considering the quantized density of states of
coexisting electrons and holes.

The paper is organized as follows: In Sec. II we shortly
describe the samples an measurements. Section III is devoted
to the experiential magnetotransport in the classical regime
along with an interpretation of the results. In Sec. IV we
describe experimentally (Sec. IV A) and discuss theoretically
(Sec. IV B) magnetotransport data in the quantum Hall regime.
The paper ends with a conclusion in Sec. V.

II. EXPERIMENT

We have measured two field effect transistors made from
single-layer graphene (SLG) and bilayer graphene (BLG)

deposited on Si/SiO2 wafers and shaped into a 1-μm-wide
Hall bar. Both flakes originate from natural graphite and have
mobilities μ = 1 m−2 s−1 and μ = 0.3 m−2 s−1, respectively.
The total charge carrier concentration n is controlled by
applying a gate voltage Vg on the conducting Si substrate:5

n = ne − nh = αVg, (1)

with α = 7.2 × 1014m−2/V for a 300-nm-thick SiO2 gate
insulator. The subscripts e and h indicate electrons and holes,
respectively.

Magnetotransport as a function of magnetic field, carrier
concentration, and temperature were performed in a temper-
ature range between 0.5 and 250 K using a top-loading He-3
system and a variable-temperature insert in a 33 T Bitter
magnet.

III. CLASSICAL REGIME

Figure 1(a) shows ρxy(n) for the BLG sample at B = 0.8 T
for different temperatures. Down to the lowest temperatures,
the Hall resistivity does not exhibit quantized plateaus at this
magnetic field, indicating a continuous energy spectrum. For
all temperatures, the Hall resistance smoothly crosses zero at
the CNP, which indicates that electrons and holes are present
at all gate voltages.6

In this coexistence regime, the simultaneous contribution
of electrons and holes with equal mobility μ to the Hall effect
is given by7,8

ρxy = B

e

(ne − nh)(1 + (μB)2)
(ne + nh)2 + [(ne − nh)μB]2

. (2)

Note that this expression originally derived for massive charge
carriers with mobility μ = eτ/m∗ (τ is the elastic scattering
time and m∗ is the effective mass) is also valid for massless
particles when defining the mobility more generally as the
ratio between the average drift velocity of the carriers and the
applied electric field.
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FIG. 1. (Color online) (a) Hall resistivity of the BLG sample
as a function of the total charge carrier concentration at B = 0.8
T for various temperatures. (b) Extracted carrier concentrations of
electrons ne and holes nh for the same field and temperatures (see text
for details). The solid lines show the calculated number of electrons
and holes using the effective density of states from Eq. (4) and s =
19 meV.

By solving the system of Eqs. (1) and (2) with respect to the
variables ne and nh for each point of the experimental ρxy(Vg)
dependence, we can determine the number of electrons ne and
holes nh independently;6 the results are shown in Fig. 1(b).

At the CNP (n = 0) ne and nh are equal to a residual
concentration n0, which is, according to Eq. (2), related to
the slope of ρxy(n) at the CNP:

dρxy

dn

∣∣∣∣
n=0

= B

e

1 + (μB)2

4n2
0

. (3)

The temperature dependence of n0 is plotted in Fig. 2(a). At
zero temperature we find that a finite number of both electrons
and holes are present at the CNP. These electron-hole puddles
originate from spatial potential fluctuations within the sample
represented schematically in Fig. 2(b) and lead to an effective
density of states (DOS) around the CNP plotted in Fig. 2(c),9

D(E) = D0 erfc(−E/
√

2s)/2, (4)

where s is the amplitude of potential fluctuations.
Though the question of whether the puddles are caused

by the impurity potential alone or by intrinsic ripples in
graphene is still under discussion,10 this phenomenological
DOS is not sensitive to the deeper origin of the puddles. The
calculated charge carrier concentrations using this effective

FIG. 2. (Color online) (a) Electron and hole concentration n0 of
the BLG sample at the CNP as a function of temperature. The solid
line represents a fit to Eq. (5) with s = 19 ± 2 meV. (b) Sketch of
the random potential fluctuations in the sample yielding a broadened
effective density of states shown in (c) (Ref. 9).

DOS, shown by the solid lines in Fig. 1(b), indeed reproduce
the experimentally observed behavior around the CNP.

Directly at the CNP, the temperature dependence n0(T ) in
a low-temperature (kBT /s < 1) approximation is analytically
found to be9

n0(T ) = n0(0)

[
1 + π2

6

(
kBT

s

)2]
(5)

and a fit of the data in Fig. 2(a) to Eq. (5) yields s = 19 ±
2 meV.

Analogously, the temperature dependence of the conduc-
tivity at the CNP can be described by9

σxx(T ) = σxx(0)

[
1 +

√
2

π

kT

s
+ π2

6

(
kBT

s

)2
]

. (6)

The fit of the experimental temperature dependence in the
classical regime with Eq. (6) is shown in the inset of Fig. 3 for

FIG. 3. (Color online) Zero-field conductivity of the BLG sample
around the CNP for different temperature. The inset shows the
temperature dependence of the minimum conductivity at the CNP
with the solid line as a fit to Eq. (6) yielding s = 23 ± 2 meV.
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the 0 T trace. The fit yields s = 23 ± 2 meV, which is close to
the value s = 19 ± 2 meV, determined from the fit to the Hall
data.

Remarkably, this strength of potential fluctuations is
comparable to the thermal energy at room temperature
and considerably larger than in conventional semiconductor
heterostructures.11 Therefore, whereas quantum Hall localiza-
tion in GaAs-based systems breaks down above 30 K,12 the
strong potential fluctuations can induce a robust localization
of charge carriers in graphene when the Fermi energy is
situated between two Landau levels, in particular around filling
factor ν = 2.13 This allows the QHE to persist up to room
temperature.14,15

IV. QUANTIZED REGIME

A. Experimental results

Figure 4(a) shows the measured Hall effect for BLG as a
function of the total charge carrier concentration n at B = 30 T
for various temperatures. For B � 15 T the system is in the
quantized regime and we observe plateaus at ν = ±4, ± 8 . . .

as expected for BLG. At the lowest temperatures, a plateau
also develops at ν = −3, which makes the ρxy curve slightly
asymmetric. However, since the plateau is smoothed out for
T > 74 K, we neglect this asymmetry in the following.

At T = 0.5 K, the Hall resistance on the electron (hole) side
reaches its maximum (minimum) value at the plateau and goes
smoothly to the hole (electron) side as already observed in the

nonquantized regime; this behavior can again be qualitatively
explained by the two-carrier model. At high temperatures,
the Hall resistivity overshoots the plateau ν = ±4 before the
beginning of the plateau and reaches values higher than h/4e2

and ρxy(n) becomes steeper at the CNP; see Fig. 4(a). We
observe a similar behavior in the SLG sample, therefore this
effect has a generic nature and was also observed by others.16

Note that these overshoots in the Hall resistance only appear
at high temperatures and are therefore not due to the (partial)
splitting of the lowest Landau level as observed in, e.g., Ref. 17.

The temperature dependence of the slope of ρxy(n) at the
CNP is explicitly shown in the inset to Fig. 4(a). It is opposite
to the classical regime, which can be seen by comparison of
the traces at B = 30 T (quantized regime) and B = 0.8 T
(classical regime), plotted together in the inset.

According to Eq. (3), an increase in the slope with increas-
ing temperature corresponds to a decrease of the charge carrier
concentration, which appears to be counterintuitive. However,
the plateaus remain visible up to the highest temperature
measured, i.e., the system remains quantized and the number
of electrons and holes within one Landau level is fixed. In the
quantized regime, the slope of the Hall resistivity depends not
only on the number of charge carriers at the CNP, but also the
strength of localization, i.e., the width of the plateaus closest
to the CNP. Therefore, Eq. (3) cannot be used to relate the
slope to the number of charge carriers. In fact, Eq. (2), which
predicts a 1/n behavior of the slope around the CNP when
μB → ∞, anticipates such an overshoot.

FIG. 4. (Color online) Transport coefficients ρxy and ρxx and of the BLG sample. Panel (a) and (c) show the experimentally measured
values that are compared to the calculated quantities in (b) and (d). The insets in (a) and (c) show the corresponding slopes of the Hall resistivity
at the CNP as a function of temperature. The insets in (b) and (d) show the temperature dependence of the conductivity at the CNP.
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A similarly unexpected behavior for high temperature is
observed in the resistance at high magnetic fields. Figure 4(c)
shows the resistivity of BLG in the quantized regime as a
function of the total charge carrier concentration for various
temperatures. In contrast to the nonquantized regime, the
resistivity exhibits a metal-like increase with temperature.

As we will show in the following section, this peculiar
transport properties in the quantized regime can be described in
a simple DOS model with localized and extended states where
the temperature dependence of the resistivity is governed by a
redistribution of charge carriers due to the thermal activation.

B. Model calculations and discussion

The model used for our calculation starts with the quantized
DOS for graphene in magnetic field consists of separate
Gaussian-shaped Landau levels (LL’s) as depicted schemat-
ically in Fig. 5. States in the middle of each LL are extended,
and states are localized in the tails. For our simulations of the
DOS in BLG shown below, we have used a constant width
� = 100 K for the higher Landau levels and � = 200 K
for the zero-energy LL.18 Landau levels above (below) the
CNP, populated by electrons (holes), have a degeneracy of
4eB/h. The zeroth LL with a degeneracy of 4eB/h for SLG
and 8eB/h for BLG is populated by electrons and holes
simultaneously, such that electron and hole conduction can be
found both above and below the CNP. We can then calculate
the conductivity using the Kubo-Greenwood formalism:19,20

σxx = σ e
xx + σh

xx

=
∫ ∞

−∞

[
Ke(E)

∂f (E)

∂E
+ Kh(E)

∂[1 − f (E)]

∂E

]
dE. (7)

Here f (E) is the Fermi distribution and Ke,h(E) is an energy-
dependent function containing the density of the extended
states, the particle velocity, and the scattering time. The
upper indices e,h correspond to electrons and holes, respec-
tively. Modeling K(E) by a superposition of Gaussians with
the above-mentioned widths, the Kubo-Greenwood formula
reproduces qualitatively the behavior of the experimental
conductivity in graphene, but does not give a universal value of
minimal conductivity.21 Therefore, we normalized the integral
in Eq. (7) such that at zero temperature, σxx at the CNP has the
universal value of 4e2/h in accordance with the experimentally
observed value.

Similarly, we can determine the Hall conductivity by
summing up all extended states below the Fermi level, smeared

FIG. 5. (Color online) Schematic density of states (DOS) of
broadened Landau levels in BLG. The dashed regions correspond
to localized states between two levels.

out by temperature:

σxy ∝
∫ ∞

−∞

{
Dh

ext[1 − f (E)] − De
extf (E)

}
dE. (8)

When introducing a localized DOS, the calculated conduc-
tivity σxy develops plateaus that are not at multiples of 4e2/h,22

because the number of extended states within a LL is less than
the total level degeneracy. In order to reproduce the correct
number of occupied LL’s in Eq. (8), we have normalized the
extended DOS for each LL to the total number of extended
states within it.

After calculating the conductivities, we convert them into
the resistivity ρxx and the Hall resistivity ρxy using the standard
matrix relations; the results are shown in Fig. 4(b) and 4(d).
They can be compared to the experimental curves, plotted
as panels (a) and (c) of the figures. The calculated curves
reproduce qualitatively the experimental results and display
a similar temperature dependence. In particular, at the CNP,
the resistivity [insets in Figs. 4(c) and 4(d)] and the slope of
the Hall resistivity [insets in Figs. 4(a) and 4(b)] increase with
increasing temperature up to 200 K. Moreover, as is also seen
in the experiment, the overshoots develop at the beginning of
the plateaus at high temperatures [compare panels (a) and (b)
in Fig. 4].

Starting from about 500 K (as calculated for 30 T) the
system smoothly enters the classical regime. The conductivity
[inset to Fig. 4(d)] starts to increase with increasing temper-
ature, and the slope of the Hall resistivity [inset to Fig. 4(b)]
decreases. Experimentally, this trend in the nonquantized
regime is verified by the low field data presented earlier in
Figs. 2 and 3.

V. CONCLUSIONS

To conclude, we have investigated the coexistence of
electron and hole magnetotransport in graphene for a wide
range of temperatures and magnetic fields. For all temperatures
and fields, the Hall resistivity smoothly crosses zero at the
CNP, indicating the simultaneous presence of both electrons
and holes at the CNP. In the nonquantized regime, the slope
of the Hall resistivity decreases with increasing temperature,
which is accompanied by an increasing conductivity at the
CNP. This behavior can be quantitatively modeled by a thermal
activation of charge carriers experiencing relatively large
potential fluctuation of the order of 20 meV.

In the quantum Hall regime, increasing the temperature
has the opposite effect on the slope of the Hall effect and
produces counterintuitive overshoots when approaching the
ν = ±2 plateaus. Using an appropriate density of states, we
have shown in model calculations that such a behavior is
expected for any two-carrier system with a quantized energy
spectrum.
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