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ABSTRACT

A new energy-based theory, quantized fracture mechanics (QFM), is pre-
sented that modifies continuum-based fracture mechanics; stress- and strain-
based QFM analogs are also proposed. The differentials in Griffith’s criterion
are substituted with finite differences; the implications are remarkable. Fracture
of tiny systems with a given geometry and type of loading occurs at ‘quantized’
stresses that are well predicted by QFM: strengths predicted by QFM are com-
pared with experimental results on carbon nanotubes, -SiC nanorods, a-SizNy
whiskers, and polysilicon thin films; and also with molecular mechanics/dynamics
simulation of fracture of carbon nanotubes and graphene with cracks and holes,
and statistical mechanics-based simulations on fracture of two-dimensional spring
networks. QFM is self-consistent, agreeing to first-order with linear elastic frac-
ture mechanics (LEFM), and to second-order with non-linear fracture mechanics
(NLFM). For vanishing crack length QFM predicts a finite ideal strength in
agreement with Orowan’s prediction. In contrast to LEFM, QFM has no restric-
tions on treating defect size and shape. The different fracture Modes (opening I,
sliding II and tearing III), and the stability of the fracture propagations, are
treated in a simple way.

§1. INTRODUCTION

The phenomenon of fracture is of great interest. Two classic treatments are
Griffith’s criterion (1920), an energy-based method, and a method based on the
stress-intensity factor (Westergaard 1939); these present a well-known paradox. For
a linear elastic structural element containing a crack of infinitesimal length, both these
methods of continuum-based linear elastic fracture mechanics (LEFM), shown to be
equivalent (Irwin 1957), incorrectly predict an infinite load at failure. Conversely from
elasticity, a singularity in the stress field at the crack tip (Westergaard 1939) is deri-
ved also for infinitesimal crack length; combined with the classical assumption
that failure occurs when the maximum stress equals or exceeds the material strength,
failure must occur at the physically unreasonable zero load. We choose to modify
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fracture mechanics, by accounting for the discontinuous nature of matter at the
atomic scale. By substituting the differentials in Griffith’s criterion with finite differ-
ences, the paradoxes mentioned above are overcome, and a much more flexible theory,
without ad hoc assumptions, results. We call this analytic theory quantized frac-
ture mechanics (QFM) and show that QFM includes LEFM and NLFM as limiting
cases.

QFM is particularly relevant to the fracture of tiny structures, such as of nano-
tubes, nanowires, and nanoplates that play, and will play, a central role in nano-
technology applications.

§2. DERIVATION OF QFM

We assume a quantization of Griffith’s criterion to account for discrete crack
propagation, and thus in the continuum hypothesis, differentials are substituted
with finite differences, i.e. d—A. According to the principle of conservation of
energy, Griffith’s energy criterion implies a crack propagation when the variation
of the total potential energy dW, corresponding to a virtual increment of the crack
surface dA4, becomes equal to the energy spent to create the new free crack surface,
ie., dW+ G;cd4 =0, where G;c=2y;c is the fracture energy (per unit area created)
of the material. The factor of 2 accounts for the creation of two surfaces during crack
formation. The energy release rate is defined as G;=—dW/dA (where the derivation
is evaluated at constant displacement), and Griffith’s criterion is simply G;= Gy¢. If
the fracture equilibrium state is stable the crack cannot propagate by itself (unless
there were a change of loading, that is, the applied force or prescribed displacement).
If the fracture equilibrium state is unstable, the crack will propagate by itself without
any change of applied load or boundary displacement. The stability of the fracture
equilibrium can be evaluated by the sign of the second derivative of the energy at the
incipient crack propagation: if (d*W/dA%) is positive, the fracture equilibrium is
stable, if negative, unstable. It is well known that Griffith’s criterion (1920) is equiva-
lent to the stress-intensity factor-based criterion (Westergaard 1939) for brittle crack
propagation, if the stress-intensity K; and its critical value K;¢ (the fracture tough-
ness of the material) are assumed to be equal (Irwin 1957). According to LEFM (for
details, see Bazant and Cedolin 1991, Hellan 1985, Carpinteri 1997), G; = K7 /E',
with E' = E (for plane stress) or E’ = E/(1—v?) (for plane strain), where E is Young’s
modulus and v is Poisson’s ratio of the material. Because G;- = Kj-/E', the criterion
G;=Gc 1s equivalent to K;= K;c. Generalizing for opening (I), sliding (II), and
tearing (I1II) crack modes, from LEFM G = (K7/E') + (K3 /E) + (1 + v)/E)K7;.
LEFM is thus summarized as:

= —-dW/dA = G¢; (dG/dA). < 0 stable, if > 0 unstable, (LEFM) (1a)
K],]I,I]I = KI,]I,IIIC; (dKIZ,II,III/dA)C < 0 Stable, lf > O unstable (LEFM) (lb)

On the other hand, in QFM (d— A) equations (1) become:

G"'=—-AW/AA =G, (AG*/AA)q < 0 stable, if > 0 unstable (QFM) (2a)
. R A+AA
Ky = <K1,11ﬂ111>A = Ky 1111105

(AK;7.1/AA) <0 stable, if > 0 unstable (QFM) (2b)
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where (- j,”AAE (I/AA)j;HAA-dA. QFM assumes ‘dissipation energy’ in quanta
GcAA where AA is a virtual quantity that satisfies the condition that AA > 0.
Equations (1b) and (2b) are valid only for pure modes of crack propagation. For
mixed modes, equations (la) and (2a) can in principle be applied; the crack should
propagate in the direction (that at nanoscale could be quantized) that maximizes the
energy release rate G (LEFM; Wu 1978) or correspondingly G* (QFM).

Values for the stress intensity factors K,y are available (Murakami 1986) for
the most interesting cases. QFM involves simply evaluating K7 ;; ;;; according to
equation (2b), which also allows the stability of the process to be predicted. We
thus propose QFM as a useful method for studying the strength of solids containing
any shape or size defects. The hypothesis on which QFM is based is for discrete crack
propagation in a linear elastic continuum medium.

2.1. The stress analog of the energy-based QFM

To our knowledge, only Seweryn (1998) has proposed a discrete energy release
failure criterion. However, its mathematical formulation is completely different from
QFM and of difficult application, since it involves the integration of the product of
the complete (not only asymptotic) stress and displacement fields (which are a priori
unknown) at the tip of the considered defect. Seweryn notes in his ‘Concluding
Remarks’ that applying the non-local stress criterion is simpler for actual applica-
tions. The non-local stress criterion was introduced by Novozhilov (1969), who
proposed a discrete fracture criterion based on stresses. He gave the condition of
the brittle crack propagation in Mode I as:

o' = <a},(x)>g: oc (3a)

where o,(x) is the complete (not only asymptotic) stress field around the defect tip
(x=0), o¢ is the ideal strength of the material, and « is the fracture quantum. This
criterion can only be used if the complete expression of the stress-field, and not only
its asymptotic term, is known; but the complete expression is rarely known. Note
that this criterion could be extended for Modes II and III by replacing the normal
stress with the corresponding shearing stress. Novozhilov assumed the fracture
quantum to be the atomic spacing. We will show below, in the discussion of fracture
strength of thin polysilicon films with self-similar holes of different sizes, the impor-
tance of relaxing this restriction by Novozhilov. For these reasons, the QFM
approach of equations (2) is more powerful and at the same time, complementary
to equation (3a). Novozhilov’s approach, modified as stated (fracture quantum not
restricted to be the atomic spacing), can be considered the stress version of QFM.

2.2. The strain analog of the energy-based QF M
An equivalent strain-based criterion is formulated simply by replacing the stress
o in equation (3a) with the strain ¢, i.e.:

e = (e,(0))y= ec (3b)

The results of the discrete energy (QFM), stress- and strain-based criteria are in
general expected to be close, but not identical. QFM is in general easier to apply
because, as mentioned, LEFM provides the values of the stress-intensity factors for
an enormous number of cases (Murakami 1986). As an example, we will compare
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QFM, stress- and strain-based analogs and molecular dynamics simulations in
predicting the strength of nanotubes with holes.

§3. GRIFFITH’S CASE

Consider Griffith’s case of a linear elastic infinite plate in tension, of uniform
thickness ¢, with a crack of length 2/ orthogonal to the applied far field (crack
opening Mode I). The material is described by the fracture toughness K;- and
by the fracture quantum at the considered size-scale A4 =at. From LEFM,
K;(I) = o/nl, where o is the applied far field stress. According to LEFM the
crack will propagate when K; = K;¢; in contrast, for QFM the crack will propagate
when

. 1 I+a

The corresponding predictions for the failure strength of the plate are:

K
or_rerm(D) = \/_%’ (4a)

or () = K
~QFM it ad)

For a/(2]) -0 (i.e., large cracks) LEFM and QFM converge, whereas for a/(2/) - oo
(i.e., short cracks) they diverge. LEFM incorrectly predicts an infinite strength,
whereas QFM predicts a reasonable finite strength: assuming that at the atomic
scale the fracture quantum corresponds to the atomic size, the strength predicted by
QFM is identical to Orowan’s prediction (1948) if multiplied by a factor of /n/4.
(Note that the prediction of QFM for vanishing crack length corresponds to the
ideal strength of the material for the type of crack propagation analysed; see the
Appendix). We note that equation (4b) has been previously used, but only as an
empirical rule with a considered as a best fit parameter to achieve a good fit to
experimental data, for predicting the behavior of short cracks for brittle fracture
(Suo and Gong 1993) and fatigue (Haddad et al. 1980). This clearly shows that QFM
also well describes the deviations from LEFM that are experimentally observed in
brittle fracture and in fatigue growth of short cracks.

Note that the ‘Quasi’ or ‘Equivalent’ LEFM proposed by Irwin, which ‘a prior?’
considers an equivalent length of the crack (the real crack length plus the size of the
‘plastic zone’) is different from our approach (e.g., yields different predictions). In
addition, in contrast to QFM, ‘Irwin suggested (rather than provided a conclusive
argument)’ such an assumption (see Hellan 1985, p. 87).

For Griffith’s case, brittle crack propagation is predicted to be unstable for both
LEFM and QFM theories, ie., (dKi/dl). = Kjc/l > 0 and, (AK}*/a)e = Kic/
(I+a/2) > 0.

Extending the result of equation (4b) from sharp to blunt-cracks (Creager and
Paris 1967, Drory et al. 1995), we find an asymptotic correction (small tip radii; see
Appendix) in the following form:

B L +p/2a _  [1+p/2a
or(l,p) = chm = Ucm ®

(4b)
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where p is the tip radius and oc=o0, (/=0, p=0). Note that if the continuum
hypothesis is made (a/p, a/l—0), equation (5) yields practically the same result as
the classical tensional approach (maximum stress equal to material strength), for
which the stress concentration o¢c/oyis 1 + 2/T/p ~ 24/I/p (small radii) as given by
elasticity. On the other hand, equation (5) reduces to the correct prediction of QFM
for a sharp crack, equation (4b). Thus, equation (5) clarifies and quantifies in a very
simple manner the link between concentration and intensification factors. The result
is simple but surprising: it predicts a finite (in contrast with LEFM) strength that is
size-dependent (in contrast with the continuum tensional approach coupled with
elasticity) for geometrical self-similar defects in an infinite plate.

§4. QUANTIZED STRENGTH LEVELS

The fracture quantum, as suggested by equation (4b), is expected to be of the
order of 2K, /(no%), where o and K;¢ are the strength and the fracture toughness of
the material at the considered size scale, respectively. For nanostructures (vanishing
pre-existing defects), o should be the ideal strength and the fracture quantum is
expected to be close to the atomic size (distance between adjacent bonds that break
during crack propagation). The length of the defects should be an integer multiple of
the lattice spacing, assumed as a constant. We assume that this length is equal to the
fracture quantum «, and use this assumption to make predictions for the nanoscale.
Moreover, we assume defects are like blunt cracks (e.g., adjacent vacancies), so that
for an n-atom defect 2/~ na. The final assumption is that there are negligible inter-
actions between defect and boundary (short defect). With these hypotheses, we can
apply equation (5), and the strength is expected to be quantized as:

oy~ oc [14+3-(U+n)% 0> 0 (©)

This quantization should be experimentally detectable in nanostructures, for which a
small number for n (=1—10) should be realistic and when the number n of missing
atoms is small compared with the number of atoms of the resisting cross section area
adjacent to the crack (the ligament).

According to equation (6), for a linear chain of n removed atoms, 2p~a and
the quantized strengths are, o (n=0, p=0), 0.790¢ (n=1), 0.650¢c (n=2), 0.560¢
(n=3), and so on. Similar quantization is expected for different types of defects (e.g.,
with different values of p; see also section below on circular holes). This discussion
shows that a forbidden band exists, such that nanostructure strengths between oc
and ~0.80¢ should not be observed for vacancy defects. It should find use in asses-
sing whether the ideal strength has been observed by experiment and for evaluating
when 7 is small.

§5. QFM PREDICTED STRENGTHS COMPARED WITH EXPERIMENTAL VALUES

5.1. B-SiC nanorods
The theses of Sheehan (1998) and Wong (1998) report fracture bending strengths
(Table 1, first row) for B-SiC nanorods oriented along the [111] direction; the maxi-
mum fracture strength, 53.4+ 5.6 GPa was also published in (Wong et al. 1997),
and if we assume this is the ideal strength o, as suggested in the literature (Wong
et al. 1997); note that Weixue and Tzuchiang (1999) report a calculated value of
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Table 1. Clustering of experimental strength [GPa] of 8-SiC nanorods, a-Si;N4 whiskers and

MWCNTs.
B-SiC 534456 329+3.7 13.8+2.2,11.64+£29,10.2+2.1
a-SizNy 59 38 28 24 21 17
MWCNT 63 43 39.,37,37,35,34  28,26,24,24  21,20,20,19,18,18 12,11

Experiments on 3-SiC nanorods, ¢.-Si3N4 whiskers

and MWCNTs
O Quantized Levels
- 1 < Si3N4-59GPa
g A Si3N4-75GPa
es + SiC-53GPa
g2os8 Py X SiC-68GPa
n 2 =MWCNT-115GPa
°H 06 @ =) - MWCNT-104GPa
53 B 0O ©
0.2 T T T T T T T T 1
0 1 2 3 4 5 6 7 8
n

Figure 1. Quantized strength levels (observed fracture strength over ideal strength) from
experiments on B-SiC nanorods, «-SisN, whiskers and MWCNTs, and QFM pre-
dicted values.

oc =50.8 GPa for the [111] direction of B-SiC), QFM yields 30.8 GPa (equation (6),
n=2), close to the experimental value for the second highest strength measured
32.94+3.7GPa (note that equation (6) is valid also in bending, see Murakami
(1986), where the failure stress is the maximum stress of the part of the nanorod
in tension, and 7 is based on the quantized height of a small surface defect). The next
value, 13.8 £2.2GPa, can be interpreted by assigning n=4. On the other hand,
assuming 53.4 4 5.6 GPa as n=1, then 32.9+3.7GPa is best fit by n=4, and the
ideal strength (#=0) would be o0~ 68+ 7.2 GPa (we have simply multiplied the
quoted error of +5.6 GPa by the same scaling factor of 68/53). The results are
summarized in figure 1 for the two different hypotheses (8-SiC: 53 GPa =0, and
68 GPa=o0(). Fracture resulted from bending in these experiments (Wong et al.
1997). The probability of observing the ideal strength in bending might be greater
than in pure tensile loading experiments. For bending, the volume near the clamp
(where the stresses are highest) is only a small fraction of the total specimen volume.

5.2. a-Si3N, whiskers

Experimental fracture strengths of o — Si3sN, whiskers varying in diameter from
0.34 to 0.55um are reported by Iwanaga and Kawai (1998; Table 1, second row).
Lengths were not provided in that paper (Iwanaga and Kawai 1998), but elsewhere
the authors (Iwanaga and Kawai 2004, private communication) report that the
typical lengths of the whiskers measured were about 1-2 mm; these o — Si3sN, whis-
kers thus contained ~10'* atoms. The observed maximum value was 59 GPa. The
direction of growth for the tested whiskers was stated to be [1011]; 59 GPa can be
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compared with recently calculated ideal strength values along similar (but not
identical) crystal directions, which lie in the range of 51-60 GPa (Ogata et al.
2004); a recently calculated value for the ideal strength for loading along the
[1011] direction using identical methods to that of the previous reference, is
54 GPa (Ogata, private communication).

Assuming the highest experimental value of 59 GPa as the ideal strength; 38 GPa
is well fit for n=2 and 28 GPa would correspond to n=4 (see table 1). If 59 GPa
corresponds to n=1, the ideal strength (n=0) would be close to 75 GPa; 38 GPa
would correspond to n=4, and 28 GPa to n=_8. The results are summarized in
figure 1 for the two different hypotheses (¢-SizNy: 59 GPa=0¢ and 75 GPa=o0().

5.3. Carbon nanotubes

Tensile-loading experiments on the outer shell of multi-walled carbon nanotubes
(MWCNTS) (Yu et al. 2000) show distinct clusters about a series of decreasing values
of strength, with the maximum 63 GPa, and the other values ‘quantized’ at 43, 36—
37, 25-26, 19-20 and 11-12 GPa (table 1, third row). As mentioned above, recent
density functional theory (DFT) calculated values of ideal strength (Weixue and
Tzuchiang 1999, Ogata et al. 2004) are close to the highest experimental strengths
reported for B-SiC nanorods and «-SizN4 whiskers. We distinguish the current
dataset for experimental fracture strengths (Yu ez al. 2000) of carbon nanotubes
(CNTs) because 63 GPa is not in agreement with the ideal tensile strength of small
diameter CNTs recently obtained with density functional theory. The tensile strength
of an (8,8), thus armchair, CNT was calculated to be 114.6 GPa; calculated tensile
strengths of 107.5, 109.0 and 107.4 GPa, respectively, were reported (Ogata and
Shibutani, 2003) for three zig-zag CNTs: (8,0), (9,0) and (10,0). Another group
has calculated the tensile strength of the (8,8) CNT and the (14,0) zig-zag CNT
(23); these two CNTs have close to the same diameter, namely 1.09 nm (8,8) and
1.10 nm (14,0). The authors presented curves of the loading force versus tensile strain
(Umeno et al. 2003); we used the maximum force quoted, namely 122 nN (8,8) and
128 nN (14,0); with the assumption of a 0.34-nm shell width, these correspond to
tensile strengths of 104 GPa (8.,8) and 110 GPa (14,0). We have simply used the two
values of 115 and 104 GPa (the tensile strength values obtained by Ogata and
Shibutani (2003) and Umeno et al. (2003) for the (8,8) CNT) as example tensile
strengths of a defect-free CNT, in the analysis below. We note that the outer shell
chiral angle was unknown for the 19 MWCNTs whose fracture strength was mea-
sured (Yu et al. 2000). With 115 (104) GPa for o the measured value of 63 GPa is fit
with n=3 (n=2) and the next highest experimental value of 43 GPa is fit with n=28
(n=16), as summarized in figure | (MWCNT 115 GPa =0 and 104 GPa =0 ). Note
that these 19 outer shells, of different dimensions, were composed of between 4 and
54 million atoms. From comparison with the recent DFT and tight-binding calcula-
tions, it appears that none of the 19 MWCNTs had defect-free outer shells.

We therefore turn to comparison of QFM predicted strengths with a molecular
mechanics (MM) simulation of large-diameter CNT fracture strengths where known
defects were introduced, as well as comparison with molecular dynamics (MD)
models of graphene sheet fracture strength as a function of an introduced crack
in the side of the sheet. We also compare with a statistical mechanics treatment of
fracture of one other type of two-dimensional sheet, a two-dimensional triangular
lattice of springs. In these three cases one knows the defect type for treating
with QFM.
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§6. QFM PREDICTED STRENGTHS COMPARED WITH MOLECULAR MECHANICS
OF CNT, MOLECULAR DYNAMICS OF GRAPHENE, AND STATISTICAL
MECHANICS OF 2-D SPRING LATTICES

6.1. MM of CNT

It has been argued that the experimental fracture strengths of the outer shell
of MWCNTs (Yu et al. 2000) discussed above are well understood through MM
analysis (Belytschko et al. 2002), which we here compare with QFM.

The simulations (Belytschko et al. 2002; MM, 0K) on a large diameter zig-zag
(80,0) CNT, which has a diameter of 6.3 nm, treated the reduction in strength due to
missing pairs of carbon atoms. In the simulations, an n-atom defect was created by
removing 7 adjacent atoms along the circumference of the nanotube; two-, four-, six-
and eight-atom defects were treated. The comparison between these MM simulations
and equation (6) is summarized in table 2: the MM-calculated strengths clearly
follow the (1+n)""? dependence predicted by QFM. (The same quantized trend
was reflected in the critical strains.) This suggests identifying the fracture quantum
with the distance between two adjacent bonds, i.c., a & \/§r0, with rp~1.42 A, for
the more likely (Appendix) ‘zig-zag’ fracture. The comparison using QFM, equation
(6), is appropriate because of the large diameter of the experimentally investigated
(Yu et al. 2000) and numerically modelled (Belytschko er al. 2002) nanotubes; the
ratio between crack and circumferential lengths can be considered as negligible. We
have noted the close fit to a (1 + n)*l/2 dependence; this is the fit, of course, for two-,
four-, six- and eight-atom defects, with oc+/1 + p/2a = 111 GPa. For the value of
the ideal strength calculated in (Belytschko e al. 2002), o =93.5 GPa, equation (6)
gives the reasonable value of p~0.8a~2.0 A.

Treating these adjacent vacancies as sharp short cracks, we can also compare our
predictions with the Griffith-Inglis short crack theory, described by Weertman (1986,
1996). Details are given in the Appendix. The comparison is reported in table 2,
showing an interesting agreement.

6.2. MD of grapheme

We next consider MD simulation of a cracked graphene sheet of width 9.63 nm
and with four adjacent atoms missing, which resulted in a calculated failure of
52 GPa (Belytschko and Xiao 2003). By using the QFM strength values from the
analysis on CNTs presented above (a relevant comparison with a graphene sheet
because of the large diameter CNTs experimentally measured (Yu et al. 2000)
and also treated by MM (Belytschko et al. 2002), from equation (6) we estimate
n& (%)2—1 ~ 4 (evaluated as ‘the nearest integer’) identical to the number of
atoms removed in the simulation. Conversely, oy(n=4)~ 111/ V5 ~ 50 GPa,

Table 2. Comparison between molecular mechanics (MM) simulations, theoretical QFM
predictions (equation (6)) and Griffith—Inglis short crack theory (GI), for the
strength (GPa) of nanotubes with blunt-cracks (adjacent vacancies of n atoms).

n-atom defect 2 4 6 8
MM 64.1 50.3 42.1 36.9
QFM 64.1 49.6 42.0 37.0

GI 67.9 51.7 43:3 37.9




Quantized fracture mechanics 2837

close to 52 GPa. This example again shows that the fracture quantum is expected to
be close to the ‘straight line’ distance between two atoms, a = ~/3ry.

6.3. Two-dimensional spring lattices

The influence of one-, two- and three-adjacent vacancies in a two-dimensional
triangular Lennard—Jones crystal was investigated by using a statistical-mechanics
formulation (Selinger ez al. 1991); the results for the strength at 0 K were 0.78, 0.69
and 0.62 of the defect-free strength, respectively. The authors noted that they
expected these values to become somewhat larger with increasing temperature.
By equation (6) a good fit is again given by the plausible value of p~ 0.8 a: 0.83,
0.69 and 0.59. In another treatment (Beale and Srolovitz 1987), that considered a
two-dimensional triangular lattice with harmonic springs, the strength due to one
vacancy in a two-dimensional lattice was estimated as ~0.8 the ideal strength.
A reduction factor of 0.77 is again found in Hashimoto (1999) in which tight binding
molecular dynamics was used to model the uniaxial tensile strength of diamond with
one vacancy. Equation (6) thus represents the asymptotic behaviour in which as
n— 0 the ideal strength is approached, if vacancies are assumed as the defect. The
detailed statistical mechanics treatment (Selinger et al. 1991) of the influence of
defects on strength thus agrees with QFM. Note that by simply assuming 2p~a,
as in the section on quantized strength levels, the predicted strength scaling factors
are, respectively, 0.79, 0.65 and 0.56 (and so on, see figure 2).

We now turn to discussing a classic problem in mechanics, that of a hole in a
plate. We show that QFM can well treat recent experimental data on small circular
holes in polysilicon thin films.

§7. CIRCULAR HOLES
As an example of comparison between QFM and its stress- and strain-based
analogs, we derive the strength o, of an infinite plate with a circular hole of radius
0, a classical problem in mechanics.

0.8 - Quantized
Strength Levels
and
0.6 - Forbidden bands
0.4

"

Figure 2. Example of quantized strength levels (fracture strength over ideal strength) and
forbidden bands (n-atom defects, 2p~a, equation (6)). Similar quantization is
expected for different defect geometries.
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QFM can be casily applied considering the expression of the stress-intensity
factor at the tip of a crack emanating from a hole in a direction perpendicular to
the far field stress (Tada et al. 1985), and then integrating according to equation (2b).
On the other hand, starting from the expression of the stress-field around the hole
(Kirsch 1898; see Carpinteri 1997), we find the predictions according to the strain-
based QFM analog of equation (3b) (see Appendix) as:

o = 200/{1 — v+ (0" = P2/ + D) + )
+ ((1 — 00" + 1)3)(1 + )+ 4 (0" + 1)+ pF — 3vp*> cos 219},

pr=" ©)

where 9 is the angle describing the direction of the crack propagation with respect to
the direction perpendicular to the far field. Equation (7) can be used to predict the
strength of graphene sheet or ‘large’ nanotubes with pinhole defects. Usually ¢ = 0,
but for a chiral nanotube ¢ represents the chiral angle, the direction of the broken
bonds (see Appendix for details) and v is Poisson’s ratio. The predictions according
to the stress-based QFM analog can be obtained applying equation (3a). The result is
formally equal to equation (7) in which v=0 (here we assume plane stress and, by
definition, ec=0¢/E, where E is Young’s modulus; for plane strain E— E/(1—1%),
v— 1/(1—v)). Below we compare QFM results with experimental results on micron-
scale holes in polysilicon thin films, and also with recent MM and MD simulations of
nanotubes with nanometer-scale holes.

The quantization yields the interesting result previously discussed: the strength is
a function of the radius of the hole p and becomes equal to the classical case of o/3
only by assuming the continuum hypothesis (a/p — 0, i.e., p* — o0, ¥ = v = 0). For
p* — 0 the hole is predicted to have no effect on the strength. Note that at small
scale, we expect a minimum value for p*~ 1/2, which corresponds to one vacancy
and to a reduction of the strength by a factor of ~0.7 (this prediction is slightly
different than that of 0.8 mentioned above, since they are based on different criteria).

7.1. Experiments on polysilicon thin films with holes

Chasiotis and Knauss (2003) present results on micro-testing experiments for
different notch radii in polysilicon thin films. For circular holes of radii 1, 2, 3
and 8 um, strength reductions, respectively, of 0.69, 0.63, 0.66, and 0.45 were
measured. Noting that for polysilicon (at the considered size-scale) o-~0.85 GPa,
K¢ ~ 1.5 MPa/m (Chasiotis and Knauss 2003), we expect a ~ 2K12C/(TEU%) A 2 um,
clearly different from the value at nanoscale. For example, with equation (7) with
9 = v =0, for circular holes of radii 1, 2, 3 and 8 um, reductions, respectively, of
0.71, 0.59, 0.53 and 0.42, are obtained. The agreement is reasonably good (although
the 0.66 reduction for the 3-um hole is off the expected trend) and shows how the
classical prediction of o /3 is clearly violated.

Similar experimental results are discussed in a recent paper (Bagdahn et a/. 2003).
The fracture strengths of polysilicon thin films with and without holes of radius
2.5um for two different film widths (20 and 50 um) were measured; deviations
from the classical value, o/3, were found (note that for these finite plates, o/3.23
is expected from finite element analysis for the 20-um width, and o/3.04 for the
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50-pm width) (Bagdahn et al. 2003). In particular, we focus attention on the average
values (the distribution of strengths follows a classical Weibull distribution) reported
(Bagdahn et al. 2003), and obtain a ratio for the experimental strength of the films
with and without the hole of 0.54 (20-um width) and 0.69 (50-um width); from
equation (7) (a~2pum, ¥ = v = 0) we obtain 0.56.

This comparison emphasizes that at larger size scales a larger fracture quantum is
expected, so that a much smaller hole would have little effect on the strength (here, a
vacancy practically does not reduce the strength!); the reason is that at larger scales
the materials typically have other larger defects besides the much smaller hole and
such pre-existing defects are more critical than the investigated hole.

7.2. MD simulations of carbon nanotubes with pinhole defects

A further example is the strength of defective nanotubes with holes. Holes might
be more stable than crack-like defects at the nanoscale. Nanotubes with “pinhole”
defects, involving removal of 6 (defect m = 1) or 24 (defect m =2) carbon atoms have
been recently investigated in a (10,10) nanotube by MD simulation (Hirai et al.
2003). We estimate the radius of curvature of each hole as p,, ~ (2m — 1)r,. Since
the ratio 2p,,/nD, with D nanotube diameter, is small (0.09 and 0.18 respectively for
pinhole defects m =1 and m =2 in a (10,10) nanotube), we treat the nanotube as an
infinite graphene sheet.

We also investigate larger values of m, where the next larger hole is generated
from the previous one by removing the “next perimeter” of carbon atoms (m =3, 56
atoms removed; m=4, 96 atoms removed; m=15, 150 atoms removed; m =26, 216
atoms removed). Quantum mechanical calculations using DFT, semi-empirical
quantum mechanical methods, and MM calculations, have recently been performed
(Mielke et al. 2004) on much larger nanotubes, such as the (50, 0) and (100, 0) zig-zag
tubes, with m = 1-6 holes (thus the ratio 2p,,/nD remains relatively small also for the
m=3,4,5, and 6 cases for these larger nanotubes). Applying QFM and its stress and
strain analogs and using the value of a &~ +/3r, previously deduced yields the results
reported in Table 3; there is close agreement with the MM calculations on nanotubes
by Mielke et al. (2004). Even though there is reasonable agreement for the numeri-
cally computed strength reductions of 0.80 (m=1) and 0.55 (m =2) for the (10, 10)
nanotube by (Hirai ez a/. 2003) in our opinion these numerical results, which include

Table 3. Predicted reductions in strength of nanotubes for the presence of pinholes defects
(defect m=1, 6 atoms removed, m =2, 24 atoms; m=23,56 atoms; m =4, 96 atoms;
m=>5, 150 atoms; m=6, 216 atoms). Comparison between QFM, stress- and strain-
based QFM analogs and molecular mechanics (MM) calculations on (50,0) and
(100,0) zig-zag nanotubes (o~ 89 GPa).

QFM MM calculations

stress-analog QFM QFM on nanotubes

(strain-analog  strain-analog  strain-analog
oloc QFM with v=0) (v=-0.5) (v=+0.5) (50,0) (100,0)
m=1 0.68 0.69 0.63 0.76 0.64 0.65
m=2 0.48 0.51 0.47 0.55 0.51 0.53
m=3 0.42 0.45 0.42 0.48 0.44 0.47
m=4 0.39 0.42 0.40 0.44 0.40 0.43
m=>5 0.37 0.40 0.39 0.42 0.37 0.41
m==6 0.36 0.39 0.38 0.40 0.34 0.39
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a calculated ideal strength of ~300 GPa, do not consider an important factor. The
very large computed ideal strength (as compared to the DFT calculated values of
~110 GPa (Ogata and Shibutani 2003, Umeno et al. 2003) suggests that there was a
problem in the cut-off of the Brenner potential used (as has been discussed by
Belytschko et al. (2002)). Thus, we consider as more relevant the comparison with
the MM calculations by Mielke et al. (2004).

Finally, we note that in the paper by Mielke et al. (2004), strength reductions due
to one atomic vacancy by factors of 0.81 for (10, 0) and 0.74 for (5, 5) nanotubes are
close to our QFM-based prediction of 0.79.

7.3. Experiments on carbon nanotubes

We note that if one assumes an ideal strength of 115 GPa (as computed by DFT
simulation (Ogata and Shibutani 2003) for the (8,8) nanotube) for the 20 to 40 nm
diameter MWCNTs experimentally investigated (Yu et al. 2000) the corresponding
strength (equation (7), ¥ = v = 0) for a pinhole m = 2 defect is 59 GPa (measured
value of 63 GPa, Table 1) and for an m = 8§ defect is 43 GPa (measured value of
43 GPa, Table 1). This could represent another plausible scenario compared to the
assumed linear defects that were previously treated by MM (Belytschko et al. 2002)
and discussed above in Section 6.1. Indeed, Mielke et al. (2004) have pointed out the
likelihood of large holes in the outer shells of the MWCNTs for which 19 experi-
mental strength values (Yu et al. 2000) were obtained, based on the oxidation treat-
ment used to remove extraneous carbonaceous material from the samples.

§8. LEFM AND NLFM As LIMIT CASES OF QFM
We show here that LEFM and NLFM are limit cases of QFM. In NLFM the
material property G¢ is replaced by an ad hoc resistance R (known as the R-curve)
that increases, tending to G¢, by increasing the crack length. NLFM can be sum-
marized as (for details see Hellan 1985):

= —-dW/dA = R; (dG/dA)-—(dR/dA)-< O stable, if > 0 unstable (NLFM)
®)

(Dynamic crack propagation is characterized by an excess of energy G—R, which is
converted into kinetic energy.) Combining the conditions for crack propagation
in equation (2a) and equation (8), it follows that R=Gc+ AW/AA—-dW/dA.
Applying the operator A/AA to the previous equation, it is clear that the conditions
for stability in equation (2a) and equation (8) are equivalent if AG/A4=dG/dA4 and
AR/AA=dR/dA. It corresponds to a second-order expansion of W, i.e., AW=(dW/
dA)AA + (1/2)(d*W/dA*)(AA)>. Consequently, equation (2a) corresponds to equa-
tion (1) (first-order approximation of QFM; QFM — LEFM), and to equation (8)
(second-order approximation of QFM; QFM — NLFM), so that R~ G-+ (1/2)x
(d*W/dA%)cAA. For example, applying the previous equation to the Griffith’s case
we find R = G¢/(1 + a/2[), exactly of the expected form. The classical limit of applic-
ability of the R-curve in the NLFM treatment is that the R-curve is found as a
function of the structure’s geometry and not as a material property (see Bazant
and Cedolin 1991); until now, it has been considered an experimental parameter.
In contrast, QFM clarifies and quantifies in a very simple way the meaning of the
R-curve.
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§9. CONCLUDING REMARKS

A new energy-based theory of fracture mechanics involving a modification of the
well known continuum-based model has been developed that properly accounts for
the discrete nature of matter (or energy release). The proposed quantized fracture
mechanics (QFM) of equations (2) is self-consistent, and yields in its first-order
approximation linear elastic fracture mechanics (LEFM) and in its second-order
approximation non-linear fracture mechanics (NLFM). The predictions of LEFM
and QFM were shown to converge for large sharp cracks, while for short cracks they
diverge and only QFM correctly gives Orowan’s estimate. In contrast to LEFM,
which is applicable only to large sharp cracks, QFM can treat any defect shape and
size. The condition for brittle crack propagation as well the stability of the process,
can be evaluated for different structures, crack geometries, and modes of propaga-
tion. The application of QFM is extremely simple, allowing the prediction of the
strength for any crack geometry through available stress-intensity factors that have
been catalogued (Murakami 1986, Tada et al. 1985; i.e., an enormous number of
cases). Stress- and strain-based QFM analogs have been also proposed and some
examples of applications presented. Experimental results and numerical simula-
tions for nanoscale structures agree well with QFM and its stress- and strain-based
analogs.

The concept of forbidden bands for quantized strength was introduced, and
should serve as a measure of whether experimental values include those close to
the ideal strength.

ACKNOWLEDGEMENTS

The authors would like to thank S. Mielke, S. Zhang, D. Troya, G. Schatz, T.
Belytschko, J. Achenbach, J. Weertman, B. Crist, A. Carpinteri and P. Cornetti, for
many insightful discussions and A. L. Ruoff for critically reading and commenting
on the manuscript prior to submission. RSR appreciates support from the NSF
grant no. 0200797 “Mechanics of Nanoropes” (Ken Chong and Oscar Dillon, pro-
gram managers), from the Office of Naval Research grant no. N00014-02-1-0870
“Mechanics of Nanostructures” (Mark Spector and John Pazik, program managers)
and from the NASA University Research, Engineering and Technology Institute on
Bio Inspired Materials (BIMat) under award No. NCC-1-02037 (Jeff Jordan, pro-
gram manager).

APPENDIX A

§AL. Ideal strength

Note that the prediction of QFM, for vanishing crack length, corresponds to the
ideal strength of the material for the crack propagation analysed. Changing the
crack propagation analysed (e.g., edge crack in a finite plate versus the Griffith’s
case of an (interior) crack in an infinite plate) leads to slightly different values for the
‘ideal strength’. For an edge crack in a finite plate the QFM strength is 1.12 times
smaller than the predicted QFM strength for the interior crack in an infinite plate
(Murakami 1986). This shows that the strength, in the limiting case of vanishing
defect size, cannot be considered (by QFM) separately from the analysed structure.
It is plausible (certainly from an engineering perspective!) to assign the ‘engineering
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strength of the defect-free structure’ as the smallest value resulting from analysis of
the possible crack propagations leading to fracture (e.g., for a finite plate the crack
would be likely to start from an edge, thus at a strength level 1.12 times smaller than
as predicted by equation (4b)).

From equation (4b) the fracture quantum is expected to be of the order of
a~ 2K,2C /(nazc) (neglecting the corrections, e.g., the factor 1.12 for a finite plate),
where o¢ is the strength of the material (without pre-existing defects) at the con-
sidered size scale (at atomic scale, where the pre-existing defects vanish o represents
the ideal strength of the material). Thus the fracture quantum typically becomes
larger at larger size scale. Note that the fracture quantum at larger scale sizes
could be several orders of magnitude larger than the atomic size (if definable),
so that a ‘finite crack extension’ might be a more appropriate terminology than
‘fracture quantization’. (Of course, one of the goals of nanotechnology is to create
defect-free materials even at large length scale.)

§A2. Blunt cracks

We apply equation (3a) to predict the strength of nanostructures containing
defects like chains of removed atoms, more similar to blunt-cracks (involving an
atom removal, i.e., adjacent vacancies) rather than to ideal sharp nano-cracks
(broken bonds, which we, and others schooled in ab initio calculations (Mielke
et al. 2004), find to be less likely). Defects such as holes are also investigated (section
V below).

For a blunt notch the asymptotic stress field around the tip (Creager and Paris
1967) is

() = j;ft_x(l )

where the origin of the reference system is in the middle between the tip and the
center of the circular blunt notch, so that x> p/2, where p is the root notch radius
and K] is the corresponding stress-intensity factor (the ‘prime’ distinguishes the case
of a sharp crack). Applying equation (3a) and comparing the result with its limiting
case of a sharp crack (p/a=0,K; = K;-) gives the asymptotic correction Kj- ~
Vv 1+ (p/2a) K;c of the critical stress-intensity factor due to the presence of the
blunting (for not too large values of p/a, since this analysis neglects the far field
with respect to the asymptotic one). As a limit case, we can consider the correction
derived in (Drory et al. 1995) starting from the form of o,(x) and noting that
X >,O/2, i.e., K;C ~ ch/z.

The derived correction for the critical value of the stress-intensity factor, can be
applied also for the study of nano-defects of general shape. If the profile of a defect is
described by a function y(x), the radius of the blunt is p = (1 + (v/)*)*?/), where the
primes represent the derivation with respect to x (orthogonal to the applied stress).
For example, for an ellipse having half-axes of length / (orthogonal to o) and ¢, the
radius of the blunt is p=/*/l. In addition, since 0,(X) X 0 + 045(X), assuming an
infinite plate, K; = o+/n/, and evaluating the stress concentration at the tip of an
elliptical hole, gives o,(x = p/2, K)=onl p= t2/l) = o(1 4 21/t), thus the correct
value from Elasticity.
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§A3. Zig-zag and armchair fracture

Even if it is clear that the fracture toughness tends to decrease with decreasing
specimen size, we note that to match MM simulations (Belytschko et al. 2002) with
equation (5), a low value of fracture toughness of K;- ~2MPa,/m for a ‘zig-zag’
crack has to be assumed. A simple estimation of the fracture toughness could be
obtained considering the bond dissociation energy from the Brenner potential
(124 kcal/mole of C—C bonds), yielding y ~4.46 N/m. Defining a ‘straight line’ for
the edge, this value has to be multiplied by the factor 2/+/3 for zig-zag cracks or by
the factor 4/2 for armchair cracks, so that y“# ~ 2/+/3y and y“~ 4/3y, respectively.
Simply considering these values to evaluate the stress-intensity factor in Mode I as
yic (or in general y; ;7 e, since we expect that the fracture toughness for the
different crack propagation Modes I, II and III tend to coincide at nanoscale), yields
respectively K7 ~ 3.21 MPay/m and Kji¢ ~ 3.45MPay/m (E~ 1 TPa).

For a zig-zag crack ¢ = a, whereas for an armchair crack ¢ ~ /3/24, since
the ratio of the strength corresponding to zig-zag and armchair cracks

UZZN 1 y?2aAC
oAC " cos 9\ yACaZZ

is larger than 1 for each ¥ < /6, zig-zag cracks are more likely than armchair
cracks, as numerically observed (Belytschko et al. 2002) in both zig-zag and arm-
chair, as well as chiral, nanotubes. The case of ¢ < ©/6 corresponds theoretically to
07%)o1€ ~ 1, even if practically a small perturbation should lead to a ‘zig-zag’ crack.

Thus for a ‘chiral’ nanotube, we expect a zig-zag fracture, and consequently
higher values of strength than for the zig-zag tubes, due to the reduction of the
component of the external force acting on the bonds. Roughly, the ratio between
the stress acting on the breaking bonds and the applied external stress should be
close to cos(##), where ¥ is the chiral angle (note that considering the tensor nature of
the stress cos(9%) would appear instead of cos(d). Equation (7) agrees with this tensor
nature of the stress, i.e., oy(p =v=0)=o0¢/ cos*(9), with o¢ the strength of the
bonds). The expected larger strength of chiral vs. zig-zag nanotubes agrees with MM
and MD simulations (Belytschko er al. 2002). For example, for a zig-zag nanotube
(9 = 0) a strength of 93.5 GPa was computed, whereas for an armchair nanotube
(9 = n/6) 112 GPa was obtained (and for a chiral (16, 8) nanotube an intermediate
value of 106 GPa was computed). The ratio 93.5/112 is equal to 0.83, between
cos’n/6=0.75 and cosm/6~0.87. Note that the same trend was numerically
observed in (Ogata and Shibutani 2003).

§A4. Griffith—Inglis short crack theory
According to the Griffith—Inglis short crack theory (see Weertman 1996, 1986),
the prediction for the failure stress of a structure containing sharp short cracks is

_2O'C 1 —TCG(SC
KA (e"p(4<1—v>acl)>’

where G and v are respectively the shear elastic modulus and Poisson’s ratio (that
formally has to be set equal to zero for Mode III crack propagation) and 3¢ is the
critical tip displacement (on which the method is based). From Belytschko ef al.
(2002) 0=93.5GPa and E~ 0.8 TPa; since for nanotubes v~0.2, G~0.333 TPa.
Using 8- as a best fit parameter, we have §c~a/4 (a reasonable value); the



2844 N. M. Pugno and R. S. Ruoff

corresponding predictions for the strength of nanotubes with short cracks of
length 2/~ 2a,4a,6a,8a are reported in table 2 and compared with QFM and
MM simulations.

§AS. Circular holes
The stress near a hole of radius p (center at x, y = 0) in an infinite plate subjected
to a remote stress field o is (Kirsch 1898; see Carpinteri 1997)

2 4 2
P o 14 4

2 4
(o2
00:2(1—1—':—2) +§<1~|—3f—4> cos 2¢

(the shearing stress does not affect our predictions). Assuming isotropic linear elastic
constitutive laws and applying equation (3b) by integration, we obtain the result of
equation (7), that gives the ratio between the strength o of the element with a hole,
with dimensionless radius p* = p/a, and the ideal strength of the element (i.e., the
strength of the element without the hole). On the other hand, applying equation (3a)
we obtain the result of equation (7) if v— 0. Assuming v = ¢ = 0, three limit cases
are interesting: (i) for p*— 0, o/oc— 1; (ii) for p* — 00, 0/oc—> 1/3 (case of elasti-
city and classical tensional criterion, that assumes the continuum hypothesis, i.e.,
a— 0); for p* — 1/2 (one vacancy in an ideal two-dimensional lattice), o/oc— 0.71.

o, =

8| Q

I Q
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