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ABSTRACT This paper concerns the quantized H∞ feedback control problem for a class of semi-Markov

jump systems with limited mode information. In networked control loop, the network-induced phenomenon

limits the accuracy of the signal transmission. The mode of the jump system is thus hardly synchronized

with the mode of the designed controller. To well address this asynchronous scenario, we introduce a hidden

semi-Markov model to quantitatively describe its degree by setting a conditional probability, which further

is assumed to be not completely known considering the sensor or measurement approach limitations. The

control signal is to be quantized by a logarithmic quantizer before being transmitted to the actuator. Under the

framework of Lyapunov theorem, sufficient conditions are presented by linear matrix inequality techniques

to eliminated the quantization effects and ensure the stability of the closed loop systemwith a prescribedH∞
performance. The parameterization scheme of the quantized feedback controller is finally given. A numerical

example is presented in the end to illustrate the validity of the proposed results.

INDEX TERMS Continuous-time semi-Markov system, limited mode information, quantized feedback

controller.

I. INTRODUCTION

Semi-Markov jump system (SMJS) has received constant

research attention in recent years in modeling systems with

abrupt changes or other stochastic features. It is character-

ized by a semi-Markov process as the switching law which

governs the system’s dynamic variation in a collection of sub-

systems or modes. It differs with the traditional Markov jump

system by introducing a more general distribution function in

describing the transition property, thus eliminating the appli-

cation restrictions of Markov jump systems. To date much

progress has beenmade on the foundmental control and filter-

ing theory, such as stability analysis and stabilization [1]–[4],

output feedback control [5], [6], observer-based control [7],

consensus problem [8] and so on. The methodology is then

extended to be applied in dealing with synchronization prob-

lem for complex networks [9], communication networked

model [10], fault detection problem [11]. Further research
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is still of great interest to solve problems emerged in semi-

Markov jump systems.

In the networked background, the control problems for

SMJS with network-induced disturbances have been attrac-

tive in recent years. Similar to the case of Markov jump

system, the critical one is the control with limited mode

information. When designing controllers, we have difficul-

ties in accessing the accurate mode of the system since

there are time delays, packet dropouts, signal fadings in

the transmission channel [12], [13]. One of the effective

way is to design mode-independent controller [14]. But it

brings conservatism since the available mode information

is discarded. A non-homogenous Markov model trying to

take fully use of the available mode information has been put

forward in [15] based on which the l2 − l∞ filtering problem

has been well analyzed. Remarkably in [16]–[20], a hidden

Markov model based detector approach has proposed and

successfully quantified this mismatched problem. Since then

many relevant results have been reported in the literature. But

it should be noted that when designing controllers or estima-

tors by the hidden Markov model using detector approach,
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the conditional probability may not be fully accessible either.

since it is the core mechanism, it is of significant to consider

this kind of limited mode information concerning the desired

controller. On the other hand, it often costs much and is

time consuming in practice to obtain the transition rates

or probabilities of jump systems, especially in networked

environment, which poses another limitations in applying

semi-Markov jump system in networked control area. For

continuous semi-Makrov jump systems, the limited mode

information problem, including the asynchronous one and

the unknown one, has been rarely discussed as well as its

applications in network control area, which motivates our

present study.

On the other hand, due to the fact that the transmission rate

is constrained in the transmission channel, the control signal

is to be quantized before transmitted into the actuator. Conse-

quently the quantized feedback problem becomes interesting

in many kinds of control systems [21]–[25]. Early in the work

[26], the static quantized feedback problem has been well

addressed using a sector bound approach and a robust con-

trol performance has been achieved. Following this, in [27],

the quantized stabilization problem has been considered for

Markov jump systems. When dynamic uniform quantizer

is employed, the authors in [22] has discussed the relevant

sliding mode control problem and made a detailed compar-

ison with the static logarithmic quantizer case. Further in

[28], the multi-path quantization problem with the dynamic

uniform quantizer has been addressed and LMI approaches

have been proposed. A new quantization structure based on

the dynamic uniform quantizer but outperforming it has been

designed and applied in [29], [30]. More interesting results

can be found in [6], [21] and the references therein.

In this paper, the quantized H∞ control problem is inves-

tigated for a class of SMJS with limited mode information.

Due to network-induced disturbances, the mode information

of the system will become incomplete after going through the

transmission channel. To well address this scenario, we intro-

duce a virtue mode detector based on a hidden semi-Markov

model, and the conditional probability is assumed to be not

known completely. This mechanism is integrated into the

final design scheme of the quantized controller. Sufficient

conditions ensuring the stochastic stability and a predefined

H∞ noise attenuation level are presented by linear matrix

inequality approach. The proposed algorithm is validated by

a numerical example in the end.

Notations:This paper uses standard notations except where

otherwise stated. All dimensions of the matrices used in the

content are assumed to be compatible for algebraic operations

except where otherwise explicitly stated.

II. PRELIMINARIES AND PROBLEM FORMULATION

We are concerned in this paper with the following controlled

continuous-time system described by

S :
{

ẋ(t) = A(rt )x(t) + C(rt )w(t) + B(rt )u(t)

z(t) = E(rt )x(t) + D(rt )w(t) + L(rt )u(t)
(1)

where x(t) ∈ Rnx denotes the state vector and z(t) ∈ Rnz are

the controlled output. rt refers to the jump parameters taking

values in a finite set S = {1, 2, . . . , s}. {rt }t≥0 is assumed

to be a semi-Markov process in this paper. For each possible

rt = i, i ∈ S , the system matrices are specified by subscript

i, say Ai for notational convenience.

The transition probabilities of semi-Markov process

{rt }t≥0 can be described as:

Pr{rt+1t = j|rt = i} =
{

λij(h)1t + o(1t), i 6= j,

1 + λii(h)1t + o(1t), i = j.

where λij(h) denotes the transition rate of semi-Markov pro-

cess {rt }t≥0 jumping from mode i to mode j. It can be given

as

λij(h) = qij
fi(h)

1 − Fi(h)
, i 6= j (2)

and λii(h) = −
∑

i 6=j λij(h) where qij refers to the transition

rate density, fi(h) and Fi(h) denotes the probability density

function and cumulative function respectively. (2) reveals

that transition rate function of a semi-Markov process is

connected with the stochastic property of the sojourn time

and can be set as required in practice. Specifically, when the

probability density function fi(h) is exponential distribution

with rate parameter λ, then λij(h) = qijλ and the process

{rt }t≥0 reduces to a Markov process.

u(t) ∈ Rnu refers to the input control signal. We aim

to design a mode-dependent controller using quantized state

feedback for system S, which is described as

C : v(t) = K (θt )x(t) (3)

Q : u(t) = Q(v(t)) (4)

where K (θt ) is the controller gain to be designed later. v(t) is

the state feedback signal before quantization. Consequently,

u(t) can be obtained after a quantization process Q, which

consists of ιmode-independent static logarithmic quantizers,

i.e.,

Q(v(t)) = [̺1(v(t)), ̺2(v(t)), . . . ̺ι(v(t))]
T .

The quantization levels are defined for each ̺j(v)(1 ≤ j ≤ ι)

as:

Rj = {±ϑ ιj : ϑ ιj = χ ιjϑ
j
0, ι = 0,±1,±2, . . .} ∪ {0}

where ϑ
j
0 > 0 and 0 < χ ιj < 1 is the quantization density.

̺j(v) is considered as follows:

̺j(v) =















ϑ ιj if
1

1 + κj
ϑ ιj < v <

1

1 − κj
ϑ ιj ;

0 if v = 0;
−̺j(−v) if v < 0.

where κj , (1 − χj)/(1 + χj). It follows from [21] that the

quantized output can be written in a form with a bounded

uncertainty δj as:

̺j(v) = (1 + δj(v))v
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where |δj(v)| ≤ κj. Then, definingH , diag{δ1, δ2, · · · , δnu},
we transform the quantization effects into the following

sector-bounded uncertainties:

Q(v) = (I + H (v))v (5)

For the controller C, we assign the parameter θt to indicate

its operating mode. It takes values in a finite set M =
{1, 2, . . . ,m} with m ≤ s and defined by the following

conditional probability:

Pr{θt = µ|rt = i} = πiµ, i ∈ S, µ ∈ M (6)

where
∑m
µ=1 πiµ = 1, 0 ≤ πiµ ≤ 1.

Remark 1: The conditional probability (6) can be seen

as a core mechanism of the virtual detector, which quan-

titatively describes the non-synchronization degree of the

asynchronous phenomenon occurred between themode infor-

mation of the controller and the system. It is introduced

as an analyzing tool to model the limited information sce-

nario when designing controllers for jump systems and not

intended for real implementation. Hence infinite jumps dur-

ing a finite time interval according to conditional probability

(6) can be ignored for analysis convenience.

Remark 2: From the discussions in [21], this virtue detec-

tor covers the mode-dependent, mode-independent and lim-

ited mode information cases in a unified framework.

To fully address the limited mode information problem of

jump systems, the conditional probability Π = [πiµ] here is

assumed to be not fully accessible. For i ∈ S , we define a set

Mi = MN

i ∪ MUN

i where

{

MN

i = {µ : πiµ is known},
MUN

i = {µ : πiµ is unknown}
(7)

In this note, we will propose methods on the analysis

of the H∞ control problem based on this hidden semi-

Markov model. Now with the quantized feedback controller

(4), we have the closed loop state equation:

Scl :
{

ẋ(t) = (Ai + Bi(I + H (v))Kµ)x(t) + Ciw(t)

z(t) = (Ei + Li(I + H (v))Kµ)x(t) + Diw(t)
(8)

In order to analyze the stochastic stabilizability and H∞
performance of the semi-Markov system Scl , We first recall

some definitions here.

Definition 1: For the closed loop system Scl with w(t) ≡
0, if

‖x‖22 =
∫ ∞

0

E{‖x(t)‖2|x0, r0}dt < ∞ (9)

under the initial condition (x0, r0), then it is said to be stochas-

tically stable.

Definition 2: Given a positive scalar, if the closed loop

system Scl satisfies Definition 1 and under zero initial

condition,

‖Scl‖∞ < γ

where

‖Scl‖∞ = sup{ ‖z‖2
‖w‖2

;w ∈ L2[0,+∞), ‖w‖2 6= 0},

then system Scl is stochastically stable and has an H∞ per-

formance with attenuation index γ .

The objective of this paper is to develop an algorithm for

designing quantized feedback law under a given logarithmic

quantizer and limited mode information such that the closed

loop system Scl is stochastically stable and has an H∞ per-

formance with attenuation index γ .

Remark 3: Compared with the work in [17], it is basically

a continuous-time counterpart. It is also an application of [31]

in quantized control problem under networked settings.

III. MAIN RESULTS

This section will present our main results concerning the sta-

bility of the closed loop system (8) and its H∞ performance

and then propose a feasible design scheme of the quantized

controller under limited mode information.

Theorem 1: For a predefined scalar γ > 0, system (8) is

said to be stochastically stale with a prescribed H∞ attenu-

ation index γ if there exists symmetric matrices Pi > 0 and

diagonal matrix W > 0 such that for all i ∈ S , the following

holds:




Φi ∗ ∗
WXHi −W 0

Ki 0 −W



 < 0 (10)

where λ̄ij =
∫∞
0 λij(h)fi(h)dh and

Φi =









PiÃi + ÃTi Pi +
s
∑

j=1

λ̄ijPj ∗ ∗

CT
i Pi −γ 2I ∗
Ei Di −I









Ãi = Ai +
m
∑

µ=1

πiµBiKµ, Ẽiµ = Ei + LiKµ

Ei =
[√
πi1Ẽ

T
i1

√
πi2Ẽ

T
i2 . . .

√
πimẼ

T
im

]T

Di =
[√
πi1D

T
i

√
πi2D

T
i . . .

√
πimD

T
i

]T

Hi =
[

BTi Pi 0 LTi

]

, Ki =
[

Ki 0 0
]

Bi =
[√
πi1Bi

√
πi2Bi · · · √

πimBi
]

Ki =
[√
πi1K

T
1

√
πi2K

T
2 · · · √

πimK
T
m

]T

Li = diag{Li,Li, · · · ,Li}m×m
Q = diag{κ1, κ2, · · · , κnu}
X = diag{Q,Q, · · · ,Q}m×m

Proof:We first make transformations to the inequality (10)

and then carry on our proof. By Schur Complement, we have

8i + H
T
i XWXHi + K

T
i W−1

Ki < 0

which further by the lemma 1 in [32] leads to

8i + H
T
i X̃Ki + K

T
i X̃Hi < 0
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with X̃ = diag{H (v),H (v), · · · ,H (v)}m×m, i.e.,








PiĂi + ĂTi Pi +
s
∑

j=1

λ̄ijPj ∗ ∗

CT
i Pi −γ 2I ∗
Ĕi Di −I









< 0 (11)

where Ĕiµ = Ei + Li(I + H (v))Kµ and

Ăi = Ai +
∑m
µ=1 πiµBi(I + H (v))Kµ

Ĕi =
[√
πi1Ĕ

T
i1

√
πi2Ĕ

T
i2 . . .

√
πimĔ

T
im

]T
.

Next we define the following semi-Markov-based Lya-

punov function for system (8):

V (x(t), rt = i, t) = xT (t)P(rt )x(t). (12)

Denote L as the weak infinitesimal operator of the process

{x(t), rt }t≥0. Following a similar line with the proof of The-

orem 1 in [31] and [33], we have

L[V (x(t), i, t)] = E{2xT (t)Piẋ(t) + xT (t)(
∑

j∈S
λij(h)Pj)x(t)}.

Consequently, we have

L[V (x(t), i, t)] = ξT (t)Ξξ (t)

where ξ (t) =
[

xT (t) wT (t)
]T

and

Ξ =





PiÃi + ÃTi Pi +
s
∑

j=1

λ̄ijPj PiCi

∗ 0





λ̄ij = E{λij(h)} =
∫ ∞

0

λij(h)fi(h)dh.

Under the condition of w(t) ≡ 0, we can learn that (11)

leads to L[V (x(t), i, t)] < 0. Further by Dynkin’s formula

and Definition 1, we can see that the closed loop system Scl
is stochastically stable.

For theH∞ performance under zero initial condition, given

a positive scalar γ , we have by noting the positiveness of the

function V that

J = ‖z(t)‖22 − γ 2‖w(t)‖22
≤
∫ ∞

0

{L[V (x(t), i, t)|r0] + zT (t)z(t) − γ 2wT (t)w(t)}dt

=
∫ ∞

0

ξT (t)Ξ̃ξ (t)dt (13)

where Σ = PiĂi + ĂTi Pi +
s
∑

j=1

λ̄ijPj and

Ξ̃ =









Σ +
m
∑

µ=1

πiµĔ
T
iµĔiµ ∗

CT
i Pi +

m
∑

µ=1

πiµD
T
i Ĕiµ DTi Di − γ 2I









By Schur Complement, we have Ξ < 0 from the inequality

(11), which is J < 0. Recall Definition 2, we know the H∞
performance is thus verified.

Next we will present suitable algorithm based on The-

orem 1 to find the parameterization scheme of the quan-

tized controller. By well utilizing the matrix manipulat-

ing approach, we the following equivalent statement of

Theorem 1.

Theorem 2: Given arbitrary scalars γ > 0 and α > 0,

the closed loop system Scl is said to be stochastically stable

and possesses a predefined H∞ noise attenuation index γ if

there exist symmetric matrices P̃i, and matricesKµ, µ ∈ Mi,

X such that for all i ∈ S , the following holds
















−X − XT ∗ ∗ ∗ ∗ ∗
Ai + P̃i − 1

α
P̃i + λ̄iiP̃i ∗ ∗ ∗ ∗

0 C T
i W1 ∗ ∗ ∗

Q̃T
i 0 W2 W3 ∗ ∗
X 0 0 0 − αP̃i ∗
0 T T

i 0 0 0 − P

















< 0 (14)

where Ai = AiX +
m
∑

µ=1

π iµBiKµ and

P = diag{P̃1, P̃2, · · · , P̃i−1, P̃i+1, · · · , P̃s}
Ti =

[

√

λ̄i1 · · ·
√

λ̄ii−1

√

λ̄ii+1 · · ·
√

λ̄is

]

P̃i

Ci =
[

Ci BiXW
]

, Q̃i =
[

ẼTi K̃T
i

]

Ẽi =









√
πi1(EiX + LiK1)√
πi2(EiX + LiK2)

· · ·√
πim(EiX + LiKm)









, K̃i =









√
πi1K1√
πi2K2

· · ·√
πimKm









W1 =
[

−γ 2I ∗
0 −W

]

, W2 =
[

Di LXW

0 0

]

W3 =
[

−I ∗
0 −W

]

Furthermore, the quantized state feedback controller gain can

be obtained by

Kµ = KµX
−1. (15)

Proof: It follows directly from Theorem 1 that the proof

can be completed by ensuring the validity of inequality (10).

To this end, we first make equivalent transformation by rear-

ranging the columns and rows of (10), then we have








PiÃi + ÃTi Pi +
s
∑

j=1

λ̄ijPj ∗ ∗

C TPi W1 ∗
QT
i W2 W3









< 0 (16)

where Qi =
[

ETi KT
i

]

.

Define P̃i = P−1
i . Pre- and post- multiplying the above

inequality by diag{P−1
i , I , I } with I being identity matrix of

appropriate dimensions, and we can get










ÃiP̃i + P̃iÃ
T
i + P̃i

(

s
∑

j=1

λ̄ijPj

)

P̃i ∗ ∗

C T W1 ∗
QT
i Pi W2 W3











< 0. (17)
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Then following Lemma 1 in [34], the statement that there

exist positive definite matrices P̃i such that (17) holds is

equivalent to the one that there exist matrices P̃i and X such

that
















−X − XT ∗ ∗ ∗ ∗ ∗
ÃiX + P̃i − α−1P̃i ∗ ∗ ∗ ∗

0 C T
i W1 ∗ ∗ ∗

QT
i X 0 W2 W3 ∗ ∗
X 0 0 0 − αP̃i ∗
0 T T

i 0 0 0 − P

















< 0

(18)

LettingKµ = KµX , we know that the above inequality can

be ensured by (14), which further guarantees (10). Based on

Theorem 1, we have the proof completed.

Remark 4: Theorem 2 presents a parameterization method

for the quantized feedback controller. It solves the limited

mode information problem by integrating the virtual detector

(6). It should be noted that the conditions are only sufficient

and used to find feasible solutions. Further reducing the

conservatism is preferred and worthy of studying. Besides,

the inequalities here are not linear due to the existence of a

slack variable α. They can be solved by predefining its value,

which also brings certain conservatism but offers flexibility

for tuning parameters. Since the conditions are in terms of

linear matrix inequalities, the computation complexity issues

are inevitable concerning systems of high orders with larger

numbers of modes.

Now we are in the place to address the unknown condi-

tional probability case. Define

π̄i =
∑

µ∈MN

i

πiµ,

then based on the fact
∑

µ∈Mi

πiµ = 1, we can obtain

∑

µ∈MUN

i

πiµ

1 − π̄
= 1,

which helps to decompose
∑

µ∈Mi

πiµKµ into the following

form:
∑

µ∈Mi

πiµKµ =
∑

µ∈MN

i

πiµKµ +
∑

µ∈MUN

i

πiµKµ

=
∑

µ∈MN

i

πiµKµ + (1 − π̄ )
∑

µ∈MUN

i

πiµ

1 − π̄
Kµ

=
∑

µ∈MUN

i

πiµ

1 − π̄
(
∑

µ∈MN

i

πiµKµ + (1 − π̄ )Kµ).

Note that
∑

µ∈MUN

i

πiµ
1−π̄ = 1. Then following the discussions

in Theorem 1 and Theorem 2, we are capable of extending

Theorem 2 into a more general form which deals with par-

tially known mode information case.

Theorem 3: For positive scalars γ and α, system (8) is said

to be stochastically stabilizable with a prescribed H∞ atten-

uation index γ if there exist matrices Kµ, X and symmetric

matrices P̃i such that for all i ∈ S and µ ∈ MUN

i


















−X − XT ∗ ∗ ∗ ∗ ∗
˘Aiµ + P̃i − 1

α
P̃i + λ̄iiP̃i ∗ ∗ ∗ ∗

0 C T
i W1 ∗ ∗ ∗

Q̆T
iµ 0 W2 W3 ∗ ∗
X 0 0 0 − αP̃i ∗
0 T T

i 0 0 0 − P



















< 0 (19)

where ˘Aiµ = AiX +
∑

µ∈MN

i

πiµBiKµ + (1 − π̄ )BiKµ and

Q̆iµ =
[

ẼTiµ K̃T
iµ

]

, M
N

i = {κ1, κ2, · · · , κς }

Ẽiµ =













√
πiκ1 (EiX + LiKκ1 )√
πiκ2 (EiX + LiKκ2 )

· · ·√
πiκς (EiX + LiKκς )√
1 − π̄ (EiX + LiKµ)













, K̃i =













√
πiκ1Kκ1√
πiκ2Kκ2
· · ·√
πiκςKκς√
1 − π̄Kµ













The quantized state feedback controller gain can be obtained

by

Kµ = KµX
−1. (20)

Proof: The proof is completed by changing
∑

µ∈Mi

πiµKµ in

Theorem 2 with
∑

µ∈Mi

πiµKµ =
∑

µ∈MUN

i

πiµ

1 − π̄
(
∑

µ∈MN

i

πiµKµ + (1 − π̄ )Kµ).

Remark 5: The limited mode information problem for

designing controllers generally have two aspects. One is that

the controller only has partial access to the system mode. The

other is that we are not fully aware of the relevant stochastic

property of the controller’s mode. Theorem 3 provides a

unified framework which covers both issues.

IV. NUMERICAL EXAMPLES

In this section we will adopt a system of dimension 4 with

3 operation modes to test our results. The system matrices

are as follows:

A1 =









−0.04 0.03 0.02 − 0.46

0.05 − 1.01 0.00 − 4.02

0.10 0.34 − 0.71 1.40

0.00 0.00 1.00 0.00









, B1=









0.44

3.54

−5.52

0









A2 =









−0.04 0.03 0.02 − 0.46

0.05 − 1.01 0.00 − 4.02

0.10 0.07 − 0.71 0.12

0.00 0.00 1.00 0.00









, B2=









0.44

3.54

−5.52

0









A3 =









−0.04 0.03 0.02 − 0.46

0.05 − 1.01 0.00 − 4.02

0.10 0.50 − 0.71 2.55

0.00 0.00 1.00 0.00









, B1=









0.44

3.54

−5.52

0








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FIGURE 1. Mode evolution of the system and the controller.

FIGURE 2. State trajectories of the system.

Ei =
[

1 0 0 0
]

, Li = 1

Ci =
[

1 0 1 0
]T
, Di = 1, i = 1, 2, 3.

The semi-Markov parameter rt takes values in {1, 2, 3}.
We assume that when the system stays in the first two modes,

the sojourn time follows Weibull distribution which indicates

that the transition rate function is

λ(h) = ϕ

ψ
(
h

ψ
)ϕ−1

where ψ and ϕ are scale parameter and shape parameter

respectively. Here we set

(ψ1, ϕ1) = (1, 2), (ψ2, ϕ2) = (1, 3).

An exponential distribution with parameter 0.5 is adopted for

the last mode. The transition rate density is set as:

[qij] =





0 0.5 0.5

0.7 0 0.3

0.4 0.6 0



 .

FIGURE 3. Controlled output z(t).

FIGURE 4. Noise attenuation index γmin with changing α.

For the process {θt }t≥0, we give the conditional probability

as:

[πiµ] =





0.3 0.1 0.6

0.5 0.3 0.2

0.6 0.2 0.2



 .

The evolution of these two process can be illustrated by

Fig.1, which shows that the mode of the controller is non-

synchronous with the mode of the system, thus verifies that

the virtual detector (6) well describes the phenomenon where

the controller only has partial access to the mode of the

system.

Now set the quantization density χ = 0.6, i.e., κ = 1/4,

fromTheorem 2, we can get the following quantized feedback

control gains

K1 =
[

−1.6682 −0.0456 0.3423 1.4332
]

K2 =
[

−1.5392 −0.1126 0.5808 1.2401
]

K3 =
[

−2.4636 −0.1147 0.5068 1.7877
]

and the optimal noise attenuation index γ ∗ = 3.4039. Given

the external noise w(t) = 1/(1 + t2) and an initial condition

x0 =
[

3.9 2.8 −0.9 −0.9
]

, we plot the state trajectories and

VOLUME 8, 2020 99299
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FIGURE 5. Quantized control input.

FIGURE 6. Quantization effects in different cases of incomplete
conditional probability.

the quantized output feedback law as shown in Fig. 2 and

Fig. 3. It can be seen that the quantized feedback law stabi-

lizes the considered system under limited mode information.

Note that in Theorem 2, we have a slack variable α. Here we

present Fig. 4 to show how it affects the desired performance

index γmin.

For a more general scenario where the mode information is

not always complete, by Theorem 3, we are capable of getting

feasible solutions. Set three different incomplete cases of Π

as follows:




0.3 0.1 0.6

0.5 0.3 0.2

0.6 0.2 0.2



 ,





0.3 0.1 0.6

? ? 0.2

0.6 ? ?



 ,





0.3 0.1 0.6

? ? 0.2

? ? ?





Fig. 5 show the trajectories of the quantized control input. The

correspondingH∞ noise attenuation level γmin with different

quantization density can be shown in Fig. 6.

V. CONCLUSION

The problem of quantized control under limited mode infor-

mation for a class of semi-Markov jump systems has been

considered. The network-induced disturbances inevitably

result in limited mode information received by the controller,

the modes of which are thus hardly synchronized. Based on

a hidden semi-Markov model, this phenomenon is quanti-

tatively described by relating the system’s mode with the

controller’s via a conditional probability. Sufficient condi-

tions have been proposed by the LMI tools guaranteeing that

the closed loop system is stochastically stabile with a prede-

finedH∞ noise attenuation index γ . A numerical example is

presented in the end to validate the proposed results. Since

the method used in this paper involves conventional LMI

approach, it can be extended to other network-based issues,

for instance, multi-path signal quantization with dynamic

quantizers [28], robust nonlinear control with perturbations

[35], and actuator faults [36].
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