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Abstract: The s/, quantized Knizhnik—Zamolodchikov equations are solved in
g-hypergeometric functions. New difference equations are derived for
general g-hypergeometric functions. The equations are given in terms of
quantum Yang-Baxter matrices and have the form similar to quantum
Knizhnik—Zamolodchikov equations for quantum affine algebras introduced by
Frenkel and Reshetikhin.

Introduction

The Knizhnik—Zamolodchikov (KZ) differential equation is the fundamental dif-
ferential equation of the Conformal Field Theory with very rich mathematical
structures. The KZ equation connects representation theories of Lie algebras and
quantum groups [KZ, D, K, KL, SV, V]. Quantization of the KZ equation is of
great importance. It is expected that the quantized KZ equation also will connect
two representation theories. The first is presumably the theory of representations of
quantum groups and the second is the theory of representations of a yet undefined
structure that may be called “a double quantum group” or “an elliptic quantum
group,” see [FR].

The KZ equation coincides with the Gauss—Manin differential equation for
general hypergeometric functions [SV]. General hypergeometric functions are
integrals of special hypergeometric forms over suitable cycles depending on para-
meters. The special hypergeometric forms are naturally identified with objects of
the representation theory of Lie algebras, the cycles are naturally identified with
objects of the representation theory of quantum groups, the integration of hyper-
geometric forms over cycles gives a natural correspondence between representation
theories of Lie algebras and quantum groups [FW, V1.

There are two ways to quantize the KZ equation: through representation
theory and through geometry. The quantization through representation theory

This work was supported by NSF grant DMS-9203929.



500 A. Varchenko

was suggested by 1. Frenkel and N. Reshetikhin [FR]. The KZ equation in the
Conformal Field Theory is the differential equation for the matrix coefficients of
the product of intertwining operators for an affine Lie algebra §. The KZ differen-
tial equation takes values in the tensor product of representation of the corres-
ponding simple Lie algebra g. I. Frenkel and N. Reshetikhin quantize the
Knizhnik—-Zamolodchikov differential equation deriving difference equations for
the matrix coefficients of the product of intertwining operators for the quantum
affine group U,(§). The quantized KZ equation takes values in the tensor product
of representations and is written in terms of suitable solutions for the quantum
Yang-Baxter equation.

The geometric way to quantize the KZ equation is to quantize the differential
equation for general hypergeometric functions, namely, to replace hypergeometric
forms, cycles, hypergeometric integrals, the differential equation for hypergeo-
metric integrals by their difference discrete analogs: difference forms, difference
cycles, Jackson integrals, a difference equation for Jackson integrals, respectively.
The study of general Jackson integrals has been started recently by K. Aomoto, Y.
Kato, K. Mimachi, and A. Matsuo [A, AK, AKM, M, Mi]. In this work we derive
new difference equations for Jackson’s integrals. The difference equations are
written in terms of solutions for the quantum Yang-Baxter equations as in the L.
Frenkel and N. Reshetikhin quantization. The open problems are to compare the
two quantizations and to give an interpretation for the discrete geometry of
Jackson integrals in terms of representation theory.

In recent very interesting works [ M], A. Matsuo states formulas for solutions of
the Frenkel-Reshetikhin difference equatlons corresponding to the quantum affine
group U, (sf ). The solutions are given as suitable g-hypergeometric functions. A.
Matsuo partlally proves these formulas for some important cases. In Sect. 3
we extend the Matsuo results and prove the formulas for solutions to the
Frenkel-Reshetikhin difference equations for U, (sl 2)-

In Sect. 1, we define new solutions for the quantum Yang—Baxter equation. The
solutions take values in suitable spaces of forests. In Sect. 2, we derive new
difference equations for Jackson integrals. The equations are written in terms of the
solutions to the Yang-Baxter equation defined in Sect. 1. Section 3 is devoted to
integral solutions to the Frenkel-Reshetikhin equations for U,(s/ 2)

1. Tensor Coordinates and the Yang—Baxter Equation

(1.1) Tensor Coordinates. Let Vy,...,V, be C-vector spaces. Let W=

Wizy,...,z,) be a ©-vector space depending on parameters zi,. .., z,, where
Zy,. .., 2z, are pair-wise different complex numbers. Assume that for every element
¢ of the permutation group S, a linear isomorphism

La'(Zla PRPSN Zn): Vo‘(l) ® M ® Vcr(n)_')W(Zla ooy Zn) (111)
is given.

The set of these linear maps {L,} will be called tensor coordinates on
Wizy,...,z,). For arbitrary o, veS, the map

Lo,szclLa: Va(l) ® o ® Va(n)_)Vv(l) ® o ® Vv(n) (112)

will be called a transition function. It is a function of zy, . . ., z,.
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Assume that for every i and j a linear map
R, j, 21, 22 Vi® V>V, @ V; (1.1.3)

is given, where z,, z, are different complex numbers. Let g,...,0,., be the
standard generators of S,, where o; permutes i and i+ 1.

(1.1.4) Tensor coordinates will be called local with respect to {R(, j, z;, z,)} if for
any o€S, and any ie{l,...,n—1} the transition function

Lo’,aa,: Va(l) ® - ® Va(n)“’Vam@- .. Va(i+ 1)@ Va(i)' ® Va(n)

is the operator acting as R(o(i), 6(i+1), Zog)s Zo+1)) O0 Vo) @ Vo4 1) and as the
identity on other factors:

Lg a0, =Rii+1(0(), o(i+1), Zo6), Zai+ 1)) -
(1.1.5) Example. Every tensor coordinates are local if n=2.

(1.1.6) Lemma. For local tensor coordinates, the operators {R;;} form a solution to
the Yang—Baxter equation:

(i) R>3(0(2), 6(3), 22, 23) R12(a(1), 6(3), 1, 23) Ra3(a(1), 6(2), 21, )
=Ry2(a(1), 6(2), 21, 22), Ra3(a(1), 6(3), 21, 23) R12(0(2), 6(3), 22, 23)

Jor all pair-wise different o(1), 6(2), 6(3)e{1,...,n}. Moreover, this solution is

unitary:

(i) R(i,j, z1,22) R(j, i, 22, 2} =1

Sfor all i and j.
(1.1.7) Tensor coordinates will be called homogeneous if
L, (szy,...,82,)=Lg (215...,2,)
for all s40 and all o, veSs,.
(1.2) The Weight Semigroup. Let N (resp. N ;) be the set of all non-negative (resp.
positive) integers. An admissible sequence is an infinite sequence A=(4, 45,...) of

non-negative integers such that all of them but a finite number are equal to zero.
Set

A=A+ 42+ . (1.2.1)

For admissible 4, v, we say that A<y if 4;Sy; for all j. Let M be the set of all
admissible sequences. M forms a semigroup:

(’115 A‘Za LU )+(2‘/1) /25‘ . '):z(il—*_}‘/lajﬂ—}_l,ly‘ . ) .
We call M the weight semigroup. Introduce the subset of primitive weights
A={(A1,42,...)eM || 4;]£1 for all i} . (1.2.2)

Elements of A are in one-to-one correspondence with finite subsets of the set of
positive integers. For any finite subset J <IN, define A(J) = A by

Aj=11if jeJ, A;=0 otherwise. (1.2.3)
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For any A€/, define the subset J(4) =N by
jeJ(A)iff 4,>0. (1.2.4)

(1.3) Tensor Coordinates on a Weight Component. Assume that all spaces
ViseoosVuy W(zq,...,z,) of Sect. (1.1) are graded by elements of the weight
semigroup M:

Vj= @ Vj,/l: W: @ WA .
leM AeM
These weight decompositions induce the weight decomposition of the tensor
product:

Vi® - ® V)= @ Vi, ® - @ Vi, -
Ao s i
A+ 2,=2

For a graded space, set

ngl = (—B Vv .
vEA
We will be interested in the tensor coordinates on one of the weight components.
Fix AeA. Assume that for every oS, an isomorphism

Lo(zi,.. ., 2):(Voy® - ® Va(n))r"W(Zu- s Z)s

is given. The set of these maps will be called tensor coordinates on W,. Define
transition functions by the same formula: L, ,.=L;'L,.
Assume that for every i and j a linear map

R(i,j, 21, 22): (Vi ® V)i~ (Vi ® Vi) (1.3.1)
is given. Assume that the map preserves the weight decomposition.

(1.3.2) Tensor coordinates will be called local if for any ceS, and any ie
{1,...,n—1} we have

L, oo =Riit1 (0(@), o(i+1), zo4> Zoi+ 1)) -
cf. (1.1.4).

(1.3.3) For local tensor coordinates the operators {R;;} form a unitary solution to
the Yang—Baxter equation, see (1.1.6).

(1.4) Trees and Forests. Let T be a tree. Denote by v(T) the set of its vertices and
by e(T') the set of its edges. For a finite set J =N, let A(J)e A be the corresponding
primitive weight. A weighted tree of weight A(J) is a tree T with |J|+1 vertices
numbered by J U {0}. A vertex with number j is denoted by (j). Vertex (0) is called
the root of the tree.

Let Jq,...,J, =N, be finite subsets. A weighted forest of length n and multi-
weight (A(J,), . .., A(J,)) is an ordered collection of trees F=(T,,. .., T,), where
T; is a tree of weight A(J;) for all i. The weight A=A(J{)+ - - - +A(J,) is called the
weight of the forest.

(1.4.1) A weight form is a collection of non-zero complex numbers b =(b;;), where
i,jeN ., such that b;;=b;; for all i,j.

(1.4.2) A highest weight is a sequence of non-zero complex numbers ¢ =(c;), where
jeN.
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Let T be a weighted tree. A weight form and a highest weight define a color of
every edge of the tree. The color of the edge connecting vertices (i) and (j) for
i, jeN . is the number b;;. The color of the edge connecting vertices (0) and () is the
number c;.

We say that a weighted tree is admissible with respect to a weight form and
a highest weight if the colors of all its edges are different from one. We say that
a weighted forest (T'y,. .., T,) is admissible with respect to a weight form b and
highest weights ¢*, . . ., c"if the tree T is admissible with respect to b and ¢’ for all i.

The space of admissible trees with a weight form b and a highest weight ¢ is the
C-linear space V=V (b, ¢) with the basis {[T7] }, where T runs through all weighted
trees admissible with respect to b and c.

The space of trees has the weight decomposition:

V(b,c)=EP Vb, o), (1.43)
Aed

where the space V' (b, ), is the subspace with the basis {[T]}, 7 runs through all
weighted admissible trees with weight A.

(1.4.4) The space of admissible forests of length n with a weight form b and highest
weights ¢!, ..., c¢" is the C-linear space

Vib,ct,...,c"=V({b,cH)®: - @V (b,c").
The space of forests has the basis {[7,]® - ® [T,]} numerated by admis-

sible forests (74, . . ., T,). The space of forests has the weight decomposition:
V= @ V;_ 5
AeM
Vi= @ V() ® @V, (1.4.5)

Aot A=

where M is the semigroup of weights.

(1.5) Realization of a Primitive Weight Component of the Space of Forests as a Space
of Functions. Fix a weight form b and highest weights ¢/=(c{,c5,...) for
£=1,...,n Fix a primitive weight A=(1y, 4,. .. )e4. We realize the space

V)@ - @ V(b "),

as a space of suitable rational functions.

Note that this will be done only for a primitive weight.

Let J=J(4) be the finite subset of N, corresponding to 1. Consider the space
€ with coordinates {t;},,. Fix pair-wise different complex numbers zi, . . . , z,.
For any /e{1,...,n} and any jeJ such that c¢{+1 define the hyperplane

‘. A
Hj:tj—~c;z,=0.

For every i, jeJ such that i<j and b;;4 1 define the hyperplane

Hij: ti—bijtj=0 .
The collection of all these hyperplanes will be called the configuration of hyper-
planes associated with A, b,c,. .., c" zy,. .., z, Notations:

C=€(Ab,c', ..., ¢ 21, .., 2,).
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An edge of a configuration is a non-empty intersection of some of its hyperplanes.
A vertex of a configuration is a zero-dimensional edge. Let F=(T,,...,T,) be
a forest of weight A admissible with respect to b, c!,...,c"

(1.5.1) For any tree T, of F and for any of its edges e define the edge function f, on
C'™: if the edge connects vertices (i) and () for i, jeJ and i<j, we set

fe=z:/(bijti—1;) ,
if the edge connects vertices (0) and (j), we set
fe= Z//(CJ{Z/ —t;) .
The edge function is a rational function and its poles form a hyperplane of %.

(1.5.2) For any tree T of the forest define its tree function by the formula
fT: H fe s
ecT

where f, is the edge function of an edge e of T and the product is taken over all
edges of the tree.

If a tree T has weight (0,0, . . .,) and consists of its root, we set
fr=1.
(1.5.3) Define the untwisted forest function of a forest F=(Ty,...,T,) by the
formula .
fF= H fT/ .
£=1

(1.5.4) The space of forest functions of weight A admissible with respect to
b,ct,...,c"is the C-linear space

Wb, ct,....c"zy,...,2,)

consisting of all C-linear combinations Y rarfr, where F runs through the set of all
forests of weight A admissible for b, ¢!, .. ., ¢", and {ar} are complex coefficients.

Let V,;(b, c*,. .., c") be the space of all forests of weight A, see (1.4.4) and (1.4.5).
There is the natural linear map

fb, ety . ez, .z, Valb, et ) Wb, et 2y, 5 2)
(1.5.5)

namely, let [T{]® - - ® [T,]eV, be the basic vector corresponding to a forest
F=(T,,...,T,), then we set

fb,et,. . ez, .,z [T1]1® - @ [Tl fr .

(1.5.6) Lemma. The map f is an isomorphism for non-degenerate J, b, c*,. .., c"in
the sense defined below.

Denote by (€ *)* = C* the subset of all points with non-zero coordinates. For
any admissible forest F define the point

p(F)={teC™|1/f,()=0 for all edges e of F} .

p(F) is a vertex of the configuration €, and p(F)e(C*)*. Any vertex of ¢ lying in
(C)*' may be written in this form.
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(1.5.7) We say that 4, b,c',...,c" are non-degenerate if the points {p(F)} are
pair-wise different for pair-wise different admissible forests.

The proof of the lemma is obvious

(1.5.8) Remark. The configuration €(4,b,ct,...,¢" z4,. .., z,) and forest func-
tions homogeneously depend on z,,. . . , z,. Namely, for se C* the transformation
CY~C", sending ¢ to st, sends €(z4, . . . , z,) to €(szq,. . ., sz,) and forest func-
tions to forest functions.

(1.5.9) Remark. For any permutation ¢€S,, the configuration €(2, b, c°V, . . .,

"™, Z,a)-..,Z,m) coincides with the configuration %(4,b,c',...,

" z1,. . ., 2,) and the space W (b, c°M, ..., ¢ ™, 2,04y, . . ., Z4(m) coincides with

the space W, (b',ct,...,c" z;1,...,z,). Therefore, for any seS,, we have con-
structed the linear isomorphism

f(b9 Ca(l)’ cres ca(n)’ Za'(l)s cees Za'(n)):(V(b> Ca(l)) ® e ® V(b7 Cd(n)))l
Wb, ct, .. . Mz, 2.

(1.6) Tensor Coordinates on a Primitive Weight Component of the Forest Space. Fix
red,b,ct, ..., c"zy,...,z, as in (1.5). We define local homogeneous tensor
coordinates on W,(b,ct,...,c" z1,. .., z,). Let J=J(J) be the finite subset of
IN, corresponding to the primitive weight 4 as in (1.5).

(1.6.1) For every i, jeJ define the twisting function by the formula
Dyj=(t;—bi;t:) /(byt;— 1) .

For every /e{l,. .., n} and jeJ define the twisting function by the formula
sz(z(—cftj)/(cfzf~tj) }

(1.6.2) Properties of twisting functions:

(1) Twisting functions are rational functions homogeneous with respect to
transformations (¢, z)+— (st, sz).
Di=1if¢j=1.

(3) Dij=by+(1—(bi)* ti/(bist;—t:)=(by) ' +((bij) ™' —bij) ts/(bist;— ).
D§:c§+(1—(cf)z)z//(cjz[—tj).

Let F=(Ty,...,T,) be an admissible forest of length n and weight A. Let

Ats. .., A, be the weights of the trees 7'y, . . ., T, resp. Let J4, . .., J, =N, be the
subsets corresponding to Aq,. . ., 4,, resp.

(1.6.3) For such a forest F and a permutation o€S,, define the twisting function by

the formula
Dy =1 D) (I D7) .
Here the first product is taken over all pairs (i, j) = J such that

(1) i<j,
(2) ie @), jeJ sy for some a>b.

The second product is taken over all jeJ and Ze{1,. .., n} such that jeJ,, and
¢ =0o(b) for some a>b.
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(1.6.4) Example. For n=2, J; ={1}, J,={2}, and the single non-trivial permuta-
tion 0€S,, we have

DF,0=D12D% >
and for J, ={2}, J,={1} we have
DF,0'=D% .

(1.6.5) For any admissible forest F of length n and weight A and for any permuta-
tion ge8§,, define the twisted forest function

fF,cr =fFDF,a- s

where fp is the untwisted forest function defined in (1.5.4).

This construction defines a linear map L,(z4,...,z,) of the forest space
V(b,c°M)) ®- - - ® V (b, c°V)), defined in (1.4) to the space of rational functions
on C*. Namely, let a forest F=(Ty,. .., T,) be admissible to b,c’,. .., c", then
the forest (Ty1)...>T o) is admissible to b,cP,...,¢°™ and
[T,1)]®* ® [Tyl is a basic vector in (V' (b, V)@ -+ @ V (b, c°™)),. We
set

La'(Zla ey Zn): [To'(l)] ® e ® [Ta(n)] HfF,a' . (166)

(1.6.7) Theorem. Let A, b be path non-degenerate in the sense defined below. Then
the previous construction defines a map

Lo(zis. o 522 (V") ® - @V (b, c® ™)), =W, (b, c,...,c%zy,...,2,).

In other words, any twisted function is a linear combination of untwisted forest
functions.

Define the notion of path non-degeneracy.

A path in J is a sequence jq, . . ., j,€J of pair-wise different elements, where
¢ >2. Define the graph of the path as the graph with ¢ vertices (j;),...,(j,) and
¢ edges e =(j1,j2), e2={j2,3),- . - » €¢,={js»j1). Consider the system of equations

ﬂ:lz. . ':fe,_lzo ,
where f, is the edge function of the edge e. This is a system of ¢ linear equations on
¢ variables ¢;,...,t;;. We say that the path is non-degenerate if the space of

solutions to the system has codimension 7.

The pair A, b will be called path non-degenerate if all paths in J are non-
degenerate.

Theorem (1.6.7) is proved in (1.8).

Assume now that 4, b, c*, . . ., c", are non-degenerate in the sense of (1.5.7) and
A, b are path non-degenerate. Then the map (1.5.5),

fb,et, . o ez, z): (V(b,e)®: - @V (b, c"));

SWab, et ...z, .., 2,
is an isomorphism, and the map (1.6.7)
Lo(zy,. sz, (V(b, " D)@ - @ V(b, ™)),
Wb, c*, ..., zy,. s 2y)

is well defined for all o€S,,.
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The space W, has the basis {fr} of untwisted forest functions. This basis is

parametrized by forests F=(T, ..., T,) admissible to b, c*,...,c". The space
Vb, c"N® - @ V(b,c”™)), has the basis {[T,1,] ® " * ® [T,um]1} paramet-
rized by forests F=(T4,. .., T,) admissible to b, c!,. .., c" For these bases, the

map L,(z4,. . .,z,) has a matrix (L ,(z4, . . . , z,)r. 7). The entries of this matrix are
rational functions of {b;;, ¢f,zy,. .., z,}.

(1.6.8) Lemma. The determinant of the matrix (L,(z1,. . ., z,)r r') is a non-trivial
rational function.

(1.6.9) Corollary. For generic values of {bi, ¢}, z1,...,2,} the maps
{Lo(z1,...,2,)}, 0ES,, are isomorphisms, and therefore form tensor coordinates on
Wb, ct,...,c"zy,...,2,)

Proof of the lemma. Let all parameters {b;;, ¢} tend to 1. Then all twisted forest
functions tend to the corresponding untwisted functions, see (1.6.2). Hence the
matrix of L,(z4,. .., z,) tends to the unit matrix. The lemma is proved.

(1.6.10) Lemma. The tensor coordinates {L,(z1,...,z,)} are homogeneous with
respect to zy,. . ., z,, see (1.1.7).

The lemma is obvious, see (1.5.9) and (1.6.2.1).

We have constructed tensor coordinates simultaneously for all primitive
weights Ae 4 and all n. It turns out that these tensor coordinates are simuitaneously
local with respect to the same operators R(i, j, z;, Z3).

Namely, set

Vb, YRV (b, cNa=P W (b, )YV (b, c')); -
Aed

This is the sum of components with primitive weights of the space of admissible
forests with two trees, see (1.4).
Set

Wa(b,cl el zy, 22):@1 (Wb, ¢, ¢, 24, 2,5)); -
This is the space of forest functions with primitive weights and two trees.
Let g, ve S, be the trivial and non-trivial elements, resp. The tensor coordinates
Lo(zy,25): (V(b, )Y V (b, c))y =W (b, ¢, ¢l 24, 2,) s
Ly(z1,22): (V(b,cY® V (b, )4~ W 4(b, ¢, c, 2y, 2,) (1.6.11)
defined above give the transition function
Lo (z1,22): (V(b, )Y@V (b, /)y =V (b, /)@ V (b, c))y . (1.6.12)
Denote the transition function L, (zy, z3) by R(i, J, z1, z3).

(1.6.13) Lemma. The tensor coordinates {L,(zy,...,z,)} defined in (1.6.7)

and (1.6.9) are local with respect to the operators {R(i,}, z1,2,)} defined in
{1.6.12).

See the definition of local coordinates in (1.1.4) and (1.3.2).
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The lemma is obvious because each factor of a twisting function Dy, is defined
by two of n sets Jy,...,J,, see (1.6.1) and (1.6.3).

(1.7) Example, cf. [M1]. Let n=2 and 4=(0,0,...). Fix b, ¢!, ¢*. Denote by T°
the tree consisting of its root (0). Denote the vector [T °]e¥ (b, ¢') by v,, the vector
[T°]eV (b, c?) by v,. The spaces (V (b, c)® V (b, c?)), and (V(b, c*) ® V (b, c')),
are 1 dimensional with the basic vectors v; ® v, and v, ® v;, resp. The space
W (b, cl, c?, z,, z,) is 1 dimensional, it consists of constants. It has the basic vector
fr=1, where F=(T°, T°)is the single forest of weight 1. The tensor coordinates are
trivial:
La'(Zlv ZZ): Uy ® Uy = laLv(Zl> ZZ): Uy ® Uy =1

where o, veS, are the trivial and non-trivial elements respectively. The transition
function

Loy(z1,22): (V (b, ) @V (b, )~V (b, ¢*) ® V (b, "))

is the transposition of factors.

Let 2=(1,0,0,...). Assume that ¢! and ¢? are such that ¢! 1 and ¢? =+ 1. Set
¢y =c;,cy=c?. Denote by T the tree consisting of the edge connecting the root (0)
with the vertex (1). Denote the vector [T']eV (b, ¢') by fv;, the vector [T']e
V (b, c?) by fv,.

The space (V(b,c')® V(b,c?)), is 2 dimensional with the basis fi, ® v,,
v, ® fv,. The space (V(b, c?) ® V (b, c1)), is 2 dimensional with the basis fvo, ® vy,
v, @ fvy.

The space W (b, c*, ¢?) is the 2 dimensional space of linear combinations of
functions
—Z —Z3

fF1 =

tl—C1Z1, Fz*tl—CZZz’
where F{=(T', T°, F,=(T° T') are the forests of weight i admissible to
b, ct, c2.

The tensor coordinates are given by the formulas:

La(zlozZ):fU1®U2H ?

Cili—z1 —2

L,(z1,25) 01 ® fo,— »
ti—C12y t1—C3 25

—z
L(zy,2,) fo, @ vy > 2

3
I1—C22Zy

Crli—2y —2z3
Lv(zla 22): Uy ®fUlf—>

(1.7.1)

ti—CpZy ty—CiZy

The transition function is given by:

(e =Dz o

C1C221—2 C1CrZ1—2
1t241 2 2 2

fUz@Ul‘i"((Cl) —1z,

C1CpZ1— 22 C1€C22y — 23

€121 —C22;

L, (21, 22) fo Quypt— v, ®@foy

C2z1—C12y

Lq (21, 22): v1 ® fo, > v ® fog . (1.7.2)
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This transformation is well known in the theory of quantum groups, see [M1-2],
(3.1) and (3.4.4).

(1.8) Proof of Theorem (1.6.7). The theorem follows from the three lemmas for-
mulated below.

Let neN,, n>1.Let z, b, ¢y, ¢y, - - . , ¢, be numbers, t=(tq,. . ., t,). Consider
the rational functions

FO)=(t;—a)(tz—t1). .. (ty,—t,—1)(t,—b),
g(t)z(C0+c1t1+ o +Cntn)/F(t)>
fH(O)=(t1—a)/F(t), fu+1(t)=(t,—b)/F (1),
f(O=(t;—t;_y)/F()fori=2,...,n

(1.8.1) Lemma. g=m,fi+ - -+ +my, 1,1 for some numbers my, ..., M, 1.

The lemma is obvious.
LetnelN,,n>2. Leta;, b;, c;fori=1, ..., nbenumbers. Consider the rational
functions

F(t)=(ajt; —b113)(@2ts—bsts). . . (@y—1ts— 1= by 11,)(@nt, —byty),
gO)=(citi+- +cuty)/F(1), fult)=(anta—but1)/F(t),
ﬁ(t):(aiti"‘biti+1)/F(t) for l=1, ey n—1.

(1.8.2) Lemma. Ifthe functions (a;t1—bit3),. .., (An—1tn—1—bn-1ty), (@utn—byty)
are linearly independent, then

g=mgfi+-- +m,f,
for some numbers my, ..., m,.

The lemma is obvious.

A forest with artificial edges of weight A€ A admissible to a weight form b and
highest weights c¢!,...,c" is a graph obtained from an admissible forest
F=(T,,...,T,) by attaching new (artificial) edges so that the total number of
initial and artificial edges connecting any two vertices is not greater than one. The
number of artificial edges will be called the degree of the forest with artificial edges.

For an artificial edge e connecting vertices (i), (j), where i, je J (1), define its edge
function f, by setting

‘fe:Dij >

see (1.6.1). For an artificial edge ¢ connecting vertices (j) and (0) where jeJ(4) and
(0) is the root of the tree T, define its edge function f, by setting

f=D7,
see (1.6.1). Define the forest function of a forest F with artificial edges {e} by setting

Tr=rr 11/,

where f; is the untwisted forest function defined in (1.5.3) and the product is taken
over all artificial edges.



510 A. Varchenko

(1.8.3) Example. A twisted forest function f¢ , defined in (1.6.5) is a forest function
of a forest F with suitably attached artificial edges.

(1.8.4) Lemma. For an arbitrary forest F with k artificial edges, there exist forests
F, ..., F¥ with k—1 artificial edges each, such that the forest function of F is
a linear combination of forest functions of F*, ..., FV.

The lemma easily follows from Lemmas (1.8.1) and (1.8.2).
Theorem (1.6.7) follows from Lemma (1.8.4).

2. g-Hypergeometric Functions, Difference Equations for Jackson’s Integrals

(2.1) Hypergeometric Functions. In this section we discuss some basic facts on
multidimensional hypergeometric functions motivating our study of g-hyper-
geometric functions.

Fixn, keIN . Sett=(t1,...,4), z=(2(,...,z,), and dt=dt; A - - - A dt;. Fix
complex numbers {a;;} for i,je{l,...,k}, i<j, and {af} for je{l,... k}, 7€
{1,...,n}. The function

Ft,2)=]] t:i—t)*> [ tj—z)% (2.1.1)

i<j KR

is a holomorphic multivalued function with singularities where {t;=t;} or {t;=z,}.
A general hypergeometric function associated with F is an integral of the form

I(z;p;7)= | @Fdt. (2.1.2)

y{(z)

Here ¢ is a rational function of ¢, z regular outside singularities of F. y{z) is a family
of suitable k-dimensional cycles continuously depending on z in a natural sense, see
for example [SV, V1.

For fixed y and ¢, the function I is a multivalued holomorphic function with
singularities where some of zy, . . ., z, coincide.

(2.1.3) Example.

I(zy, 20,235 L 9)= | (ti—z)™ (t1—2p)™ (11 —25)™ dty
y(2)

where y(z) is a curve in € shown in Fig. 2.1.

Obvious homology reasons may be applied to studying hypergeometric func-
tions. For a fixed z, the form ¢F dt is closed. Hence I(z; @; y,)=1(z; ¢; y,) for all
¢ and homologous y,(z) and p,(z). If

o Fdt—o@, Fdt=dy ,

then I(z, @1, y)=1(z, @2, y) for all y.



Quantized Knizhnik—Zamolodchikov Equations 511

¥(2)

Fig. 2.1.

Therefore, instead of studying infinite-dimensional space of general hyper-
geometric functions associated with F, it suffices to study only a finite-dimensional
family of hypergeometric functions {I(z, @,, y) }. 4 if for this family the differential
forms {¢,Fdt} generate the corresponding cohomology group and the cycles
{pp(z)} generate the corresponding homology group for all z with pair-wise
different coordinates.

Below we define such a family of differential forms.

The Orlik—Solomon algebra A associated with F is the finite dimensional
exterior C-algebra generated by differential forms d(t;—¢t;)/t;—¢;), d{ti—z,)/
(t;i—z,) for i, je{l,...,k}, Ze{l,. .., n}. The algebra is graded:

A= 4r

where A” is the space of p-forms.

A hypergeometric differential form associated with F is a differential form Fw for
weA.

A hypergeometric function associated with F is an integral

J(zw;7)= | Fo (2.14)

y(z)

where we A%, and y(z) is a family of cycles as in (2.1.2).
The finite-dimensional family of hypergeometric differential form {Fw} for
weA* has two remarkable properties:

(2.1.5) Under certain conditions [ESV, SV], the forms {Fw}, weA*, generate the
corresponding cohomology group, and, therefore, an arbitrary general hyper-
geometric function I(z; ¢, y) of the form (2.1.2) may be represented as a linear
combination

I(z; @;7) =) ca(2)J (z; w55 7)

where w,eA* and {c,(z)} are rational functions of z independent of 7.

(2.1.6) For a basis w;,. .., o, in A* there exisis a set of constant r x r-matrices
{Qm|t,me{l, ..., n} and Q,,=Q,,} such that for any family of cycles y the
vector-function

I(z)z( { Foi,..., | Fco,)

y(z) y{2)
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satisfies the system of differential equations

ol Qs

62/ m+t Zp—Zm

I, /=1,...,n,

see for example [SV].

The statement (2.1.6) says that, independently on (2.1.5), the subspace in
the corresponding cohomology group, generated by hypergeometric forms {Fw}
for a fixed z, is invariant with respect to the corresponding Gauss—Manin
connection.

Interrelations of multidimensional hypergeometric functions with the repres-
entation theory of Kac—~Moody Lie algebras come through this distinguished finite
dimensional space of hypergeometric forms {Fw} [SV]. The space {Fw}, we A*, is
interpreted as a weight component of the tensor product of n modules dual to
Verma modules, Q,,, as the Casimir operator acting in the Z™ and m' factors of the
product, and the system of differential equations (2.1.6) as the Knizhnik—Zamolod-
chikov equations in the Conformal Field Theory.

Analogously, there is a distinguished finite dimensional chain complex comput-
ing the homology groups. The cycles {ys(z)} are constructed as linear combinations
of cells of the chain complex. The chain complex is interpreted in terms of quantum
groups, see [V].

The integration of hypergeometric forms over chains of the complex gives
a pairing between the corresponding objects of the theory of Kac—-Moody algebras
and the theory of quantum groups.

Therefore generalizing the theory of hypergeometric functions to the case of
g-hypergeometric functions, it is reasonable to look for an analog of the finite
dimensional family of hypergeometric forms {Fw} with properties (2.1.5) and
(2.1.6), and for an analog of the finite dimensional chain complex that would
provide possible connections with representation theory.

In the next sections we describe such a g-analog of hypergeometric forms.

(2.2) g-Analogs of Differentiation and Integration [A, FR, M]. The g-analogs of
differentiation and integration are given by the formulas

dof . _1f{a)—f(1)
Zi;(t)—t -1

¢

freyd,e=¢(1—q) gof(éq")q",

[ f0d=—a) Y fCEa" . (2.2.1)
4

n<Q

when g— 1, these operations become the usual differentiation and integration.
Set

g0 dgt d
If(t)7=(1—q) Y, f(éq). (222)

n=—00

This sum is called the Jackson integral along a g-interval [0, £oo],.
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There is a g-analog of the Stokes theorem:

v dyfdyt

j o =0. (2.2.3)

The multiple Jackson integral is similarly defined where a g-cycle takes place
instead of a g-interval.
Z* acts on C*:

(2.2.4) For any a=(ay,. . ., a)eZ¥ set
M(a). C*—>C*,
(Cire v G (8ag™, . Gg™)
Z* acts on functions on C*:

(2.2.5) For any acZF, set

M) f(ty,. .., )= f{t g™, ..., g™ .

(2.2.6) For an arbitrary £e(C*)* the Z*-orbit of ¢ is called a k-dimensional g-cycle
and denoted by [0, {oo],. The Jackson integral of a function f(t,. .., t;) over
a g-cycle [0, o],
§ o f,.. ., t0)Q 2.2.7)
[0,&w],
for Q=(dt,/t;) A -+ A (dyte/ty) is the sum

(1—q)* > JC€ig*,. .5 &q™) (2.2.8)

—00 <y, s A< OO

if it exists.
For any aeZ*, we have

I M@nHe= | re. (2.2.9)

[0,8x], [0,5x]y

(2.3) g-Cohomology and gq-Hypergometric Functions, [A, AK]. Set

0=t = [T 1=,

=T] a=¢"). 2.3.1)
n=0
A g-analog of the function (1 —¢)?? is the function
4 "
_ (23.2)
(@00
This function tends to (1 —¢)** when g—1.
(2.3.3) Fix n, keN. . Fix complex numbers {b;;, ¢, o} Where i,j, me{l,. .., k},
i<j,and fe{l ,n}. We assume that b;; =0 and cm*E0foralli,j, £, m. A number

b;; or cf, will be called essential if it is not equal to 1.
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Set
o 2=t [l oy 1] 2. (234)
i<j m

@ is a g-analog of the function F(z, z) in (2.1.1).
Functions @;; and &@;, have the properties:

o;=1 ifb;=1. o,=1if ;=1 (2.3.5)
D;;(qti, qt;)= Piylti, ty) ,
D;i(qti, t;)="b;;Dyj(t;, t;) Dy5(t:, t5)
Dyj(t;, qt;) ij(ti, qtj)=(bi)) ™ ijlti, t;) (2.3.6)
where D;; is defined in (1.6.1).
P (qtms 42)= Prultms 22)
Dr(Qtms 20)= Dty 20) Pra(tms 22) 5
Dy (tm» q20) Bhy(tms q22) =(Cly) ™ Ploltm, 2,) . (2.3.7)
where D, is defined in (1.6.1).
(2.3.8) For aeZ* let T(a) be the operator defined in (2.2.5). Then
M(a)(®)=r1,D,

where r, is a rational function of ¢t and z.
A general g-hypergeometric function associated with @ is a Jackson integral of
the form

Izp;0)= | ooQ, (2.3.9)

[0,&o0],

where ¢ is a rational function of ¢ and z, and [0, (0], is a k-dimensional g-cycle.

(2.3.10) Remark. We will discuss formal algebraic properties of such integrals and
will not discuss their convergence.
For aeZ* set

V@)= —1.M(a)(p) . (2.3.11)

Then by the Stokes theorem we have

[ Vi@)®Q=0. (2.3.12)
[0,&00],
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We will restrict the class of admissible functions ¢ in (2.3.9) and will consider
only functions that belong to the vector space ¥~ defined below. Roughly speaking,
" is the space of functions that have no poles outside singularities of @.

More precisely, ¥~ consists of all rational functions of ¢ and z having the form

k
p=P < TT e TT (Bip) 2 ti/ejrs; Tl (@70 bijti/tj)r;,
i=1 j

i<j i<j
-1
x [T Uem) ™ tmfze)g T1(a™5%m tw/2e)y ) ; (2.3.13)
‘m mpm o

where P is a polynomial of ¢t and z, {a;, 1, rij, Stm, S¢tm} are arbitrary natural
numbers.

Now let z0=(z0,...,z7) be a set of pair-wise different non-zero numbers.
Define the space of rational functions of ¢ by the formula

,V(Zo)z{(p|z=z°9 Where QDE’V} .

The space ¥ (z°) contains 1 and is invariant with respect to the operators {V,|,~ s},
see [A, AK].

(2.3.14) The k™ cohomology group associated with @ for z=2z° is

HY®, Z°)=“//(Z°)/ Y Valo=zo 77(2% .
aeZ*
(2.3.15) The k™ homology group associated with & for z=z° is the group H,(®, z°)
dual to H*(®, z°).
It turns out that the group H*(®, z°) is finite dimensional, and, moreover, the
dimension of the group is equal to the number of suitable forests. Namely:

(2.3.16) Let A=(44, 4,,...) be the sequence in A such that 4;=1 for j<k and
A;=0 for j>k. Let b=(b;;) be a weight form such that the numbers {b,;} for
i<j<k coincide with the numbers {b;} in (2.3.3). Let
cl=(cl,c3,...),...,c"=(c},c5,...) be highest weights such that the numbers
{ci}yforze{l,. .., n}andme{l,. . ., k} coincide with the numbers {c}, } in (2.3.3).

(2.3.17) Theorem [A, AK]. Under generality conditions on z°, on the numbers {a,, },
and on the essential numbers {b;;, c,ﬂ} in (2.3.3), the dimension of the group H*(®, z")
is equal to the number of n-forests of weight A admissible with respect to the weight

n

form b and the highest weights c*,. . ., c"

For the proof, see [A, AK]. In [A, AK2] the theorem is proved only in the case
where all numbers {b;;, c;,} in (2.3.3) are essential. However, a similar proofis valid
in the present situation.

(2.4) q-Analog of Hypergeometric Forms. Let # be the set of all n-forests of weight
A admissible with respect to the weight form b and highest weights ¢*,. .., ",
where 4, b, ¢!, ..., c" are defined in (2.3). Fix a set of pair-wise different non-zero
numbers z={(zy,.. ., z,)

A forest F=(Ty,. .., T,) has k edges. There are 2* different orientations of the
edges. Assume that the edges of the forest are oriented.

Define the edge function f, of an oriented edge e of F, see [A].
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(2.4.1) Let T, be a tree of F, ¢ its oriented edge. Let e connect vertices (i) and (j)
such that i<j and i,je{1,.. ., k}. If e is oriented from (i) to (j), then set

Je=2z,/(bit;—1;) .

If e is oriented from (j) to (i), then set

Je=z:/(qt;—Dbyt;) ,

cf. (1.5.1).
Let e connect vertices (0) and (m). If e is oriented from (0) to (m), then set

f;e:Z(/(cilZf_tm) .

If e is oriented from (m) to (0), then set

fe=2,qz;—Cintw) -

(2.4.2) For an oriented forest F, define its oriented forest function by

fF=er P

where f, is the function of an oriented edge, and the product is taken over all edges
of F, see [A].

There are two distinguished orientations for a forest.

The orientation is called natural if each edge is oriented from the vertex with the
smaller number to the vertex with the greater number.

For a naturally oriented forest F, its oriented forest function defined in (2.4.2)
coincides with the forest function of an unoriented forest F defined in (1.5.3).

The orientation is called terminal if each edge of each tree of the forest is
oriented in the direction opposite to the direction to the root of the tree.

Let us consider three finite dimensional spaces of functions: the space B of
all C-linear combinations of all oriented functions of forests in %, the space
By, of all C-linear combinations of all terminally oriented forest functions of forests
in &, and the space B, of all C-linear combinations of all naturally oriented forests
in &.

B, coincides with W, (b,c,...,¢c" z4,. .., z,) defined in (1.5.4). We have

B ] Bo, B o Bl .
If N is the number of forests in &, then
dimB=2*N, dimB,=dimB; =N

for b,c*,...,c" zq,. .., z, in general position.
Obviously, B = ¥7(z), where ¥"(z) is defined in (2.3.13). This inclusion induces
homomorphisms

io: By »H*(®,2),
ii: Bi—>H"®,z) . (2.4.3)

(2.4.4) Theorem [A]. Under generality conditions on z, on the numbers {&,, }, and on
the essential numbers {b;;, cy,} in (2.3.3), the homomorphism i, is an isomorphism.
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In [A] the theorem is proved only in the case where all numbers are essential
and n=1. However, a similar proof is valid in the present situation.

(2.4.5) Theorem. Under generalzty conditions on z, on the numbers {a,,}, and on the
essential numbers {b;;, ¢4} in (2.3.3), the homomorphism i, is an isomorphism.

It suffices to prove that i; is a monomorphism under generality conditions. It
may be done similarly to Lemma 5.5 in [A] proving that a suitable determinant has
a nontrivial asymptotics. The proof will be published elsewhere.

(2.5) g-Difference Equations for gq-Hypergeometric Functions. For a function
n(zy, ..., 2,), et
Zihzy,. .. z)—h(ze, 0,425 .00 20) (2.5.1)

where j=1,...,n We will describe the action of the operators Z,,...,Z, on g-
hypergeometric functions I(z, ¢, £) for peB,. We will define some linear operators

Aj(21, e ,Zn): B] —)Bl
forj=1,...,nso that
Zj: 1z, ¢, =1z, Ai(2) 9, &)

for all k-dimensional g-cycles [0, £oo],.
In (1.6) we have constructed tensor coordinates on B;. In particular, we have
identified B; with the space

Vi=(V(b,eh®: - @V (b,c")s

of all n-forests of weight 4 admissible to b, c!,...,c", where A b,ct,..., c"
are defined in (2.3.3). We'll define the operators A;(z) as linear operators on
V,, the operators will be defined in terms of transition functions for those tensor
coordinates.

First, define n diagonal operators Dy,...,D, on V. Set
Vi=V(b,c) (2.52)
fori=1,...,n We have
V,= &> V), ® - @V, - (2.5.3)

Jot o A,=A
(2.5.4) For any re{l,. .., n} define the linear operator
Dr: Vl—) V/l

by the stipulation that for any A4,,...,4, the operator D, restricted to
(V1)a, ® - ®(V,),, 1s the operator of multiplication by the number d(4, 4,)
defined below.

Let J(4) and J(4,) = N, be the subsets corresponding to A and 4,, see (1.2.4).

Set
(1) (o) o) (3) (1) e
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Here the first product is over ueJ (4,). The second product is over all i <j such that
ieJ(4,) and jeJ (1) —J(4,). The third product is over all i <j’ such that j'e J(4,) and
i'eJ(4)—J(4,). The fourth product is over all meJ(4,) and Ze{1, . . ., n}, £ +r. The
fifth product is over all m'eJ(4)—J(4,).

(2.5.6) Example. For J(A1)={1} and J(1)={1, 2}, we have
d(A, A1)=q% biyc3/ct .
For i,je{l,...,n}, i%j, let
R(i,j, 24, 22): (Vi ® Vi)a— (V; ® Vi)a (2.5.7)

be the transition function introduced in (1.6.12).

Let
P (V;@Vi)a»(Vi® Vila (2.5.8)
be the transposition of factors. Set
R(iaja Z1, ZZ)=PR(i5j> Zi, ZZ): (Vl ® Vj)A—)(Vi ® Vj)/l . (259)

For any i,je{l, ..., n}, i<j, defined the linear operator
Rij(zi, 2)): Vo Vi, (2.5.10)

acting as R(i,j,z;,z;) on V;® V; and as the identity on other factors of V;.
R;; homogeneously depends on z;, z;, see (1.6.10).
For any je{l,...,n}, set

Ajzy, . o 2a)=Rj o1 @5 2j41) . - - Rj) (2, 2) DRy (21, 925). . . Rj-1,5(zj-1, 42;)

(2.5.11)

Let
L(Z)zLid(Zl, ceey Zn): VA_)Bl=WA(b,C1, ceey Cn, Zige o ,Zn) (2512)

be the isomorphism constructed in (1.6.6). Here ideS, is the identity permuta-
tion. This isomorphism sends an admissible forest F to the twisted forest function

fF,id'
(2.5.13) Theorem. For any xeV, and any je{l,. .., n}, we have
Z;: 1(z, L(2)x, §)—1(z, L(z) Af(2)x, &)

for all k-dimensional g-cycles [0, Eco]. More precisely, we have

Z,L(z)x—L(@)A,2)xe ) Val. 7 (2),

acZ*

see (2.3.14).

This theorem is a g-analog of (2.1.6).
The theorem is proved in (2.6).
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(2.5.14) Example, cf. [M1-2]. Let n=2, k=1. Set

o E1/C121)a (81/€222) 0
2 eit/20)w (C211/22)00

¢(t19 Zl, Zz)zt?t

Q1(ty, 21, 22)=—2z1 f{t; —c1/z4) ,

Cty—24 —Z

P2(t1, 21, 22)= )
t1—C1Zy L1—Cy2y

cf. (1.7.2). Set
Ii(z1, z2)=1(z1, 22, 0}, &)= j @;Pdgty [ty
[0,¢0l,

for a 1-dimensional g-cycle [0, £oo],. Then

C12,—CaZ c) -1z
11(‘121,22):<M11(21,22)+M12(21,Zz))‘la‘cz >
C1Ca22—2Zy C1C223—2Zy
c)?—1)z €229 —C12 _
Iz(qzbZz)=<g‘l)—)211(z1,22)+LH12(21,Zz))(cl) L
C1CpZy~—2Z4 C1C2Zy— 24

This transformation is inverse to the transformation PL, , given in (1.7.2), up to the
factors ¢* ¢, and (c;) .

Theorem (2.5.13) may be reformulated as follows.

Let V¥ be the space dual to ¥,;. A basis in V,; is formed by vectors
{IT,1®- - ®[T,]}, where F=(T,,. .., T,) runs through the set & of all admiss-
ible forests of weight A. Let {dr}, Fe#, be the dual basisin V. Let A¥(z): V-V
be the linear operator dual to A;(z). We have

A;F(Z)(Zla MR Zn)
:R}k_l,j (ngl, qu) P R;k,j(Zl, qu) D;}< Rjtnl*(zﬂ Zn)' .. RJ:jlfl(Zj’ Zj+ 1) (2515)

for j=1,...,n Define the system of g-difference equations a V¥-valued function
W¥(zy,. .., 2z,) by the formulas

Zy(@) =A@ (2.5.16)
forj=1,...,n
{2.5.17) Corollary of Theorem (2.5.13). For any k-dimensional g-cycle [0, Eoo], the

V ¥-valued function

¥z, &)=Y Iz, L()[F],&)dp

FeZ

is a solution to the system (2.5.16).

Denote by N the number # % =dim V.
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(2.5.18) Corollary of (2.3.17) and (2.4.5). Under generality conditions on z, on the
numbers {a,}, and on the essential numbers {b;;, ci,} in (2.3.3), there exist such

g-cycles {0,&100],,...,[0,Ey0], that the vectors Y(z,&q),. .., Yz, Ey) form
a basis in V§.

(2.5.19) Remarks.

1. 1. Frenkel and N. Reshetikhin in [FR] derived a g-difference system of equa-
tions for the matrix coefficients of the product of intertwining operators for
a quantum affine group. Their system is a g-deformation of the KZ equation. The
Frenkel-Reshetikhin system of equations has the form (2.5.15-16), where the
function ¥ takes values in the tensor product of finite dimensional representations
of the quantum group and {R;;} are the R-matrices acting in the corresponding
factors, see [FR] and Sect. 3.

An interesting open problem is to compare the two systems of g-difference
equations. According to A. Matsuo [M1], system (2.5.16) for k=1 coincides with
the Frenkel-Reshetikhin system for Uq(sf ») restricted to the first non-trivial weight
subspace, see also Sect. 3.

Integral solutions for the Frenkel-Reshetikhin system in the U (s/z) case
observe in [M1-2] and Sect. 3, see also [R]. Integral solutions for the U (g/N) case
were found resently in [TV].

2. In [A, AK, AKM] asymptotics of g-hypergeometric functions are considered.
Matrices connecting g-hypergeometric functions with different asymptotics are
constructed. The connection matrices are linear operators in spaces of forests
satisfying the Yang-Baxter equation. Their entries are g-periodic (elliptic) func-
tions. This solution for the Yang-Baxter equation is different from the solution
described in Sect. 1, our R-matrices are rational functions of parameters. The
situation here is similar to the situation with the Kniznik—Zamolodchikov equa-
tion: the equation is given in terms of Casimir operators of a Lie algebra, and its
monodromy is described in terms of the universal R-matrix of the corresponding
quantum group.

(2.6) Proof of Theorem (2.5.13). First, we prove the theorem for the operator Z,.

Let id, oS, be the identity permutation and the permutation
(e(1),...,a(n)=(2,3,...,n1), resp.

Let F=(Ty,...,T,)e% be an admissible forest of multi-weight (1,. .., 4,).
Let fr.;q and fr , be its twisted forest functions defined in (1.6.5).

Let Uy be the transformation sending a function h of {t;}, ie{1,. .., k}, to the
new function Ugh obtained from h by the substitution t;—qt; if ieJ (1, ) and t;—¢; if
i¢J (A1)

(2.6.1) Lemma.
Z, UF(fF,iddj)=d(j'a Al)fF,a'gp s
where d(A, A1) is defined by (2.5.5).

The lemma is a direct corollary of (2.3.6), (2.3.7) and definitions of twisted forest
functions.

(2.6.2) Corollary.
Zy(fr.1a®)/®—d(4, A1) fr.0€ Y, Val7(2).

aeZ*



Quantized Knizhnik-Zamolodchikov Equations 521

The map
M: Bl_’BlafF,ide()va il)fF,a » (2.6.3)

may be described as follows.
(2.6.4) Lemma. Let
QN®V® - @V)~»,® @V, ® V1),
be the permutation of factors. Then
M=L(z(,...,2,)0D Lz (z¢,...,2,)

where L4, L, are the coordinate maps constructed in (1.6.7), D, is the operator
defined in (2.5.4).

The lemma is a direct corollary of the definitions of the maps L, L.
(2.6.5) Lemma. For the map
Lig* (zy, ..., 2)MLia(zy, ..., 2,): ViV,
we have the following formula:
Lig* MLig=R}(zy,25). .. R{1(z1,2,)D1=A1(21, . - ., 2Z4) .

The lemma is a direct corollary of the definitions of operators {R;;}, the locality
property (1.6.13), and the unitarity properties (1.1.6) and (1.3.3) of the tensor
coordinate constructed in (1.6).

The proof of the theorem for Z;, j>1, is analogous to the proof for

Z;. Let pu,veS, be the permutations given by the formulas: (u(1),. .., un)=
U, ,2,...,j—Lj+1,...,n) and (v(1),...,v(m)=(1,2,...,j—Lj+1,...,mj)
Let F=(Ty,...,T,)e% be an admissible forest of multi-weight 1,,...,4,. Let
Uy be the transformation sending a function h of {t;}, ie{1,. .., k}, to the new

function Uj h obtained from h by the substitution t;—qt; if ieJ(4;) and t;—t; if
igJ(4)).

(2.6.6) Lemma,
ZiUp(fr,u®@)=d(2, 2) fr, D .

Theorem (2.5.13) for Z; easily follows from Lemma (2.6.7) as Theorem (2.5.13)
for Z, follows from Lemma (2.6.1).

3. Integral Solutions to the Frankel-Reshetikhin Equations for quf 2

In this section we prove the Matsuo conjecture which gives solutions to the
Frenkel-Reshetikhin g-difference equations for the U,(s7,) case. We follow [M2].

(3.1) The Frenkel-Reshetikhin Equations for Uq(s2 ») [M-2, FR]. The quantum
group U,=U,(s/,) is the algebra generated by

X Xt KE KE (3.1.1)
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subject to the relations
KoKl-:K Ko,KoK(;l:K K;1=1 3
K XfKi'=q*?*X?,
K XTK;'=q"*X7 (3.1.2)
for i=j,
K.—K !
[Xi+7XT:]=5i'%9
i J q—q 1
(XFPXF (@ +1+q )XFPXFXF
Ha@®+ 1+ HXFXF (X —XF(X{) =

for i+j. Here g is a generic complex parameter.
The comultiplication 4: U, —+U ® U is defined by

AXD) =X ®K+1® X",
AX =Xy @1+K '® X[,
AK)=K,®K; . (3.1.3)
Set A'=04 where 6(a ® b)=b ® a in U ®U

The subalgebra U,=U,(s£,) is generated by Xt=x% If =K7.

For each xeC, there is an algebra homomorphism ¢,: U,— U, defined by
(px()(g):xir 1X¢a q)x(X‘f)in >
(px(KO)—‘:Kula (Px(K )=K . (314)

Let {(V;,m;)} be Verma modules of U, with highest weights {4;}. Then
{(Vi(x), n) (Vi, ;o @)} are representations of U
There is the trigonometric R-matrix

Ry,y,(x): Vilx) ® V()= Vi(x) @ V(1) (3.1.5)
such that
A(@)Ry,y,(X)=Ry,y (x)4(a), acU,, (3.1.6)
normalized by the condition
RVle(x)vi®vj=v,-®vj, (3.1.7)

where v; denotes the highest weight vector in V; for any i.

If RVV x)=>, R“”(x)@R“”(x) then following Matsuo we let it act on
Vi@ @V, by 1® - ® R“”(x) ® - ®RPx)® - ®1, where R(x)
stands in the F factor and R{’(x) stands in the ]”‘ factor Note that i might be
greater than j.

For a weight 4, define the operator g™* by the formula:

gm P (X Vo= q P A (X Yy, (3.1.8)

where « is the simple root.
Let ¢™* act on the i component of V,® -+ ® V,,.
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Let p be a complex parameter. Suppose that

p F=q. (3.1.9
Let Z; denote the p-shift operator:
ZiV(zy,. o, 2)> V(21,5 DZjs o5 2n) (3.1.10)

The Frenkel-Reshetikhin equations for a Vi ® - -+ ® V,-valued function
Y(zy,...,z,)is the system of equations

pz; bz; n oay— - Zn
qu’-——RV,V“( j ) .. RVJV,( ’>q Sty = (A, 4,) RV"},](—)
Zj—1 41 Zj

,Hm<2§“>'P, (3.1.11)

-1
-+ Ry
i

where j=1,...,n Here a weight 4 is a parameter of the equations, see
[FR, M1-2].

{3.2) Action of Symmetric Group. The symmetric group S, is generated by the
standard generators ¢,,.. ., 0,1, where ¢; permutes i and i+ 1.
Set
_ti‘—‘qztj_[i*p_zvtj
IJ_thi_tj_p*thi_tj ’

(3.2.1)

For f(ty,...,t,), define
(0 f)tiy. . t)=flte,. . s tivts i o ) Dy (3.2.2)

This formula induces an action of S, on the space of functions of t,.. ., 1.
For a permutation a=(o(1),.. ., o(n)),

(O-f)(tls e tk):f(td(l), ey td(k)) n Da'(j)a'(i) > (323)

where the product is taken over all pairs (i, j) such that 1 <i<j<k and o(i)> o(}).

(3.3) The Matsuo Conjecture. Set
M;=(4;, o) and M={(A+a,a) . (3.3.1)
Fix keIN, and set

M (PMEE 20 D)
Oz, )= [] (i> é%ﬁﬁ%%fgl

1gign \Yj
1<jsk
5 (5)@___1/5_11@ ] 2™« [ . (332)
1zi<isk \t/)  (P"G/15Pw 12izn | 1sjzk
Set
Mu
pr Zi_t' Z;
P L (3.3.3)

- My, - My, °
Zi—pUL zi—p

(3.34) Let /=(/1,...,¢,)eIN" be a multi-index such that £+ - -+ +¢,=k.
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Set
b= Y lit;. (3.3.5)

1€i<jsn
Leta;=¢1+--- +¢;fori=1,...,n and ayx=0.
Set
(pf(z,t)zq[‘fn ( H Alj---:Ai—ljBij>a
i=1

a-1+1=j<=a,

be(2,0= ) (60.)(z 1) . (3.3.6)
oeSy
Fix a k-dimensional p-cycle {0, {oo],. For any multi-index / with property
(3.3.4), set
. dpt
F= | @022 A A

r dyti
[0,&w], 3] t

(3.3.7)

We assume that these Jackson integrals are well-defined for all 7.
Define the V, ® - - - ® V,-valued function F(z) by the formula:

F@= Y F@i?® - @u,
£=(l1,-..500)
Lt b=k

where v; is the highest weight vector of V7,

o _ X"
L m]!

[m]!=[m]lm-17...[17,

—a

Ui,

q“—q
qa—q°

(3.3.10) Conjecture [M2]. The function F(z) is a solution of the FR-equations
(3.1.11).

(3.3.11) Theorem [M1-2]. The conjecture is true if k=1 or n=2.

[a]=

1

(3.3.12) Theorem. The conjecture is true for arbitrary n and k.
Theorem (3.3.12) is proved in (3.5)

(3.4) The Matsuo Results for n=2 [M2]. Letn=2.Let£=({1,¢,)cIN? be a multi-
index such that /; +¢,=k. Then the function §,(z, t) is given by (3.3.6):

@.(z, t)=q“‘2<ﬁ Bl,->( [k] Alsz,->, (3.4.1)

j={1+1

£y k
~ 1L
@z, )=q"" > ( I1 Blo(j))( I1 Ala(nBza(j)) [T Deiyows-
ceS, j=1 j=£1+1 Igi<j=sk
a=((1,..., a(k)) o()>o(j)
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Introduce the function @(z t) by the formula

Yz, )=4q" (HB21>< ﬁ Asz1j>, (3.4.2)

j=t2+1
Yz, t)= Z (oY) (z, 1)
ce8S,
£ k
— lllz
=q > (H Bz(j))( I1 A(nBlu‘)) Il Deiiyony -
seS, j=1 Jj=£{+1 1i<j=zk
g=(@(1,..., aik)) a(i)>a(j)

Let
Ry v,(x): Vi(x) @ V(1) V1 (x) ® V(1)

be the trigonometric R-matrix, see (3.1.5). The R-matrix preserves the weight
decomposition. Introduce its matrix coefficients {R/:’: (x)} on the level k by the
formula: for any (¢4, £,) such that ¢/, +¢,=k, set

Ry, (00 @v¢P= ¥ RO% (x)pim) @ v . (34.3)

mym,
m, +m,=k

(3.4.4) Theorem [M2, Lemma 5.2.2]. For any (£y,7,),

Uoozt)y= Y RM™(z1/2;) Gy, (2 1) -

my+my,=k
In other words, {i,} and {§},,} are connected by the matrix transposed to the
R-matrix. 5
Let o=(0(1),...,0(k)eS,. Let Z,[a¢,)(z, t)®,(z, t)] be the function ob-
tained from the function (6¢,)(z, t) ®,(z, t) by the transformation
215225 b6(1)s + -« 5 ba) P21 Z25 Plaqt)s + + 5 Plaqe)sbo(tyn)s - - 5 Lahy -
By the Stokes theorem we have

Zl< ) (‘HPZ)(Z,I)(PI,(z,t)d_;’t_I,\... A@)

10, Zool, 1 U

- dpt
= | Zilloo)(z ) ®y(z, 0] 2= A+ A L2 (34.5)
10,001, 8! t

for any [0, 0],
(3.4.6) Lemma. For any £ =(/1,¢>),
Z1 [0z ) Py(z, 1= "M (av/) (2, ) Bylz, 1)
where ve S, is defined by the formula
v=wl),...,v&))={(1+1,1+2,...,k1,2,....,74),
and oveS, is the product of two permutations.

This lemma is a straightforward generalization of the formula in [M2] which is
the next after (5.2.6).
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Theorem (3.4.4) and Lemma (3.4.6) prove Conjecture (3.3.10) for n=2, see
[M2].

(3.5) Generalized Tensor Coordinates. We consider the situation described in (3.3)
for arbitrary n and k. In this case our functions depend on zy,. .., z,, t;,. .., .
Two symmetric groups S, and S; will appear in our considerations.

Let /=(/,...,¢,)elN" be a multi-index such that /,+ - -- +¢,=k. Let
a=7¢1+- -+ fori=1,...,nand a;=0. Let o=(w(1),...,w(n)) be an ele-
ment of S,. Introduce the function @, , by the formula

Qo (2, t)=‘1/'( n < H Aa)(l)j' C Api- 1) Bw(i)j> .

i=1 \a_ +15j<a,
Pa,t(2,0)= ), (0002 1) . (3.5.1)
ageS,

(3.5.2) Example. Let n=2. Let ¢ and v be the trivial and nontrivial elements of the
symmetric group S,. Then for any /=(/1,¢,), we have ¢, ,=®, and @, ,=y,,
where @, and 1, are defined by (3.4.1) and (3.4.2).

Fix zq,...,z,. For a fixed weS,, introduce the space

Wi oz, .2 (3.5.3)

as the linear space consisting of all linear combinations Z ;4 @w.¢(2, 1) where £ runs
through the set of all multi-indices /eN" such that ¢, + - - - +¢,=k and {a,} are
complex coefficients.

For o =(w(1),. .., w(n))es,, consider the tensor product

Vo=Vo)® " & Viym) - (3.54)

V,, has the weight decomposition

Vo=@ Vo » (3.5.5)
k=0

where V,, , consists of all elements x such that Kx=g:* "M~y p . has
a basis consisting of the monomials

PO =0 @ @v, Ly+- - +la=k.

n 0

Consider the dual space V%, with the dual basis {v*}. Define a linear map

Ly VE Wi olzi,. .., 2,) (3.5.6)
by the formula
Loy 0%, . (3.5.7)
For any i, j, let
Ry, () Vi) @ V()= V,(1) ® Vilx) (3:58)

be the linear map defined by PRy, y (x), where Ry, y (x) is introduced in (3.1.5) and
P is the transposition of factors. Let

Ry, () (V;(1) ® Vi) ~(Vi(x) ® V;(1))* . (3.5.9)
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be the dual map.
If Rvar(x):z ;R () ® R (x), then let it act on V&, ® - - ® V¥ by

1®: - ®R,-(d)(x)®' c. ®R§d)(x)®' .. ®1 ,
where R{?(x) stands in the ¥*'* factor and R{?(x) stands ion the V' *™ factor.
(3.5.10) Theorem.

1. The space W, ,(z1,. . .,2,) is independent on w, that is, for any w, veS, we
have

Wk,w(zl7' .. )Zn):Wk,v(Zla LR aZn) -

2. For any o=(w(1),...,0om)eS, andi=1,...,n—1, the following diagram
is commutative

Vw(1)® .. Vw(i)@ Vw(i+1)~ .. ® Vw(n)));cl<

Lw(l),. .. ()
v
Wize,. ..y za) RVH*,(,)V;*,MU(Z(U(i)/Zw(H- )
Lw(l) ..... o+ w(),..., w(n)

(un) ®... Va)(H— 1) ® Vw(i)' ® Vw(n));ck

For n=2 Theorem (3.5.10) coincides with Theorem (3.4.4). For n>2 Theorem
(3.5.10) easily follows from Theorem (3.4.4).

(3.5.11) Remark. 1 do not know whether {L,} are isomorphisms for generic
4215 - . » 2. X {L,} are isomorphisms, then{L,} form a system of local tensor
coordinates on W(zy,. . ., z,) in the sense of (1.3). In any case, we call {L,} the

generalized tensor coordinates on Wi (zq,. .., z,).
Let o=(0(1),. .., a(k))eS;, o=(@(1),...,w(n)es,. Let £ =(£y,...,¢,)eN"
be a multi-index such that /4 + - - - +¢,=n. Consider the function

(O'qu’/)(Z, t)

n

4t P

=q H( Ao),00) Aw(i—l)amba).am) IT Dogrow >
i=1

1=<i<j<k
a(i)>a(j)

a1 +15j<aq

(3.5.12)
see (3.5.1).
Let Z,1,[ (60, /)(z,1)®,(z, t)] be the function obtained from the function
(000, )(z,t) P,(z, t) by the transformation
Zw(l): LRI Za)(n)’ to’(l)’ sty ta‘(k)'_)pzw(l)a Zw(2)> s Zu)(n)a
Plays - - s Ploeys baters)s - - - s boiy -
By the Stokes theorem we have

d,t d,t
Zm(l)( f (000,:)(z, )Pz, t):—l AT A Lk)
[0,&w],

1 Iy

- dt,
= | Zewl000,)G 081 @) L A - A 2 (3.5.13)

{0, ¢w], 1 19

for any [0, éco],,.
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(3.5.14) Lemma.
Zoy[(000,0)(2, ) @y(z, ] = gM o™ M(azg, )z 1), @y(z, 1),
where v,€8, is defined by the formula
ve=(v(),...,v(k)=(+1,41+2,...,k 1,2,...,41),
and weS, is defined by the formula

p=(l),. .., um))=2,...,n1).
This formula is proved by an easy direct calculation.

(3.5.15) Theorem (3.3.12) is a direct corollary of Theorem (3.5.10) and Lemma
(2.5.14), cf. the deduction of Theorem (3.3.11) for n=2 from Theorem (3.4.4) and
Lemma (3.4.6) in [M2].
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