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Abstract—The error floor phenomenon observed with LDPC
codes and their graph-based, iterative, message-passing (MP)
decoders is commonly attributed to the existence of error-prone
substructures in a Tanner graph representation of the code.
Many approaches have been proposed to lower the error floor
by designing new LDPC codes with fewer such substructures or
by modifying the decoding algorithm. In this paper, we show
that one source of the error floors observed in the literature may
be the message quantization rule used in the iterative decoder
implementation. We then propose a new quantization method
to overcome the limitations of standard quantization rules.
Performance simulation results for two LDPC codes commonly
found to have high error floors when used with the fixed-point
min-sum decoder and its variants demonstrate the validity of
our findings and the effectiveness of the proposed quantization
algorithm.

I. INTRODUCTION

Low-density parity-check (LDPC) codes have been the

focus of much research over the past decade as a conse-

quence of their near Shannon-limit performance under iterative

message-passing (MP) decoding [1]. However, the error floor

phenomenon has hindered the adoption of LDPC codes and

iterative decoders in some applications requiring very low error

rates. Roughly speaking, an error floor is an abrupt change in

the slope of the error-rate performance curve of an MP decoder

in the high SNR region. Since many important applications,

such as data storage and high-speed digital communication,

often require extremely low error rates, the study of error floors

in LDPC codes remains of considerable practical, as well as

theoretical, interest.

The most common way to improve the error floor perfor-

mance of LDPC codes has been to redesign the codes to have

Tanner graphs with large girth and without small error-prone

substructures (EPSs), such as near-codewords [2], trapping
sets [3], or absorbing sets [4]. Another approach has been

to modify the standard iterative decoding algorithms. In [5], a

post-processing decoder was proposed to improve performance

by matching the configuration of unsatisfied check nodes

(CNs) to precomputed trapping sets. The post-processing ap-

proaches proposed in [6], [7] increase or decrease the reliabil-

ity of messages from certain nodes. A bi-mode erasure decoder

to reduce error floors due to small size EPSs was introduced

in [8]. All these modified decoders either change the message

update rules at check nodes or require extra information from

an auxiliary code. Adding post-processing stages to the MP

decoder also increases the decoding complexity relative to the

original decoding algorithms.

In fixed-point implementation of iterative MP decoding,

efforts were also made to improve the the error-rate perfor-

mance in the waterfall region and/or error-floor region by

optimizing parameters of uniform quantization [9]–[12]. Zhao

et al. studied the effect of the message clipping and uniform

quantization on the performance of the min-sum decoder in

waterfall region, and heuristically optimized the number of

quantization bits and the quantization step size for selected

LDPC codes. In [10], a dual mode adaptive uniform quanti-

zation scheme was proposed to better approximate the log-

tanh function used in sum-product algorithm (SPA) decoding.

Specifically, for magnitudes less than 1, all quantization bits

were used to represent the fractional part; for magnitudes

greater than or equal to 1, all bits were dedicated to the

representation of the integer part. In [11], [12], Zhang et al.
proposed a conceptually similar idea to increase precision in

the quantization of the log-tanh function. Uniform quantization

was applied to messages generated by both variable nodes

and check nodes, but the quantization step sizes used in the

two cases were separately optimized. We note, however, that

none of these modified quantization schemes were primarily

intended to significantly increase the saturation level, or range,

of quantized messages, and in their reported simulation results,

error floors can still be clearly observed.

In this work, we investigate the cause of error floors in

binary LDPC codes from the perspective of the MP decoder

implementation, with special attention to limitations that de-

crease the numerical accuracy of messages passed during

decoding. Based upon an analysis of the decoding process

in the vicinity of an EPS, we propose a novel quantization

method, (q + 1)-bit quasi-uniform quantization, that does not

require a modification of either the decoding update rules or

the graphical code representation upon which the iterative MP

decoder operates. The proposed quantization method has an

extremely large saturation level, a property that, to the best

of our knowledge, distinguishes if from other quantization

techniques for iterative MP decoding that have appeared in

the literature. We present simulation results for min-sum de-

coding and some of its variants that demonstrate a significant

reduction in the error floors of two representative LDPC codes,

with no increase in the decoding complexity. Similar results,

not included in this paper due to space constraints, verify
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the applicability of the new quantization method to other MP

decoding algorithms, such as the sum-product algorithm (SPA)

often used in belief-propagation (BP) decoding.

The remainder of the paper is organized as follows. In

Section II, we investigate the impact that message quanti-

zation can have on MP decoder performance and the error

floor phenomenon. In Section III, we propose an enhanced

quantization method intended to overcome the limitations

imposed by traditional quantization rules. In Section IV, we

incorporate the new quantizer into various versions of min-

sum decoding and, through computer simulation of several

LDPC codes known for their high error floors, demonstrate

the significant improvement in error-rate performance that this

affords. Section V concludes the paper.

II. ERROR FLOOR OF LDPC CODES

The term trapping set proposed by Richardson [3] is op-

erationally defined as a subset of variable nodes (VNs) that

is susceptible to errors under a certain iterative MP decoder

over an MBIOS channel. Hence, this concept depends on

both the channel and the decoding algorithm. To facilitate our

discussion, we define the term absolute trapping set from a

graph-theoretic perspective, independent of the channel and

the decoder. Let G = (V ∪ C,E) denote the Tanner graph of

a binary LDPC code with the set of VNs V = {v1, . . . , vn},
the set of CNs C = {c1, . . . , cm}, and the set of edges E.

Definition 1 (absolute trapping set): A subset of V ∪ C
is an (a, b) absolute trapping set if there are b odd-degree

check nodes in the subgraph induced by a variable nodes, the

subgraph is connected, and it has at least one check node of

degree one.

It is worth noting that the definition of absolute trapping

set is slightly different from the conventional generalized

definition of trapping set [5] of which a stopping set is a

special case. By requiring at least one check node of degree

one, we exclude stopping sets from our definition of absolute

trapping set. As we will discuss later in this section, these

degree-one check nodes are essential because they are able to

pass correct extrinsic messages into the trapping set. In the

literature, almost all trapping sets of interest have degree-one

check nodes, and therefore, are absolute trapping sets. Hence,

unless indicated, all trapping sets referred to in this paper are

absolute trapping sets as well.

Before introducing the main results, we first present some

important notations and definitions. Let S be the induced

subgraph of an (a, b) trapping set contained in G with VN

set VS ⊆ V and CN set CS ⊆ C. Let C1 ⊆ CS be the set of

degree-one CNs in the subgraph S, and let V1 ⊆ VS be the

set of neighboring VNs of CNs in C1. We refer to a message

of an edge adjacent to variable node v as a correct message

if its sign reflects the correct value of v, and as an incorrect
message otherwise.

In analogy to the definition of computation tree in [13], we

define a k-iteration computation tree as follows.

Definition 2 (k-iteration computation tree): A k-iteration
computation tree Tk(v) for an iterative decoder in the Tanner

graph G is a tree graph constructed by choosing variable

node v ∈ V as its root and then recursively adding edges

and leaf nodes to the tree that participate in the iterative

message-passing decoding during k iterations. To each vertex

that is created in Tk(v), we associate the corresponding node

update function in G.

Let D(u) be the set of all descendants of the vertex u in a

given computation tree.

Definition 3 (separation assumption): Given a Tanner

graph G and a subgraph S induced by a trapping set, a

variable node v ∈ V1 is said to be k-separated if, for at least

one neighboring degree-one check node c ∈ C1 of v in S,

no variable node v′ ∈ VS belongs to D(c) ⊂ Tk(v). If every

v ∈ V1 is k-separated, the subgraph S is said to satisfy the

k-separation assumption.

With the separation assumption, the descendants of c ∈ C1

are separated from all the nodes in the trapping set, meaning

that messages originating from the trapping set would not

cycle back through check node c within k iterations. We

note that the separation assumption is much weaker than

the isolation assumption in [14] – the separation assumption

applies only to VNs v ∈ V1 and their neighboring CNs in C1.

To get further insight into the connection between trapping

sets and decoding failures of iterative MP decoders, we con-

sider the min-sum decoder, whose VN and CN update rules we

now briefly recall. A VN vi receives input message Lch
i from

the channel, which can be the log-likelihood ratio (LLR) of

the corresponding channel output. Denote by Li→j and Lj→i

the messages sent from vi to cj and from cj to vi, respectively,

and denote by N(k) the set of neighboring nodes of VN vk
(or CN ck). Then, the message sent from vi to cj in min-sum

decoding is given by

Li→j = Lch
i +

∑
j′∈N(i)\j

Lj′→i , (1)

and the message from CN j to VN i is computed as

Lj→i =

⎡
⎣ ∏
i′∈N(j)\i

sign(Li′→j)

⎤
⎦ · min

i′∈N(j)\i
|Li′→j |. (2)

It can been seen from (1) and (2) that the min-sum decoding

algorithm is linear, meaning that linearly scaling all input

messages from the channel would not affect the decoding

performance.

Theorem 1: Let G be the Tanner graph of a variable-regular

LDPC code that contains a subgraph S induced by a trapping

set. When S satisfies the k-separation assumption and when

the messages from the BSC to all VNs outside S are correct,

the min-sum decoder can successfully correct all erroneous

VNs in S, provided k is large enough.

Proof: Assume VN vr ∈ V1 in S is k-separated and

the corresponding k-iteration computation tree is Tk(vr). Let

cr ∈ C1 be the neighboring degree-one CN of vr in S. By as-

sumption, all descendants of cr in Tk(vr) receive correct initial

messages from the BSC. Denote the subtree starting with CN
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cr as T (cr). All VN nodes in T (cr) receive correct channel

messages and these messages have the same magnitude.
Now, with the VN/CN update rules of the min-sum decoder,

we analyze the messages sent from the descendants of cr in

T (cr). First, according to the CN update rule described in (2),

all messages received by a VN from its children CNs in T (cr)
must have the same sign as the message received from the

channel by this VN, because all the messages passed in T (cr)
are correct. Moreover, since the LDPC code is variable-regular

and all the channel messages from the BSC have the same

magnitude, it can be shown that, for the min-sum decoder, all

incoming messages received by a VN from its children CNs in

T (cr) must have the same magnitude as well. Let |Ll| be the

magnitude of the messages sent by the VNs whose shortest

path to a leaf VN contains l CNs in T (cr). Hence, |L0| is

the magnitude of messages sent by leaf VNs, as well as the

magnitude of channel inputs. Then, we have

|Ll| = |L0|+ (dv − 1)|Ll−1|
> (dv − 1)l|L0| (3)

where dv is the variable node degree. Hence, it can be seen that

the magnitudes of messages sent towards the root CN cr of

the computation tree T (cr) grow exponentially, with dv−1 as

the base, in every upper VN level. Therefore, the magnitude

of the message sent from cr to its parent node vr, the k-

separated root VN of Tk(vr), in the l-th iteration is greater

than (dv − 1)l|L0| for l ≤ k.
Now, let us consider the subtree, denoted by T (c′), formed

by branches in Tk(vr) that start from a neighboring CN c′ ∈
CS \C1. It is not hard to see that there exists an integer t such

that any t-level subtree starting from a VN v ∈ S in T (c′),
i.e., a subtree with t levels of VNs, must have at least one

k-separated VN as its descendant. It is obvious that t ≤ a and

the value t depends on the structure of the trapping set. Note

that the leaf VNs of these t-level subtrees are not necessarily

the leaf VNs of Tk(vr). Suppose the message received by

vr from its child c′ ∈ CS after l iterations, denoted by L′l,
has a different sign than the message received from cr ∈ C1;

otherwise, vr would already be corrected. By considering each

such t-level subtree as a “supernode” with (dv − 1)t children,

we get the following upper bound

|L′l| < |L0|
[
(dv − 1)t − 1

]�l/t�
. (4)

Therefore, we can see that, if l ≤ k is large enough and there

is no limitation imposed on the magnitude of messages, the

correct messages coming from outside of the trapping set to

VNs in V1 through their neighboring CNs in C1 will eventually

have greater magnitude than the sum of incorrect messages

from other neighboring CNs, and the decoder will ultimately

correct all VNs in the trapping set.
Corollary 2: Let G be the Tanner graph of a variable-

regular LDPC code that contains a subgraph S induced by a

trapping set. When S satisfies the k-separation assumption and

the channel messages from the AWGNC to all VNs outside S
are correct, the min-sum decoder can successfully correct all

erroneous VNs in S, provided k is large enough.

Proof: Consider the minimum magnitude of all input

LLRs from the AWGNC as |L0|, and follow the proof of

Theorem 1.

Theorem 1 and Corollary 2 can be easily extended to several

variations on min-sum decoding, such as attenuated min-sum

(AMS) decoding and offset min-sum (OMS) decoding [15],

as long as the attenuation factor and the offset factor are fixed

constants.

Definition 4 (unsaturated decoder): An iterative MP de-

coder that does not impose any limitation on the magnitudes

of messages is called an unsaturated MP decoder.

For most LDPC codes, the trapping sets typically satisfy the

k-separation assumption only for small values of k. Neverthe-

less, as described more fully in Section IV, in computer sim-

ulations of unsaturated min-sum decoding applied to several

LDPC codes traditionally associated with high error floors, we

have not observed, in tens of billions of channel realizations

of both the BSC and the AWGNC, any decoding failure in

which the error patterns correspond to the support of a small

trapping set. Similar results were reported in [16], where no

error floors were observed when unsaturated BP decoding was

applied to selected LDPC codes on the AWGN channel.

III. NEW QUANTIZATION RULE TO LOWER ERROR

FLOORS

As reported in the literature, most hardware implementa-

tions and their computer-based simulations use some form of

uniform quantization. We will refer to uniform quantizers with

quantization step Δ and q-bit representation of quantization

levels, with one of the q bits denoting the sign. The quantized

values are lΔ for −N ≤ l ≤ N , where N = 2q−1 − 1.

As shown in the proof of Theorem 1 and Corollary 2, when

a trapping set satisfies the k-separation assumption for a large

value of k, the magnitudes of correct messages outside the

trapping set grow exponentially in the number of iterations.

Therefore, it would be desirable for the message quantizer

to capture, at least to some extent, the exponential increase

of these message magnitudes while retaining precision in the

representation of messages with smaller magnitudes. To this

end, we propose a new (q+1)-bit quasi-uniform quantization

method that adds an additional bit to q-bit uniform quantiza-

tion to indicate a change of step size in the representation of

large message magnitudes. Hence, the messages after quanti-

zation will belong to an alphabet of size 2q+1−1. Specifically,

the (q + 1)-bit quasi-uniform quantization rule is given by

Q(L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, l), if lΔ− Δ
2 < L ≤ lΔ+ Δ

2

(0, N), if NΔ− Δ
2 < L < dNΔ

(0,−N), if −dNΔ < L ≤ −NΔ+ Δ
2

(1, r), if drNΔ ≤ L < dr+1NΔ

(1,−r), if −dr+1NΔ < L ≤ −drNΔ

(1, N + 1), if L ≥ dN+1NΔ

(1,−N − 1), if L ≤ −dN+1NΔ
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where N = 2q−1− 1, −N +1 ≤ l ≤ N − 1, 1 ≤ r ≤ N , and

d is a quantization parameter within the range (1, dv − 1].
Generally, the values represented by the (q + 1)-bit quasi-

uniform quantization message (0, l) are lΔ, and the values

of message (1,±r) are ±drNΔ respectively. For messages

within the range of [−NΔ, NΔ], the new quasi-uniform

quantizer provides the same precision as a q-bit uniform

quantizer with quantization step Δ. For messages outside that

range, non-uniform quantization with increasing step sizes of

the form drNΔ is used to allow reliable messages to be more

accurately represented.

Since the range of uniformly quantized messages in MP

decoders is small in practice, the correct messages outside

a trapping set could reach the saturation level within a few

iterations. As a result, even though correct, these messages

may not be large enough to offset the contribution of incorrect

incoming messages for problematic VNs. Hence, even after

optimization of the step and size of a uniform quantizer, the

decoder may not produce the same error floor performance as

an unsaturated min-sum decoder [9]. In contrast, the saturation

levels of the proposed (q+1)-bit quasi-uniform quantizer are

greatly extended, allowing the correct messages outside a

trapping set to grow large enough to overcome all incorrect

messages reaching the problematic VNs from other VNs

within the trapping set.

Although the motivation for the proposed quasi-uniform

quantization method came from an analysis of min-sum de-

coder behavior on variable-regular LDPC codes, the technique

can also be adapted to decoding of irregular LDPC codes

by suitably adjusting the parameter d. We have also found

that the proposed quasi-uniform quantization method works

well with most iterative message-passing decoding algorithms,

including the usual variants on min-sum decoding and various

approximations to the SPA. These results will be reported

elsewhere.

IV. NUMERICAL RESULTS

To demonstrate the improved performance offered by our

proposed quasi-uniform quantization method, we compare its

error-rate performance to that of uniform quantization with

min-sum decoding applied to two known LDPC codes on the

BSC and the AWGNC. The two LDPC codes we evaluated

are a rate-0.3 (640,192) quasi-cyclic (QC) LDPC code [8] and

the rate-0.5 (2640,1320) Margulis LDPC code [2]. The frame

error rate (FER) curves are based on Monte Carlo simulations

that generated at least 200 error frames for each point in the

plots, and the maximum number of decoding iterations was

set to 200.

The (640,192) QC-LDPC code, designed by Han and

Ryan [8], is a variable-regular code with variable degree 5

and check degrees ranging from 5 to 9. It has 64 isomorphic

(5,5) trapping sets and 64 isomorphic (5,7) trapping sets. We

applied our exhaustive trapping set search algorithm [17] to

this code, and these are the only two types of (a, b) trapping

set for a ≤ 15 and b ≤ 7. The error floor starts relatively high
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Fig. 1. FER results for min-sum decoding of the (640,192) QC-LDPC code
on the BSC. (Uniform quantization step Δ = 1, and (q+1)-bit quasi-uniform
quantization parameter d = 3.
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Fig. 2. FER results for attenuated min-sum (AMS) decoding of the (640,192)
QC-LDPC code on the BSC. (Attenuation factor α = 0.5, uniform quanti-
zation step Δ = 0.5, and (q+1)-bit quasi-uniform quantization parameter
d = 2.

for saturated decoders, so it is quite easy to reach the error

floor with Monte Carlo simulation.

Figs. 1–4 show the simulation results for various types of

quantized min-sum decoders and unsaturated decoders. For the

BSC, we scaled the magnitudes of decoder input messages

from the channel to 1, since for linear decoders, such as

Gallager-B and the min-sum decoder, the scaling of channel

input messages does not affect the decoding performance. For

attenuated and offset min-sum decoding, we can compensate

for the scaling by adjusting the attenuation and the offset

factor, respectively. The step size Δ of the uniform quantizer

and of the uniformly quantized range of the quasi-uniform

quantizer, is set to 1 in Fig. 1 and 0.5 in the rest. So, for exam-

ple, when Δ = 1, the 3-bit uniform quantizer produces values

{±3,±2,±1, 0}, and the (3+1)-bit quasi-uniform quantizer

yields values in {0,±1,±2,±3,±9,±27,±81,±243} when

d = 3. In the simulation, the parameter d was heuristically

chosen, and when q is large, a small d would be enough to

represent a large range of magnitudes.

In Fig. 1, we see that the slope of the error floors resulting

from uniform quantization is close to that of the Gallager-B

decoder. This is because, when most messages saturate at the

same magnitude, min-sum decoding essentially degenerates

2874



2 2.5 3 3.5 4 4.5 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
ra

m
e 

E
rr

or
 R

at
e 

(F
E

R
)

 

 

unsaturated OMS
4−bit uniform OMS
5−bit uniform OMS
(4+1)−bit quasi−uniform OMS

Fig. 3. FER results for offset min-sum (OMS) decoding of the (640,192)
QC-LDPC code on the AWGNC. (Offset factor β = 0.5, uniform quantization
step Δ = 0.5, and (q+1)-bit quasi-uniform quantization parameter d = 3.
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Fig. 4. FER results of min-sum decoder on the Margulis code of length 2640
on AWGNC. Uniform quantization step Δ = 0.5, and d = 1.2 in (q+1)-bit
quasi-uniform quantization.

to Gallager-B decoding, relying solely upon the signs of

messages. In comparison to the uniform quantizer with the

same number of bits, the proposed quasi-uniform quantization

method significantly reduces the error floor and provides error-

rate performance very close to that of an unsaturated decoder.

In all of the decoding failures observed when using the

quasi-uniform quantizer, no error pattern corresponded to the

support of a small trapping set. With uniform quantization,

on the other hand, almost all of the decoding failures cor-

responded to small trapping set supports when the crossover

probability of the BSC was small or the SNR of the AWGNC

was high. We also compared decoder performance on se-

quences in which every VN in a single (5,5) or (5,7) trapping

set of the (640,192) code was incorrect, with all other VNs set

to correct values. In all cases, the unsaturated min-sum decoder

and the min-sum decoder with the proposed quantization

method decoded successfully, while decoders with the uniform

quantizer failed. The same results were also obtained for the

(12,4) and (14,4) trapping sets in the Margulis code.

V. CONCLUSION

In this paper, we have shown that the use of uniform

quantization in iterative message-passing decoding can be a

significant factor contributing to the error floor phenomenon

in LDPC code performance. To address this problem, we

proposed a novel (q+1)-bit quasi-uniform quantization method

that effectively extends the dynamic range of the quantizer.

Without modifying the CN and VN update rules or adding

extra stages to standard iterative decoding algorithms, the use

of this quantizer was shown to significantly lower the error

floors of two well-studied LDPC codes when used with min-

sum decoding and its variants on the BSC and AWGNC.

Although not shown here, the results extend to other iterative

message-passing decoding algorithms.
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