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We study the metastability and decay of multiply-charged superflow in a ring-shaped atomic Bose-Einstein

condensate. Supercurrent corresponding to a giant vortex with topological charge up to q = 10 is phase-

imprinted optically and detected both interferometrically and kinematically. We observe q = 3 superflow

persisting for up to a minute and clearly resolve a cascade of quantised steps in its decay. These stochastic

decay events, associated with vortex-induced 2π phase slips, correspond to collective jumps of atoms between

discrete q values. We demonstrate the ability to detect quantised rotational states with > 99% fidelity, which

allows a detailed quantitative study of time-resolved phase-slip dynamics. We find that the supercurrent decays

rapidly if the superflow speed exceeds a critical velocity in good agreement with numerical simulations, and we

also observe rare stochastic phase slips for superflow speeds below the critical velocity.

PACS numbers: 03.75.Kk, 67.85.-d, 37.10.Vz

I. INTRODUCTION

Superfluid flow of a Bose-Einstein condensate (BEC)

in a multiply-connected ring geometry is the archetypal

metastable many-body state. The phase of the macroscopic

BEC wave function must wind around the ring by an inte-

ger multiple of 2π, corresponding to the charge q of a vor-

tex trapped inside the ring. Macroscopic states with differ-

ent q values are topologically distinct and separated by en-

ergy barriers [see Fig. 1(a)]. Consequently, although the true

ground state of the system in a non-rotating trap is q = 0, a

q 6= 0 supercurrent can be extremely long-lived, and largely

immune to perturbations such as disorder and thermal fluctu-

ations. Stability and decay of supercurrents have been studied

for decades in helium superfluids [1–5] and thin-wire super-

conductors [6–10], but the decay process is still not fully un-

derstood [11]. A ring-shaped superfluid was also proposed as

the ideal laboratory system for simulation of pulsar glitches

[12], associated with jumps in the rotation of the superfluid

neutron star interior [12, 13].

Atomic BECs trapped in a ring geometry [14–20] are at-

tractive both for fundamental studies of superfluidity and for

applications in interferometry [21, 22] and atomtronics [23].

Recently, q = 1 superflow persisting for 40 s was observed

and studies of flow through a weak link created by a potential

barrier revealed a relatively sharply defined superflow critical

velocity, vc [19]. The observed vc was consistent with the

Feynman estimate, vFc , strongly suggesting a vortex-induced

phase slip [see Fig. 1(b)] as the dominant supercurrent decay

mechanism.

While a q = 1 vortex can persist for several seconds even

in a simply-connected BEC, any q > 1 vortex is fundamen-

tally unstable in such a geometry [17, 24]. In a ring trap, a

q = 2 vortex was observed to survive for at least 0.5 s [17].

However, the decay of q > 1 vortices in a multiply-connected

geometry has not yet been studied.

In this paper, we demonstrate and study extreme metasta-

bility of multiply-charged superflow in an annular BEC. Us-

ing optical phase-imprinting [25] we prepare annular BECs in

metastable rotational states corresponding to vortex charges

up to q = 10. To quantitatively study the supercurrent decay

with sufficient statistics we focus on condensates initially pre-

pared in a q = 3 state. We observe q = 3 superflow persisting

for up to a minute in a multiply-connected trap, and explicitly

show that the supercurrent is quantised. The cascade of quan-

tised decay steps unambiguously confirms 2π phase slips as

the supercurrent decay mechanism. We demonstrate the abil-

ity to read-out quantised rotational states with > 99% fidelity,

which opens the possibility to quantitatively study the dynam-

ics of phase-slips for different superflow speeds. While a rapid

q → q− 1 decay occurs if the flow speed vs(q) reaches a crit-

ical velocity, we also observe more rare stochastic phase slips

for vs < vc. After each phase slip the system re-stabilises

in a lower metastable rotational state. We find that the crit-

ical velocities for different q states are of the same order of

magnitude as the Feynman estimate, but are more quantita-

tively predicted by a numerical simulation linking vc to the

condensate surface instability against a vortex penetrating the

annulus [26, 27].

The paper is divided into six sections. In Sec. II we outline

the theoretical considerations concerning the stability and de-

cay of supercurrents in annular atomic superfluids. In Sec. III

we describe our preparation and detection of metastable su-

percurrents. In Sec. IV we present our observations of quan-

tised supercurrent decay and long-lived multiply-charged su-

perflow. In Sec. V we discuss the phase-slip dynamics for

different superflow speeds. Finally, we summarise our results

and briefly discuss future research directions in Sec. VI.

FIG. 1: (Color online) Metastability and decay of supercurrents. (a)

Energy landscape of a ring-shaped superfluid. Local minima cor-

respond to metastable states with quantised angular momentum per

particle, L/N = qh̄. (b) Decay between the discrete q states involves

a vortex-mediated phase slip, illustrated here for q = 5 → 4.

ar
X

iv
:1

11
2.

03
34

v3
  [

co
nd

-m
at

.q
ua

nt
-g

as
] 

 5
 J

un
 2

01
2



2

II. SUPERCURRENTS IN ANNULAR CONDENSATES

A. Topologically protected superflow states

The physical origin of the supercurrent metastability is

qualitatively illustrated in Fig. 1(a). For N atoms held in a

ring trap, the average angular momentum per particle in gen-

eral need not be quantised, but for a superfluid gas such quan-

tisation is energetically preferred. The “parabolic washboard”

landscape depicts the energy E of a superfluid system for dif-

ferent fixed values of the total angular momentum L [28].

The local minima of E correspond to topologically distinct

metastable states with L/N = qh̄. A direct ∆q = 1 tran-

sition between two such minima involves a discontinuous 2π
phase slip in the condensate wave function, occurring when a

singly-charged vortex crosses the annulus.

More generally, a superfluid can in principle also shed an-

gular momentum in ways that break the L/N quantisation,

including condensate fragmentation and collective excitations

such as solitons [29]. For low enough superflow speeds all

such processes are energetically costly and suppressed to var-

ious degrees. The dominant superflow decay mechanism

depends on the system’s dimensions, temperature, and the

strength of interactions [8, 11, 29], and is often difficult to

predict.

The dissipative supercurrent decay is strictly speaking al-

ways stochastic, even if (for sufficiently high flow speeds) the

superflow is unstable in the thermodynamic sense. However,

we can distinguish qualitatively different decay regimes:

(1) If vs exceeds the critical velocity for some decay pro-

cess, the decay becomes likely. Ultimately it can occur on

some microscopic timescale, which for an atomic BEC is in

the millisecond range. In this case, from an experimental point

of view the decay can appear essentially instantaneous and de-

terministic. For example, we can not talk about a persistent

current if it “persists” for much less than one rotation period

(∼ 300 ms in our experiments).

(2) For vs ≪ vc the decay is strongly suppressed and the

superflow can be almost perfectly stable, as for example ob-

served in bulk superconductors.

(3) In between these two extremes, metastable superflow

should persist for much longer than the characteristic micro-

scopic timescale of the physical system, but rare stochastic de-

cay events can still occur through quantum or thermal fluctua-

tions [7–10, 30]. Such stochastic phase slips are, for example,

associated with the residual resistance in thin-wire supercon-

ductors [11].

B. Critical velocity for vortex-induced phase slips

The critical velocity for the occurrence of vortex-induced

phase slips was famously first estimated by Feynman:

vFc =
h̄

mr
ln

(

r

ξ

)

, (1)

where m is the atom mass, r the annulus width, and ξ the heal-

ing length. This estimate is based on general energetic argu-

ments, namely the cost of a vortex crossing a high superfluid-

density region of characteristic size r. It does not take into

account the dynamical effects associated with the vortex pen-

etrating the BEC, nor the details of geometry such as the vari-

ation of the condensate density due to the harmonic trapping

along the directions transverse to the ring. It is also impor-

tant to note that in Feynman’s theory vFc does not correspond

to a sharp boundary between stable and unstable superflow.

Rather, vFc just sets the natural scale for the superflow speed

vs at which phase-slip induced supercurrent decay should be-

come energetically favourable. Neverthless, in some cases

Eq. (1) is found to provide a good estimate of vc [19].

In experiments on simply-connected rotating atomic gases

[31–35] it was often found that the critical velocity for a vor-

tex entering the condensate was higher than predicted purely

by global energetic arguments. This higher vc is associated

with dynamical instabilities of surface excitations, which pro-

vide the necessary microscopic route for vortex nucleation.

The “surface” critical velocity at which such instability oc-

curs was derived by Anglin [26], properly taking into account

the variation of the condensate density near its edge:

vsc =

√

2h̄ω

m

( µ

h̄ω

)1/6

, (2)

where ω is the radial trapping frequency (along the direction

perpendicular to the rotation axis) and µ the chemical poten-

tial. The arguments of Ref. [26] are local, and consider only

a surface region of size several ξ. Hence the theory should be

equally applicable to rotating annular condensates, as long as

both the width of the annulus and its inner radius are much

larger than ξ. Indeed the theory of [26] was recently extended

to ring geometry by Dubessy et al. [27]. In this case the ex-

pression for vsc is the same, but one notes that due to the nature

of the superfluid flow with quantised angular momentum the

critical velocity is always first reached at the inner surface of

the annulus. In other words, while a phase slip can formally

be thought of either as a vortex crossing the annulus to exit the

ring, or an anti-vortex entering the ring, in reality the former

process is always more likely.

In our experiments vsc is always higher than vFc and the ge-

ometric criteria for the applicability of Eq. (2) are satisfied.

We will address the comparison of our observations with the

two theories of phase-slip vc in Sec. V, after introducing our

experimental methods (Sec. III) and showing that in our ex-

periments vortex-induced phase slips are indeed the relevant

supercurrent decay mechanism (Sec. IV).

III. PREPARATION AND DETECTION OF

SUPERCURRENT

In our experiments we use a hollow Laguerre-Gauss (LG)

mode of an infrared (805 nm) laser beam to both trap the su-

perfluid in a ring geometry and set it into rotation (see Fig. 2).

In an LGℓ laser mode each photon carries orbital angular mo-

mentum ℓh̄, which can be transferred to an atom via a two-

photon Raman process [25]. To prepare different q rotational
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FIG. 2: (Color online) Preparation of metastable supercurrent in an

annular condensate. (a) The optical ring trap is created by intersect-

ing a horizontal “sheet” laser beam with a vertical “tube” LGℓ beam;

the absorption image shows a BEC in an ℓ = 10 trap. (b) Two-

photon Raman transfer of atoms into a metastable q = ℓ state is

achieved using the LGℓ trapping beam (red) and a co-propagating

Gaussian beam (blue). An atom undergoing an internal state trans-

fer, |↑〉 → |↓〉, also absorbs angular momentum ℓh̄ from the LGℓ

laser beam.

states we create LG beams with ℓ values up to ℓ = 10, using

a phase-imprinting spatial light modulator (SLM) [36].

We start by producing a quasi-pure BEC of 87Rb atoms [37]

and loading it into the ring trap formed at the intersection of

a vertical LG beam and a horizontal “sheet” beam of wave-

length 1070 nm [see Fig. 2(a)]. To avoid inducing rotation of

the BEC during loading into the ring trap, this transfer is done

very slowly over 5 s. We load ≈ 2 × 105 condensed atoms

into the ring, and at no time during the experiment observe a

discernible thermal fraction of the gas [38]. The sheet beam

provides a nearly isotropic trapping potential in the xy plane,

with trapping frequencies of 6, 7, and 400 Hz along the x̂, ŷ,

and ẑ directions, respectively. The depth of the ring trap, Vr,

is set by the power of the LG beam. For ℓ = 3, the ring radius

is ≈ 12 µm and the radial trapping frequency varies between

75 Hz and 190 Hz for the Vr values used in our experiments.

For higher ℓ the trap radius increases approximately linearly

[39].

To set the superfluid into rotation via a two-photon Raman

transition, we briefly (∼ 200 µs) pulse on an auxiliary 805 nm

Gaussian beam, co-propagating with the trapping LG beam.

As illustrated in Fig. 2(b), the atoms are transferred between

two internal atomic states, |↑〉 and |↓〉, and simultaneously

pick up angular momentum ℓh̄. The |↑〉 and |↓〉 are two Zee-

man levels of the F = 1 hyperfine ground state, mF = 1 and

0, respectively. The mF = −1 state is detuned from the Ra-

man resonance by the quadratic Zeeman shift in an external

magnetic field of 10 gauss.

We first perform a set of interferometric experiments in or-

der to verify the optically imprinted phase winding (see also

[40–42]). As depicted in Fig. 3, we apply a π/2 Raman pulse

which coherently transfers only half the population into the ro-

tating |↓〉 state. A subsequent π/2 radio-frequency (RF) pulse,

which carries no angular momentum, mixes the |↑〉 and |↓〉
states so that in each spin state we get an interference of rotat-

FIG. 3: (Color online) Interferometric detection of the imprinted

phase winding. A combination of Raman and RF π/2 pulses results

in matter-wave interference between stationary and moving atoms,

with the number of density peaks equal to ℓ. Absorption images of

the |↑〉 state, taken 3 ms after releasing the atoms from the trap, show

matter-wave interference for ℓ = 3, 5, and 10.

ing (q = ℓ) and non-rotating (q = 0) atoms. This matter-wave

interference converts the phase winding into a density modu-

lation, with the number of density peaks around the ring equal

to ℓ. In Fig. 3 we show the observed interference patterns for

ℓ = 3, 5 and 10.

For our main studies (Sections IV and V) we transfer all

the atoms into the rotating |↓〉 state. If we then ramp down Vr

and transform the ring trap into a simply-connected sheet trap,

the phase-imprinted q = ℓ vortex decays into singly-charged

vortices [see Fig. 4(a)]. Note however that in this case L/N is

no longer quantised, its exact value depending on the spatial

arrangement of individual vortices [43]. In the sheet trap the

q = 3 vortex breaks up into 3 vortices within 1 s; one vortex

leaves the condensate within 10 s, and the last one typically

survives for about 15 s.

To quantify L/N for the annular condensate, we release

the atoms without letting the vortex break up in a reconnected

trap. As seen in Fig. 4(b), the centrifugal barrier due to ro-

tation of the superfluid results in a central hole in the atomic

density distribution observable even after long time-of-flight

(TOF) expansion [17]. We quantify the rotation of the cloud

by fitting the radius, R, of the high density ring surrounding

this central density hole [44].

FIG. 4: (Color online) Detection of superflow. (a) If the ring trap

is transformed into a simply-connected sheet trap, the q = 3 vortex

breaks up into 3 individual vortices. (b) Absorption images of non-

rotating (left) and rotating (right) BECs after 29 ms of TOF expan-

sion from the ring trap. We use the radius R to quantify the rotation

of the cloud.
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FIG. 5: (Color online) Quantised superflow decay. A superfluid pre-

pared in the q = 3 state is held in a ring trap with Vr ≈ 4µ. (a)

Upper panel: radius R as a function of hold time t. Each point is

colour-coded according to the assigned q value (Blue: q = 3, Green:

q = 2, Red: q = 1, Black: q = 0). Lower panel: atom number N
versus t for the same data set, with same colour code applied. (b)

TOF absorption images of the q = 3, 2, 1, and 0 states. (c) High-

contrast histogram of the measured R values confirms that we can

assign a q value to each individual image with near-unity fidelity.

The colour of the shaded backgrounds corresponds to our q−value

assignments.

IV. METASTABILITY AND QUANTISED DECAY

A. Supercurrent quantisation

The first main result of this paper is the direct experimen-

tal demonstration of the quantised nature of the supercurrent

decay, shown in Fig. 5 for a system initially prepared in the

q = 3 state. In Fig. 5(a) we plot the evolution of the radius R
with time after the superfluid was set into rotation. The quan-

tisation of R is strikingly obvious and we can assign a q state

to each individual image with > 99% fidelity.

We consider the quantisation of the supercurrent decay the

primary experimental evidence for the vortex-induced phase

slips as the decay mechanism. Condensate fragmentation or

collective excitations such as solitons would break the quanti-

sation of R [29], while individual particles which break away

from the superflow would gradually fill up the hole in the cen-

tre of the expanded cloud; we never see any evidence of this

occurring.

FIG. 6: (Color online) Long-lived q = 3 superflow. R is plotted

as a function of hold time in a shallow ring trap, showing persistent

superflow for longer than a minute. The dashed lines are guides to

the eye, indicating the bands of R values corresponding to different q
states. The inset shows the decaying BEC atom number for the same

data set; the solid line is a double-exponential fit to the data.

The broad q = 2 and q = 1 plateaus in Fig. 5(a) show

that the intermediate 0 < q < ℓ states are metastable even

after the supercurrent decay is initiated by the first phase slip.

In the analogy with a particle moving in a washboard poten-

tial [Fig. 1(a)], this corresponds to a strongly damped motion:

when the system escapes from a local energy minimum it gets

trapped in a new local minimum rather than rapidly decaying

to q = 0.

B. Long-lived q > 1 superflow

The data shown in Fig. 5 was obtained using a ring trap of

depth Vr ≈ 4µ. In order to test the limits of supercurrent

metastability in our setup, we also perform experiments in a

very shallow trap, with Vr just above the chemical potential µ
[45]. Since the roughness of our trapping potential scales with

Vr, reducing the trap depth to ≈ µ results in the smoothest trap

we can achieve. This makes the condensate density almost

perfectly uniform around the ring and minimises the probabil-

ity of weak links where the local µ diminishes and the phase

slips are more likely [19].

In Fig. 6 we show the evolution of R for a superfluid pre-

pared in the q = 3 state and rotating in a shallow ring trap.

The non-zero superflow (R > 0) now persists for more than

a minute, and decays only when the condensate itself decays

significantly (see inset of Fig. 6).

The radius R shows a weak dependence on the atom num-

ber N , making the supercurrent quantisation less striking than

in Fig. 5, where the fractional variation of N over the relevant

timescale is much smaller. However we can still see that the

R values fall into distinguishable bands corresponding to q =
3, 2 and 1 states. This allows us to conclude that the q = 3
state is perfectly stable for ∼ 40 s and can persist for up to a

minute. We have checked that the slow bending of the q bands
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with time is just a consequence of the weak dependence of R
on the decaying N (for fixed q), by preparing the initial q = 3
state with deliberately reduced initial atom numbers.

In similar experiments in higher ℓ traps the lifetime of our

BEC is shorter, but even for ℓ = 10 we still observe superflow

persisting for over 20 s.

V. DECAY DYNAMICS

For the rest of the paper we turn to a quantitative study of

the dynamics of the supercurrent decay for different superflow

speeds. We first assess the critical velocity for superflow in

our trap, comparing it with different theoretical calculations,

and then argue that stochastic phase slips are also observed for

flow below this critical velocity.

A. Critical velocity

Generally, as the number of atoms in a rotating BEC slowly

decays with time, superfluidity becomes less robust. Specif-

ically, vs/vc grows and phase slips become more likely. For

comparison of our experiments with theoretical models it is

convenient to eliminate the time variable and plot the observed

R (or equivalently q) values versus N , as shown in Fig. 7.

Here the top panel shows the same data as in Fig. 5, with the

same colour code used to indicate different q states. For every

rotational state we see that below some N the probability of

observing that state sharply drops. We can thus empirically

associate that “critical” atom number Nc(q) with the condi-

tion vs(q) = vc. The bottom panel shows the results of the

numerical simulations we use to compare our measurements

with the two different theoretical models outlined in Sec. II.

For our simulations we first use images of in-trap density

distributions to assess the spatial variations in our trapping

potential [46]. Next, at each point along the ring we calcu-

late vs(q) and the two critical velocities, vFc of Eq. (1) and

vsc of Eq. (2). The flow speed vs(q) is calculated under the

constraints that the total circulation around the ring must be

qh̄/m and the particle flux is constant along the ring. Finally

we plot the results of our calculations for the narrowest point

in the ring, where the local density and µ are lowest, and vs/vc
is highest in both theoretical models. Note that at the point

where the atom density is lowest the flow speeds up in order

to conserve the particle flux. For each q state the two predicted

Nc values, NF
c (q) and N s

c (q), are given by the intersections of

the vs(q) curve with the two vc curves; for the vsc calculations

these predictions are indicated by the vertical dotted lines.

For the relevant range of N values we get vsc/v
F
c ∼ 3 and

the vsc calculation provides a much closer agreement with the

data. For all three q states the sharp drop in survival probabil-

ity occurs within ∼ 15% of the predicted N s
c (q) (see vertical

dotted lines). This observation differs from that of Ref. [19],

where vc much closer to vFc was observed for superflow ini-

tially prepared in the q = ℓ = 1 state. This discrepancy war-

rants further investigation, but is not necessarily very surpris-

ing, given that the various differences in the trapping poten-

FIG. 7: (Color online) Comparison with numerical simulations. The

top panel shows the same data as in Fig. 5, with the same colour

code applied. The bottom panel shows our numerical simulations for

flow speeds and critical velocities at the narrowest point in the ring

(see text). The three solid coloured lines show flow speeds vs(q)
for q = 3 (blue), 2 (green) and 1 (red). The solid and dashed

black curves show the calculated critical velocities vsc and vFc , re-

spectively. Vertical dotted lines indicate the predicted critical atom

numbers N s

c(q), defined by the intersections of vs(q) curves and the

vsc curve.

tials in the two experiments are not in any way accounted for

by the order-of-magnitude estimate of Eq. (1).

We note that for determining the true roughness of our trap-

ping potential it is essential to take into account the finite reso-

lution of our imaging system, which we model by a Gaussian

point-spread function of width σ. We find the above agree-

ment with the vsc calculation by assuming σ = 2.8 µm, while

we independently determine our resolution to be 2.5±0.5 µm.

We also note that strictly speaking for the applicability of

Eq. (2) we require the condition α = 2(µ̄/h̄ω)2/3 ≫ 1, where

µ̄ is now the local chemical potential at the narrowest point in

the ring and for total atom number N = N s
c . For the data

in Fig. 7, this condition is only marginally satisfied; α varies

between ≈ 4 for q = 3 and ≈ 2 for q = 1. Nevertheless, the

agreement with the data is still very good.

To further test the prediction of Eq. (2), we perform another

experiment in which we again exploit the fact that the rough-

ness of our ring potential grows with Vr. After preparing the

BEC in the q = 3 state we now raise Vr until q = 3 is no

longer persistent but always decays to the metastable q = 2 in
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FIG. 8: (Color online) Counting statistics of phase slips. (a) For the

data shown in Fig. 5 we plot the distribution of the observed q values

as a function of rotation time t. Each data point is an average over a

0.8 s time bin. The inset shows the smooth evolution of 〈q〉 with t.
(b) Histograms of q values for four representative rotation times.

<
∼ 300 ms, i.e. already at the initial N ≈ 200× 103. In other

words we now measure the critical Vr for a fixed N and q = 3
(see also [19]). We find that the critical Vr(≈ 6µ) agrees to

within 5% with the vsc calculations similar to those of Fig. 7;

at the critical point α ≈ 4 and vsc ≈ 3.5 vFc .

B. Counting statistics of stochastic phase slips

In Fig. 7 we also see evidence that some stochastic phase

slips occur for vs < vc. Purely experimentally, this is directly

seen in the horizontal overlaps of the different q plateaus.

Similar overlaps are seen in the time domain in Fig. 5(a),

showing that the observed q is not a deterministic function of

either t or N . Less than 25% of the observed overlap can be

attributed to technical fluctuations in our experiments, namely

shot-to-shot variations in real atom number (∼ 3%) and atom-

number detection (∼ 6%) [47].

We therefore conclude that there exists a significant param-

eter space where the superflow is sub-critical but stochastic

phase slips still occur on a timescale of seconds. In Fig. 8

we show the evolution of the q distribution in time, for the

same data set as in Fig. 5. This in essence provides full time-

resolved counting statistics of phase slips, and should be an

excellent input for further theoretical modelling and under-

standing of the decay dynamics. Note that this accelerating

decay process is not Markovian since the phase-slip proba-

bility grows as vs/vc increases through the gradual N decay.

Also note that 〈q〉 decays smoothly with time (see inset of

Fig. 8), so our demonstrated ability to experimentally resolve

different q states with high fidelity will be essential for further

studies of phase-slip dynamics.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have demonstrated and studied long-

lived multiply-charged superflow in an annular atomic BEC.

We resolve with high fidelity quantised steps in the decay

of the supercurrent, which correspond to vortex-induced 2π
phase slips. The supercurrent decays rapidly if the flow speed

reaches a critical velocity that is in agreement with numerical

simulations. However stochastic phase slips also occur, at a

much lower rate, for lower flow speeds. An important ques-

tion for future work is whether these rare phase slip events

occur via quantum or thermal fluctuations. Our optical setup

is also suitable for spectroscopy of the excitation spectrum

of an annular BEC [48] and for studies of supercurrents in

spinor condensates [49]. Moreover, our Raman method for

preparing large-q rotational states can be extended to create

an azimuthal gauge field [50, 51] and study superfluidity in

continuously driven multi-component condensates. It should

also be possible to reach the regime of a narrow quasi-one-

dimensional annulus, where the supercurrent decay could be

fundamentally different.
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