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Abstract— We consider the problem of quantizer design in
a distributed estimation system with communication con-
straints in the case where only a training sequence is avail-
able. Our approach is based on a generalization of regres-
sion trees. The lookahead method that we also propose
improves significantly the performance. The final system
performs similarly to the one that assumes known statis-
tics.
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I. INTRODUCTION

XAMPLES of distributed estimation systems can be

found in radar and satellite-based remote-sensing sys-
tems (LANDSAT) to sonar and seismology. In these sys-
tems, an estimation has to be made at the fusion center
using data observed at the sensors. Transmitted data has
to be compressed due to capacity constraints. We con-
sider the case of two sensors since the generalization to
an arbitrary number of sensors is straightforward [9], [10].
The observations of the two sensors are random vectors
X1, X7, that are related to an unobservable continuous
quantity 6 that the fusion center needs to estimate. The
sensors do not communicate with each other, and there
is no feedback from the fusion center to the sensors. The
communication channels are assumed to be error free but
with capacity constraints R, Rs. Sensor k uses its vector
quantizer QQ; to map its observation X }; into a fixed length
codeword X? that is transmitted to the fusion center [7].
The fusion center estimates the parameter @ based on X7.
Many researchers have studied the problem of quantiza-
tion for distributed estimation in the case where the joint
distribution p(z1,x2,0), is known [13], [9], [10], [4], [3],
[1], [6]. Here, we consider a more realistic model where
the observation statistics are unknown.

II. BACKGROUND

Let h be the function of the fusion center that gives

the estimate ¢ of 6 for given quantizers Q1 and Q2,
ie., 0 = h(Q1(X}),Q2(X%)). For the mean-squared er-
ror (mse) distortion function, the objective is to find Q1,
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Q2, and h such that the estimation error Error = E{[f —
h(Q1(X7),Q2(X5))]?} is minimized. We follow the con-
cept of Cooperative Design-Separate Encoding (see [13]).
In the case where the joint distribution p(z1,z2,6) is
known and continuous, necessary conditions for optimal
Q1, Q2, and h for the mse distortion function are given by
Lam and Reibman [10]. In order to find the solution, the
Cyclic Generalized Lloyd’s Algorithm (CGLA) proposed
by Longo, et al. [13] in the framework of decentralized
hypothesis testing under capacity constraints and for a
known joint distribution is used [13], [9], [10], [6]. The
CGLA is a variation of the Generalized Lloyd Algorithm
(GLA) [11], [12], [5]. The solution to the equations pro-
vided by Lam and Reibman is possible because the joint
distribution is assumed to be known. However, in the
case where only a training sequence is available, the pre-
vious method cannot be used. The method that we pro-
pose is based on tree-structured predictors called BFOS
regression trees [2] '. A regression tree has d-dimensional
rectangles as nodes. Its root is the entire d-dimensional
Euclidian space. The immediate successors of a non-leaf
node (rectangle) are the two rectangles obtained by split-
ting that rectangle by a hyperplane determined by fixing
a coordinate Xg[l] to a constant. The term split refers
to a simultaneous choice of the particular coordinate, and
the constant. The leaves are d-dimensional rectangles that
partition the space. A predicted value is associated with
each leaf. Growing a tree involves optimally spliting the
node for which the greatest reduction of the prediction
error is noticed.

III. THE METHODS FOR QUANTIZER AND FUSION
CENTER DESIGN

Let {(X{,X5)®,0®:t =1,..., M} be the training set,
T, of size M that represents the statistics of the source
where t is the index of the training samples. We first
build two regression trees, 77 and T5, one for each sen-
sor, with a number of leaves m; and mqy respectively.
Then we achieve the desired rate by labeling the rect-
angles with a number of labels (codewords) n; = 2%,
ng < my combining them into the required number of par-
tition regions for each quantizer. Hence, when labels are
used, the quantizer partition regions are unions of these

1Basic routines for regression trees that we used in the develop-
ment of our system were found in StatLib (Statistics Department,
Carnegie Mellon University), a system for distributing statistical
software.



rectangles, otherwise, they are the rectangles themselves.
The labeling method produces quantizers with either con-
nected or disconnected partition regions. For scalar ob-
servations they are called breakpoint and non-breakpoint
quantizers respectively. Let Py, = {U;;i=1,...,N} and
Pg, ={V;;j =1,...,L}, be the regions for X{ and X7,
respectively. Let p(z;) be the region to which z; belongs.
The optimal fusion center function A for each pair of code-
words 4, J is:
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where R;; = {(X{,X5)® : X' € U, X3 € V;} is a
subset of the training set. The estimation error is given
by

2
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We now describe the steps of our approach in more detail.

A. Building the regression trees: We build the tree for
X{ to my leaves given no information about X4 and then
the tree for X3 to mo leaves taking into account the al-
ready built tree for X{. This procedure involves pruning
too. Finding the best split points for one tree considers
the existing rectangles of the other selecting each time the
split that decreases most the error in the estimate of 6
given by Eq. 2. We then improve the trees by first build-
ing the tree for X{ given the pruned tree for X} and then
do the following: 1. Continue to grow from the beginning
each tree and prune it given the pruned tree for the other
sensor until the error gets larger, 2. Iteratively prune both
trees, starting always from the original trees of the previ-
ous step, until the fractional drop of the error falls below
a given threshold. The first step does not guarantee im-
provement but the second step does since it always starts
from the same original trees of the previous step. How-
ever, the first step, even when we stop the iterations when
the error gets larger, generally improves more than the
second. The fusion center table A is updated between the
iterations. When we prune one tree given the other, the
risk of every node [2] in the first tree is calculated based
on Eq. 2 before the pruning, taking into account the other
tree. For pruning we use the Recursive Optimal Pruning
Algorithm (ROPA) [8]. The purpose of pruning in the
fixed rate case is to get a subtree with a given number of
leaves having an estimation error as small as possible.

B. Labeling the rectangles: — This is a way of group-
ing the rectangles into partition regions that may be ei-
ther connected or not connected. In order to label the
rectangles that correspond to the leaves of the both trees
we propose the s-CGLA (set CGLA), that is related to
CGLA. The s-CGLA considers together groups of training
samples. Starting with an initial labeling of the rectan-
gles and a fusion center table h for these labels, it itera-
tively improves the labeling of every quantizer considering

the effect of every possible label for every rectangle. It
updates h after one complete pass through a quantizer.
We also introduce a variation of s-CGLA, the lh-s-CGLA
(lookahead s-CGLA) which changes the fusion center tem-
porarily whenever there is a decision that has to be made,
in order to calculate the effect of every possible change.
Moreover, it also updates h immediately after changing
the label of a rectangle of the quantizer so the table h
is kept updated all the time. For the initialization of la-
bels we propose two methods: 1. Initialize them randomly
(i.e., with probability 1/nj use a label in 0...(n; — 1)),
2. Initialize them by first pruning even more the final
pruned subtrees to a number of labels n; and ny and then
assigning the same label to all the rectangles of the pre-
vious trees that correspond to one rectangle of the new
pruned trees. In the second method the resulting initial
quantizers have connected partition regions.

C: Improving the labeled trees:  We iteratively build
each tree from the beginning, including in this procedure
the labels that have been assigned to the rectangles of
the other, until the fractional drop of the error falls below
a given threshold. The s-CGLA is used to improve the
initial labels assigned to each tree.

Outline of our method: We first build the regression
trees for the two quantizers. Then we label their rect-
angles. We repeat the process of growing, pruning, and
labeling of one tree given the other labeled tree. The final
rectangles are labeled using first the ss-CGLA and then the
lh-s-CGLA.

IV. SIMULATION RESULTS

We consider the case where the observations are scalar
quantities of the form: zp = 0 + ng, kK = 1,2, where
the noises ny are Gaussian distributed with correlation
coefficient p and marginal distributions N(0,02). The pa-
rameter 0 follows a normal distribution N (0, 1) and is in-
dependent of the noises. The training set 7 and the test
set 7' consist of 20,000 samples. The error threshold is
set to 0.005. The optimal centralized estimator for this
case is linear.

Table I shows similar performance for the Lam-Reibman
quantizers [9] and for our quantizers with breakpoint ini-
tialization of labels. Their quantizers have been restricted
to be breakpoint although our quantizers are mainly non-
breakpoint. However, they assume a known joint distribu-
tion while we do not make such an assumption. Table 1T
presents the improving effect on the estimation error of
the various design steps. In cases I and 2 we build both
trees to 4 and 32 leaves, respectively, and label the rect-
angles using s-CGLA. In case 8 we proceed as in case 2,
and we build, prune, and label one tree given the other
labeled tree, applying s-CGLA again at the end. In case
4 we improve over case 3 by applying lh-s-CGLA at the
end. Building the trees involves the method that iter-
atively improves the pruned subtrees. Figure 1 demon-
strates that our system is in general superior to the de-
centralized system that uses the Lloyd-Max quantizers for
each observation. This is due to cooperative design. It is



more pronounced when p is higher and/or o2 is low. We
also compare the performance of our system to that of the
centralized estimator plus Lloyd-Max quantizer which is
the optimal centralized system in this case 2. Figure 2
shows that the improvement in the estimation error de-
creases for higher values of o2 and p and as the total
number of labels increases. For comparison we also present
the optimal centralized mse. Finally, we observed that at
least one of the quantizers develops disconnected parti-
tion regions, i.e., becomes non-breakpoint, as the number
of leaves and/or p increases.

V. CONCLUSIONS

Although we do not make any assumption about the
distribution, the performance of our system is similar to
that of the Lam-Reibman quantizers that base their design
on known distribution. Also, building, pruning, and label-
ing of one tree given the other labeled tree, and applying
the 1h-s-CGLA as the last step of the labeling procedure
reduce considerably the estimation error (see Table II).
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TABLE 1
PERFORMANCE OF LAM-REIBMAN QUANTIZERS (A) VS OURS (B) FOR
o2 =

) 0 0.5 0.85

(a) | 0.38840 | 0.47153 | 0.51734

(b) | 0.39599 | 0.47895 | 0.51274
TABLE II

EFFECT OF THE VARIOUS STEPS IN THE DESIGN (BREAKPOINT
INITIALIZATION, p = 0.85).

o2 bp_init, p = 0.85, (4,4) labels

case 1 [ case2 | case3 | cased
0.001 0.05515 | 0.03586 | 0.03042 | 0.01385
0.005 0.06024 | 0.02966 | 0.02785 | 0.02325
0.010 0.06318 | 0.04299 | 0.04239 | 0.02369
0.050 0.09134 | 0.09245 | 0.07354 | 0.06107
0.100 0.13937 | 0.12477 | 0.12038 | 0.11105
0.150 0.17504 | 0.18159 | 0.15581 | 0.14499
0.200 0.20962 | 0.22948 | 0.20084 | 0.18366
0.300 0.26941 | 0.27886 | 0.25457 | 0.24643
0.400 0.32167 | 0.32025 | 0.31978 | 0.30149
0.500 0.36532 | 0.38189 | 0.36553 | 0.35600
0.600 0.40913 | 0.41660 | 0.40960 | 0.39220
0.700 0.44504 | 0.44615 | 0.44631 | 0.42747
0.800 0.47186 | 0.47777 | 0.46812 | 0.45892
0.900 0.49771 | 0.50105 | 0.49925 | 0.49197
1.000 0.52223 | 0.52971 | 0.52504 | 0.51274

Vasileios Megalooikonomou was born in
Athens, Greece, in 1969. He received the B.S.
degree in computer engineering and informat-
ics from the University of Patras, Greece, in
1991 and the M.S. and Ph.D. degrees in com-
puter science from the University of Mary-
land, Baltimore County, USA, in 1995 and
1997, respectively. From 1997 to 1999 he
was a Faculty Research Associate at the Neu-
roimaging Laboratory, Johns Hopkins Univer-
sity, Baltimore, USA. He is now a Visiting As-
sistant Professor in the Computer Science Department at Dartmouth
College. His interests include data compression, data mining, and
multimedia database systems. He is a member of the IEEE Com-
puter Society and a member of the ACM. He was a member of the
program committees of the World Multiconference on Systemics, Cy-
bernetics and Informatics (SCI) and the International Conference on
Information Systems Analysis and Synthesis (ISAS) 1998, 1999. He
has served as a reviewer for several conferences and for the journal
Pattern Recognition.

Yaacov Yesha was born in Israel in 1951.
He is a Professor at the Department of Com-
puter Science and Electrical Engineering at
the University of Maryland Baltimore County.
He received the Ph.D. degree in computer sci-
ence in 1979, and the M.Sc. degree in com-
puter science in 1974, both from the Weiz-
mann Institute of Science, Rehovot, Israel. In
1973 he received the B.Sc. degree in chem-
istry from Tel-Aviv University. His interests
include scheduling on parallel architectures,




0.4

o
w

estimation error
o
N

0.1

correlation coeff: 0

0.40

estimation error

0.20

Fig. 1.

estimation error

Fig. 2.

04 0.6
variance

0.8 1.0

correlation coeff: 0.85

04 0.6
variance

0.8 1.0

Performance comparison of (a) Lloyd-Max quantizers for
each observation (4 partition regions / quantizer), (b) our quan-
tizers with breakpoint initialization of labels (32 leaves, 4 labels
/ quantizer), and (c) the centralized estimator plus Lloyd-Max
quantizer (16 partition regions), for p = 0 and p = 0.85.

0.6

0.4

0.2

0.0

correlation coeff; 0.85

# leaves: 32

53—+ labels: (2,2)
>—= labels: (2,4)
&—= labels: (4,4)
<+—=<labels: (4,8)
V— labels: (8,8)
&—=4 labels: (8,16)

*——* opt_centr_mse

0.0

04 0.6
variance

0.8 1.0

Behavior of the system for several number of labels for
quantizers (Q1,Q2) (p = 0.85, breakpoint initialization)

image and speech processing, and wireless communication. Yaacov
Yesha was a program vice chair for the Seventh International Con-
ference on Parallel and Distributed Computing Systems, 1994. He
was a member of the program committees of the First International
Conference on Computer Communications and Networks, 1992, and
the 6th ISCA International Conference on Parallel and Distributed
Computing Systems, 1993, and a session chair in the Advances in
Digital Libraries forum, 1994. He is an IEEE member.



