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Abstract

Background: Medium- to large-scale expression profiling using quantitative polymerase chain

reaction (qPCR) assays are becoming increasingly important in genomics research. A major

bottleneck in experiment preparation is the design of specific primer pairs, where researchers have

to make several informed choices, often outside their area of expertise. Using currently available

primer design tools, several interactive decisions have to be made, resulting in lengthy design

processes with varying qualities of the assays.

Results: Here we present QuantPrime, an intuitive and user-friendly, fully automated tool for

primer pair design in small- to large-scale qPCR analyses. QuantPrime can be used online through

the internet http://www.quantprime.de/ or on a local computer after download; it offers design and

specificity checking with highly customizable parameters and is ready to use with many publicly

available transcriptomes of important higher eukaryotic model organisms and plant crops

(currently 295 species in total), while benefiting from exon-intron border and alternative splice

variant information in available genome annotations. Experimental results with the model plant

Arabidopsis thaliana, the crop Hordeum vulgare and the model green alga Chlamydomonas reinhardtii

show success rates of designed primer pairs exceeding 96%.

Conclusion: QuantPrime constitutes a flexible, fully automated web application for reliable primer

design for use in larger qPCR experiments, as proven by experimental data. The flexible framework

is also open for simple use in other quantification applications, such as hydrolyzation probe design

for qPCR and oligonucleotide probe design for quantitative in situ hybridization. Future suggestions

made by users can be easily implemented, thus allowing QuantPrime to be developed into a broad-

range platform for the design of RNA expression assays.

Background
The use of real-time quantitative PCR (qPCR) [1] in
medium – (hundreds of transcripts) to large-scale (thou-
sands of transcripts) profiling experiments is growing.

While in a large number of experiments qPCR is still
mainly used to confirm results obtained by microarray-
based hybridization experiments, the number of high-
throughput discovery experiments is growing steadily
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[2,3], especially for the quantification of transcripts of low
abundance (e.g. those coding for transcription factors),
due to the low detection limit of the method [4].

There are surprisingly few free software packages available
to the academic research community suitable for the
design of primer pairs for such high-throughput projects,
for online use or download, including Osprey [5], Prim-
ique [6] and a few interfaces to Primer3 [7] such as
Primer3Plus [8], AutoPrime [9], BatchPrimer3 [10]. Addi-
tionally, some databases of pre-computed primers,
RTPrimerDB [11], PrimerBank [12], qPrimerDepot [13],
AtRTPrimer [14] and DATFAP [15], have been estab-
lished. There are numerous commercial and free software
packages available for low-throughput design of primers,
some of which are highly configurable and well suited for
the design of primer pairs for qPCR.

However, none of the available packages combines all the
important features (strict parameters for primer design,
strict specificity checking and targeted design to avoid
problems with contaminating genomic DNA) into a sim-
ple pipeline. Instead, with currently available computa-
tional tools, users have to either manually move
information (such as identifiers, transcript sequences,
primer sequences and others) between software packages
or perform some steps completely on their own, such as
specificity checking using an alignment package like
BLAST [16]. Such manual steps make researchers loose
valuable time, increase the risk of mistakes (e.g. labeling
and sequence errors), and force them to take important
decisions based on their personal interpretation of com-
plex problems regarding large amounts of data (such as
BLAST alignment sets), which either require expert knowl-
edge or introduce bias into the results. With respect to the
available primer pair databases, they are usually of limited
scope. Often, only few species are covered (human and
mouse being clearly over-represented), few transcripts of
the species are represented (especially in databases based
on submitted or published primer pairs), or inappropriate
primer design parameters for combined analysis were
used, requiring time-consuming optimization of PCR
amplification conditions.

Here we developed QuantPrime, a program for design
and specificity testing of primer pairs for qPCR, designed
to meet the needs of the average or advanced user in low-
to high-throughput transcript profiling experiments,
while keeping the user interface very simple and yet pro-
viding important features missing in other available soft-
ware packages and web services.

Implementation
QuantPrime includes a relational database for informa-
tion storage, scripts containing the procedures to perform

primer pair design and specificity testing, scripts for
sequence installation and maintenance, scripts for com-
mand line user interface used in high-throughput design,
and a web interface as the main user interface for low- to
medium-throughput primer design. For academic users
we currently offer web access to the public QuantPrime
server (available at http://www.quantprime.de/) or, on
demand, compiled scripts for local installation. Commer-
cial users are requested to get in contact with the authors
to develop a license agreement.

The public QuantPrime server is currently set up with
publicly available transcriptome and genome annotations
from 295 different eukaryotic species. Table 1 gives exam-
ples of supported species with included features and refer-
ences. The list can be easily extended according to user
requests.

User interface

The web interface is designed for maximum simplicity
and convenience for the user. Users have to register at the
first time they visit the website. The registration step
allows users to return at a later time to check the results of
longer runs. Their gene lists and jobs are kept confidential,
i.e. no information is relayed to other users. Furthermore,
registration eases the even distribution of computing
resources among users and it is the main mechanism to
verify academic affiliation. An account with access to lim-
ited computing resources is available for testing purposes.

The work flow starts with the generation of a 'Project' that
is associated with the annotation of a species and a certain
quantification protocol. The quantification protocol
implies certain parameters for primer design and specifi-
city testing; four standard protocols for typical situations
are provided:

1. SYBR Green-based real-time qPCR (accept splice
variant hits): typical parameters for real-time qPCR are
used, such as 50–150 bp amplicon length, 60°C
annealing temperature and strict primer criteria for G/
C content and melting temperature (Tm). The specifi-
city testing will allow amplicons present in splice var-
iants of the transcript (more details in the 'Work flow'
section).

2. SYBR Green real-time qPCR (no splice variant hits):
as 1, but no amplicons in splice variants of the tran-
script are allowed.

3. End-point semi-quantitative PCR (accept splice var-
iant hits): similar to 1, except that longer amplicons
are preferred (350–1500 bp) for easier in-gel quantifi-
cation.

http://www.quantprime.de/
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4. End-point semi-quantitative PCR (no splice variant
hits): as 3, but no amplicons in splice variants of the
transcript are allowed.

Users are allowed to change any parameter and create cus-
tom protocols; see Additional file 1 for a list of all possible
parameters.

Next, users should create a list of transcript identifiers in
the project for which primer pair design is planned. This
list can either be entered manually (using the identifiers of
the chosen annotation), or can be created from a similar-
ity-based search using BLAST and a starting query
sequence. Additionally, for certain annotations, keywords
describing the gene(s) can be used in a text search for
identifiers.

Once the list of identifiers is ready, users may proceed to
'Primer finding' (Figure 1), which when started will con-
tinue completely in the background; in the meantime
users can continue to look at resulting primer pairs or add
new transcripts to the list. Larger primer finding projects
may take longer time to process, therefore users may close
the web browser and return at a later time to check the sta-
tus of their jobs.

Successful primer pairs are displayed in the 'Results' page
(Figure 2), where users can inspect primer pairs in detail
(Tm, G/C content, positions within transcript sequence
etc., see example in Figure 3) and do bulk export of the
primer data (in delimited plain text format) for ordering
or local storage.

Users may return at a later time to access their data, as lists
of transcripts and primer pairs are automatically saved
into their corresponding projects. On the public server,
projects are kept for at least a month after the latest
update, and may then be deleted by the administrator for
space limitation reasons. Thus, users are recommended to
export primer data and store locally for reference pur-
poses.

Work flow

QuantPrime employs a fully automated work flow for
design and specificity testing of primer pairs, a process
that does not require any intermediate intervention by the
user. Once users have added the transcript identifiers to
the project, selecting the 'Start' button will initiate the
whole primer selection process, and the identified primer
pairs will automatically be displayed in the 'Results' page
when the process is completed.

Table 1: Examples of transcriptome annotations available on the public QuantPrime server

Annotated features included in QuantPrime

Species Genomic sequences Splice variants Keyword search Annotation source Reference

254 different species or 
crosses

No No Yes TIGR plant transcript 
assemblies

[22]

91 different species or 
crosses

No No Yes UniGene [23]

Arabidopsis thaliana Yes Yes Yes TAIR release 7 [24]

Aspergillus niger Yes No No* JGI assembly v1.0 Non-published data

Bos taurus Yes No Yes NCBI RefSeq [25]

Chlamydomonas reinhardtii Yes No No* JGI assembly v3.1 [26]

Danio rerio Yes No Yes NCBI RefSeq [25]

Drosophila melanogaster Yes Yes Yes FlyBase release 5.4 [27]

Homo sapiens Yes No Yes NCBI RefSeq [25]

Homo sapiens Yes Yes Yes H-Invitational Database 5.0 [28]

Mus musculus Yes No Yes NCBI RefSeq [25]

Oryza sativa ssp japonica Yes Yes Yes TIGR release 5 [29]

Ostreococcus lucimarinus Yes No No* JGI assembly v2.0 Non-published data

Physcomitrella patens ssp 
patens

Yes No No* JGI assembly v1.1 [30]

Populus trichocarpa Yes No No* JGI assembly v1.1 [31]

Rattus norvegicus Yes No Yes NCBI RefSeq [25]

Saccharomyces cerevisiae Yes No Yes Saccharomyces Genome 
Database

[32]

Selaginella moellendorffii Yes No No* JGI assembly v1.0 Non-published data

Vitis vinifera Yes No No Genoscope assembly [33]

Xenopus tropicalis Yes No Yes NCBI RefSeq [25]

The latest versions of the annotations were added, and are updated regularly as updates become available.
* Protein IDs are searchable.
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The overall work flow of QuantPrime is sketched in Figure
4. It has two main algorithms, one for primer pair design
and one for specificity testing, which are accessed by
worker threads which check the output of each algorithm
and decide upon the measures to be taken. The worker
threads operate independent of the web server, processing
submitted jobs according to defined load balancing prin-
ciples (distributing computing power equally between
users and projects). Due to the loosely bound system
architecture it is straightforward to attach additional com-
puting nodes to the central database allowing for high
user loads. For testing purposes, a developer machine was
set up to work as a computing node for the public server.
With rising demand on the public server, local computing
resources can be quickly mobilized to avoid long waiting
times for the end users.

The primer pair design algorithm uses the Primer3 soft-
ware to design primer pair candidates; a graphical repre-
sentation can be found in Figure 5.

The Primer3 design parameters can be specified by the
user when setting up the project; default settings are as fol-
lows:

l Primer length: 20–24 bases

l Amplicon size: 60–150 bp

l Primer melting temperatures (Tm): 64 +/- 3°C (for
optimal annealing around 60°C) (using nearest
neighbor thermodynamics [17]), maximum 2°C Tm
difference between forward and reverse primers

'Primer finding' in QuantPrimeFigure 1
'Primer finding' in QuantPrime. The figure shows an example of the QuantPrime user interface for primer finding (A: up 
to nine transcripts, B: ten or more transcripts). The progress and success of the finding can be followed closely for small 
number of transcripts, for larger batches the time estimation helps users to estimate when the primer pairs will be ready.



BMC Bioinformatics 2008, 9:465 http://www.biomedcentral.com/1471-2105/9/465

Page 5 of 15

(page number not for citation purposes)

l Amplicon melting temperature: 75–95°C

l G/C content: 45–55%

l Max. repetition of a nucleotide: 3

l G/C-clamp: last 3' base of each primer must be a G
or a C

In addition to the Primer3 selection criteria, the primer
pair candidates are filtered through the following steps:

l Extended G/C clamp options: to avoid mispriming,
it is often appropriate to avoid too many G/C bases
within the 3' region of the primer. This cannot be con-
trolled by Primer3; therefore we introduced a parame-
ter that allows the user to define a maximum number
of G/C bases to be present in the last 3' bases. The
default setting is maximum three G/C bases in the last
five bases of a primer.

l Amplicon bias at 3' end of transcript: primers for
amplicons at the 3' end of the transcript (the last 1000
bp) are favored. For the common user this is often
wanted as cDNA preparations primed with oligo-d(T)x

generally exhibit 3' region bias. For those using ran-
dom hexamers for cDNA synthesis, this parameter can
be switched off.

l Skip 3' UTR: in cases where multiple polyadenyla-
tion signals exist in the 3' UTR it might be desirable to
avoid priming in this region, as it could lead to biased
quantification. This option can be switched on for cus-
tom design protocols.

l Exon-exon junction in primers: as RNA preparations
may contain some genomic DNA even after digestion
with DNAse I, such primers can successfully distin-
guish between cDNA and genomic DNA. When possi-
ble (i.e., when a genomic sequence with one or more
intron(s) is available), primers that span an exon-exon

'Results' in QuantPrimeFigure 2
'Results' in QuantPrime. The figure shows an example of the 'Results' page. Primer pairs successfully identified for the 
examined transcripts are presented. The following information is provided: the sequences (5' to 3') of the forward and reverse 
primers; the amplicon size (in bp); whether at least one primer spans an exon-exon junction ('Yes' in all cases in the example 
shown); the rank score (as calculated by Primer3); and the color code of the specificity rank given to the primer pair (see text 
for details). When clicking the primer pairs, more details are shown (see Figure 3).
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Primer pair details in QuantPrimeFigure 3
Primer pair details in QuantPrime. The figure shows an example of the 'Primer pair information' page. The page provides 
details about the selected primers and the amplicon. Positions to which the primers anneal within the target sequence are indi-
cated in blue or green; the amplicon is highlighted by gray shadowing. Primers shown in blue anneal to an exon, whereas prim-
ers shown in green anneal across an exon-exon junction (the position of the intron is indicated by a red arrow head). In the 
'Specificity test results' section, details about the specificity of the primer pair can be seen. If specificity problems exist, more 
details can be found here concerning the other possible amplicons.
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Overall work flow of primer pair design and specificity testingFigure 4
Overall work flow of primer pair design and specificity testing. Filled arrows symbolize logical flow while open arrows 
symbolize data flow.



BMC Bioinformatics 2008, 9:465 http://www.biomedcentral.com/1471-2105/9/465

Page 8 of 15

(page number not for citation purposes)

junction are favored, especially when the junction
occurs at the 3' end of the primer, to further decrease
the probability of extendable annealing to genomic
DNA.

l Specificity pre-filtering: in order to save workload
for the specificity testing algorithm, obvious unspe-
cific primer pairs are removed at this step. This is
achieved by finding transcripts that are similar to the

Work flow overview of the primer pair design algorithmFigure 5
Work flow overview of the primer pair design algorithm.
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target transcript using BLAST (blastn of transcript
against the whole transcriptome with an e-value = 1)
and filtering out the primer pair candidates annealing
perfectly to any of those sequences. Three configura-
tions of the filter are possible; one that forces the algo-
rithm to find primer pairs amplifying all splice
variants of the transcript (for annotations containing
such information), one that forces it to find only those
specific to a certain splice variant, and one that allows

(but does not force) them to amplify other splice var-
iants (default setting).

The successful primer pairs are saved to the database, and
the algorithm reports the number of designed primer
pairs back to the calling worker thread. If it was possible
to find primer pairs, the next step is specificity testing,
described below (an overview is shown in Figure 6):

Work flow overview of the primer pair specificity testing algorithmFigure 6
Work flow overview of the primer pair specificity testing algorithm.
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The primer pair specificity determination algorithm is
based on the interpretation of BLAST results (with default
settings: e-value = 200, word size of 7), using each primer
as a query towards the transcriptome and, when available,
against the genome. To identify unspecific amplicons in a
transcriptome or a genome, the following (configurable)
criteria are applied to the BLAST hits:

l Last two bases of the 3' region of each primer must
be identical to the BLAST hit.

l Amplicons of up to 1500 bp are considered for
SYBR Green protocols, and 3500 bp for end-point pro-
tocols.

Even though the primer pairs cannot give rise to an unspe-
cific amplicon, it is generally preferred that they should be
as specific as possible to the target sequence. This is
approximated by checking whether a single primer in the
pair has a significant (the default setting is 75%) identity
to another cDNA sequence, and where the last 3' base is
identical (which can be configured).

The information from the above procedures is assembled
and saved into the primer pair database. Based on this
specificity information, QuantPrime labels the tested
primer pairs with one out of four specificity ranks: bad,
acceptable, good or very good. They are defined as fol-
lows:

1. Bad (shown in red in the web interface): might
amplify a non-specific cDNA fragment.

2. Acceptable (yellow): amplifies only the specific
sequence, but one primer has a high similarity with a
non-target sequence and the primer pair might
amplify genomic DNA.

3. Good (light green): amplifies only the target
sequence, but one primer has a high similarity with a
non-target sequence or the pair might amplify
genomic DNA. This is the highest possible rank for
primer pairs designed for species without a genome
annotation.

4. Very good (dark green): amplifies only the target
sequence, both primers are highly specific to this
sequence and will not amplify genomic DNA.

The list of designed primers is worked through until
enough (the default setting is 10) of at least acceptable
(rank 2) primer pairs are found. The worker thread then
decides whether it is possible to find higher-ranking
primer pairs (e.g., when more primer pairs spanning
exon-exon junctions can be designed); if so it continues
until it is successful or until a certain primer pair threshold
is reached (default setting is 500 primer pairs).

The work flow implemented on the web server only per-
forms automated relaxation in amplicon 3' bias and exon-
exon junction criteria; the Primer3 parameters are not
relaxed. Thus, for certain transcripts, QuantPrime will fail
to find specific primer pairs; with the default settings, we
arrived at a failure rate of 2–9% (see Table 2). If the user
wishes to relax the Primer3 parameters to be able to find
specific primers for such problematic transcripts, a new
project has to be created with different primer design
parameters. Some users might find this procedure cum-
bersome, but we chose this design to prevent primer pairs
with heterogeneous design parameters to be mixed within
an assay. We are open for user suggestions to introduce
certain configurable relaxations in future versions of
QuantPrime.

Table 2: Results of in silico benchmarking of QuantPrime

Primer pair specificity ranking1

Species Transcripts Total search time Average search time Acceptable2 Good3 Very good4

Arabidopsis thaliana 5000 20:22:06 15 s 4916 (98%) 4323 (86%) 2534 (50%)

Vitis vinifera 5000 50:45:33 37 s 4765 (95%) 3927 (78%) 2315 (46%)

Drosophila melanogaster 5000 13:48:45 9.9 s 4894 (97%) 4075 (81%) 3096 (61%)

Chlamydomonas reinhardtii 5000 12:11:07 8.8 s 4568 (91%) 3999 (79%) 2349 (46%)

Oryza sativa ssp japonica 5000 83:31:12 60 s 4658 (93%) 3821 (76%) 1984 (39%)

Hordeum vulgare 23078 22:56:59 3.6 s 22145 (95%) 21564 (93%) -

Primer pairs designed for hypothetical high-throughput experiments, for random transcripts of each species. The numbers of successfully designed 
primer pairs for the different specificity ranks and the search times are reported for each species (percentages refer to the total number of 
transcripts tested).
1 Percentages indicate for how many of the transcripts primer pairs of at least the rank given were identified. 2 'Acceptable' amplifies only the 
specific sequence, but one primer has a high similarity with a non-target sequence and the primer pair might amplify genomic DNA. 3 'Good' 
amplifies only the target sequence, but one primer has a high similarity with a non-target sequence or the pair might amplify genomic DNA. This is 
the highest possible rank for primer pairs designed for species without a genome annotation. 4 'Very good' amplifies only the target sequence, both 
primers are highly specific to this sequence and will not amplify genomic DNA.
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Results
Experimental testing of primers designed through 

QuantPrime

To verify the experimental usefulness of the primer pairs
designed with QuantPrime, we tested it to design primers
for a medium-sized expression profiling experiment for
Arabidopsis thaliana (for 128 transcripts of various genes),
carried through by fellow researchers in our group. The
default settings for design and specificity testing (SYBR
Green protocol, splice-variant hits allowed) were used
and the highest ranking primer pairs were chosen. As can
be seen in Table 3, we experienced a success rate of 96%,
meaning unique amplicons of predicted size and amplifi-
cation efficiencies (E) = 1.8 (see Methods for details).
Over 88% of the primers were predicted not to amplify
genomic DNA. For five out of 128 transcripts we obtained
non-satisfying results. For those, good primer pairs could
be obtained by testing one or two alternative primer pairs
designed by QuantPrime, without having to perform any
PCR optimization (results not shown).

We also designed primer pairs for 33 transcripts (cell cycle
genes) from Chlamydomonas reinhardtii and tested them in
the same way as above. In this case transcripts of four
genes could not be detected, and as the primer pairs for
these transcripts spanned exon-exon junctions, we could
not test them on genomic DNA. However, only one of the
primer pairs of the detectable transcripts did not pass the
quality control (having multiple products seen on gel),
giving a success rate of 97%. Seventy-three percent of the
designed primer pairs were predicted not to amplify
genomic DNA.

Additionally, primer pairs for 30 different barley (Hor-
deum vulgare) transcripts were tested. For two primer pairs,
no product could be detected, but only one of the detect-
able transcripts did not pass the quality control (low
amplification efficiency), yielding a success rate of 96%.
As no whole-genome sequence is available for barley, no
predictions for genomic amplicons could be made.

In these three experiments, we thus observed a success rate
> 96%. Examples of primer pairs and PCR amplification
products separated on agarose gels can be found in Addi-
tional file 2.

To assess QuantPrime's accuracy of prediction of genomic
DNA amplification, 173 primer pairs from an existing
qPCR platform for tonoplast-related transcripts of A. thal-
iana (to be published elsewhere)were tested in silico with
QuantPrime and experimentally with genomic DNA in
real-time PCR. QuantPrime predicted 95 of these as
'gDNA-unsafe', while in real-time PCR measurable ampli-
fication was recorded for 88 of the primer pairs (data not
shown). Twelve primer pairs (6.9%) were falsely pre-
dicted as 'gDNA-unsafe', and 19 (11%) falsely as 'gDNA-
safe'.

In silico benchmarking of QuantPrime

In order to assess the success rate and speed of
QuantPrime for larger expression profiling projects, hypo-
thetical high-throughput assays were designed for six dif-
ferent species. Five assays consisted of respectively 5000
randomly selected transcripts from current genome anno-
tations of five species (Arabidopsis thaliana, Vitis vinifera,
Drosophila melanogaster, Chlamydomonas reinhardtii and
Oryza sativa ssp.japonica), while the sixth assay consisted
of the whole UniGene collection of barley (Hordeum vul-
gare) transcripts. As seen in Table 2, the success rates
(primer pairs ranked as 'acceptable' or better by specificity
testing) varied between 91 and 98%, which correlates rel-
atively well with the status and complexity of the annota-
tions. For the higher specificity ranks rather high variation
between species was observed, ranging from 76–93% for
the rank 'good', and 39–61% for the rank 'very good'.
Since the barley annotation lacks genomic information,
'good' is the highest possible rank. Primer pair identifica-
tion speed varied between 3.6 (barley) and 60 (rice) sec-
onds per transcript, correlating roughly with the size of
the sequence sets to be searched by BLAST.

We also did preliminary tests with data sets from larger
transcriptomes/genomes (human, mouse), for which the

Table 3: Experimental results of primer pairs designed with QuantPrime

Experiment Predicted gDNA-safe Quality control passed1 Quality control passed1 for detectable transcripts2

A. thaliana 113/128 (88.3%) 117/128 (91.4%) 117/122 (95.9%)

C. reinhardtii 24/33 (72.7%) 28/33 (84.8%) 28/29 (96.6%)

H. vulgare3 - 27/30 (90.0%) 27/28 (96.4%)

137/161 (85.1%) 172/191 (90.1%) 172/179 (96.1%)

The primer pairs were designed for wet-lab quantification experiments. The number of primer pairs passing strict quality control checks (melting 
curve analysis, agarose gel separation and efficiency check) are reported in the table.
1 Melting curve analysis, gel analysis and efficiency check (E ≥ 1.8) passed. 2 Undetectable transcripts (Ct > 40) removed from the statistics. 3 TIGR 
Transcript Assembly annotation used, no genomic sequences available.
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design speed dropped (data not shown). This is due to a
higher memory demand of the BLAST runs that can be
offered in the future, when requests for the service rise.

Discussion
Our experimental results show that the primer pairs
designed by QuantPrime can be directly used with a high
success rate (> 96%) in qPCR applications, without a need
for experimental optimization of individual reaction con-
ditions. When running tests in parallel on a standard
desktop computer, the speed is enough to design primers
for high-throughput projects for small- to medium sized
transcriptomes as shown by the in silico tests.

To our knowledge, there are no other web-based tools
directly comparable to QuantPrime, although programs
like Osprey [5] and Primique [6] offer possibilities for
batch primer pair design. In those two other applications,
however, the user has to supply the database against
which primer pair specificity is tested, but the upload
capacity is limited to 10 MB which does not suffice for
most transcriptomes. QuantPrime always tests the primer
pairs against the whole transcriptome of the annotation
used, and additionally offers a richer user interface, exon-
exon junction design of primers to avoid genomic DNA
amplification, and a high degree of customization of
parameters, features not available in the other software
packages. Most annotations are already included in
QuantPrime; in the case that users have special annota-
tions not available on the public server, they can contact
us for adding it there, or they can run QuantPrime locally.
A more exhaustive comparison of QuantPrime with other
available primer design software can be found in the
Additional file 3.

For some species pre-computed databases of primers exist.
An example is AtRTPrimer [14] containing primer pairs
for most genes of A. thaliana. When looking at the availa-
ble primers in this resource one will find that the parame-
ters for design, especially amplicon size, make the primer
pairs unsuitable for real-time PCR, and due to the differ-
ences in Tm between different primer pairs exhaustive
PCR optimization would be necessary for using them in
high-throughput. The authors report a success rate of
93%, however only 21 primer pairs offered by the data-
base were experimentally validated. In comparison,
QuantPrime offers complete customization of parameters
for different quantification methods, and we see higher
success rates (> 96% for the three species tested here, n =
191). Another example is the PrimerBank [12], which cov-
ers primer pairs for human and mouse transcripts, which
could be useful for high-throughput purposes (due to
strict design criteria), even though amplicon sizes vary.
Those two databases are limited to specific species; there
are a couple of databases covering more species, notably

RTPrimerDB [11], which however cover very few non-
human genes. Another database containing primer pairs
for plant transcription factors is DATFAP [15], which how-
ever is based on EST sets, which is questionable for A. thal-
iana and O. sativa for which good genome annotations are
available. It therefore lacks information about possible
genomic sequences amplified by the primer pairs; addi-
tionally Tm values vary widely between primer pairs,
which might require exhaustive PCR optimization.

The parameter flexibility for design and specificity testing
offered in QuantPrime makes it straightforward to
employ it for the design of oligonucleotides for a number
of other quantification applications, such as qPCR with
hydrolyzation probes (e.g. TaqMan probes, Scorpion
primers), quantitative in situ hybridization of mRNA and
others. Such protocols will be added to QuantPrime as we
gather experimental data and feedback from users.

Conclusion
The QuantPrime website offers a unique service to the sci-
entific community, with ease-of-use, flexibility of param-
eters and a broad scope of transcript databases and
genomic annotations, which should make it a very useful
tool for primer design. No other publicly available tool
offers the same services. Overall, the speed of computa-
tion and the quality of the designed primer pairs as shown
experimentally make QuantPrime (on the public web
server or as standalone software) a suitable system for
primer design in low- to high-throughput transcription
profiling projects.

We are open for suggestions from the scientific commu-
nity to further develop QuantPrime in the future. Upon
request we may for example include further transcript
databases and genome annotations, sets of parameters for
other quantification protocols and applications, or
improve the applied specificity testing algorithms. Institu-
tions wanting to host mirrors of the QuantPrime public
web server or supply additional computing power are
encouraged to contact the authors.

Methods
General

Standard molecular techniques were performed as
described [18]. Oligonucleotides were obtained from
MWG (Ebersberg, Germany). Unless otherwise indicated,
other chemicals were purchased from Roche (Mannheim,
Germany), Merck (Darmstadt, Germany), or Sigma
(Deisenhofen, Germany).

Growth conditions

Arabidopsis thaliana (L.) Heynh accession Col-0 plants
were grown in growth chambers with an 8-h day length
provided by fluorescent light at 120 μmol m-2 s-1 (50%
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intensity during the first and last 30 minutes of the light
period) and a day/night temperature of 20/16°C and rel-
ative humidity of 60/75%. Whole, young plants (four
weeks after germination) including washed roots were
harvested 2 hours after lights-on, snap-frozen in liquid
nitrogen and stored at -70°C until RNA extraction.
Chlamydomonas reinhardtii CC503 cw92 mt+ was grown
under continuous light (100 μmol m-2 s-1) at 21°C in
HEPES-based medium as described [19]. Hordeum vulgare
(Karat variety) plants were grown as previously described
[20], and parts of roots from seven days-old seedlings
were used for total RNA extraction.

RNA extraction and cDNA synthesis

After grinding of plant/algal material in liquid nitrogen,
total RNA was isolated with Trizol reagent (Invitrogen,
Karlsruhe, Germany) or RNeasy Plant Mini Kit (Qiagen,
Hilden, Germany) following the manufacturers' specifica-
tions. RNA quality was determined spectrometrically
(A260/A280 > 1.8) using a NanoDrop ND-1000 spectrome-
ter (NanoDrop, Detroit, USA) and by visual inspection of
separated bands on agarose gels.

After isolation, genomic DNA was digested using Turbo
DNA-free recombinant DNAse I (Applied Biosystems
Applera, Darmstadt, Germany) following the manufac-
turer's specifications. The level of remaining genomic
DNA contamination was measured by diluting the sam-
ples to the same concentration as the final cDNA samples
(10 ng μl-1) and performing real-time PCR using primers
for a genomic sequence (UBQ10: Fw 5'-GGCCTTG-
TATAATCCCTGATGAATAAG-3', Rev 5'-AAAGAGA-
TAACAGGAACGGAAACATAGT-3'). Samples with
consistent cycle threshold (Ct) values below 35 were re-
treated with DNAse I or new RNA extractions were per-
formed.

Two μg of total RNA was used in 20-μl reactions for cDNA
synthesis, using RevertAid R-minus cDNA synthesis kit
(Fermentas, St. Leon-Rot, Germany), following the manu-
facturer's specifications. The cDNA was then diluted 1:10
in order to reduce the effect of RNA isolation and cDNA
synthesis buffer on the subsequent PCRs.

Real-time quantitative PCR

qPCR was carried out in technical triplicates or quadrupli-
cates using 0.5 or 1 μl of diluted cDNA in 5- or 10-μl reac-
tions, 2 or 4 μl of 500 nM primer pairs and 2.5 or 5 μl of
2× Power SYBR Green PCR Master Mix (Applied Biosys-
tems). The following PCR protocol was used on Applied
Biosystems 7300 (96-well plates) and 7900HT (384-well
plates) real-time PCR systems: 10 min at 95°C, 15 sec at
95°C, and 1 min at 60°C repeated in 50 cycles, followed
by melting curve analysis. When testing primer pairs, the

PCR products were then separated on a 2% agarose gel
and visualized with ethidium bromide, using 50 bp DNA
ladder (Invitrogen) for size determination.

Cycle threshold (Ct) values for each reaction were calcu-
lated using Applied Biosystems SDS software, with base-
line set to cycle 3–15 and threshold to 0.2 Rn, recorded
from the SYBR Green I dye signal normalized against the
ROX dye signal.

Real-time PCR amplification efficiencies were calculated
using the LinRegPCR tool [21], using the best-fit method
for 4 to 6 points. This tool uses linear regression on log-
values of normalized fluorescence data from individual
reactions to calculate E in the equation for PCR kinetics,
NC = N0 * EC, which states that the amount of product
after C cycles (NC) is equal to the starting concentration
(N0) times the efficiency (E) to the power C; 100% effi-
ciency would give an efficiency value of 2.

Efficiency values from fitted curves with R-squared values
below 0.999 were considered as unreliable; Ct values and
efficiencies from such reactions were removed from fur-
ther calculations. Medians of Ct values and efficiencies
were calculated and used in further calculations.

Public server setup

The web-based QuantPrime program runs on a Linux-
based server, with two Intel 1.6 GHz QuadCore 64-bit
processors and 4 GB of RAM, configured to run up to six
design/testing threads in parallel, always leaving two vir-
tual processors available for database and web handling.
This was found to be the most efficient configuration for
this single server; setting up the program and database in
a clustered environment with specialized data and com-
putation nodes should lead to synergistic speed improve-
ments, as the amount of data transferred between
database and executing threads are kept very low.

In silico benchmarking

For the random selection of transcripts from annotations,
the built-in random function in MySQL was used to order
all transcripts from the respective annotation having a
transcript length of more than 300 bp, of which the top
5000 were selected.

The run times given are real time (not CPU time), mean-
ing the difference of the time point when the experiment
started and when it finished. The average time per tran-
script is the total time divided by the number of tran-
scripts. Due to the parallel nature of the program, the
typical time to design one specific primer pair for a tran-
script is longer.
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Availability and requirements
Project name: QuantPrime

Project home page: http://www.quantprime.de/

Operating systems: Platform independent

Programming languages: Python and PHP (web inter-
face)

Other requirements: Web browser (supporting JavaS-
cript) for using the public server; for standalone use:
BioPython 1.4 or higher, MySQL 5.0 or higher, Primer3
1.1.1 or higher, NCBI BLAST 2.2.13 or higher

Any restrictions to use by non-academics: License
needed
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