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What is the power of quantum computers?

• Manin/Feynman, early 1980s:  Simulating quantum systems

• Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994:  Black box problems

• Shor 1994:  Factoring, discrete logarithm

• Many authors, late 1990s–Present:  Some nonabelian hidden subgroup problems

• Freedman-Kitaev-Larsen 2000:  Approximating Jones polynomial

• Hallgren 2002:  Pell’s equation

• van Dam-Hallgren-Ip 2002:  Some hidden shift problems (e.g., shifted Legendre symbol)

• van Dam-Seroussi 2002:  Estimating Gauss/Jacobi sums

• Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003:  Black box graph traversal

• van Dam 2004, Kedlaya 2004:  Approximately counting solutions of polynomial equations

• Hallgren 2005, Schmidt-Vollmer 2005:  Finding unit/class groups of number fields

Quantum mechanical computers can efficiently solve problems that 
classical computers (apparently) cannot.
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• van Dam 2004, Kedlaya 2004:  Approximately counting solutions of polynomial equations

• Hallgren 2005, Schmidt-Vollmer 2005:  Finding unit/class groups of number fields

Questions:

• What is the computational power of quantum mechanics?

• Is public-key cryptography possible in a quantum world?
Shor’s algorithm breaks RSA, elliptic curve cryptosystems, Diffie-
Hellman key exchange, etc.
What about, e.g., lattice cryptosystems?

Quantum mechanical computers can efficiently solve problems that 
classical computers (apparently) cannot.



Generalized hidden shift problem

Example.  N = 7, M = 3, s  = 2
x=0 1 2 3 4 5 6

b=0

1

2

Given:

Satisfying:

f(b, x) : {0, 1, . . . ,M − 1}× ZN → S

injective

Find:  s (the hidden shift)

f(b + 1, x + s) = f(b, x)

f(0, x)

M = 2 (hardest), ... , N (easiest)
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Proof idea:

• Since the function values are arbitrary, they are not 
informative until we find two inputs that give the same 
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• The probability of seeing such a collision is very small unless
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Note:  This holds independent of how big M  is.
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M=N:  An abelian hidden subgroup problem

The same approach works for any M ≥ N/poly(log N), but not 
smaller!

This is an instance of the hidden subgroup problem in the abelian 
group                      .  Shor’s algorithm (“Fourier transform and 
measure”) finds s efficiently.

G = ZN × ZN
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M=2:  The dihedral hidden subgroup problem

Hardest hidden shift problem:

G = Z2 ⋉ ZN

This is also a hidden subgroup problem, but now in a nonabelian 
group, the dihedral group                      .

Regev’s reduction also works for larger M.  Is this any easier?

Kuperberg 2003:  Algorithm with run time                .2
O(

√

log N)

Regev 2002:  Solution to the DHSP can be used to find short 
vectors in lattices (     -unique-SVP), which would break, e.g., the 
Ajtai-Dwork cryptosystem.
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Main result

Theorem.  Let               for any fixed         .  Then there is an 
efficient (i.e., run time poly(log N)) quantum algorithm for the 
generalized hidden shift problem, using entangled measurements 
on                              registers.

M = N
ǫ

ǫ > 0

k = max{3, log 1

ǫ
}
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Main result

Theorem.  Let               for any fixed         .  Then there is an 
efficient (i.e., run time poly(log N)) quantum algorithm for the 
generalized hidden shift problem, using entangled measurements 
on                              registers.

M = N
ǫ

ǫ > 0

Note:  Unfortunately, this is not good enough to get better-than-
classical algorithms for lattice problems.  (That seems to require 
M = poly(log N).)

Tools:

• “Pretty good measurement” on hidden shift states, à la 
Bacon, Childs, van Dam 2005.

• Integer programming in constant dimensions (Lenstra 1983).

k = max{3, log 1

ǫ
}
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Pretty good measurement

PGM:  A particularly nice, and often optimal, measurement for 
distinguishing members of an ensemble of quantum states.

For certain semidirect HSPs (BCD 05) and hidden shift 
problems (this talk):

PGM
state 

distinguishability 
problem

average case 
algebraic problem

(“quantum sampling”)

measurement 
succeeds

typical instances
have solutions

implementing the 
measurement

solving typical 
instances
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The algebraic problem

Given:

Find:

random x ∈ Z
k

N

w ∈ ZNrandom

b ∈ {0, 1, . . . ,M − 1}k

such that b · x = w mod N

Key observation:  This is a k-dimensional integer program.

• Solutions of                over     form a shifted integer lattice

• “mod N” can be enforced by adding a component

•                           is a pair of linear constraints

b · x = w Z

0 ≤ bj ≤M − 1

Lenstra 1983:           time algorithm for integer programming in 
k dimensions (using LLL lattice basis reduction)

2
O(k3)
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Proof idea:  Second moment method.
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Questions

• Is the quantum solvability of the generalized hidden shift 
problem with                    useful for any problems going 
beyond factoring/discrete log?

• Can we solve the problem efficiently for smaller M?
Can we at least interpolate with Kuperberg’s algorithm?

• What if we replace      by a nonabelian group?
(Then even M  = 2 is not a hidden subgroup problem.)
Can we solve this even for very large M?

M = Ω(N ǫ)

ZN


