
Quantum algorithm for a
generalized hidden shift problem

Andrew Childs
Caltech

Wim van Dam
UC Santa Barbara

What is the power of quantum computers?

• Manin/Feynman, early 1980s: Simulating quantum systems

• Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems

• Shor 1994: Factoring, discrete logarithm

• Many authors, late 1990s–Present: Some nonabelian hidden subgroup problems

• Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial

• Hallgren 2002: Pell’s equation

• van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol)

• van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums

• Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal

• van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations

• Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields

Quantum mechanical computers can efficiently solve problems that
classical computers (apparently) cannot.

What is the power of quantum computers?

• Manin/Feynman, early 1980s: Simulating quantum systems

• Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems

• Shor 1994: Factoring, discrete logarithm

• Many authors, late 1990s–Present: Some nonabelian hidden subgroup problems

• Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial

• Hallgren 2002: Pell’s equation

• van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol)

• van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums

• Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal

• van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations

• Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields

Questions:

Quantum mechanical computers can efficiently solve problems that
classical computers (apparently) cannot.

What is the power of quantum computers?

• Manin/Feynman, early 1980s: Simulating quantum systems

• Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems

• Shor 1994: Factoring, discrete logarithm

• Many authors, late 1990s–Present: Some nonabelian hidden subgroup problems

• Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial

• Hallgren 2002: Pell’s equation

• van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol)

• van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums

• Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal

• van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations

• Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields

Questions:

• What is the computational power of quantum mechanics?

Quantum mechanical computers can efficiently solve problems that
classical computers (apparently) cannot.

What is the power of quantum computers?

• Manin/Feynman, early 1980s: Simulating quantum systems

• Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems

• Shor 1994: Factoring, discrete logarithm

• Many authors, late 1990s–Present: Some nonabelian hidden subgroup problems

• Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial

• Hallgren 2002: Pell’s equation

• van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol)

• van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums

• Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal

• van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations

• Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields

Questions:

• What is the computational power of quantum mechanics?

• Is public-key cryptography possible in a quantum world?
Shor’s algorithm breaks RSA, elliptic curve cryptosystems, Diffie-
Hellman key exchange, etc.
What about, e.g., lattice cryptosystems?

Quantum mechanical computers can efficiently solve problems that
classical computers (apparently) cannot.

Generalized hidden shift problem

Example. N = 7, M = 3, s = 2
x=0 1 2 3 4 5 6

b=0

1

2

Given:

Satisfying:

f(b, x) : {0, 1, . . . ,M − 1}× ZN → S

injective

Find: s (the hidden shift)

f(b + 1, x + s) = f(b, x)

f(0, x)

M = 2 (hardest), ... , N (easiest)

Classical complexity

Claim. To determine s, a classical, randomized algorithm must
make exponentially many queries (in log N) to f.

Classical complexity

Claim. To determine s, a classical, randomized algorithm must
make exponentially many queries (in log N) to f.

Proof idea:

• Since the function values are arbitrary, they are not
informative until we find two inputs that give the same
output.

• The probability of seeing such a collision is very small unless
 (birthday problem). Hence
queries are needed.

Ω(
√

N)# queries !
√

N

Classical complexity

Note: This holds independent of how big M is.

Claim. To determine s, a classical, randomized algorithm must
make exponentially many queries (in log N) to f.

Proof idea:

• Since the function values are arbitrary, they are not
informative until we find two inputs that give the same
output.

• The probability of seeing such a collision is very small unless
 (birthday problem). Hence
queries are needed.

Ω(
√

N)# queries !
√

N

Quantum query complexity

Quantum query complexity

Query f in superposition:

Quantum query complexity

Query f in superposition:

Measure function value: obtain (with equal probability)

or or or. . .

Quantum query complexity

Query f in superposition:

The quantum states for different values of s are far apart, so
they can be distinguished using only a few copies
(k ≤ poly(log N), again independent of M).

Measure function value: obtain (with equal probability)

or or or. . .

Main question: Can we do it in poly(log N) time?

Quantum query complexity

Query f in superposition:

The quantum states for different values of s are far apart, so
they can be distinguished using only a few copies
(k ≤ poly(log N), again independent of M).

Measure function value: obtain (with equal probability)

or or or. . .

M=N: An abelian hidden subgroup problem

Easiest hidden shift problem:

M=N: An abelian hidden subgroup problem

This is an instance of the hidden subgroup problem in the abelian
group . Shor’s algorithm (“Fourier transform and
measure”) finds s efficiently.

G = ZN × ZN

Easiest hidden shift problem:

M=N: An abelian hidden subgroup problem

The same approach works for any M ≥ N/poly(log N), but not
smaller!

This is an instance of the hidden subgroup problem in the abelian
group . Shor’s algorithm (“Fourier transform and
measure”) finds s efficiently.

G = ZN × ZN

Easiest hidden shift problem:

M=2: The dihedral hidden subgroup problem

Hardest hidden shift problem:

M=2: The dihedral hidden subgroup problem

Hardest hidden shift problem:

G = Z2 ⋉ ZN

This is also a hidden subgroup problem, but now in a nonabelian
group, the dihedral group .

M=2: The dihedral hidden subgroup problem

Hardest hidden shift problem:

G = Z2 ⋉ ZN

This is also a hidden subgroup problem, but now in a nonabelian
group, the dihedral group .

Regev 2002: Solution to the DHSP can be used to find short
vectors in lattices (-unique-SVP), which would break, e.g., the
Ajtai-Dwork cryptosystem.

√

n

M=2: The dihedral hidden subgroup problem

Hardest hidden shift problem:

G = Z2 ⋉ ZN

This is also a hidden subgroup problem, but now in a nonabelian
group, the dihedral group .

Kuperberg 2003: Algorithm with run time .2
O(

√

log N)

Regev 2002: Solution to the DHSP can be used to find short
vectors in lattices (-unique-SVP), which would break, e.g., the
Ajtai-Dwork cryptosystem.

√

n

M=2: The dihedral hidden subgroup problem

Hardest hidden shift problem:

G = Z2 ⋉ ZN

This is also a hidden subgroup problem, but now in a nonabelian
group, the dihedral group .

Regev’s reduction also works for larger M. Is this any easier?

Kuperberg 2003: Algorithm with run time .2
O(

√

log N)

Regev 2002: Solution to the DHSP can be used to find short
vectors in lattices (-unique-SVP), which would break, e.g., the
Ajtai-Dwork cryptosystem.

√

n

Main result

Theorem. Let for any fixed . Then there is an
efficient (i.e., run time poly(log N)) quantum algorithm for the
generalized hidden shift problem, using entangled measurements
on registers.

M = N
ǫ

ǫ > 0

k = max{3, log 1

ǫ
}

Main result

Theorem. Let for any fixed . Then there is an
efficient (i.e., run time poly(log N)) quantum algorithm for the
generalized hidden shift problem, using entangled measurements
on registers.

M = N
ǫ

ǫ > 0

Note: Unfortunately, this is not good enough to get better-than-
classical algorithms for lattice problems. (That seems to require
M = poly(log N).)

k = max{3, log 1

ǫ
}

Main result

Theorem. Let for any fixed . Then there is an
efficient (i.e., run time poly(log N)) quantum algorithm for the
generalized hidden shift problem, using entangled measurements
on registers.

M = N
ǫ

ǫ > 0

Note: Unfortunately, this is not good enough to get better-than-
classical algorithms for lattice problems. (That seems to require
M = poly(log N).)

Tools:

• “Pretty good measurement” on hidden shift states, à la
Bacon, Childs, van Dam 2005.

• Integer programming in constant dimensions (Lenstra 1983).

k = max{3, log 1

ǫ
}

Pretty good measurement

PGM: A particularly nice, and often optimal, measurement for
distinguishing members of an ensemble of quantum states.

Pretty good measurement

PGM: A particularly nice, and often optimal, measurement for
distinguishing members of an ensemble of quantum states.

For certain semidirect HSPs (BCD 05) and hidden shift
problems (this talk):

PGM
state

distinguishability
problem

average case
algebraic problem

Pretty good measurement

PGM: A particularly nice, and often optimal, measurement for
distinguishing members of an ensemble of quantum states.

For certain semidirect HSPs (BCD 05) and hidden shift
problems (this talk):

PGM
state

distinguishability
problem

average case
algebraic problem

measurement
succeeds

typical instances
have solutions

Pretty good measurement

PGM: A particularly nice, and often optimal, measurement for
distinguishing members of an ensemble of quantum states.

For certain semidirect HSPs (BCD 05) and hidden shift
problems (this talk):

PGM
state

distinguishability
problem

average case
algebraic problem

measurement
succeeds

typical instances
have solutions

implementing the
measurement

solving typical
instances

Pretty good measurement

PGM: A particularly nice, and often optimal, measurement for
distinguishing members of an ensemble of quantum states.

For certain semidirect HSPs (BCD 05) and hidden shift
problems (this talk):

PGM
state

distinguishability
problem

average case
algebraic problem

(“quantum sampling”)

measurement
succeeds

typical instances
have solutions

implementing the
measurement

solving typical
instances

The algebraic problem

Given:

Find:

random x ∈ Z
k

N

w ∈ ZNrandom

b ∈ {0, 1, . . . ,M − 1}k

such that b · x = w mod N

The algebraic problem

Given:

Find:

random x ∈ Z
k

N

w ∈ ZNrandom

b ∈ {0, 1, . . . ,M − 1}k

such that b · x = w mod N

Key observation: This is a k-dimensional integer program.

• Solutions of over form a shifted integer lattice

• “mod N” can be enforced by adding a component

• is a pair of linear constraints

b · x = w Z

0 ≤ bj ≤M − 1

The algebraic problem

Given:

Find:

random x ∈ Z
k

N

w ∈ ZNrandom

b ∈ {0, 1, . . . ,M − 1}k

such that b · x = w mod N

Key observation: This is a k-dimensional integer program.

• Solutions of over form a shifted integer lattice

• “mod N” can be enforced by adding a component

• is a pair of linear constraints

b · x = w Z

0 ≤ bj ≤M − 1

Lenstra 1983: time algorithm for integer programming in
k dimensions (using LLL lattice basis reduction)

2
O(k3)

Analysis of typical number of solutions

b · x = w mod N

Analysis of typical number of solutions

Expected number of solutions:
M

k

N

of b’s

of values of w

b · x = w mod N

Analysis of typical number of solutions

Expected number of solutions:
M

k

N

of b’s

of values of w

So we expect to need copies.k ≈
log N

log M
(M = N

ǫ

↔ k = 1

ǫ
)

b · x = w mod N

Analysis of typical number of solutions

Proof idea: Second moment method.

Expected number of solutions:
M

k

N

of b’s

of values of w

So we expect to need copies.k ≈
log N

log M
(M = N

ǫ

↔ k = 1

ǫ
)

b · x = w mod N

Analysis of typical number of solutions

Proof idea: Second moment method.

Lemma. (used to bound variance)

For any fixed b, the number of solutions to the equation
 is .

x ∈ Z
k

N

b · x = 0 mod N Nk−1 gcd(b1, . . . , bk, N)

Expected number of solutions:
M

k

N

of b’s

of values of w

So we expect to need copies.k ≈
log N

log M
(M = N

ǫ

↔ k = 1

ǫ
)

b · x = w mod N

Analysis of typical number of solutions

Proof idea: Second moment method.

Lemma. (used to bound variance)

For any fixed b, the number of solutions to the equation
 is .

x ∈ Z
k

N

b · x = 0 mod N Nk−1 gcd(b1, . . . , bk, N)

Expected number of solutions:
M

k

N

of b’s

of values of w

So we expect to need copies.k ≈
log N

log M
(M = N

ǫ

↔ k = 1

ǫ
)

b · x = w mod N

Questions

• Is the quantum solvability of the generalized hidden shift
problem with useful for any problems going
beyond factoring/discrete log?

• Can we solve the problem efficiently for smaller M?
Can we at least interpolate with Kuperberg’s algorithm?

• What if we replace by a nonabelian group?
(Then even M = 2 is not a hidden subgroup problem.)
Can we solve this even for very large M?

M = Ω(N ǫ)

ZN

