
Quantum Algorithm for Multiplicative Linear Logic
Lorenzo Saraiva1, Edward Hermann Haeusler1, Vaston Costa 2

1Pontificia Universidade Católica do Rio de Janeiro.
R. Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, Brazil

2Universidade Federal de Catalão.
Av. Dr. Lamartine Pinto de Avelar 1120. Catalão - GO, Brazil

lorenzo.saraiva@hotmail.com, hermann@inf.puc-rio.br, vaston@ufcat.edu.br

Abstract. This paper describes a quantum algorithm for proof search in sequent
calculus of a subset of Linear Logic using the Grover Search Algorithm. We bri-
efly overview the Grover Search Algorithm and Linear Logic, show the detailed
steps of the algorithm and then present the results obtained on quantum simula-
tors.

1. Introduction
Quantum computing has provided us with algorithms that have a better time com-
plexity than any classical counterpart, one of those being the Grover’s Search
Algorithm(GSA)[Grover 1997] for searching an element in an unordered database. The
GSA is used in several contexts, including SAT, kmeans, genetic algorithms and pixel
identification. In this work, we use the GSA to help in searching proofs of a subset of
multiplicative linear logic to improve complexity compared to classic algorithms. We
show the construction of the quantum circuit from the linear logic sequent to the end
result and present our conclusions.

2. Background
The GSA is one of the most famous quantum algorithms, and its goal is to search for
an element in an unordered database. Assuming a database with n qubits that contains
N = 2n elements in the superposition, it has time complexity of

√
N , which outperforms

any classical algorithm. The general steps of the Grover algorithm main iteration on n
qubits are as follows:

• Database initialization - In this step an operator A is applied to the database
qubits to bring them from the initial state |0〉⊗n to the desired state |Ψ〉. This state
is usually the equal superposition state, and A = H⊗n.

• Oracle call - In this step an oracle O is applied to the prepared state |Ψ〉. The
oracle will flip the phase of the searched value xt so that:

O |xs 6= xt〉 = |xs〉
O |xs = xt〉 = |−xs〉

• Amplitude amplification - In this step an operator D is used to amplify the am-
plitude of the state marked by the oracle. For such, an inversion about the mean
(IAM) is performed.

ar
X

iv
:2

30
2.

09
16

9v
1

 [
cs

.L
O

]
 1

7
Fe

b
20

23

Generalizing, the Grover iteration can be described as:

G = AOATD

The Grover iteration has to be repeated bπ
√
N/4c times in order to maximize the probabi-

lity of measuring the desired state. Our work follows Alsing’s entangled database search
[Alsing and McDonald 2011] using the GSA. The main feature of Alsing’s algorithm is
that, instead of using A = H⊗n to prepare the equal superposition state, it chooses A in
order to encode an arbitrary list of pairs {s, t}. Thus, the algorithm’s input is an entangled
database with two sides, each side having one part of the pair. Every entry on the left side
is entangled to an entry on the right side. In the GSA, it is necessary to know the searched
value to construct the oracle. On Alsing’s, on the other hand, one can construct the oracle
based on a known entry s1 on the left side, apply the GSA, and then measure the right
side, recovering the unknown value t1 entangled with s1.

3. Problem Description
Linear logic is an extension of classical and intuitionistic logic that emphasizes the role
of formulas as resources. For that reason, it does not allow the rules of contraction
and weakening to apply to all formulas but only those formulas marked with special
marks[Di Cosmo and Miller 2019]. Due to the (formal) similarity between the logical ru-
les that deal with these marks and the modalities in systems like S4, these marks might be
considered as modalities. The absence of contraction and weakening allows Linear Logic
to have two different versions of conjunction and disjunction: an additive and a multi-
plicative. The classical ∧ (and), for example, is divided between the additive version, &
(with), and the multiplicative version,⊗ (tensor). Linear logic also has a sequent calculus
proof system. In this context, the algorithm for finding a cut-free proof in the multiplica-
tive only version of Linear Logic has a worst-case time complexity of 2k, where k is the
number of atomic formulas. The subset of intuitionistic linear logic that deals only with
the multiplicative connectives is called (intuitionistic) multiplicative linear logic(IMLL).
In this work, we will be using a subset of IMLL, IMLL-⊗ using only the tensor connector.

Figura 1. Oracle circuit for k=2 and searching for the value associated with 0

Considering a linear logic sequent with k = 4 atomic clauses

A⊗ (B ⊗ (C ⊗D)) ` D ⊗ (B ⊗ (A⊗ C)).

We want to find the successive splits that verify that this is a valid proof. We have
two rules that can be applied, ⊗-Left and ⊗-Right. In the classical algorithm, we apply
the successive splits until we reach a valid axiom.

• Apply one of the possible rules until there are only left axioms,
• If the axioms are all valid, the sequent is valid; if not, restart.

Since there are 2k possible splits, the algorithm has time complexity of O(2k), where k is
the number of atomic clauses.

Algorithm 1 General Description

Require: k copies of the database of 2n qubits and k pairs, where n = dlog ke
numIterations← b(π ×

√
N/4)c

for i < N do
for j < numIterations do

buildOracle(n, target)
appendDiffuser(A)
measure()

end for
end for

4. Solution Steps

Our quantum algorithm input is an entangled database with two sides, each part of a pair.
Every entry on the left side is entangled to an entry on the right side, and they are both
unordered. We will call left side of each pair as the search part, or s, and the right side
the target, or t. To be able to perform the algorithm in

√
k steps, it is necessary to have

k copies of the paired database, where k is the number of unique atomic clauses. The
complexity of building this database is not taken into account. Our algorithm also shows
an explicit dynamic construction for the Grover oracle depending on the searched value.

4.1. Preparing the entangled database

Before starting the algorithm, one must construct an entangled database that accurately
represents the sequent. In order to do so, we will need k × 2n qubits. Then, the pairs
|a〉 |b〉 will be encoded as |Na+ b〉, where a and b is the position of the clause in each
side of the sequent. Assuming we have k = 8 and n = 3, where n is the number of qubits
necessary to represent a solution space of k values. Thus our entangled database with 8
solutions will have 2 groups of n qubits, each representing 8 = k = 2n values. We will
treat both groups of 3 qubits as a single array and prepare the resulting encoding in the
superposition, using k of the k2 total possibilities that can be stored in 2n qubits. Then, we
will need k copies of the register, one for each clause. The construction of the database is
not explicitly shown but its complexity is O(n) or O(log k)[Alsing and McDonald 2011],

taking O(k log k) in total. This process is not strictly part of the algorithm, which only
receives a pre-constructed entangled database. 1

4.2. ⊗-Left
The first step of the algorithm itself is to apply the ⊗-Left rule until it cannot be applied
anymore, so we have a sequent of the form:

A1, A2, ..., AN ` B ⊗∆

Where ∆ = A ⊗ (∆) or ∆ = A Now, we can use our entangled database to find
out the correct split for the leftmost atomic clauses of the right side.

4.3. Grover Search
Now that we have the entangled database of k copies of 2n qubits, we can perform the
GSA. We start by picking the leftmost atomic clause of the right side. The first step is to
construct the oracle dynamically for the chosen element on the left side. The construction
of this Oracle takes into account the binary representation of the chosen clause position.
We apply the necessary X-Gates to leave all the search space qubits in |1〉 and apply
a multi-controlled Toffoli Gate with a prepared qubit as a target to perform the phase
kickback, as can be seen in 1. This oracle is applied only on the search, that is, the
first n qubits of the first copy of the 2n qubits. Then, the Grover operator for amplitude
amplification is applied to all 2n qubits

√
k times, and the measurement to the right side

of the 2n qubits.

An example of this circuit for n = 2 qubits is shown in 1. It is important to note
that in the IAM step of the GSA, it is necessary to apply the A operator, which takes log k
steps, making the overall complexity of the GSA step O(

√
k log k). This process finds

the corresponding entry of a pair, but we need to find the k corresponding pairs. The
issue is that measuring the qubits destroys the prepared superposition corresponding to
the pairs. Therefore, we need the k copies of the prepared 2n qubit entangled database -
so we perform the GSA for each pair on a different copy of the database, in k1.5 steps in
total - k times

√
k steps.

5. Example
We want to find out if

A⊗ (B ⊗ (C ⊗D)) ` D ⊗ (B ⊗ (A⊗ C)))

is a valid sequent in linear logic. We have k = 4 and consequently n = log4
2 = 2, thus

2 qubits are used for each side, and 2n for each copy in total. We will construct of the
entangled representation of this sequent.

A 0 2
B 1 1
C 2 3
D 3 0

1In our case, the entangled state, it is necessary to store the gate sequence A used to encode a copy of
the entangled database state so it can be used later in the IAM step of the GSA.

∆, B0, B1 ` γ ⊗-Left
∆, B1 ⊗B2 ` γ

∆0 ` A0 ∆1 ` B1 ⊗-Right
∆0,∆1 ` A0 ⊗ A1 B ` B

Figura 2. Rules of ⊗-only Linear Logic

Using the formula |ka+ b〉, with k = 4, we have

A k0 + 2 = 2
B k1 + 1 = 5
C k2 + 3 = 11
D k3 + 0 = 12

Thus we have the state of the quantum database as√
1
4
(|2〉+ |5〉+ |11〉+ |12〉)

or√
1
4
(|0010〉+ |0101〉+ |1011〉+ |1100〉)

We perform the Grover search on any of the sides and are able to recover the va-
lue on the other side. But first, let’s go back to the sequent. The rules for ⊗ are shown in
2.

Because ⊗ is a binary operator, we can’t search for values inside the parentheses
and apply the rules, so we treat the sequent as

A⊗∆1 ` D ⊗∆2

For that reason, we first apply the ⊗-Left successive times, until every atomic
clause is alone

A,B,C,D ` D ⊗∆2

⊗-Left
A,B,C ⊗D ` D ⊗∆2

⊗-Left
A,B ⊗∆3 ` D ⊗∆2

⊗-Left
A⊗∆1 ` D ⊗∆2

Now, we run the quantum algorithm for every entry on the right side, and apply
the results to the sequent, following the order of appearance. D is encoded to the pair
(3, 0), but the algorithm only knows the 0, which is the position of the value we’re

querying, which is encoded by
√

1
4
|1100〉. We’ll apply the Oracle on the two last qubits,

that represent the 0 part of the pair, with the shown circuit, and then measuring the first
two qubits, with high probability of the result being 3. This process is done for every

clause of the right side, so now we just apply the splits following the indexes (3, 1, 0, 2),
with the following results

A ` A C ` C ⊗-Right
A,C ` A⊗ C B ` B ⊗-Right

A,B,C ` B ⊗ (A⊗ C) D ` D ⊗-Right
A,B,C,D ` D ⊗∆2

⊗-Left
A,B,C ⊗D ` D ⊗∆2

⊗-Left
A,B ⊗∆3 ` D ⊗∆2

⊗-Left
A⊗∆1 ` D ⊗∆2

6. Results
From a given entangled database state, our algorithm has time complexity ofO(k1.5 log k)
and has a space qubit complexity of log k, where k is the number of atomic clauses on
the sequent. Even when taking into account the construction of the database, which ta-
kes O(k log k) steps, we’re still left with a time complexity of O(k1.5 log k + k log k) =
O(k1.5 log k) which outperforms the classical algorithm.

Additionally, it is important to note that when k > 4, we would need a controlled-
NOT gate with more than two control qubits. For that, we need to concatenate the results
of Toffoli gates, introducing additional n − 2 ancillary qubits[Piro et al. 2020]. We ran
our circuit in the several simulators provided by IBM, such as the qasm simulator and
simulator mps. Each execution consisted of 1000 circuit’s runs. We tested the implemen-
tation of the algorithm up to 64 atomic clauses with high precision, using 2× log k = 12
qubits as search space.

7. Future Work
While this solution uses the GSA to get an advantage when searching the matching pairs,
it has some weaknesses. The first is the fact that you need to prepare the quantum database
for each execution, since the quantum state is destroyed in the process. Another issue is
that the algorithm fully quantum: while the index matching is found with the GSA, the
splits are done classically taking into account the position of each atomic clause, and one
could argue that this could add an overhead of complexity. For that reason, a different
quantum approach is being currently developed, where each qubit value will represent the
side of an atomic clause in a specific split.

8. Full Quantum approach
This algorithm also uses the GSA to help in proof search for IMLL, but there is consi-
derable difference between this and the first one. Now, we don’t use Alsing’s entangled
database nor do we need to prepare a specific quantum state prior to the execution. The
algorithms uses (k − 1) + log k qubits, where k is the number of atomic clauses in the
right side of the sequent. The first (k − 1) qubits represent the side picked by a clause in
each of the (k − 1) splits and the last log k qubits act as an index for the clauses. A qubit
measured 0 means a clause will go to the left in a split and 1 means it will go the right.
Starting with the simplest case:

A,B ` A⊗B

For k = 2 We will need (k − 1) + log k = 2 qubits. The quantum state that
represents the correct splits is |00〉 + |11〉. The |00〉 state is the A going to the right side
and the |11〉 is the B going to the left side. The GSA Oracle will mark both these states
as correct ones. These states are defined by the right side of the sequent. Let’s go over a
slightly more complicated example:

A,B,C,D ` D ⊗ (B ⊗ (A⊗ C)))

We’ll look at the right side to define the states that will be marked by the Oracle.
First, D will go to the left side and all everybody else to the right. D will have no future
splits, and in the case we fill the rest of its correspondent state with 0s. Thus, one of the
Oracle correct states is |010|11〉. Applying a similar process we can construct the other
three: |110|00〉, |100|01〉 and |111|10〉, for A, B and C respectively. Now we just apply
the GSA a sufficient time to measure the four possibilities and we’ll have recovered the

splits necessary to form a valid sequent. This has a time complexity of
√

2k+log k

k
. This

can be simplified:

2k+log k = 2k × 2log k = 2k × k√
2k×k
k

=
√

2k

Which is the expected quadratic speedup from the GSA.

9. Adding Linear Implication
Following the full quantum approach, the next step is to add linear implication to the
connectors accepted by the algorithm. This comes with some challenges. First, we can
no longer use the right side as a fixed reference for the oracle to apply the successive
splits based on the ⊗-Right rule - if we add linear implication, now the atomic clauses
can switch sides depending on the rule, and the initial sequent no longer needs to have a
balanced number of atomic clauses in each side. So, instead of only specifying the splits
of the left side to follow a fixed order of the right side, we need to handle every atomic
clause. Also, we have four options of ”places to go”when applying the (-Left rule: left
side of the left sequent, right side of the left sequent, left side of the right sequent and right
side of the right sequent. This is also an issue with the ⊗-Right, since now we have to
explicitly say where each clause will go. To solve this, each step will use 2 qubits instead
of one. The first qubit of the pair represents which sequent the clause will go, 0 for left, 1
for right. The second will represent which side of sequent the clause will go, again 0 for
left, 1 for right. When applying the (-Right, it will count as everybody going to the left
sequent. Let’s go over a simple example:

A1, A2 (B1 ` C1 (B2, C2

A1, A2 (B1, C1 ` B2, C2

A1 ` A2 B1, C1 ` B2, C2

Thus, the correct states for the oracle will be:

A1 = |0000|000〉

A2 = |0001|001〉

B1 = |0010|010〉

B2 = |0111|011〉

C1 = |0010|100〉

C2 = |0111|101〉

There’s a few interesting things to point out here. The first is the increase of
qubits. The complexity of the last solution was

√
2k, where k = n/2, and n is the total

number of atomic clauses. This solution, on the other hand has complexity of
√

2c+logn

n
.

Simplifying on a similar way:

2c+logn = 2c × 2logn = 2c × n√
2c×c
c

=
√

22c

2c is the final complexity.

Referências
Alsing, P. M. and McDonald, N. (2011). Grover’s search algorithm with an entangled

database state. In Quantum Information and Computation IX, volume 8057, page
80570R. International Society for Optics and Photonics.

Di Cosmo, R. and Miller, D. (2019). Linear Logic. In Zalta, E. N., editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer
2019 edition.

Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack.
Physical review letters, 79(2):325.

Piro, F., Askarpour, M., and Di Nitto, E. (2020). Generalizing an exactly-1 sat solver for
arbitrary numbers of variables, clauses, and k. In 1st International Workshop on Soft-
ware Engineering and Technology, Q-SET 2020, volume 2705, pages 27–37. CEUR-
WS.

	1 Introduction
	2 Background
	3 Problem Description
	4 Solution Steps
	4.1 Preparing the entangled database
	4.2 -Left
	4.3 Grover Search

	5 Example
	6 Results
	7 Future Work
	8 Full Quantum approach
	9 Adding Linear Implication

