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Quantum algorithms and the finite element method

Ashley Montanaro and Sam Pallister
School of Mathematics, University of Bristol, Bristol, BS8 1TW, UK.

(Dated: February 25, 2016)

The finite element method is used to approximately solve boundary value problems for differential
equations. The method discretises the parameter space and finds an approximate solution by solving
a large system of linear equations. Here we investigate the extent to which the finite element method
can be accelerated using an efficient quantum algorithm for solving linear equations. We consider
the representative general question of approximately computing a linear functional of the solution
to a boundary value problem, and compare the quantum algorithm’s theoretical performance with
that of a standard classical algorithm – the conjugate gradient method. Prior work had claimed that
the quantum algorithm could be exponentially faster, but did not determine the overall classical
and quantum runtimes required to achieve a predetermined solution accuracy. Taking this into
account, we find that the quantum algorithm can achieve a polynomial speedup, the extent of which
grows with the dimension of the partial differential equation. In addition, we give evidence that
no improvement of the quantum algorithm could lead to a super-polynomial speedup when the
dimension is fixed and the solution satisfies certain smoothness properties.

I. INTRODUCTION

The development of a quantum algorithm for large sys-
tems of linear equations is an exciting recent advance in
the field of quantum algorithmics. First introduced by
Harrow, Hassidim and Lloyd [26], and later improved by
other authors [3, 18], the algorithm gives an exponential
quantum speedup over classical algorithms for solving
linear systems. However, the quantum linear equation
(QLE) algorithm “solves” a system of equations Ax = b
in an unusually quantum sense. The input b is provided
as a quantum state |b〉, and the algorithm produces an-
other state |x〉 corresponding to the desired output x.
Whether this is considered to be a reasonable definition
of “solution” depends on the intended application [1].
Still, linear equations are so ubiquitous in science and en-
gineering that many applications of the QLE algorithm
have been proposed, ranging from machine learning [33]
to computing properties of electrical networks [38].

One area in which large systems of linear equations oc-
cur is the finite element method (FEM) [4, 13, 19, 36].
The FEM is a technique for efficiently finding numeri-
cal approximations to the solutions of boundary value
problems (BVPs) for partial differential equations, based
on discretising the parameter space via a finite mesh.
The FEM is a tempting target for acceleration by the
QLE algorithm for several reasons. First, the large sys-
tems of linear equations that occur in the FEM are pro-
duced algorithmically, rather than being given directly
as input. This avoids efficiency issues associated with
needing to access data via a quantum RAM [1, 33]. Sec-
ond, the FEM naturally leads to sparse systems of linear
equations, which is usually a requirement for quantum
speedup via the QLE algorithm. Third, the FEM has
many important practical applications. These include
structural mechanics, thermal physics and fluid dynam-
ics [36]. Any quantum speedup for the FEM would thus
represent a compelling application of quantum comput-
ers.

Clader, Jacobs and Sprouse [20] have studied the appli-
cation of the QLE algorithm to the FEM. In particular,
they consider an electromagnetic scattering cross-section
problem solved via the FEM, and argue that the quan-
tum algorithm achieves an exponential speedup for this
problem over the best classical algorithm known. In or-
der to achieve this result, the authors of [20] propose
ways to avoid issues with the QLE algorithm that can
reduce or eliminate a quantum speedup. For example,
they show that the important classical technique known
as preconditioning, which reduces the condition number
of the input matrix A, can be applied within the quantum
algorithm.

However, the analysis of [20] does not fully calculate
and combine all contributions to the complexity of ap-
proximately solving the scattering cross-section problem.
The classical and quantum algorithmic complexity is cal-
culated in [20] in terms of two parameters: N (the size
of the system of linear equations resulting from applying
the FEM), and ε (the solution accuracy). The size of the
system of equations is a parameter which can be chosen
by the user in order to achieve a desired accuracy (i.e. N
and ε are formally related). In [20] they are treated as in-
dependent parameters and hence the complexity analysis
is left incomplete. If the scaling of N with ε is benign,
the classical algorithm might not need to solve a large
system of equations to achieve a given accuracy, so the
quantum speedup could be reduced or even eliminated.

A. New results

In this paper we work through the details of applying
the QLE algorithm to the general FEM, and compare the
worst-case performance of the quantum algorithm with
that of a simple standard classical algorithm. We choose
a representative general problem – approximating a lin-
ear functional of the solution to a BVP corresponding to
an elliptic PDE – which allows the two types of algorithm
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Algorithm No preconditioning Optimal preconditioning

Classical Õ
(

(|u|2/ε)(d+1)/2
)

Õ
(

(|u|2/ε)d/2
)

Quantum Õ
(
‖u‖|u|22/ε3 + ‖u‖1|u|2/ε2

)
Õ (‖u‖1/ε)

TABLE I. Complexity comparison of the algorithms studied in this work. Quantities listed are the worst-case time complexities
of approximating a linear functional of the solution to a d-dimensional BVP up to accuracy ε, using the FEM with linear basis
functions (see Section III for bounds when using higher-degree polynomials). ‖u‖, |u|` and ‖u‖` are the L2 norm, Sobolev

`-seminorm and Sobolev `-norm of the solution respectively, defined in Section II. The Õ notation hides polylogarithmic factors.

to be fairly compared.
Our results can be summarised as follows: We find

that the QLE algorithm is indeed applicable to the gen-
eral FEM, and can achieve substantial speedups over the
classical algorithm. However, the quantum speedup ob-
tained is only at most polynomial, if the spatial dimen-
sion is fixed and the solution satisfies certain smooth-
ness properties. For example, the maximal advantage of
the quantum algorithm for the typical physically relevant
PDE defined over 3+1 dimensions (three spatial and one
temporal, such that d = 4) is approximately quadratic.
In small enough dimension, and if the solution is suffi-
ciently smooth, the runtime of the quantum algorithm
can actually be worse than the classical algorithm.

Examples of the bounds we derive are listed in Table I,
which includes the effect of preconditioning on the run-
time of the algorithms. Note that in general it is difficult
to rigorously analyse the performance of preconditioners.
We therefore choose to highlight two extreme possibili-
ties: no preconditioning at all is applied, or maximally
successful preconditioning is used. The true performance
of an algorithm using preconditioning will fall somewhere
between the two cases.

The runtime of both the classical and quantum algo-
rithms depends on the Sobolev `-seminorm and Sobolev
`-norm of the solution to the BVP, for some `; roughly
speaking, these measure the size of the `’th derivatives
of the solution. Assuming that preconditioning has been
optimally used within the QLE algorithm, the quantum
algorithm’s runtime is dependent only on the Sobolev
1-norm (up to polylogarithmic terms). However, the
classical algorithm’s runtime depends on the Sobolev `-
seminorm, for some ` ≥ 2. Therefore, for problems with
solutions whose higher-order derivatives are large, the
quantum advantage could be substantial.

Perhaps more importantly, to achieve accuracy ε in
spatial dimension d, the runtime of the classical algo-
rithm scales as ε−O(d), while the scaling with ε of the
quantum algorithm’s runtime does not depend on d. For
higher-dimensional problems, the quantum speedup can
thus be very significant. Interestingly, this holds even if
preconditioning is not used. (Note that we cannot quite
say that the quantum algorithm achieves an exponen-
tial speedup, as the runtime also contains a dimension-
dependent constant factor which could be very large.)

One example application is any dynamical problem in-
volving n bodies, which implies solving a PDE defined

over a configuration space of dimension 2n. Also, there
may be a significant advantage for problems in mathe-
matical finance; for example, pricing multi-asset options
requires solving the Black-Scholes equation over a do-
main with dimension given by the number of assets [28].
This is discussed further in the conclusion to this paper.

The reason for the apparent contradiction between our
results and previous work [20], which claimed an expo-
nential speedup in fixed spatial dimension, is the inclu-
sion of an accuracy parameter in the runtime, which was
not fully incorporated in [20]. Imagine that we would like
to produce a solution to some BVP that is accurate up
to ε. This accuracy parameter will affect the runtime of
algorithms for the FEM. There are two potential sources
of error in producing the solution: the discretisation pro-
cess which converts the problem to a system of linear
equations, and any inaccuracies in solving the system of
equations itself and computing the desired function of the
solution. The larger the system of equations produced,
the smaller the first type of error is.

The QLE algorithm can work with an exponentially
larger set of equations in a comparable time to the clas-
sical algorithm, so this source of error can be reduced
exponentially. However, the scaling with accuracy of the
QLE algorithm’s extraction of a solution from the sys-
tem of linear equations is substantially worse than the
classical algorithm. These two effects can come close to
cancelling each other out.

We remark that there is a subtle point here: the scaling
with accuracy of the quantum algorithm is substantially
better if we only wish to produce the quantum state cor-
responding to the solution to the FEM [18], rather than
computing some property of the state by measuring it.
However, in applications one will always eventually want
to perform a measurement to extract information from
the final output of the quantum algorithm. We there-
fore consider it reasonable to compare the quantum and
classical complexities of producing a (classical) answer to
some given problem.

Finally, we argue that the inability of the quantum al-
gorithm to deliver exponential speedups (in some cases)
is not a limitation of the algorithm itself, but rather that
any quantum algorithm for the FEM will face similar
constraints. We elucidate several barriers with which any
quantum algorithm will have to contend. First, we show
that, informally, any algorithm which needs to distin-
guish between two states which are distance ε apart must
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have runtime Ω(1/
√
ε). Second, we argue that the “FEM

solving subroutine” of any quantum algorithm can likely
be replaced with an equivalent classical subroutine with
at most a polynomial slowdown (in fixed spatial dimen-
sion and when the solution is smooth). Third, we show
that there can be no more than a quadratic speedup if
the input to the problem is arbitrary and accessed via
queries to a black box or “oracle”.

Our results pinpoint the regimes in which one can hope
to achieve exponential quantum speedups for the FEM,
and show that apparent speedups can disappear when
one takes the effect of solution accuracy into account.
Nevertheless, we believe that the fact that exponential
speedups might still be obtained in some cases is en-
couraging, and an incentive to focus on problems with
a possibility of a genuine exponential quantum speedup.

B. Other related work

An alternative approach to the approximate numerical
solution of PDEs is the finite difference method (FDM).
This method is also based on discretisation of the prob-
lem domain, but differs from the FEM in that it approxi-
mates the partial derivatives in the original problem with
finite differences.

The QLE algorithm can also be applied to the FDM.
One example where this has been done, and described
in detail, is work of Cao et al. [15], who gave a quan-
tum algorithm for the Poisson equation in d dimen-
sions. Their algorithm produces a quantum state cor-
responding to the solution to the equation in time
O(max{d, log 1/ε} log3 1/ε). Note that this scaling with
ε is exponentially better than the best general results
on Hamiltonian simulation known at the time; their al-
gorithm used special properties of the Poisson equation
to achieve an improved runtime. The best classical al-
gorithms require time ε−Ω(d) as they solve a discretised
version of the problem on a d-dimensional grid with cells
of size ε× ε× · · · × ε.

However, the quantum algorithm of Cao et al. [15]
shares the property of the FEM algorithms discussed here
that, in order to extract some information from the quan-
tum state produced, one finishes with a scaling with ε
which is poly(1/ε). In the physically realistic setting of
the dimension d being fixed and the accuracy ε being the
parameter of interest, this is only a polynomial improve-
ment.

Other related work has given quantum algorithms for
solving large systems of sparse linear [9] or nonlinear [31]
differential equations via Euler’s method. In these cases
the quantum algorithms can in principle achieve an ex-
ponential improvement over classical computation for ap-
proximately computing properties of the solution to the
system, if the system of equations is provided implicitly.
Fleshing out this approach requires also specifying how
the equations are produced and how the property of in-
terest is computed. If the equations are generated by a

x0 x1 x2 x3 x4

FIG. 1. A basis set of “tent” functions (the blue, or dotted,
lines), for piecewise linear functions defined on the line (an
example of which is given by the red, or solid, line). Any
piecewise linear function can be uniquely specified as a sum
of scaled tents.

discretisation procedure such as the FDM, similar qual-
itative conclusions to those we derive for the FEM seem
likely to hold.

C. Organisation and notation

We begin, in Section II, by introducing the FEM
and describing its classical complexity. Section III goes
through the details of applying the QLE algorithm to the
FEM and determines its complexity. In Section IV we
describe various limitations on the quantum algorithm.
We conclude in Section V with some discussion and open
problems.

We will need to deal with continuous functions, their
discretised approximations as vectors, and their corre-
sponding quantum states. Italics denote functions, bold-
face denotes vectors, and quantum states (usually nor-
malised) are represented as kets. We often let Ω ⊆ Rd
denote an arbitrary convex set. For a function f ∈ L2(Ω),

‖f‖ :=
(∫

Ω
f(x)2dx

)1/2
denotes the L2 norm of f . For a

vector f , ‖f‖ :=
(∑

i f
2
i

)1/2
denotes the `2 norm of f .

We often use the term “spatial dimension” as short-
hand for “number of degrees of freedom in the given
PDE”, and as distinct from the dimension of the vector
space used for a discretised approximation of the solution
of a PDE, or the dimension of the Hilbert space acted on
by a quantum algorithm; this is merely for convenience
and should not be taken to mean that the only PDEs
of interest are those in which the degrees of freedom are
physical spatial dimensions.

II. THE FINITE ELEMENT METHOD

Rather than provide a formal introduction to the FEM,
it is easiest to motivate the procedure via an example (we
refer the reader to [4, 13, 19] for a thorough treatment).
Imagine we would like to solve Poisson’s equation on the
interval [0, 1], in one dimension:

u′′ = f ; u(0) = u′(1) = 0.
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Here f is the input to the problem and we fix the bound-
ary conditions u(0), u′(1). Given a sufficiently smooth
“test function” v ∈ L2[0, 1] such that v(0) = 0, one can
multiply both sides by v and then integrate by parts:∫ 1

0

f(x)v(x)dx =

∫ 1

0

u′′(x)v(x)dx = −
∫ 1

0

u′(x)v′(x)dx.

Assuming certain regularity properties of f , a function u
which satisfies this equality for all test functions v will
satisfy Poisson’s equation. This is known as the weak for-
mulation of Poisson’s equation. The goal is to reduce this
formulation to a problem that is tractable computation-
ally. The approximation is to consider solutions and test
functions that instead exist in some finite-dimensional
subspace S of L2[0, 1]. Denote the approximate solution
as ũ, such that ũ ∈ S ⊂ L2[0, 1]. Commonly S is taken
to be the space of piecewise polynomial functions of some
degree k; the choice of “pieces” for these functions is the
origin of the finite element mesh.

A particularly simple choice of basis for this example
is the space of piecewise linear functions on [0, 1], divided
up into N intervals of size h. A basis for this space is the
set of “tent” functions (see Fig. 1), defined as

φi(x) =


1

h
(x− xi−1) if x ∈ [xi−1, xi]

1

h
(xi+1 − x) if x ∈ [xi, xi+1]

0 otherwise.

More generally, consider some choice of basis for the
space S, denoted by B = {φi}, such that |B| = N . We
choose a basis such that φi(0) = φ′i(1) = 0, so that every
function in S satisfies the boundary conditions. Then
ũ can be expanded in this basis: ũ =

∑
j Ujφj . The

corresponding weak formulation of Poisson’s equation is

−
∑
j

Uj

∫ 1

0

φ′j(x)v′(x)dx =

∫ 1

0

f(x)v(x) dx.

For this condition to hold for all v ∈ S, it is sufficient for
it to hold on all basis functions φi:

−
∑
j

Uj

∫ 1

0

φ′j(x)φ′i(x)dx =

∫ 1

0

f(x)φi(x) dx.

If we define N -dimensional vectors ũ and f̃ such that

ũi = Ui, f̃i =

∫ 1

0

f(x)φi(x) dx

and an N ×N matrix M such that

Mij =

∫ 1

0

φ′i(x)φ′j(x)dx, (1)

then the approximate solution to Poisson’s equation can
be determined by solving the linear system

M ũ = f̃ . (2)

FIG. 2. An example of a “mesh” – a discretisation of the
domain over which the PDE is defined. Each polygon is a “fi-
nite element”, with basis functions defined upon them. The
shading of each polygon here represents the amplitude asso-
ciated with the function supported on each finite element. As
a physical example, the diagram could represent the material
stress on a plate, induced by a deformation by a rod.

This general procedure (expressing the PDE in the weak
formulation, choosing a finite element mesh and basis
functions and solving the resultant linear system of equa-
tions) can be extended to far more complicated PDEs,
domains and boundary conditions. In higher spatial di-
mensions, the above framework can be naturally gener-
alised as follows. The uniform division of [0, 1] into in-
tervals is replaced with a suitably regular division of the
domain into a mesh, whose elements are usually poly-
gons (for example, triangles) or polyhedra. An example
of a mesh is shown in Fig. 2. The space S is replaced
with the space of piecewise polynomials of degree k on
the elements of the mesh, with a basis {φi} of polyno-
mials supported only on adjacent mesh elements. Fi-
nally, the matrix M defined in (1) is modified such that
Mij = a(φi, φj), where a(u, v) is an inner product de-
pending on the PDE in question.

Here we choose not to specify which PDE we wish
to solve, as the details of this procedure for particular
PDEs will not be very significant when making a general
comparison of quantum and classical algorithms for the
FEM. However, we will restrict to elliptic second-order
PDEs throughout, to avoid some technical complications.
Even with this restriction, the following analysis captures
many examples of physical interest; for example, electro-
statics, subsonic fluid dynamics and linear elasticity.

A. Comparing quantum and classical algorithms
for the FEM

The goal of this paper is to compare the performance
of quantum and classical algorithms for solving BVPs via
the FEM. However, the quantum algorithm does not al-
low the full solution u to a given BVP to be obtained,
but does allow certain properties of u to be approximately
computed. In order to fairly compare classical and quan-
tum algorithms for solving general BVPs, we consider the
representative problem of computing a linear functional
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of u. That is, for some known function r : Ω→ R, where
Ω ⊂ Rd, we seek to compute

〈r, u〉 :=

∫
Ω

r(x)u(x)dx.

This is one of the simplest properties of u one could hope
to access. In general, we do not have complete knowledge
of u, but have some approximation ũ. Although there are
many sensible norms with which one could measure the
quality of this approximation, one natural choice is the

L2 norm ‖f‖ :=
(∫

Ω
f(x)2dx)2

)1/2
. Then

|〈r, ũ〉 − 〈r, u〉| = |〈r, (ũ− u)〉| ≤ ‖r‖‖ũ− u‖

by Cauchy-Schwarz. Hence an accuracy of ε in L2 norm
in an approximation of u translates into an additive error
of at most ε‖r‖ in an approximation of 〈r, u〉. Therefore,
approximating 〈r, u〉 up to accuracy ε‖r‖ will be the pro-
totypical problem considered throughout.

B. Approximation errors

If u is the exact solution to a BVP, henceforth let ũ
be the continuous, exact solution corresponding to the
discretised problem (2); ũ is the solution that a perfect
linear-system solver would find. In general, however, the
linear-system solver is iterative and so will not truly reach

ũ; so also let ˜̃u be the continuous, approximate solution
generated by the linear-system solver.

Crucially, one can show that ũ can be made quite
close to u by taking a sufficiently fine mesh. Indeed,
consider a second order differential equation defined over
a polygonal, d-dimensional domain (or equivalently, de-
fine d as the number of degrees of freedom in the PDE).
Then, take an infinite, ordered family of progressively
finer meshes {Mr}∞r=1, constructed from a triangulation
of the domain with simplices of dimension d. Let k be
the total degree of the polynomials used as basis func-
tions. We assume throughout that both d and k are
fixed. Given a parameter m ∈ {0, 1}, and provided that
d > 2(k −m), that all angles in the mesh are bounded
below by some fixed value, and that the greatest edge
length h in the mesh goes to zero, then the following
bound is known ([19], Thm. 3.2.1):

|u− ũ|m ≤ Chk+1−m|u|k+1, h→ 0, (3)

assuming that weak derivatives of u of order m exist.
Here C is a constant, independent of h (but not neces-
sarily independent of d or the definition of the mesh).
| · |m is the Sobolev seminorm

|v|m :=

 ∑
α,|α|=m

‖∂αv‖2
1/2

.

Here α = (α1, . . . , αd) is a multi-index, |α| :=
∑
i αi, and

∂α :=
(

∂
∂x1

)α1

. . .
(

∂
∂xd

)αd

. That is, the sum is over all

partial derivatives of order m. We will later also need to
use the Sobolev m-norm, defined by ‖v‖m :=

∑m
i=0 |v|i.

For m = 0, |v|m = ‖v‖m = ‖v‖, so we have ‖u − ũ‖ ≤
C hk+1|u|k+1.

The overall level of inaccuracy in approximating u with˜̃u (and hence computing 〈r, u〉 from ˜̃u) can be bounded
using the triangle inequality:

‖u− ˜̃u‖ ≤ ‖u− ũ‖+ ‖ũ− ˜̃u‖.
To achieve a final error of ε‖r‖ in computing 〈r, u〉 it is

sufficient to achieve ‖u− ũ‖ ≤ ε/2, ‖ũ− ˜̃u‖ ≤ ε/2. Thus,
by (3), we can take a mesh such that

h = O

((
ε

|u|k+1

)1/(k+1)
)
. (4)

Observe that |u|k+1 might be initially unknown. In the
case of the simple instance of the FEM discussed in the
previous section, we had |u|k+1 = ‖f‖, so this bound
could be explicitly calculated. However, it can be non-
trivial to estimate this quantity for more complicated
BVPs.

C. Classical complexity of the FEM

The overall complexity of solving a BVP via the FEM
is governed by the dimensionality of the problem being
solved, the choice of finite element basis, and the desired
accuracy criteria. These feed into the complexity of solv-
ing the required system of linear equations.

As the matrix M is a Gramian matrix it is necessarily
positive semidefinite. Also, the basis φi is almost uni-
versally chosen such that each basis vector only has sup-
port on a small number of finite elements, with the im-
plication that M is sparse, i.e. has s = O(1) nonzero
entries in each row. The most common choice of al-
gorithm for inversion of matrices of this type (large,
sparse, symmetric and positive semidefinite) is the con-
jugate gradient method [37] (for discussion in the context
of the FEM, see [4], Sec. 1.3). This method uses time

O(Ns
√
κ log 1/εCG) to solve a system M ũ = f̃ of N lin-

ear equations, each containing at most s terms, with con-
dition number κ = ‖M‖‖M−1‖, up to accuracy εCG in

the “energy norm” ‖x‖M :=
√
xTMx.

We now estimate the values of each of the parameters
in this complexity, first calculating the required size N .
Let P be a basis for the space of polynomials of total
degree k in d variables. To construct a basis for the
space of piecewise degree-k polynomials on the mesh, it
is sufficient, for each finite element in the mesh, to include
functions defined to be equal to a corresponding function
in P on that finite element, and zero elsewhere. Then
the total size of the basis is N = O(h−d). Using (4), to
achieve a final discretisation error of ε/2 we can take

N = O

((
|u|k+1

ε

) d
k+1

)
.
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We next determine the required accuracy εCG. Let a be
the inner product defining M , such that Mij = a(φi, φj).
This inner product induces the energy norm (on func-

tions) ‖u‖E :=
√
a(u, u). Use of this norm makes it

easy to interpret the error from the conjugate gradient
method, as one can readily calculate that

‖ũ− ˜̃u‖E = ‖ũ− ˜̃u‖M . (5)

In many important cases, such as elliptic PDEs, one can
show that a is coercive: there exists a universal constant c
such that a(u, u) ≥ c‖u‖2 for all u (for further discussion
on coercivity in PDEs, see [21]). It follows from coercivity

of a that ‖ũ−˜̃u‖ ≤ √c‖ũ−˜̃u‖E . To achieve ‖ũ−˜̃u‖ ≤ ε/2
it is therefore sufficient to take εCG = O(ε).

The scaling of κ, the condition number of M , with
the size and shape of the mesh is discussed extensively
in [5] and [13, Chapter 9]. Assume that d ≥ 2 and that
there exists a universal constant C such that the basis
functions φi satisfy

C−1hd−2‖v‖L∞(T ) ≤
∑

supp(φi)∩T 6=∅

v2
i ≤ Chd−2‖v‖L∞(T )

(6)
for any function v such that v =

∑
i viφi, and any finite

element T ; this fixes the normalisation of the basis func-
tions. Then, for a wide range of relatively regular meshes,
the largest eigenvalue λmax(M) = O(1) and the smallest
eigenvalue λmin(M) = Ω(N−2/d), so κ = O(N2/d). Fi-
nally, we have s = O(1) by our assumption about the
supports of the basis elements φi. The overall complex-
ity of the algorithm is thus

O

((
|u|k+1

ε

) d+1
k+1

log 1/ε

)
.

In many practical cases, however, preconditioning is ap-
plied in order to reduce this scaling by improving the
condition number. This can be seen as replacing the
matrix M with a matrix M ′ = PM for some “precon-
ditioner” P , and solving the new system of linear equa-
tions M ′ũ = P f̃ . A number of different preconditioners
are known; one frequently used example in the case of
the FEM is the sparse approximate inverse (SPAI) pre-
conditioner. Although there is no guarantee that this
preconditioner can improve the condition number in the
worst case, experimental results suggest that it can be
very effective in practice [7, 8, 32, 34]. If the condition
number were reduced to the best possible scaling O(1),
we would obtain a “best case” runtime of the classical
algorithm which is

O

((
|u|k+1

ε

) d
k+1

log 1/ε

)
.

We remark that the preconditioned matrix M ′ may no
longer be symmetric; the dependence of the conjugate

gradient method on the condition number κ is quadrat-
ically worse for non-symmetric matrices, but as we have
assumed that κ = O(1) following preconditioning, this
does not affect the complexity.

The best classical runtime following this approach is
then found by optimising over allowed values of k. Ob-
serve that in either case, if |u|k+1 and d are fixed, this
complexity is bounded by a polynomial in 1/ε.

III. SOLVING THE FEM WITH A QUANTUM
ALGORITHM

The key step towards solving the FEM more quickly
using a quantum computer is to replace the classical al-
gorithm for solving the corresponding system of linear
equations with a quantum algorithm. The fastest such al-
gorithm known was recently presented by Childs, Kothari
and Somma [18], improving previous algorithms of Har-
row, Hassidim and Lloyd (HHL) [26] and Ambainis [3].

Theorem 1 (Childs, Kothari and Somma [18])
Let A be an N × N Hermitian matrix such that
‖A‖‖A−1‖ ≤ κ, and A has at most s nonzero entries
in each row. Assume there is an algorithm PA which,
on input (r, i), outputs the location and value of the i’th
nonzero entry in row r. Let b be an N -dimensional unit
vector, and assume that there is an algorithm Pb which
produces the corresponding state |b〉. Let

x′ = A−1b, |x〉 =
x′

‖x′‖
.

Then there is a quantum algorithm which produces the
state |x〉 up to accuracy ε in `2 norm, with bounded prob-
ability of failure, and makes

O (sκpoly(log(sκ/ε)))

uses of PA and Pb. The runtime is the same up to a
poly(logN) factor.

We will also need to approximate the Euclidean norm
of the solution, ‖x′‖. The most efficient approach known
to achieve this appears to be based on the original HHL
algorithm. The number of uses of PA required to esti-
mate ‖x′‖ up to accuracy ε‖x′‖ can be shown to be

O((sκ2/ε) poly log(sκ/ε));

the number of uses of Pb required is O(κ/ε). Assum-
ing that PA and Pb can each be implemented in time
poly(logN), the runtime of the algorithm is

O((sκ2/ε) poly log(Nsκ/ε)).

As we were unable to find statements of these bounds in
the literature, we sketch the argument behind them in
Appendix A.

Here we will apply these results to the linear system
M ũ = f̃ . We see from the above bounds that the com-
plexity of the overall quantum algorithm for solving the
FEM is determined by the following parameters:
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1. The complexities of the algorithms PM and Pf̃ ,
which respectively determine elements of M and
(approximately) produce |f̃〉;

2. The condition number κ and sparsity s of the ma-
trix M ;

3. The complexity of determining some quantity of
interest given a state which approximates |ũ〉.

These quantities will depend in turn on the desired ac-
curacy of the output. We now investigate each of them.

Note that most of the algorithms we use will have some
arbitrarily small, but non-zero, probability of failure. We
assume throughout that failure probabilities have been
made sufficiently low that they can be disregarded.

A. Preparing the input

The purpose of this section is to discuss the time to
prepare the input state |f̃〉 (i.e. the complexity of the sub-
routine Pf̃ required for the QLE algorithm). To achieve
an efficient algorithm overall, we would like to be able
to prepare |f̃〉 in time poly(logN). Rather than rely on

a quantum RAM to provide |f̃〉, we instead refer to a
scheme introduced by Zalka [39], and independently re-
discovered by both Grover and Rudolph [23] and Kaye
and Mosca [29].

The scheme can be used to produce a real quantum
state |ψ〉 of n qubits in time polynomial in n, given the
ability to compute the weights

Wx :=
∑

y∈{0,1}n−k

|〈xy|ψ〉|2

for arbitrary k = 1, . . . , n and arbitrary x ∈ {0, 1}k in
time poly(n), as well as the ability to determine the sign
of 〈x|ψ〉 for arbitrary x in time poly(n).

To approximately produce |ψ〉 up to a high level of ac-
curacy (e.g. O(2−n)) in time polynomial in n, it is actu-
ally sufficient to be able to approximately compute each
weight Wx up to accuracy ε in time O(log 1/ε), for arbi-
trary ε. We sketch the argument as follows. The algo-
rithm of [23, 29, 39] is designed to produce a state |ψ′〉
with non-negative amplitudes in the computational basis,
such that 〈x|ψ′〉 = |〈x|ψ〉| =

√
Wx for all x ∈ {0, 1}n, and

then flips the signs of amplitudes as required. To produce
|ψ′〉 the algorithm expresses Wx, for each x ∈ {0, 1}n, as
a telescoping product

Wx = Wx1
× Wx1x2

Wx1

× Wx1x2x3

Wx1x2

× · · · × Wx

Wx1...xn−1

,

computes each fraction in turn (in superposition), and
uses this to set 〈x|ψ′〉. If the goal is to produce |ψ〉 up
to accuracy ε in `2 norm, from the inequality (|〈x|ψ〉| −
|〈x|ψ′〉|)2 ≤ |〈x|ψ〉2 − 〈x|ψ′〉2| it is sufficient to approxi-
mate each weight Wx, x ∈ {0, 1}n, up to additive error

O(ε2/2n). So the product can be truncated at the point
i where the weight Wx1...xi

= O(ε2/2n), because any
subsequent multiplications can only decrease Wx, and
weights below this size can be ignored.

If the algorithm does not compute weights Wx, Wy in
some fraction Wx/Wy exactly, but instead computes ap-

proximations W̃x and W̃y such that |W̃x −Wx| ≤ γWx

and |W̃y − Wy| ≤ γWy for some γ, then |W̃x/W̃y −
Wx/Wy| = O(γWx/Wy). As we have assumed that
Wx = Ω(ε2/2n) for all k-bit strings x for which we com-
pute Wx (1 ≤ k ≤ n), it is sufficient to approximate
each weight Wx up to additive accuracy O(ε2/(n2n)) for
each fraction to be accurate up to a multiplicative error
of O(ε2/(n2n)) and hence the overall product of weights
to be accurate up to an additive error O(ε2/2n). From
the assumption about the complexity of the algorithm for
approximately computing Wx, we can achieve this level
of accuracy in poly(n, log 1/ε) time.

In the case of the FEM, the weights Wx correspond to
quantities of the form

S(a, b) :=

b∑
i=a

(∫
Ω

φi(x)f(x)dx

)2

,

where x ∈ Rd and a and b are integers. Expressions of
this form can be computed (either exactly or approxi-
mately) for many functions f of interest. For example,
consider the 1-dimensional setting discussed in Section
II. If f is a polynomial, then the integral can be easily
calculated, and corresponds to a polynomial in xi−1, xi
and xi+1. If the finite elements are regularly spaced, so
xi = ih for some h, the entire sum S(a, b) is a polynomial
in a and b which can be explicitly calculated for any a
and b.

For a choice of polynomial basis of degree k (i.e. where

the (k+1)th derivative φ
(k+1)
i = 0), then from Darboux’s

formula one has that∫
Ω

φi(x)f(x)dx =

k∑
j=1

(−1)jφ
(j)
i (x)

∫
· · ·
∫

︸ ︷︷ ︸
j+1 times

f(x)dx.

So, once the basis is specified, computing individual
amplitudes is only as difficult as integrating the func-
tion f(x). However, the state-production algorithm re-
quires the computation of weights which depend on up
to N = 2n squared amplitudes. To obtain an efficient al-
gorithm, it is therefore necessary to find a more concise
expression for these sums.

As discussed above, this can be achieved when f is a
polynomial and the finite element mesh is suitably regu-
lar. This includes some physically interesting cases; even
a constant function f can be of interest. An efficiently
computable expression for S(a, b) can also be obtained
when f is only supported on a few basis elements. How-
ever, it appears challenging to compute this quantity ef-
ficiently for more general functions f . Indeed, see Sec-
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tion IV C for an argument that this should not be achiev-
able in general.

For simplicity in the subsequent bounds, we henceforth
assume that the state |f̃〉 can be produced perfectly in
time poly(logN).

B. Solving the system of linear equations

Let M be the matrix defined by Mij = a(φi, φj). Re-
call from Theorem 1 that the quantum algorithm assumes
that it has access to an algorithm PM which, on input
(r, i), outputs the location and value of the i’th nonzero
entry in row r (or “not found” if there are fewer than i
nonzero entries). If the finite element mesh is suitably
regular, PM is easy to implement. For instance, consider
the set of n piecewise linear functions on [0, 1] defined in
Section II. Then M is a tridiagonal matrix whose diag-
onal elements are equal to 2/h, and whose off-diagonal
elements are equal to −1/h. Hence for r > 1,

PM (r, i) =


(r − 1,−1/h) if i = 1

(r, 2/h) if i = 2

(r + 1,−1/h) if i = 3,

not found otherwise.

More generally, it will be possible to implement PM ef-
ficiently if there is an efficient procedure for mapping an
index to a finite element, and for listing the neighbour-
ing elements for a given element. This will be the case,
for example, when the finite element mesh is a regular
triangulation of a polygon. For discussion on automated
mesh generation and indexing schemes, see both [25] and
Sec. 5.1 in [4].

When solving the system of linear equations, inaccu-
racies in the prepared state |f̃〉 will translate into inac-

curacies in the output state |ũ〉. Let |̃f̃〉 be the approx-
imate state that was actually prepared. Then the state
produced after applying the QLE algorithm is (approxi-
mately)

M−1 |̃f̃〉

‖M−1 |̃f̃〉‖
.

If |f̃〉 is prepared up to accuracy ε in `2 norm, then the
inaccuracy of the output state in `2 norm is∥∥∥∥∥∥ M−1|f̃〉

‖M−1|f̃〉‖
− M−1 |̃f̃〉

‖M−1 |̃f̃〉‖

∥∥∥∥∥∥ .
Writing |̃f̃〉 = |f̃〉 + |ε〉 for some vector |ε〉 such that

‖|ε〉‖ = ε, this quantity is equal to∥∥∥∥∥∥M
−1|f̃〉(‖M−1 |̃f̃〉‖ − ‖M−1|f̃〉‖)

‖M−1|f̃〉‖‖M−1 |̃f̃〉‖
− M−1|ε〉

‖M−1 |̃f̃〉‖

∥∥∥∥∥∥
≤ |‖M

−1 |̃f̃〉‖ − ‖M−1|f̃〉‖|

‖M−1 |̃f̃〉‖
+
‖M−1|ε〉‖

‖M−1 |̃f̃〉‖

≤ 2
‖M−1|ε〉‖

‖M−1 |̃f̃〉‖
≤ 2εκ,

by the triangle inequality, the reverse triangle inequal-
ity, and the definition of the condition number κ. We
therefore see that, if preconditioning is not applied to
the matrix M to reduce κ, it is necessary for |f̃〉 to be
prepared up to accuracy O(N−2/dε). (Note that this is

not an issue if we can produce |f̃〉 exactly, as for some
examples discussed in the previous section.)

Clader, Jacobs and Sprouse [20] showed that the sparse
approximate inverse (SPAI) preconditioner can be used
within the overall framework of the QLE algorithm. Pre-
conditioning replaces M with M ′ = PM for some matrix
P , to obtain the corresponding linear system PM ũ = P f̃ .
In the SPAI preconditioner, P is chosen such that P ≈
M−1 and also that P is sparse. The sparsity desired is
a parameter of the algorithm; although one has no guar-
antees that either P or PM will be sparse while PM
achieves a low condition number, in practice this is often
the case. The structure of the SPAI is designed such that
queries to entries of PM can be computed from queries
to M with a modest overhead [20].

If preconditioning is used, we no longer need to prepare
the initial state |f̃〉, but a state proportional to P |f̃〉.
Note that preparing the input P f̃ in the classical case
requires only multiplication of a vector by a sparse ma-
trix, which is computationally cheap compared to matrix
inversion. As such, it is typically neglected when consid-
ering the classical computational complexity. However,
the situation is more complicated in the quantum setting.

The most straightforward way to prepare P |f̃〉 is

to construct |f̃〉 and then attempt to apply the (non-
unitary) operation P . There are several known ap-
proaches which can be used to achieve this probabilis-
tically. One elegant example is a simple special case of
the “Chebyshev” approach of [18, Section 4]. This work
uses a quantum walk to apply n’th order Chebyshev poly-
nomials Tn(P ) in an arbitrary s-sparse Hermitian matrix
P . (If P is not Hermitian, a standard trick [26] can be
used to express it as a submatrix of a Hermitian ma-
trix.) As the first Chebyshev polynomial T1 is simply
T1(x) = x, this allows P itself to be implemented. If
the subroutine of [18] succeeds when applied to a state
|ψ〉, then |ψ〉 is (exactly) mapped to P |ψ〉/‖P |ψ〉‖. The
success probability is at least

‖P |ψ〉‖2

s2‖P‖2max

≥ 1

κ(P )2s2
,
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where ‖P‖max = maxi,j |Pij | and we use ‖P‖max ≤ ‖P‖.
Using amplitude amplification, the failure probability can
be made at most δ, for arbitrarily small δ > 0, with
O(1/(κ(P )s)) repetitions. Each repetition requires time
polylogarithmic in N , κ(P ) and s.

Combining all these considerations, we see that if pre-
conditioning is used, the complexity of the quantum al-
gorithm will depend on a number of different parame-
ters, each of which may be hard to estimate in advance.
These are: the condition number of PM ; the complex-
ity of computing entries of P ; the sparsity of P ; and
the condition number of P . Here, in order to give a
“best case” comparison of the preconditioned quantum
algorithm with the classical algorithm, we make the op-
timistic assumption that preconditioning is optimal (i.e.
κ(PM) = O(1)), and that taking all of these additional
sources of complexity into account multiplies the runtime
by only a poly(log(N)) factor.

C. Measuring the output

By running the QLE algorithm, we obtain an output

state |˜̃u〉 which approximates the normalised state

|ũ〉 =

∑
i ũi|i〉√∑
i ũ

2
i

,

where we associate each basis state |i〉 with the basis
function φi. Given copies of |ũ〉, we can carry out mea-
surements to extract information about u. One example
is the prototypical problem we consider here, approxi-
mating the L2 inner product 〈u, r〉 between u and a fixed
function r. This can be achieved by approximately com-
puting the inner product 〈ũ|r〉 between |ũ〉 and the state
|r〉 defined by

|r〉 =
1

(
∑
i〈φi, r〉2)1/2

∑
i

〈φi, r〉|i〉 (7)

for some function r; then 〈ũ|r〉 is the L2 inner product
between ũ and r, up to an overall scaling factor. |r〉 can
be produced using techniques described in the previous
section. Some interesting cases are particularly simple:
for example, taking r to be uniform on a region, 〈ũ|r〉
gives the average of ũ over that region.

This inner product can be estimated using a proce-
dure known as the Hadamard test [2], a subroutine whose
output is a ±1-valued random variable with expectation
〈ũ|r〉. By applying amplitude estimation [12] to approxi-
mately compute this expectation, 〈ũ|r〉 can be estimated
up to accuracy ε with O(1/ε) uses of algorithms to pro-
duce the states |ũ〉 and |r〉. A related approach was used
by Clader, Jacobs and Sprouse [20] to compute an elec-
tromagnetic scattering cross-section, which corresponds
to a quantity of the form |〈ũ|r〉|2. This can be approxi-
mately computed using the swap test [14], a subroutine
which, given two states |ψ〉, |ψ′〉, outputs “same” with
probability 1

2 + 1
2 |〈ψ|ψ

′〉|2, and “different” otherwise.

We remark that more complicated properties of u seem
to be more problematic to compute directly from the
state |ũ〉, due to the non-orthogonality of the basis {φi}.
For example, one common use of the QLE algorithm is
to determine similarity of solutions to sets of linear equa-
tions by using the swap or Hadamard tests to compare
them [3, 26]. Consider two states |a〉, |b〉 corresponding
to functions a =

∑
i aiφi, b =

∑
i biφi. Then

〈a|b〉 ∝
∑
i

aibi

while a sensible measure of similarity of the functions a
and b is the inner product∫

Ω

a(x)b(x)dx =
∑
i,j

aibj

∫
Ω

φi(x)φj(x)dx.

One would hope for this to be approximately propor-
tional to

∑
i aibi. However, although φi and φj do not

have overlapping support for most pairs i 6= j, there are
still enough such pairs where this overlap is nonzero that
the integral can sometimes be a poor approximation.

D. Overall complexity

The total complexity of the quantum algorithm for
solving an FEM problem is found by combining the com-
plexities of all of the above pieces.

Assume that we would like to compute R :=∫
Ω
r(x)u(x)dx for some r : Ω → R up to additive er-

ror ε‖r‖. Write α = (
∑
i〈φi, r〉2)1/2. The quantum al-

gorithm will perform the following steps by applying the
QLE algorithm to the system of linear equationsM ũ = f̃ :

1. Estimate ‖ũ‖ up to an additive term εN . Let Ñ be
the estimate.

2. Use the QLE algorithm to produce copies of |˜̃u〉, an

approximation to |ũ〉. Use these to estimate 〈r|˜̃u〉
up to an additive term εout. Let R̃ be the estimate.

3. Output αÑR̃ as an estimate of R.

We can bound the overall error as follows. Let εL be the
inaccuracy, in `2 norm, in solving the system of linear

equations in step (2), i.e. εL = ‖|˜̃u〉 − |ũ〉‖. This encom-

passes any error in producing the initial state |f̃〉, as well
as inaccuracy arising from the QLE algorithm itself (al-
though recall that we have in fact assumed that we can
produce |f̃〉 perfectly). Then

R̃ = 〈r|˜̃u〉+ εout

= 〈r|ũ〉+ 〈r|(|˜̃u〉 − |ũ〉) + εout

= 〈r|ũ〉+ ε′L + εout

for some ε′L, where |ε′L| ≤ εL by Cauchy-Schwarz. So

R̃ =

∑
i ũi〈φi, r〉

‖ũ‖ (
∑
i〈φi, r〉2)

1/2
+ ε′L + εout =

〈ũ, r〉
α‖ũ‖

+ ε′L + εout
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using the definition of |r〉 from (7) and of |ũ〉 as a nor-

malised version of ũ. Writing Ñ = ‖ũ‖+ εN , we have

αÑR̃ = 〈ũ, r〉
(

1 +
εN
‖ũ‖

)
+ α(‖ũ‖+ εN )(ε′L + εout).

The analysis of the remaining term 〈ũ, r〉 is now similar
to the classical setting:

〈ũ, r〉 = 〈u, r〉+ 〈ũ− u, r〉 = 〈u, r〉+ ε′D,

where

|ε′D| ≤ ‖r‖‖ũ− u‖ =: ‖r‖εD

by Cauchy-Schwarz. Combining all the terms together,
we have

αÑR̃−R =

ε′D

(
1 +

εN
‖ũ‖

)
+
〈u, r〉εN
‖ũ‖

+ α(‖ũ‖+ εN )(ε′L + εout).

We finally use 〈u, r〉 ≤ ‖u‖‖r‖ to obtain

αÑR̃−R =

ε′D

(
1 +

εN
‖ũ‖

)
+
‖u‖‖r‖ε′N
‖ũ‖

+ α(‖ũ‖+ εN )(ε′L + εout)

for some ε′N such that |ε′N | ≤ |εN |. To achieve overall ac-
curacy ε‖r‖ it is sufficient for each term in this expression
to be upper-bounded by ε‖r‖/3, which follows from

εD = O(ε),

εN = O(min{‖ũ‖, ε‖ũ‖/‖u‖}),
εL, εout = O(ε‖r‖/(α‖ũ‖)).

Assume for simplicity in the final bound that ε ≤ ‖u‖;
then the second condition becomes εN = O(ε‖ũ‖/‖u‖).
We now calculate the complexity of achieving these ac-
curacies.

Using the discretisation error bound (3), we have
εD ≤ C hk+1|u|k+1 for some universal constant C. We
can therefore take

h = O

((
ε

|u|k+1

) 1
k+1

)
.

As in the classical case, this choice of h corresponds to
solving a system of

N = O

((
|u|k+1

ε

) d
k+1

)

linear equations. For any δ > 0, as discussed in Section
III and Appendix A, ‖ũ‖ can be approximated up to
accuracy δ‖ũ‖ in time O((sκ2/δ) poly log(Nsκ/δ)) using
the HHL algorithm, recalling that s and κ are the sparsity

and condition number of M , respectively. Inserting δ =
ε/‖u‖ and the bound on N , this part requires time

O

(
sκ2‖u‖

ε
poly(log(sκ‖u‖|u|k+1/ε))

)
We can also put an upper bound on εL and εout by upper-
bounding α/‖r‖ and ‖ũ‖. In the former case, it holds
that

α

‖r‖
= O(h

√
s);

we prove this technical claim in Appendix B. In the latter
case,

‖ũ‖ = O(‖ũ‖M/h) = O(‖ũ‖E/h) = O(‖u‖1/h).

The first two equalities follow from λmin(M) =
Ω(N−2/d) = Ω(h2) [5, 13] and the equivalence between
‖ũ‖M and ‖ũ‖E (see (5)). The third follows from
‖ũ‖E = O(‖ũ‖1), where ‖ · ‖1 is the Sobolev 1-norm,
which is a consequence of the inner product a(·, ·) defin-
ing the energy norm corresponding to an underlying el-
liptic PDE [13], and the bound (3). Combining these
bounds, the requirement on εL and εout can be rewritten
as

εL, εout = O

(
ε√
s‖u‖1

)
.

To achieve accuracy εout using the Hadamard test
and amplitude estimation requires O(1/εout) uses of
the QLE algorithm, each of which runs in time
O(sκpoly(log(Nsκ/εL))) by Theorem 1. Inserting the
bounds on εL, εout gives a complexity for part (2) which
is

O

(√
sκ‖u‖1
ε

poly(log(sκ‖u‖1|u|k+1/ε))

)
Combining these bounds, we obtain an overall runtime
of

O

(
sκ2‖u‖+

√
sκ‖u‖1

ε
poly(log(sκ‖u‖1|u|k+1/ε))

)
.

In fixed spatial dimension, s = O(1), and if precondi-
tioning is not used, κ = O(N2/d) = O((|u|k+1/ε)

2/(k+1)).
Inserting these values, we obtain a bound of

Õ

‖u‖|u| 4
k+1

k+1

ε
k+5
k+1

+
‖u‖1|u|

2
k+1

k+1

ε
k+3
k+1

 ,

where the Õ notation hides polylogarithmic factors. On
the other hand, if we assume that optimal precondition-
ing has been applied, so κ reduces to O(1), we would
obtain an overall bound of just

Õ

(
‖u‖1
ε

)
.
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These runtimes should be compared with the correspond-
ing runtimes of the classical algorithm:

Õ

((
|u|k+1

ε

) d+1
k+1

)
and Õ

((
|u|k+1

ε

) d
k+1

)
,

respectively. First, note that if preconditioning is used,
the dependence on |u|k+1 in the quantum algorithm’s
runtime is significantly milder than for the classical al-
gorithm, being only polylogarithmic. Even if precondi-
tioning is not used, for large enough d the dependence is
polynomially better.

Perhaps more importantly, observe that in the term
dependent on ε in the algorithms’ runtimes, the quantum
algorithm’s runtime no longer depends on the dimension
d. This holds whether or not preconditioning is used.
Thus the quantum algorithm will achieve a large speedup
when ε is small and d is large. (Note that we cannot quite
call this an exponential quantum speedup with respect to
d: the runtime of the quantum algorithm also depends on
a term C in (3) which is constant for a fixed dimension
and family of meshes, but has unbounded dependence on
d.)

As a demonstrative example of the speedup (or other-
wise) expected for the quantum algorithm, consider the
case of solving a BVP in four dimensions (three spatial
and one temporal, say), using piecewise linear basis func-
tions. Then, the classical runtimes both without precon-
ditioning and with optimal preconditioning are

Õ

((
|u|2
ε

) 5
2

)
and Õ

((
|u|2
ε

)2
)
,

respectively. The analogous quantum runtimes are

Õ

(
‖u‖|u|22
ε3

+
‖u‖1|u|2

ε2

)
and Õ

(
‖u‖1
ε

)
.

In this case, lack of preconditioning leads to a quantum
algorithm which might or might not outperform the clas-
sical algorithm, depending on the relative sizes of ε, ‖u‖,
‖u‖1 and |u|2. In the optimally preconditioned case, the
quantum algorithm both scales better with accuracy and
has a less stringent condition on the solution smoothness.

IV. QUANTUM LOWER BOUNDS

We have seen that the QLE algorithm can be used
to obtain polynomial quantum speedups over the best
known classical algorithms for the FEM. We now argue
that, in the physically realistic setting of fixed dimension
and smooth solutions, a polynomial quantum speedup is
the largest speedup one can expect. We first discuss the
general question of putting lower bounds on the complex-
ity of algorithms based on a QLE subroutine.

A. A general quantum lower bound

We observe from Theorem 1 and the discussion in
Section III C that producing the quantum state |x〉 ∝
A−1|b〉 for some well-conditioned, sparse matrix A can be
achieved in time poly log(1/ε), while the apparently sim-
pler task of approximating some natural properties of |x〉
uses time O(1/ε). It is therefore natural to suspect that
the runtime of this component could be improved sub-
stantially, e.g. to poly log(1/ε). However, it was shown
by Harrow, Hassidim and Lloyd [26] that the existence
of a quantum algorithm with this scaling for approxi-
mating some very simple properties of |x〉 would imply
the complexity-theoretic consequence BQP=PP, which is
considered highly unlikely (implying, for example, that
quantum computers could efficiently solve NP-complete
problems).

As well as this complexity-theoretic argument, we now
give an argument based on ideas from query complexity
which lower bounds the runtime of any algorithm which
approximates some function of the output of the QLE
algorithm, without making use of the internal structure
of the algorithm. This encompasses all the uses of QLE
for the FEM discussed in Section III C.

We adapt a standard technique of Bennett et al. [6].
Consider an algorithm which has access to a unitary sub-
routine Aψ, parametrised by an unknown state |ψ〉, such
thatAψ maps |0〉 to |ψ〉. The algorithm may also have ac-

cess to the inverse subroutine A−1
ψ . The algorithm does

not know anything about how Aψ is implemented and
uses it as a “black box”. It aims to estimate some prop-
erty of |ψ〉. In the context of the FEM, we think of Aψ as
the QLE algorithm, where |ψ〉 is the output state corre-
sponding to the approximate solution of the desired BVP.
We assume that the algorithm only makes use of the QLE
subroutine for one instance, i.e. it uses Aψ throughout,
rather than Aψ′ for some |ψ′〉 6= |ψ〉; relaxing this as-
sumption would only make the problem harder.

For notational simplicity, we also assume in the proof
that the overall algorithm does not use A−1

ψ and does

not use any ancilla qubits. (These assumptions can eas-
ily be relaxed without changing the conclusions.) Fur-
ther assume that the overall algorithm makes T uses
of Aψ, interspersed with arbitrary unitary operators
U1, . . . , UT+1. Let |φ〉 be such that ‖|ψ〉 − |φ〉‖ ≤ ε, and
such that the output of the algorithm should be different
when using Aφ rather than Aψ. Finally let |η〉ψ,t be the
state of the overall algorithm after t uses of Aψ. Then
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‖|η〉ψ,T − |η〉φ,T ‖
= ‖UT+1AψUT . . .AψU1|0〉 − UT+1AφUT . . .AφU1|0〉‖
= ‖AψUT . . .AψU1|0〉 − AφUT . . .AφU1|0〉‖
≤ ‖AψUTAψUT−1Aψ . . .AψU1|0〉
− AψUTAφUT−1Aφ . . .AφU1|0〉‖

+ ‖AψUTAφUT−1Aφ . . .AφU1|0〉 − AφUT . . .AφU1|0〉‖
≤ ‖AψUT−1Aψ . . .AψU1|0〉 − AφUT−1Aφ . . .AφU1|0〉‖

+ ‖Aψ −Aφ‖.

The first inequality is the triangle inequality, while the
second uses the fact that unitaries do not change the Eu-
clidean distance. As the algorithm does not use any in-
formation about the internal structure of Aψ, Aφ, we are
free to assume that Aψ = |ψ〉〈0|+ |φ′〉〈1|+

∑
i≥2 |ζi〉〈i|,

Aφ = |φ〉〈0| + |ψ′〉〈1| +
∑
i≥2 |ζi〉〈i|. Here |φ′〉 and |ψ′〉

are states orthonormal to |ψ〉 and |φ〉, respectively, within
the subspace spanned by |ψ〉 and |φ〉, and |ζi〉 are arbi-
trary states which are orthonormal to both of these states
and each other. Explicitly, we can take

|φ′〉 =
|φ〉 − 〈ψ|φ〉|ψ〉√

1− |〈ψ|φ〉|2
, |ψ′〉 =

|ψ〉 − 〈φ|ψ〉|φ〉√
1− |〈ψ|φ〉|2

.

Then

‖Aψ −Aφ‖ = ‖(|ψ〉 − |φ〉)〈0|+ (|φ′〉 − |ψ′〉)〈1|‖.

Writing |δ〉 := |ψ〉 − |φ〉, |δ′〉 := |φ′〉 − |ψ′〉 and upper-
bounding the operator norm by the Frobenius norm, we
have

‖Aψ −Aφ‖ ≤
√

tr(A†ψ −A
†
φ)(Aψ −Aφ)

=
√
〈δ|δ〉+ 〈δ′|δ′〉

=
√

2‖|ψ〉 − |φ〉‖,

where we use the fact (which can easily be seen by direct
calculation) that ‖|φ′〉 − |ψ′〉‖ = ‖|ψ〉 − |φ〉‖. Hence

‖Aψ −Aφ‖ ≤
√

2ε

and in turn, by induction,

‖|η〉ψ,T − |η〉φ,T ‖ ≤ T
√

2ε.

As the algorithm is supposed to output something dif-
ferent if it is given Aφ rather than Aψ, assuming that
it succeeds, the final measurement made distinguishes
between the two states |η〉ψ,T and |η〉φ,T . The optimal
worst-case probability p of distinguishing these states is
given by the trace distance between them [27], so

p =
1

2
+

1

4
‖ηψ,T − ηφ,T ‖1 ≤

1

2
+

1

2
‖|η〉ψ,T − |η〉φ,T ‖

≤ 1

2
+
Tε√

2
.

Therefore, in order for the algorithm to succeed with
probability (say) 2/3, it must use Aψ at least Ω(1/ε)
times. As a simple example of how this bound can be
applied, consider an algorithm which attempts to distin-
guish between these two cases: a) the output from the
QLE subroutine is a particular state |ψ0〉; b) the output
from the QLE subroutine is some state |φ〉 such that the
overlap |〈φ|ψ0〉|2 = 1− ε. Then ‖|φ〉− |ψ0〉‖ = O(

√
ε), so

any algorithm distinguishing between these two cases by
using QLE as a black box must use it Ω(1/

√
ε) times.

This bound is tight for this particular problem, which
can be solved by using the QLE subroutine O(1/

√
ε)

times within quantum amplitude estimation [12]. How-
ever, for other problems it may be possible to put
stronger lower bounds on the complexity.

B. Replacing the QLE subroutine with a classical
algorithm

The above lower bound shows, roughly speaking, that
any algorithm which uses the QLE subroutine as a black
box and attempts to determine up to accuracy ε some
property of the output state must make Ω(1/

√
ε) uses

of the subroutine. However, in some cases it can be of
interest to approximate properties of the output state to
quite low levels of accuracy.

For example, consider the problem of distinguishing
between the following two cases: a) the solution to a
BVP is periodic; b) the solution is far from periodic. As
it is known that quantum algorithms can test periodicity
of functions exponentially faster than classical algorithms
can [16], one might hope to use QLE, together with the
quantum periodicity tester, to solve this problem expo-
nentially faster than any classical algorithm.

Also note that it is likely to be hard to prove that
it is impossible to obtain a superpolynomial quantum
speedup for solving BVPs, if we define “solving” a BVP
as computing an arbitrary function of the solution to a
BVP. For example, we could contrive a BVP where the
solution is easy to write down, and can be interpreted as
an integer; and could then ask the algorithm to output
the prime factors of that integer. Proving that quantum
computers could not outperform classical computers for
this task would imply an efficient classical algorithm for
integer factorisation.

Nevertheless we believe that, even given a quantum al-
gorithm for solving problems of this form, any uses of the
QLE algorithm as a subroutine could be replaced with a
classical algorithm, with at most a polynomial slowdown
if the spatial dimension is fixed and the solution is suit-
ably smooth. This would imply that any exponential
quantum speedup in the overall algorithm is not due to
the part of it that solves the FEM. Making this argument
rigorous seems challenging for technical reasons related
to regularity of meshes and comparing different norms to
measure accuracy, so we do not attempt it here, instead
merely sketching the ideas informally.
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The argument proceeds as follows. Imagine we have
an overall quantum algorithm which uses the QLE al-
gorithm as a subroutine to solve T FEM instances in
spatial dimension bounded by d = O(1), such that the
solution to each instance has all relevant Sobolev norms
bounded by O(1). Then each such instance can be ap-
proximately solved by a classical algorithm using a mesh
of size poly(1/ε), for any desired accuracy ε. We replace
each subroutine which applies the QLE algorithm to solve
an instance of the FEM, using a mesh M to achieve ac-
curacy ε, with the following procedure:

1. Classically solve the same FEM instance, using a
meshM′ which achieves accuracy max{γ/T, ε} for
some universal constant γ. Note that if ε < γ/T
this will in general be a coarser mesh than M.

2. Construct the quantum state corresponding to the
output of the solver, as a superposition of basis
functions from M′.

3. Map this quantum state to the equivalent quan-
tum state on the finer mesh M. This is essentially
equivalent to the classical task of expressing each
element of M′ in terms of elements of M.

Here we are assuming that the meshes M and M′ are
sufficiently regular that the last step makes sense (in par-
ticular, that M is a submesh of M′).

If ε ≥ γ/T , the state produced by the original subrou-
tine is left essentially unchanged. If ε < γ/T , the original
state produced was within distance O(1/T ) of the actual
solution to the corresponding FEM instance, as is the
state produced by the new subroutine. By the triangle
inequality, the new state must be within distance O(1/T )
of the old state. If each such state produced by one of
the new subroutines is within Euclidean distance O(1/T )
of the corresponding original state produced by one of
the QLE subroutines, then using a similar argument to
Section IV A, the whole algorithm does not notice the
difference between the original and modified sequence of
subroutines except with low probability.

We now examine the complexity of the steps in the
modified subroutines. Each use of step 1 solves the FEM
with precision O(1/T ), which requires time poly(T ) and
a mesh of size poly(T ). In step 2 we need to construct
a known poly(T )-dimensional quantum state. This can
be done in time poly(T ) for any such state (see e.g. [35,
Claim 2.1.1]). If M and M′ are suitably regular, the
mapping required for step 3 can be implemented effi-
ciently, i.e. in time polynomial in n, the number of qubits
used by the original algorithm.

As the original quantum algorithm solved T instances
of the FEM, and acts nontrivially on all n qubits, its run-
time must be lower-bounded by max{T, n}. Therefore,
the runtime of the new algorithm is at most polynomial in
the runtime of the old algorithm. As the new algorithm
no longer contains any quantum subroutines which solve
the FEM, we see that any quantum speedup achieved by
it does not come from quantum acceleration of the FEM.

C. Solving oracular FEM instances

We finally observe that there cannot be an efficient
quantum (or classical) algorithm for solving an instance
of the FEM if the input function f(x) is initially unknown
and provided via an oracle (“black box”), and does not
satisfy some smoothness properties. Indeed, this even
holds for near-trivial FEM instances.

Imagine we are given an FEM instance of the form
u(x) = f(x), for f ∈ L2[0, 1], and are asked to approxi-

mate the quantity
∫ 1

2

0
u(x)2dx to within accuracy ε – this

is a very simple property of a trivial PDE. Further as-
sume that we are given access to f via an oracle which
maps x 7→ f(x) for x ∈ [0, 1], and that there are N possi-
bilities for what the function f can be. We will show that
this problem is hard by encoding unstructured search on
N elements as an instance of the FEM.

Let B be the “bump” function defined by B(x) =
exp(−1/(1 − x2)) for −1 < x < 1, and B(x) = 0 else-
where. Fix N and let f0 be the shifted and rescaled bump
function f0(x) =

√
NB(2Nx − 1). f0 is supported only

on [0, 1/N ], has continuous derivatives of all orders, and
‖f0‖ = Θ(1).

Assume we have access to an oracle function O :
{0, . . . , N − 1} → {0, 1} such that there is a unique
y0 ∈ {0, . . . , N − 1} with O(y0) = 1. It is known that
determining whether y0 < N/2 or y0 ≥ N/2 requires

Ω(
√
N) quantum queries to O [22]. We define f in terms

of O as follows. Given x ∈ [0, 1], set y = bNxc and
evaluate O(y). If the answer is 1, return f0(x − y/N).
Otherwise, return 0.
f (equivalently, u) is a bump function on the range

[y0/N, (y0+1)/N ], and is zero elsewhere. So, if y0 < N/2,∫ 1
2

0
u(x)2dx ≥ C for some constant C > 0, while if y0 ≥

N/2,
∫ 1

2

0
u(x)2dx = 0. Hence approximating this integral

up to additive accuracy ε, for sufficiently small constant
ε > 0, allows us to determine whether or not y0 < N/2.

As this task requires Ω(
√
N) quantum queries, solving

this instance of the FEM must require Ω(
√
N) queries to

f . A similar classical lower bound of Ω(N) queries also
holds. Note that this does not contradict the bound (3)
as the norms of derivatives of u are large.

V. CONCLUSIONS

We have shown that, when one compares quantum and
classical algorithms for the FEM fairly by considering ev-
ery aspect of the problem – including the complexity of
producing an accurate approximation of the desired clas-
sical output – an apparent exponential quantum advan-
tage can sometimes disappear. However, there are still
two types of problem where quantum algorithms for the
FEM could achieve a significant advantage over classical
algorithms: those where the solution has large higher-
order derivatives, and those where the spatial dimension
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is large.

For ease of comparison with the quantum algorithm,
we have only considered a very simple classical FEM al-
gorithm here; there is a large body of work concerned
with improving the complexity of such algorithms. For
example, the finite element mesh can be developed adap-
tively and made more refined near parts of the domain
which are more complex or of particular interest. This
can substantially improve the convergence speed. It is
our suspicion that more advanced classical FEM algo-
rithms might eliminate the quantum algorithm’s advan-
tage with respect to BVPs whose solutions have large
higher-order derivatives.

For example, adaptive schemes such as “hp-FEM”
have, in principle, a discretisation error that scales far
better than the scaling shown here; it can be shown [24]
that a perfect adaptive scheme has scaling

‖u− ũ‖ = O(e−
1/h),

provided that the dimension of the domain is both small
and fixed. While this is a large improvement over the
“vanilla” classical complexity presented above, it is not
always apparent how to generate adaptive schemes that
are effective enough to saturate this scaling, in practice.
Also, it does not seem impossible that the quantum al-
gorithm could be substantially improved using similar
adaptive schemes.

Additionally, the case for the possibility of substantial
improvement in the classical algorithm is less clear with
respect to problems in high spatial dimension d. Indeed,
any reasonable discretisation procedure seems likely to
lead to systems of linear equations which are of size ex-
ponential in d (this is the so-called “curse of dimension-
ality”). This is precisely the regime in which the quan-
tum algorithm might be expected to have a significant
advantage. One setting in which such high-dimensional
BVPs occur is mathematical finance; for example, the
problem of pricing multi-asset basket options using the
Black-Scholes equation [28]. Alternatively, producing a
solution to any problem in many-body dynamics requires
solving a PDE where the dimension grows with the num-
ber of bodies. However, Monte Carlo methods and re-
lated techniques can sometimes be used to alleviate the
curse of dimensionality in practice [11, 30]. It is there-
fore an interesting open question whether quantum al-
gorithms can in fact yield an exponential speedup for
problems of practical interest in this area.
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Appendix A: Use of HHL for approximating the
norm of the solution

Assume that we have an s-sparse system of linear equa-
tions Ax = b, for some Hermitian N × N matrix A
such that λmax(A) ≤ 1, λmin(A) ≥ 1/κ. We would
like to approximate ‖x‖ up to accuracy ε‖x‖ using the
HHL algorithm [26]. Here we sketch how the complex-
ity of this task can be bounded, using the same no-
tation as Theorem 1 (see [26] for further technical de-
tails). The HHL algorithm is based on a subroutine
Psim whose probability of acceptance is approximately
p := ‖A−1|b〉‖2/κ2. For any δ > 0, approximating the
probability p that a subroutine accepts, up to additive
accuracy δp, can be achieved using amplitude estima-
tion [12] with O(1/(δ

√
p)) uses of the subroutine. There-

fore, approximating κ‖b‖√p = ‖x‖ up to additive accu-
racy ε‖x‖ can be achieved with

O

(
κ‖b‖
ε‖x‖

)
= O

(κ
ε

)
uses of Psim, where we use λmax(A) ≤ 1. The runtime
of the Psim subroutine, which is described in [26], de-
pends on the accuracy with which its actual probability
of acceptance p̃ approximates p. Using the best known
algorithm for Hamiltonian simulation [10] within Psim,
an accuracy of |p̃ − p| = O(εp) can be achieved with
O((sκ/ε) poly log(sκ/ε)) uses of the algorithm PA for de-
termining entries of A. The runtime is the same up to
a polylogarithmic term in N , s, κ, and ε. Each use of
the subroutine within amplitude estimation requires two
uses of Pb to reflect about the state |b〉. Therefore, the
overall number of uses of PA required is

O((sκ2/ε) poly log(sκ/ε)),

and the number of uses of Pb is O(κ/ε). Note that quan-
tum linear equations algorithms subsequent to HHL [3,
18] achieved better dependence on κ, ε, or both for the
task of producing |x〉; however, it does not seem obvi-
ous how to use these to achieve improved accuracy for
estimating ‖x‖.

Appendix B: Proof of technical bound

In this appendix we prove the claimed bound in Section
III D that

α

‖r‖
= O(h

√
s),

where α =
(∑

i〈φi, r〉2
)1/2

. Indeed, we show that

sup
r 6=0

(∑
i〈φi, r〉2

)1/2
‖r‖

= O(h
√
s).

Observe that this expression will be maximised when r
is in the subspace spanned by the {φi} functions, so we
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can assume that r =
∑
i riφi for some ri. Then the

numerator satisfies(∑
i

〈φi, r〉2
)1/2

=

(∑
i

(∫
Ω

φi(x)r(x)dx

)2
)1/2

=

∑
i

∫
Ω

φi(x)
∑
j

rjφj(x)

2


1/2

=

∑
i

∑
j

rj

∫
Ω

φi(x)φj(x)dx

2


1/2

= ‖Wr‖,

where we define the matrix Wij :=
∫

Ω
φi(x)φj(x)dx.

Similarly, for the denominator we have

‖r‖ =

∫
Ω

(∑
i

riφi(x)

)2

dx

1/2

=

∑
i,j

rirj

∫
Ω

φi(x)φj(x)dx

1/2

= (rTWr)1/2.

Therefore,

α

‖r‖
≤ sup

r6=0

(
rTWTWr

rTWr

)1/2

= sup
r′,‖r′‖=1

((r′)TWr′)1/2

= ‖W‖1/2.

Assume that W is s-sparse. To upper-bound ‖W‖ we use

‖W‖ ≤ smax
i,j
|Wij | = smax

i,j
|〈φi, φj〉| ≤ smax

i
‖φi‖2,

where the first inequality can be found in [17], for exam-
ple, and the second is Cauchy-Schwarz. Then

‖φi‖2 =

∫
T

φi(x)2dx ≤ hd max
x∈T

φi(x)2 = O(h2),

where we assume that φi is supported on a region
T of diameter at most h, and we use (6) to bound
maxx∈T φi(x)2 = O(h2−d). Thus α/‖r‖ = O(h

√
s).
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