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QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS∗

WIM VAN DAM† , SEAN HALLGREN‡ , AND LAWRENCE IP§

Abstract. Almost all of the most successful quantum algorithms discovered to date exploit the
ability of the Fourier transform to recover subgroup structures of functions, especially periodicity.
The fact that Fourier transforms can also be used to capture shift structure has received far less
attention in the context of quantum computation. In this paper, we present three examples of
“unknown shift” problems that can be solved efficiently on a quantum computer using the quantum
Fourier transform. For one of these problems, the shifted Legendre symbol problem, we give evidence
that the problem is hard to solve classically, by showing a reduction from breaking algebraically
homomorphic cryptosystems. We also define the hidden coset problem, which generalizes the hidden
shift problem and the hidden subgroup problem. This framework provides a unified way of viewing
the ability of the Fourier transform to capture subgroup and shift structure.
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1. Introduction. The first problem to demonstrate a superpolynomial sepa-
ration between random and quantum polynomial time was the recursive Fourier
sampling problem [6]. Exponential separations were subsequently discovered by Si-
mon [35], who defined a problem with respect to an oracle, and by Shor [34], who
found polynomial-time quantum algorithms for factoring and discrete logarithms. We
now understand that the natural generalization of Simon’s problem and the factoring
and discrete log problems is the hidden subgroup problem (HSP), and that when the
underlying group is abelian and finitely generated, we can solve the HSP efficiently
on a quantum computer. While recent results have continued to study important
generalizations of the HSP (for example, [19, 21, 24, 25, 27, 37]), only the recursive
Fourier sampling problem remains outside the abelian HSP framework.

In this paper, we give quantum algorithms for several hidden shift problems where
we are given two functions f , g such that there is a shift s for which f(x) = g(x + s)
for all x. The problem is then to find s. We show how to solve this problem for
several classes of functions, but perhaps the most interesting example is the shifted
Legendre symbol problem, where g is the Legendre symbol with respect to a prime
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size finite field, and the problem is the following: “Given the function f(x) =
(

x+s
p

)

as an oracle, find s.”

The oracle problem that our algorithms solve can be viewed as the problem of
predicting a pseudorandom function f . Such tasks play an important role in cryptog-
raphy and have been studied extensively under various assumptions about how one
is allowed to query the function (nonadaptive versus adaptive, deterministic versus
randomized, etc.) [7, 31]. In this paper we consider the case where the function is
queried in a quantum mechanical superposition of different values x. We show that if
f(x) is an s-shifted multiplicative character χ(x+s)—like the Legendre symbol—then
a polynomial-time quantum algorithm making such queries can determine the hidden
shift s, breaking the pseudorandomness of f .

We conjecture that classically the shifted Legendre symbol is a pseudorandom
function; that is, it is impossible to efficiently predict the value of the function after
a polynomial number of queries if one is allowed only a classical algorithm with or-
acle access to f . Damg̊ard gave partial evidence for this conjecture, proposing the
related task: “Given a part of the Legendre sequence

(

s
p

)

,
(

s+1
p

)

, . . . ,
(

s+ℓ
p

)

, where ℓ

is O(log p), predict the next value
(

s+ℓ+1
p

)

” as a hard problem with applications in

cryptography [17].

As further evidence of our conjecture, we show that breaking certain algebraically
homomorphic cryptosystems can be reduced to the shifted Legendre symbol problem.
The reduction, together with our quantum algorithm for the shifted Legendre symbol
problem, yields a polynomial-time quantum algorithm for breaking such cryptosys-
tems. The best known classical algorithm [9] for breaking these cryptosystems is
subexponential and is based on a smoothness assumption. Thus the shifted Legendre
symbol problem is a problem for which there is an exponential separation between a
quantum algorithm and the fastest known classical algorithm. These cryptosystems
can also be broken by Shor’s algorithm for period finding, but the two attacks on the
cryptosystems appear to use completely different ideas.

While current quantum algorithms solve problems based on an underlying group
and the Fourier transform over that group, we initiate the study of problems where
there is an underlying ring or field. The Fourier transform over the additive group of
the ring is defined using the characters of the additive group, the additive characters of
the ring. Similarly, the multiplicative group of units induces multiplicative characters
of the ring. The interplay between additive and multiplicative characters is well
understood [30, 36], and we show that this connection can be exploited in quantum
algorithms. In particular, we put a multiplicative character into the phase of the
registers and compute the Fourier transform over the additive group. The resulting
phases are the inner products between the multiplicative character and each of the
additive characters, a Gauss sum. We hope the new tools presented here will lead to
other quantum algorithms.

We give algorithms for three types of hidden shift problems. In the first problem, g
is a multiplicative character of a finite field. Given f , a shifted version of g, the shift is
uniquely determined from f and g. An example of a multiplicative character of Z/pZ
is the Legendre symbol. Our algorithm uses the Fourier transform over the additive
group of a finite field. In the second problem, g is a multiplicative character of the ring
Z/nZ. This problem has the feature that the shift is not uniquely determined by f
and g, and our algorithm identifies all possible shifts. An example of a multiplicative
character of Z/nZ is the Jacobi symbol. In the third problem we have the same setup
as in the second problem with the additional twist that n is unknown.
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We also define the hidden coset problem, which is a generalization of the hidden
shift problem and the hidden subgroup problem. This definition provides a unified
way of viewing the quantum Fourier transform’s ability to capture subgroup and shift
structure.

Some of our hidden shift problems can be reduced to the nonabelian HSP, al-
though efficient algorithms for these HSP instances are not known. The shifted
Legendre symbol problem over Z/pZ can be reduced to an instance of the HSP
over the dihedral group Dp = Z/pZ ⋊ Z/2Z if we assume a conjecture about sub-
sequences of the Legendre symbol. Let f(x, 0) =

((

x
p

)

,
(

x+1
p

)

, . . . ,
(

x+ℓ
p

))

and f(x, 1) =
((

x+s
p

)

,
(

x+s+1
p

)

, . . . ,
(

x+s+ℓ
p

))

, where s is unknown and ℓ = polylog(p). Then the hid-

den subgroup is H = {(0, 0), (s, 1)}. The conjecture that is necessary to ensure that
f will be distinct on distinct cosets of H is thus the statement that the subsequence
((

x+s
p

)

,
(

x+s+1
p

)

, . . . ,
(

x+s+ℓ
p

))

is unique for every x (cf. Conjecture 2.1 in [9]). For the
general shifted multiplicative character problem, the analogous reduction to the HSP
may fail because f may not be distinct on distinct cosets. However, we can efficiently
generate random coset states, that is, superpositions of the form |x, 0〉 + |x + s, 1〉,
although it is unknown how to use these to efficiently find s [18]. The issue of nondis-
tinctness on cosets in the HSP has been studied for some groups [8, 20, 23, 22].

The existence of a time-efficient quantum algorithm for the shifted Legendre sym-
bol problem was posed as an open question in [13]. The Fourier transform over the
additive group of a finite field was independently proposed for the solution of a dif-
ferent problem in [4]. The current paper subsumes [14, 15, 26]. Building on the ideas
in this paper, a quantum algorithm for estimating Gauss sums is described in [16].

This paper is organized as follows. Section 2 contains some definitions and facts.
In section 3, we give some intuition for the ideas behind the algorithms. In section 4,
we present an algorithm for the shifted multiplicative problem over finite fields, of
which the shifted Legendre symbol problem is a special case, and show how we can
use this algorithm to break certain algebraically homomorphic cryptosystems. In
section 5, we extend our algorithm to the shifted multiplicative problem over rings
Z/nZ. This has the feature that, unlike in the case of the finite field, the possible
shifts may not be unique. We then show that this algorithm can be extended to the
situation where n is unknown. In section 6, we show that all these problems lie within
the general framework of the hidden coset problem. We give an efficient algorithm for
the hidden coset problem provided g satisfies certain conditions. We also show how
our algorithm can be interpreted as solving a deconvolution problem using Fourier
transforms.

2. Background.

2.1. Notation and conventions. We use the following notation: ωn is the nth

root of unity exp(2πi/n), and f̂ denotes the Fourier transform of the function f . An
algorithm computing in Fq, Z/nZ, or G runs in polynomial time if it runs in time
polynomial in log q, logn, or log |G|.

In a ring Z/nZ or a field Fq, additive characters ψ : Z/nZ → C∗ or ψ : Fq → C∗

are characters of the additive group, that is, ψ(x+ y) = ψ(x)ψ(y), and multiplicative
characters χ : (Z/nZ)∗ → C∗ or χ : F∗

q → C∗ are characters of the multiplicative
group of units, that is, χ(xy) = χ(x)χ(y) for all x and y. We extend the definition
of a multiplicative character to the entire ring or field by assigning the value zero to
elements outside the unit group. All nonzero χ(x) values have unit norm and thus
χ(x−1) = χ(x).
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We ignore the normalization term in front of a superposition unless we need to
explicitly calculate the probability of measuring a particular value.

2.2. Computing superpositions. We will need to be able to compute the
superposition

∑

x f(x)|x〉, where the function f : G → C describes the amplitudes of
the state in an efficient way. The specific functions f that we deal with in this article
have the property that for each x either f(x) = 0 or f(x) is an mth root of unity. Hence
there is a function f ′ : G → Z such that if f(x) �= 0, then f(x) = exp(2πif ′(x)/m).
This additional function helps us in the following lemma, which describes how to
construct the superpositions in an efficient way.

Lemma 2.1 (computing superpositions). Let f : G → C be a complex-valued
function with a finite domain G that is characterized by a function f ′ : G → Z/mZ∪
{i∞} such that f(x) = ω

f ′(x)
m for all x with f ′(x) ∈ Z/mZ and f(x) = 0 if f ′(x) = i∞.

Then there is an efficient algorithm for creating the superposition
∑

x f(x)|x〉 with
success probability equal to the fraction of x ∈ G with f(x) nonzero and that uses two
queries to the function f ′.

Proof. Start with the superposition over all x ∈ G:
∑

x |x, 0〉. Compute f ′(x)
into the second register and measure to see whether f ′(x) �= i∞. This succeeds with
probability equal to the fraction of x such that f(x) is nonzero. If successful, we are
left with a superposition over all x such that f(x) is nonzero. Next, compute the

phase shift ω
f ′(x)
m by adding mod m the value f ′(x) to the superposition

∑

j ω
−j
m |j〉

(which by itself is the Fourier transform over Z/mZ of the state | − 1〉), such that

∑

x∈G,f(x) �=0

|x〉 ⊗ 1√
m

∑

j∈Z/mZ

ω−j
m |j〉 
→

∑

x∈G,f(x) �=0

|x〉 ⊗ 1√
m

∑

j∈Z/mZ

ω−j
m |j + f ′(x)〉

=
∑

x∈G,f(x) �=0

ωf ′(x)
m |x〉 ⊗ 1√

m

∑

j∈Z/mZ

ω−j
m |j〉

=
∑

x∈G

f(x)|x〉 ⊗ 1√
m

∑

j∈Z/mZ

ω−j
m |j〉.

If necessary, the state
∑

j ω
−j
m |j〉 = F| − 1〉 can be approximated arbitrarily closely

(see [33, section 5.1]).

2.3. The Fourier transform and approximate Fourier sampling. Although
it is not known how to efficiently compute the quantum Fourier transform over Z/nZ
exactly, it is known how to efficiently approximate such transformations [12, 23, 28,
29]. The current section deals with the problem of approximating the right probability
distribution induced by the Fourier transform if the size of the group is not known.
This result will be used in section 5.2.

Fourier sampling a quantum state is the process of computing the Fourier trans-
form and measuring the resulting state. The best-known example is Shor’s factoring
algorithm which finds the period of a function f defined on Z. In that case the func-
tion f is periodic with period r and is injective in {0, . . . , r − 1}. By evaluating the
function in superposition up to some chosen value q and measuring the function value,

the state |φ〉 =
√

r
q

∑q/r−1
i=0 |k + ir〉 is created, where k depends on which function

value was measured. If q were a multiple of r, then Fourier sampling |φ〉 would result
in a random integer multiple of q/r.

When a multiple of r is not known, we must understand the distribution induced
by Fourier sampling |φ〉 for values of q that we choose. This understanding was at the
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heart of Shor’s factoring algorithm when he showed that it is possible to still compute
multiples of q/r using continued fractions. This principle has been generalized for
arbitrary states |φ〉 and is known as approximate Fourier sampling [23]. This process,
described below, allows one to sample from a distribution which is close to the one that
could be generated if a multiple of r were known. This will be required in section 5.2
for finding the period of the shifted character problem. In that case the shifted
character problem will have a property very different from that of Shor’s periodic
function. In particular, the periodic function f in Shor’s case takes r different values,
whereas there are nontrivial cases of the shifted character problem when the function
only takes two values (ignoring zero amplitudes, which appear in an exponentially
small fraction of the amplitudes and thus are insignificant).

Approximate Fourier sampling works as follows: Let |φ〉 =
∑n−1

x=0 φx|x〉 be an

arbitrary superposition, and let D̂|φ〉 be the distribution induced by Fourier sampling

|φ〉 over Z/nZ. Let the superposition |φ̃〉 =
∑q′−1

x=0 φxmodn|x〉 be |φ〉 repeated until

some arbitrary integer q′, not necessarily a multiple of n. Let D̂|φ̃〉 be the distribution

induced by Fourier sampling |φ̃〉 over Z/qZ, where q > q′ and φx = 0 if x ≥ q′.

Since D̂|φ〉 is a distribution on Z/nZ and D̂|φ̃〉 is a distribution on Z/qZ, we define

new distributions over fractions which can be compared. Define D̂RF

|φ〉(j, k) = D̂|φ〉(jm)

if mk = n. The distribution D̂RF

|φ〉 is the distribution on the reduced fractions of D̂|φ〉

since it describes the process of sampling x from D̂|φ〉 and returning the fraction x/n
in lowest terms.

Let D̂CF

|φ̃〉
be the distribution induced on fractions from sampling D̂|φ̃〉 to obtain

x, and then using continued fractions to compute the closest approximation to x/q

with denominator at most n. It is a theorem that if q′ = Ω(n
2

ǫ2 ) and q = Ω( q
′

ǫ ), then

|D̂RF

|φ〉 − D̂CF

|φ̃〉
|1 < ǫ [23].

It is easy to apply this to the periodic function with period r that is injective on
{0, . . . , r−1}. Let n = r and consider the state |φ〉 =

∑r
i=1 |k〉. The distribution D̂RF

|φ〉

is uniform over {0, 1/r, 2/r, . . . , (r− 1)/r}. By the theorem, if a large enough value q
is chosen, then D̂CF

|φ̃〉
will be ǫ-close to this and efficiently computable.

2.4. Legendre symbol and Jacobi symbol. The Legendre symbol
( ·
p

)

: Fp →
{0,±1} is a quadratic multiplicative character of Fp defined by

(

x

p

)

=

⎧

⎨

⎩

0 if x = 0,
+1 if x is a nonzero square in Fp,
−1 if x is not a square in Fp.

The Legendre symbol satisfies
(

x
p

)

= x(p−1)/2 mod p, which shows that we can effi-
ciently compute the Legendre symbol using repeated squaring modp.

The Jacobi symbol
( ·
n

)

: Z/nZ → {0,±1} is a quadratic multiplicative character

of Z/nZ with n an odd integer. It is defined so that it satisfies the relation
(

a
bc

)

=
(

a
b

)(

a
c

)

and reduces to the Legendre symbol when the lower parameter is prime. With

n = pr11 · · · prkk and all pi odd primes, this gives the definition
(

x
n

)

=
(

x
p1

)r1 · · ·
(

x
pk

)rk

such that
(

x
n

)

�= 0 if and only if x ∈ Z/nZ∗. The value of the Jacobi symbol can
be calculated efficiently without factoring n using the quadratic reciprocity theorem,
which states that

(

m
n

)

= (−1)(m−1)(n−1)/4
(

n
m

)

in combination with the rule that
(

m
n

)

=
(

m′

n

)

if m = m′ mod n.
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2.5. Finite fields. The elements of a finite field Fq (where q = pr for some
prime p) can be represented as polynomials in Fp[X] modulo a degree r irreducible
polynomial in Fp[X]. In this representation, addition, subtraction, multiplication,
and division can all be performed in O((log q)2) time [2].

We will need to compute the Fourier transform over the additive group of a
finite field, which is isomorphic to (Z/pZ)r. The additive characters are of the form

ψy(x) = ω
Tr(xy)
p , where Tr : Fq → Fp is the trace of the finite field Tr(x) =

∑r−1
j=0 x

pj

and y ∈ Fq [30]. We can efficiently compute the Fourier transform over the additive
group of a finite field. (The efficiency of this transform was independently shown
in [4].)

An operation U approximates U ′ to within ǫ if for any unit vector |ψ〉, ||U |ψ〉 −
U ′|ψ〉||2 ≤ ǫ.

Lemma 2.2 (Fourier transform over Fq). The Fourier transform

|x〉 
→ 1√
q

∑

y∈Fq

ωTr(xy)
p |y〉

for all x ∈ Fq can be approximated to within error ǫ in time polynomial in log q and
log 1/ǫ.

Proof. Let q = pr, where p is the prime number that denotes the base field:
Fq = Fp[X]/f(X), with f(X) an irreducible polynomial of degree r. Assume that the

mapping |x〉 
→ ⊗r−1
j=0 |Tr(xXj)〉 can be computed in polynomial time. First apply

this map and then compute the Fourier transform over (Z/pZ)r. This gives us the
final state

r−1
⊗

j=0

1√
p

∑

yj∈Fp

ωTr(xXj)yj
p |yj〉 =

1√
q

∑

y∈Fq

ωTr(xy)
p |y〉.

We first show that the map |x〉 
→ |Tr(x),Tr(xX), . . . ,Tr(xXr−1)〉 is reversible and
then that it can be computed in polynomial time. Let T (x) = (Tr(x), Tr(xX), . . . ,
Tr(xXr−1)). T is additive since Tr is; thus if T (a) = T (b), then T (a− b) is the zero
vector. If T is not one-to-one, there is a nonzero x with T (x) equal to the zero vector.
Since Tr is not the zero map, choose a ∈ Fq such that Tr(a) �= 0. Choose elements of
the base field z0, . . . , zr−1 such that x ·∑j zjX

j = a (these must exist because x is

nonzero). Then Tr(a) = Tr(
∑

j zjxX
j) =

∑

j zjTr(xXj) = 0, since Tr(xXj) = 0 for
all j. But this contradicts Tr(a) �= 0. Thus T is one-to-one.

We now show that the map is computable in polynomial time. Write x =
∑r−1

j=0 xjX
j , where the xj are from the base field of Fq. Then for the trace Tr(xXk) =

∑r−1
j=0 xjTr(Xj+k); hence the components of T (x) are linear combinations of the xjs

and thus can be computed in polynomial time.
So far we have assumed that all operations are performed exactly. As we ob-

served earlier in Lemma 2.1 we can approximate the powers of ωp to within ǫ in
time polynomial in log p and log 1/ǫ. The Fourier transform over (Z/pZ)r can also be
approximated to within ǫ in time polynomial in log pr and log 1/ǫ.

For clarity of exposition we assume throughout the rest of the paper that the
Fourier transform over Fq can be performed exactly, as we can make the errors due
to the approximation exponentially small with only polynomial overhead.

2.6. Multiplicative characters and their Fourier transforms. The multi-
plicative group F∗

q of a finite field Fq is cyclic. Let g be a generator of F∗
q . Then the
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multiplicative characters of Fq are of the form χ(gℓ) = ωkℓ
q−1 for all ℓ ∈ {0, . . . , q− 2},

where the q − 1 different multiplicative characters are indexed by k ∈ {0, . . . , q − 2}.
The trivial character is the character with k = 0. We can extend the definition
of χ to Fq by defining χ(0) = 0. On a quantum computer we can efficiently com-
pute χ(x) because the value is determined by the discrete logarithm logg(x), which
can be computed efficiently using Shor’s algorithm [34]. The Fourier transform
of a multiplicative character χ of the finite field Fq is given by χ̂(0) = 0, and

χ̂(y) = χ(y)χ̂(1) = ω−kℓ
q−1

∑

j ω
kj
q−1ω

Tr(gj)
p , where y = gℓ [30, 36].

Let n = pm1

1 · · · pmk

k be the prime factorization of n. Then by the Chinese remain-
der theorem, (Z/nZ)∗ ∼= (Z/pm1

1 Z)∗×· · ·×(Z/pmk

k Z)∗. Every multiplicative character
χ of Z/nZ can be written as the product χ(x) = χ1(x1) · · ·χk(xk), where χi is a multi-
plicative character of Z/pmi

i Z and xi ≡ x mod pmi

i . We say χ is completely nontrivial
if each of the χi is nontrivial. We extend the definition of χ to all of Z/nZ by defining
χ(y) = 0 if gcd(y, n) �= 1. The character χ is aperiodic on {0, . . . , n− 1} if and only
if all its χi factors are aperiodic over their respective domains {0, . . . , pmi

i − 1}. We
call χ a primitive character if it is completely nontrivial and aperiodic. Hence, χ is
primitive if and only if all its χi terms are primitive.

If χ is primitive, the Fourier transform of χ is the product of the Fourier transform
of its components and has an expression analogous to the Fourier transform of a
multiplicative transform of a finite field. That is,

χ̂(y) = χ̂1(y1) · · · χ̂k(yk)

= χ1(y1)χ̂1(1) · · ·χk(yk)χ̂k(1)

= χ1(y1) · · ·χk(yk)χ̂1(1) · · · χ̂k(1)

= χ(y)χ̂(1).

If χ is completely nontrivial but periodic with period ℓ, let χ′ be the primitive char-
acter of Z/ℓZ given by χ′(x) = χ(x) for x ∈ {0, . . . , ℓ− 1}. The Fourier transform of
χ is then given by

χ̂(y) =

{

0 if n/ℓ ∤ y,

χ̂′(yℓ/n) = χ′(yℓ/n)χ̂′(1) if n/ℓ | y.

See the book by Tolimieri, An, and Lu [36] for details.

3. The intuition behind the algorithms for the hidden shift problem.

We give some intuition for the ideas behind our algorithms for the hidden shift prob-
lem. We use the shifted Legendre symbol problem as our running example, but the
approach works more generally. In the shifted Legendre symbol problem we are given
a function fs : Z/pZ → {0,±1} such that fs(x) =

(

x+s
p

)

, and are asked to find s.

The algorithm starts by putting the function value in the phase to get |fs〉 =
∑

x fs(x)|x〉 =
∑

x

(

x+s
p

)

|x〉. For random f we can expect the functions fz to be

mutually (near) orthogonal, so that the inner product squared |〈fz|fs〉|2 approximates
the delta function δs(z). The Legendre sequence

(

0
p

)

,
(

1
p

)

, . . . ,
(

p−1
p

)

has many pseudo-

random properties, and for its autocorrelation we have, in fact, |〈fz|fs〉|2 = δs(z)− 1
p .

With this, we define the (near) unitary matrix C, where the zth row is |f−z〉. The
state |fs〉 is one of the rows; hence C|fs〉 = | − s〉. The problem then reduces to
the following: How do we efficiently implement C? By definition, C is a circulant
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|0〉
F |x〉 
→ fs(x)|x〉 F |x〉 
→ ĝ−1(x)|x〉 F

FE

°°°

...
...

|0〉
FE

°°°

Fig. 3.1. Circuit for hidden shift problem for a known function g and an unknown shift s of

the black-box fs(x) = g(x+ s). Notice that the function values of fs and ĝ−1 are computed into the

phase.

|0〉
F

•
F

FE

°°°

...
...

...
|0〉 •

FE

°°°

|x〉 
→ |x, f(x)〉

Fig. 3.2. Circuit for hidden subgroup problem. Here f is computed into a register.

matrix (cx,y = f−x(y) = f0(y − x) = f−(x+1)(y + 1) = cx+1,y+1). Since the Fourier
transform matrix diagonalizes a circulant matrix, we can write C = F(F−1CF)F−1 =
FDF−1, where D is diagonal. Thus we can implement C if we can implement D.
The vector on the diagonal of D is the vector F−1|f0〉 = F−1

∑

x

(

x
p

)

|x〉, the inverse
Fourier transform of the Legendre symbol. The Legendre symbol is an eigenvector
of the Fourier transform, so the diagonal matrix contains the values of the Legendre
symbol times a global constant that can be ignored. Because the Legendre symbol
can be computed efficiently classically, it can be computed into the phase, so C can
be implemented efficiently.

In summary, to implement C for the hidden shift problem for the Legendre sym-
bol, compute the Fourier transform, compute

(

x
p

)

into the phase at |x〉, and then

compute the Fourier transform again (it is not important whether we use F or F−1).
Figure 3.1 shows a circuit diagram outlining the algorithm for the hidden shift prob-
lem for a general function g. Contrast this with the circuit for the hidden subgroup
problem shown in Figure 3.2.

4. Shifted multiplicative characters of finite fields. In this section we show
how to solve the hidden shift problem for any nontrivial multiplicative character of a
finite field. The Fourier transform we use is the Fourier transform over the additive
group of the finite field.

Definition 4.1 (shifted multiplicative character problem over Fq). Given a
nontrivial multiplicative character χ : Fq → C (where q = pr for some prime p) and
a black-box function f for which there is an s such that f(x) = χ(x + s) for all x,
find s.

Algorithm 1 (shifted multiplicative character problem over finite field Fq).

1. Create
∑

x∈Fq
χ(x + s)|x〉, using Lemma 2.1.
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2. Compute the Fourier transform to obtain the state
∑

y∈Fq
ω

Tr(−sy)
p χ̂(y)|y〉,

using Lemma 2.2.

3. For all y �= 0, compute χ(y) into the phase to obtain χ̂(1)
∑

y∈F∗
q
ω

Tr(−sy)
p |y〉.

4. Compute the inverse Fourier transform and measure the outcome −s.

Theorem 4.2. For any finite field Fq and any nontrivial multiplicative character,
Algorithm 1 solves the shifted multiplicative character problem over finite fields with
probability (1 − 1/q)2.

Proof.

1. Since χ(x) = 0 only at x = 0, by Lemma 2.1 we can create the superposition
with probability 1 − 1/q.

2. By Lemma 2.2 we can compute the Fourier transform efficiently. The Fourier
transform moves the shift s into the phase as described.

3. Because χ̂(y) = χ(y)χ̂(1) for every nonzero y, the phase change |y〉 
→ χ(y)|y〉
establishes the required transformation.

4. The amplitude of | − s〉 is

1√
q

1√
q − 1

∑

y∈F∗
q

ωTr(−sy)
p ωTr(sy)

p =
1√
q

1√
q − 1

∑

y∈F∗
q

1

=

√

q − 1

q
,

and thus the probability of measuring −s is 1 − 1/q.

4.1. The Legendre symbol and homomorphic encryption. The quantum
algorithm of the previous section showed us how we can determine the shift s ∈ Fp

given the function fs(x) =
(

x+s
p

)

. We now show how this algorithm enables us to
break schemes for “algebraically homomorphic encryption.”

A cryptosystem is algebraically homomorphic [9] if given the encryption of two
plaintexts E(x), E(y) with x, y ∈ Fp, an untrusted party can construct the encryption
of the plaintexts E(x + y) and E(xy) in polynomial time. More formally, we have
the secret encryption and decryption functions E : Fp → S and D : S → Fp, in
combination with the public add and multiplication transformations A : S2 → S and
M : S2 → S such that D(A(E(x), E(y))) = x + y and D(M(E(x), E(y))) = xy for
all x, y ∈ Fp. We assume that the functions E, D, A, and M are deterministic. This
definition is slightly more general than the definition in [9, Definition 4.1] because
we require equality between texts after unencryption rather than equality between
encrypted texts. In other words, the decryption function may be many-to-one. As
a result the encryption of a given number can vary depending on how the number
is constructed. For example, A(E(4), E(2)) may not be equal to M(E(2), E(3)). In
addition to the public A and M functions, we also assume the existence of a public zero
tester Z : S → {0, 1}, with Z(E(x)) = 0 if x = 0, and Z(E(x)) = 1 otherwise. In [9]
the existence of a zero tester is trivial because the decryption function is injective.

An algebraically homomorphic cryptosystem is a cryptographic primitive that
enables two players to perform noninteractive secure function evaluation. It is an
open problem whether or not such a cryptosystem can be constructed. We say we can
break such a cryptosystem if, given E(s), we can recover s in time polylog(p) with
the help of the public functions A,M , and Z. The best known classical attack, due to
Boneh and Lipton [9], has expected running time O

(

exp
(

c
√

log p log log p
))

for the
field Fp and is based on a smoothness assumption.
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Suppose we are given the ciphertext E(s). Test E(s) using the Z function. If s
is not zero, create the encryption E(1) via the identity xp−1 ≡ 1 mod p, which holds
for all nonzero x. In particular, using E(s) and the M function, we can use repeated
squaring and compute E(s)p−1 = E(1) in log p steps.

Clearly, from E(1) and the A function we can construct E(x) for every x ∈ Fp.
Then, given such an E(x), we can compute f(x) =

(

x+s
p

)

in the following way. Add

E(s) and E(x), yielding E(x+s), and then compute the encrypted (p−1)/2th power of
x+s, giving E(

(

x+s
p

)

). Next, add E(0), E(−1), or E(1) and test if it is an encryption
of zero, and return 0, 1, or −1 accordingly. Applying this method on a superposition of
|x〉 states, we can create (after reversibly uncomputing the garbage of the algorithm)
the state 1√

p−1

∑

x fs(x)|x〉. We can then recover s by using Algorithm 1.

Corollary 4.3. Given an efficient test to decide if a value is an encryption
of zero, Algorithm 1 can be used to break any algebraically homomorphic encryption
system.

We can also break algebraically homomorphic cryptosystems using Shor’s discrete
log algorithm as follows. Suppose g is a generator for F∗

p and that we are given the

unknown ciphertext E(gs). Create the superposition
∑

i,j |i, j, E(gsi+j)〉 and then

append the state |ψsi+j〉 =
∑

t

(

gsi+j+t
p

)

|t〉 to the superposition in i, j by the procedure

described above. Next, uncompute the value E(gsi+j), which gives
∑

i,j |i, j〉|ψsi+j〉.
Rewriting this as

∑

i,r |i, r− si〉|ψr〉 and observing that the ψr are almost orthogonal,
we see that we can apply the methods used in Shor’s discrete log algorithm to recover
s and thus gs.

5. Shifted multiplicative characters of finite rings. In this section we show
how to solve the shifted multiplicative character problem for Z/nZ for any completely
nontrivial multiplicative character of the ring Z/nZ and extend this to the case when
n is unknown. Unlike in the case for finite fields, the characters may be periodic.
Thus the shift may not be unique. The Fourier transform is now the familiar Fourier
transform over the additive group Z/nZ.

5.1. Shifted multiplicative characters of Z/nZ for known n. We start
with the following definition.

Definition 5.1 (shifted multiplicative character problem over Z/nZ). Given χ,
a completely nontrivial multiplicative character of Z/nZ, and a function f for which
there is an s such that f(x) = χ(x + s) for all x, find all t satisfying f(x) = χ(x + t)
for all x.

Multiplicative characters of Z/nZ may be periodic, so to solve the shifted mul-
tiplicative character problem we first find the period and then we find the shift. If
the period is ℓ, then the possible shifts will be {s, s + ℓ, s + 2ℓ, . . . }. Note that step
1 of Algorithm 2, which computes the period of χ, uses different properties of a peri-
odic function than Shor’s algorithm. In particular, when χ is the Legendre symbol,
the function takes only three values, whereas Shor’s algorithm assumes functions are
injective in {0, . . . , r − 1} when the period is r.

Algorithm 2 (shifted multiplicative character problem over Z/nZ).

1. Find the period ℓ of χ. Let χ′ be χ restricted to {0, . . . , ℓ− 1}.
(a) Create

∑n−1
x=0 χ(x + s)|x〉 using f .

(b) Compute the Fourier transform over Z/nZ to obtain the superposition
∑ℓ−1

y=0 ω
−sy
ℓ χ̂′(y)|yn/ℓ〉.

(c) Measure |yn/ℓ〉. Compute n/ℓ = gcd(n, yn/ℓ).
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2. Find s using the period ℓ and χ′.
(a) Create

∑ℓ−1
x=0 χ

′(x + s)|x〉.
(b) Compute the Fourier transform over Z/ℓZ to obtain

∑

y ω
−sy
ℓ χ̂′(y)|y〉.

(c) For all y coprime to ℓ, compute χ̂′(y)−1 into the phase to obtain
∑

y:χ̂′(y) �=0 ω
−sy
ℓ |y〉.

(d) Compute the inverse Fourier transform and measure.
Theorem 5.2. Algorithm 2 solves the shifted multiplicative character problem

over Z/nZ for completely nontrivial multiplicative characters of Z/nZ in polynomial
time with probability at least (φ(n)/n)3 = Ω(( 1

log log n )3), where φ is Euler’s totient

function; φ(n) is the number of positive integers less than n that are coprime to n.
Proof. Note that because χ is completely nontrivial, χ′ is a primitive character

of Z/ℓZ.
1. (a) χ(x + s) is nonzero exactly when gcd(x + s, n) = 1; thus by Lemma 2.1

we can create the superposition with probability φ(n)/n.
(b) Since χ has period ℓ, the Fourier transform is nonzero only on multiples

of n/ℓ.
(c) Since χ̂′(y) = χ′(y)χ̂′(1), and χ′(y) is nonzero precisely when gcd(y, n) =

1, when we measure yn/ℓ we have n/ℓ = gcd(n, yn/ℓ).
2. (a) Similar to the argument above, we can create the superposition with

probability φ(ℓ)/ℓ.
(b) The Fourier transform moves the shift s into the phase.
(c) As in the case for the finite field, this can be done by computing the

phase of χ′(y) into the phase of |y〉.
(d) Let A = {y ∈ Z/ℓZ : χ̂′(y) �= 0}. A = (Z/ℓZ)∗ and thus |A| = φ(ℓ).

Then the amplitude of | − s〉 after the Fourier transform is

1
√

φ(ℓ)

1√
ℓ

⎛

⎝

∑

y∈A

ω−ys
ℓ ωys

ℓ

⎞

⎠ =
1

√

φ(ℓ)

1√
ℓ

⎛

⎝

∑

y∈A

1

⎞

⎠

=

√

φ(ℓ)

ℓ
.

Hence the probability of measuring | − s〉 is φ(ℓ)/ℓ.
Thus the algorithm succeeds with probability (φ(n)/n)(φ(ℓ)/ℓ)2, which is lower bounded
by Ω(( 1

log log n )3) (because of the bound φ(n) = Ω(n/ log logn)).

5.2. Shifted multiplicative characters of Z/nZ for unknown n. We now
consider the case when n is unknown.

Definition 5.3 (shifted multiplicative character problem over Z/nZ with un-
known n). Given a completely nontrivial multiplicative character χ : Z/nZ → C for
some unknown n, and a function f for which there is an s such that f(x) = χ(x+ s)
for all x, find all t satisfying f(x) = χ(x + t) for all x.

Theorem 5.4. Given an upper bound on the size of the period of f , we can
efficiently solve the shifted multiplicative character problem over Z/nZ for unknown
n on a quantum computer.

Proof. Let ℓ be the period of f and χ′ be χ restricted to Z/ℓZ. Using the Fourier
sampling algorithm described in section 2.3, we can approximately Fourier sample
f over Z/ℓZ. Because χ′(y) is nonzero precisely when gcd(y, ℓ) = 1, this Fourier
sampling algorithm returns y/ℓ with high probability, where y is coprime to ℓ. Thus
we can find ℓ with high probability. Next, apply Algorithm 2 to find s mod ℓ.
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6. The hidden coset problem. In this section we define the hidden coset
problem and give an algorithm for solving the problem for abelian groups under
certain conditions on the functions. As we will show, this problem abstracts out
two properties that appeared in the hidden shift problems in earlier sections. We
will also show how finding the coset representative can be interpreted as solving a
deconvolution problem.

Definition 6.1 (hidden coset problem). Given functions f and g defined on a
group G such that for some s ∈ G, f(x) = g(x + s) for all x in G, find the set of all
t satisfying f(x) = g(x + t) for all x in G. The function f is given as an oracle, and
g is known but not necessarily efficiently computable.

Lemma 6.2. The answer to the hidden coset problem is a coset of some subgroup
H of G, and g is constant on cosets of H.

Note that g is not necessarily a hidden subgroup problem instance because while
it is constant on cosets, it does not have to be distinct on different cosets.

Proof. Let S = {t ∈ G : f(x) = g(x + t) for all x ∈ G} be the set of all solutions
and let H be the largest subgroup of G such that g is constant on cosets of H.
Clearly this is well defined (note that H may be the trivial subgroup as in the shifted
Legendre symbol problem). Suppose t1, t2 are in S. Then we have g(x+(−t2 + t1)) =
g((x− t2) + t1) = f(x− t2) = g((x− t2) + t2) = g(x) for all x in G; thus −t2 + t1 is
in H. This shows that S is contained in a coset of H. Since s is in S we must have
that S is contained in s+H. Conversely, suppose s+h is in s+H (where h is in H).
Then g(x+ s+h) = g(x+ s) = f(x) for all x in G; hence s+h is in S. It follows that
S = s+H. While this proof was written with additive notation, it carries through if
the group is nonabelian.

A familiar example of a nonabelian case of the hidden coset problem is given by the
graph isomorphism problem. For each n vertex graph X we let M(X) ∈ {0, 1}n×n de-
note the adjacency matrix of X, and given X we define the function g : Sn → {0, 1}n×n

by g : σ 
→ M(σ(X)) for all permutations σ ∈ Sn in the symmetric group. Now, the
shifted function f : Sn → {0, 1}n×n coincides with a description of the permuted
adjacency matrix M(π(X)) and has f(σ) = M(σ · π(X)) for all σ. This shows how
the search for an element σ′ ∈ Sn such that f(σ) = g(σ · σ′) is identical to the search
for a permutation that transforms X to π(X): the Graph Isomorphism problem.
Moreover, the determination of the constant subgroup of g of all the permutations
σ that have M(X) = M(σ(X)) solves the Graph Automorphism problem of the
graph X.

Unlike for the hidden subgroup problem, we can prove that there are cases of the
hidden coset problem that cannot be solved efficiently on a quantum computer. Let
g : Z/nZ → {0, 1} be the delta function δ0 with g(0) = 1, and g(x) = 0 otherwise.
Consequently, fs will be the unknown delta function δ−s, which determines the hidden
coset {s}. However, given fs and g, finding s amounts to searching a list of n items,
which requires Ω(

√
n) queries to fs [5].

The algorithm for the hidden coset problem instances that we can solve consists
of two parts: identifying the subgroup on which g is constant and finding a coset
representative, where computing a coset representative corresponds to computing one
hidden shift. The algorithms in this article that compute the subgroup and a coset
representative exploit different facets of the power of the quantum Fourier transform.
After computing a Fourier transform, the subgroup structure is captured in the mag-
nitude, whereas the shift structure is captured in the phase. In the hidden subgroup
problem we measure after computing the Fourier transform and so discard informa-
tion about shifts. Our algorithms for hidden shift problems do additional processing



QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS 775

to take advantage of the information encoded in the phase. Thus the solution to the
hidden coset problem requires fully utilizing the abilities of the Fourier transform.

6.1. Identifying the unknown subgroup. The first step of the hidden coset
problem algorithm is to compute the unknown subgroup of g. As the examples in
the previous section show, computing the subgroup may be difficult for at two least
reasons. First, g may be an HSP instance over a nonabelian group, for which no
efficient algorithm is known. Second, while g is constant on cosets, it may not be
distinct on different cosets; that is, it may not be an HSP instance.

We start by finding the subgroup H. We need two different algorithms for de-
termining H: the “standard” algorithm for the hidden subgroup problem and the
algorithm we used in section 5.

In the standard algorithm for the hidden subgroup problem we form a superposi-
tion over all inputs, compute g(x) into a register, measure the function value, compute
the Fourier transform, and then sample. The standard algorithm may fail when g is
not distinct on different cosets of H. In such cases, we need other restrictions on g
to be able to find the hidden subgroup H using the standard algorithm. Boneh and
Lipton [8], Mosca and Ekert [32], and Hales and Hallgren [23] have all given criteria
under which the standard hidden subgroup algorithm outputs H even when g is not
distinct on different cosets of H.

In section 5 we used a different algorithm to determine H because the function
we were considering did not satisfy the conditions mentioned above. In this algorithm
we compute the value of g into the amplitude, Fourier transform, and then sample,
whereas in the standard hidden subgroup algorithm we compute the value of g into
a register. In general, this algorithm works when the fraction of values for which ĝ is
zero is sufficiently small and the nonzero values of ĝ have constant magnitude.

6.2. Finding a coset representative as a deconvolution problem. Once
we have identified H, we can find a coset representative by solving the associated
hidden coset problem for f ′ and g′, where f ′ and g′ are defined on the quotient group
G/H and are consistent in the natural way with f and g. For notational convenience
we assume that f and g are defined on G and that H is trivial, that is, the shift is
uniquely defined.

The hidden shift problem may be interpreted as a deconvolution problem. In a
deconvolution problem, we are given functions g and f = g ⋆ h (the convolution of g
with some unknown function h) and asked to find this h. Let δy(x) = δ(x− y) be the
delta function centered at y. In the hidden shift problem, f is the convolution of δ−s

and g, that is, f = g ⋆ δ−s. Finding s or, equivalently, finding δ−s, given f and g, is
therefore a deconvolution problem.

Recall that under the Fourier transform convolution becomes pointwise multipli-
cation. Thus, taking Fourier transforms, we have f̂ = ĝ · δ̂−s and hence δ̂−s = ĝ−1 · f̂ ,
provided that ĝ is everywhere nonzero. For the multiplication by ĝ−1 to be performed
efficiently on a quantum computer would require ĝ to have constant magnitude and
be everywhere nonzero. However, even if only a fraction of the values of ĝ are zero
we can still approximate division of ĝ by only dividing when ĝ is nonzero and doing
nothing otherwise. The zeros of ĝ correspond to loss of information about δ−s.

Algorithm 3.

1. Create
∑

x∈G g(x + s)|x〉.
2. Compute the Fourier transform to obtain

∑

y∈G ψy(s)ĝ(ψy)|y〉, where ψy are
the characters of the group G.
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3. For all y for which ĝ(ψy) is nonzero compute ĝ(ψy)
−1 into the phase of |y〉 to

obtain
∑

y,ĝ(ψy) �=0 ψy(s)|y〉.
4. Compute the inverse Fourier transform and measure to obtain −s.

Theorem 6.3. Suppose f and ĝ are efficiently computable, the magnitude of f(x)
is constant for all values of x in G for which f(x) is nonzero, and the magnitude of
ĝ(ψy) is constant for all values of ψy in Ĝ for which ĝ(ψy) is nonzero. Let α be the

fraction of x in G for which f(x) is nonzero and let β be the fraction of ψy in Ĝ for
which ĝ(ψy) is nonzero. Then Algorithm 3 outputs −s with probability αβ.

Proof.
1. By Lemma 2.1 we can create the superposition with probability α.
2. The Fourier transform moves the shift s into the phase.
3. Because ĝ has constant magnitude, for values where ĝ is nonzero, ĝ(ψy)

−1 =

Cĝ(ψy) for some constant C. So we can perform this step by computing the
phase of ĝ into the phase. For the values where ĝ is zero we can just leave
the phase unchanged as those terms are not present in the superposition.

4. Let A = {y ∈ G : ĝ(ψy) �= 0}. Then the amplitude of | − s〉 is

1
√

|A|
1

√

|G|

⎛

⎝

∑

y∈A

ψy(s)ψy(−s)

⎞

⎠ =
1

√

|A|
1

√

|G|

⎛

⎝

∑

y∈A

1

⎞

⎠

=

√

|A|
|G|

=
√

β.

Hence we measure | − s〉 with probability β.
Thus the algorithm succeeds in identifying s with probability αβ and requires only
one query of f and one query of ĝ.

6.3. Examples. We show how the hidden shift problems we considered earlier
fit into the framework of the hidden coset problem. In the shifted multiplicative
character problem over finite fields, G is the additive group of Fq, g = χ, and H is
trivial since the shift is unique for nontrivial χ. In the shifted multiplicative character
problem over Z/nZ, G is the additive group of Z/nZ, g = χ, and H is the subgroup
{0, ℓ, . . . , n/ℓ}, where ℓ (which is a factor of n) is the period of χ. In the shifted period
multiplicative character problem over Z/nZ for unknown n, G is the additive group
of Z, g = χ, and H is the infinite subgroup ℓZ.
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